Personal tools

User:Michiexile/MATH198

From HaskellWiki

< User:Michiexile(Difference between revisions)
Jump to: navigation, search
 
(14 intermediate revisions by one user not shown)
Line 1: Line 1:
 
==Course overview==
 
==Course overview==
   
Page is work in progress for background material for the Fall 2009 lecture course on Category Theory with a view towards applications that I am planning to give at Stanford University.
+
Page is the background material for the Fall 2009 lecture course MATH198[http://coursework.stanford.edu/homepage/F09/F09-MATH-198-01.html] on Category Theory and Functional Programming that I gave at Stanford University.
   
Single unit course. 10 lectures.
+
Single unit course. 10 lectures. Each lecture is Wednesday 4.15-5.05 in 380F.
   
* Functors.
 
* Natural transformations.
 
* Category of categories.
 
* The power of dualization.
 
* Limits, colimits.
 
* Products, coproducts.
 
* Equalizers, coequalizers.
 
* Exponentials.
 
* Power objects.
 
* Monads.
 
* Monoids.
 
* Triples.
 
* Cartesian Closed Categories.
 
** Categorical logic.
 
* Topoi.
 
** Internal language and logic.
 
* Haskell-Curry isomorphism.
 
* Recursive categories.
 
* Recursion as fixed points of monad algebras.
 
* Recursion using special morphisms.
 
** Hylo-
 
** Zygo-
 
** et.c.
 
   
* [[User:Michiexile/SU09 Lecture 1]]
+
* [[User:Michiexile/MATH198/Lecture 1]]
 
** Category: Definition and examples.
 
** Category: Definition and examples.
 
** Concrete categories.
 
** Concrete categories.
Line 38: Line 15:
 
*** Monoids.
 
*** Monoids.
 
*** Finite groups.
 
*** Finite groups.
  +
** Haskell-Curry isomorphism.
  +
  +
  +
* [[User:Michiexile/MATH198/Lecture 2]]
 
** Special morphisms
 
** Special morphisms
 
*** Epimorphism.
 
*** Epimorphism.
Line 49: Line 30:
 
*** Null.
 
*** Null.
   
* [[User:Michiexile/SU09 Lecture 2]]
+
* [[User:Michiexile/MATH198/Lecture 3]]
  +
** Functors.
  +
** Category of categories.
  +
** Natural transformations.
   
* [[User:Michiexile/SU09 Lecture 3]]
+
* [[User:Michiexile/MATH198/Lecture 4]]
  +
** Products, coproducts.
  +
** The power of dualization.
  +
** The algebra of datatypes
   
* [[User:Michiexile/SU09 Lecture 4]]
 
   
* [[User:Michiexile/SU09 Lecture 5]]
+
* [[User:Michiexile/MATH198/Lecture 5]]
  +
** Limits, colimits.
  +
  +
* [[User:Michiexile/MATH198/Lecture 6]]
  +
** Equalizers, coequalizers.
  +
** Pushouts/pullbacks
  +
** Adjunctions.
  +
** Free and forgetful.
   
* [[User:Michiexile/SU09 Lecture 6]]
 
   
* [[User:Michiexile/SU09 Lecture 7]]
+
* [[User:Michiexile/MATH198/Lecture 7]]
  +
** Monoid objects.
  +
** Monads.
  +
** Triples.
  +
** Kleisli category.
  +
** Monad factorization.
   
* [[User:Michiexile/SU09 Lecture 8]]
+
* [[User:Michiexile/MATH198/Lecture 8]]
  +
** Algebras over monads
  +
** Algebras over endofunctors
  +
** Initial algebras and recursion
  +
** Lambek's lemma
   
* [[User:Michiexile/SU09 Lecture 9]]
+
* [[User:Michiexile/MATH198/Lecture 9]]
  +
** Catamorphisms
  +
** Anamorphisms
  +
** Hylomorphisms
  +
** Metamorphisms
  +
** Paramorphisms
  +
** Apomorphisms
  +
** Properties of adjunctions, examples of adjunctions
   
* [[User:Michiexile/SU09 Lecture 10]]
+
* [[User:Michiexile/MATH198/Lecture 10]]
  +
** Power objects
  +
** Classifying objects
  +
** Topoi
  +
** Internal logic

Latest revision as of 05:51, 24 July 2010

[edit] Course overview

Page is the background material for the Fall 2009 lecture course MATH198[1] on Category Theory and Functional Programming that I gave at Stanford University.

Single unit course. 10 lectures. Each lecture is Wednesday 4.15-5.05 in 380F.


  • User:Michiexile/MATH198/Lecture 1
    • Category: Definition and examples.
    • Concrete categories.
      • Set.
      • Various categories capturing linear algebra.
    • Small categories.
      • Partial orders.
      • Monoids.
      • Finite groups.
    • Haskell-Curry isomorphism.




  • User:Michiexile/MATH198/Lecture 9
    • Catamorphisms
    • Anamorphisms
    • Hylomorphisms
    • Metamorphisms
    • Paramorphisms
    • Apomorphisms
    • Properties of adjunctions, examples of adjunctions