Personal tools

User:Michiexile/MATH198

From HaskellWiki

< User:Michiexile(Difference between revisions)
Jump to: navigation, search
Line 36: Line 36:
   
 
* [[User:Michiexile/MATH198/Lecture 4]]
 
* [[User:Michiexile/MATH198/Lecture 4]]
** The power of dualization.
 
** Limits, colimits.
 
 
** Products, coproducts.
 
** Products, coproducts.
** Equalizers, coequalizers.
+
** The power of dualization.
  +
** The algebra of datatypes
  +
   
 
* [[User:Michiexile/MATH198/Lecture 5]]
 
* [[User:Michiexile/MATH198/Lecture 5]]
  +
** Limits, colimits.
  +
** Equalizers, coequalizers.
  +
** Simulation using test suites.
  +
  +
* [[User:Michiexile/MATH198/Lecture 6]]
 
** Adjunctions.
 
** Adjunctions.
 
** Free and forgetful.
 
** Free and forgetful.
   
* [[User:Michiexile/MATH198/Lecture 6]]
+
** Monoids.
+
* [[User:Michiexile/MATH198/Lecture 7]]
  +
** Monoid objects.
 
** Monads.
 
** Monads.
 
** Triples.
 
** Triples.
Line 52: Line 55:
 
** Monad factorization.
 
** Monad factorization.
   
+
* [[User:Michiexile/MATH198/Lecture 8]]
* [[User:Michiexile/MATH198/Lecture 7]]
 
 
** Recursion as a categorical construction.
 
** Recursion as a categorical construction.
 
** Recursive categories.
 
** Recursive categories.
Line 61: Line 64:
 
*** et.c.
 
*** et.c.
   
* [[User:Michiexile/MATH198/Lecture 8]]
+
* [[User:Michiexile/MATH198/Lecture 9]]
 
** Topos.
 
** Topos.
 
** Exponentials.
 
** Exponentials.
 
** Power objects.
 
** Power objects.
 
** Cartesian Closed Categories.
 
** Cartesian Closed Categories.
 
* [[User:Michiexile/MATH198/Lecture 9]]
 
 
** Internal logic.
 
** Internal logic.
   

Revision as of 01:17, 8 October 2009

Course overview

Page is work in progress for background material for the Fall 2009 lecture course MATH198[1] on Category Theory and Functional Programming that I am planning to give at Stanford University.

Single unit course. 10 lectures. Each lecture is Wednesday 4.15-5.05 in 380F.


  • User:Michiexile/MATH198/Lecture 1
    • Category: Definition and examples.
    • Concrete categories.
      • Set.
      • Various categories capturing linear algebra.
    • Small categories.
      • Partial orders.
      • Monoids.
      • Finite groups.
    • Haskell-Curry isomorphism.




  • User:Michiexile/MATH198/Lecture 8
    • Recursion as a categorical construction.
    • Recursive categories.
    • Recursion as fixed points of monad algebras.
    • Recursion using special morphisms.
      • Hylo-
      • Zygo-
      • et.c.