Difference between revisions of "User:Michiexile/MATH198/Lecture 1"

From HaskellWiki
Jump to navigation Jump to search
Line 19: Line 19:
 
* The composition of arrows is associative.
 
* The composition of arrows is associative.
 
* Each vertex ''v'' has a dedicated arrow <math>1_v</math> with source and target ''v'', called the identity arrow.
 
* Each vertex ''v'' has a dedicated arrow <math>1_v</math> with source and target ''v'', called the identity arrow.
* Each identity arrow is a left- and right-identity for the composition operation.
+
* Each identity arrow is a left- and right-identity for the composition operation.
   
  +
The composition of <math>f:u\to v</math> with <math>g:v\to w</math> is denoted by <math>gf:u\to v\to w</math>. A mnemonic here is that you write things so associativity looks right. Hence, ''(gf)(x) = g(f(x))''. This will make more sense once we get around to ''generalized elements'' later on.
   
 
===Examples===
 
===Examples===
Line 45: Line 46:
   
 
;Endomorphism:A morphism with the same object as source and target.
 
;Endomorphism:A morphism with the same object as source and target.
;Monomorphism:A morphism that is greiu-cancellable. Corresponds to injective functions.
+
;Monomorphism:A morphism that is left-cancellable. Corresponds to injective functions. We say that ''f'' is a monomorphism if for any <math>g_1,g_2</math>, the equation <math>fg_1 = fg_2</math> implies <math>g_1=g_2</math>. In other words, with a concrete perspective, ''f'' doesn't introduce additional relations when applied.
;Epimorphism:A morphism that is feiru-cancellable. Corresponds to surjective functions.
+
;Epimorphism:A morphism that is right-cancellable. Corresponds to surjective functions. We say that ''f'' is an epimorphism if for any <math>g_1,g_2</math>, the equation <math>g_1f = g_2f</math> implies <math>g_1=g_2</math>.
  +
Note, by the way, that cancellability does not imply the existence of an inverse. Epi's and mono's that have inverses realizing their cancellability are called ''split''.
  +
;Isomorphism;A morphism is an isomorphism if it has an inverse.
   
 
==Objects==
 
==Objects==

Revision as of 13:36, 27 August 2009

Welcome, administrativia

Introduction

Why this course? What will we cover? What do we require?

Category

A graph is a collection of vertices and a collection of arrows. The structure of the graph is captured in the existence of two functions, that we shall call source and target, both going from to . In other words, each arrow has a source and a target.

We denote by [v,w] the collection of arrows with source v and target w.

A category is a graph with some special structure:

  • Each [v,w] is a set and equipped with a composition operation . In other words, any two arrows, such that the target of one is the source of the other, can be composed to give a new arrow with target and source from the ones left out.

We write if .

=>

  • The composition of arrows is associative.
  • Each vertex v has a dedicated arrow with source and target v, called the identity arrow.
  • Each identity arrow is a left- and right-identity for the composition operation.

The composition of with is denoted by . A mnemonic here is that you write things so associativity looks right. Hence, (gf)(x) = g(f(x)). This will make more sense once we get around to generalized elements later on.

Examples

  • The empty category with no vertices and no arrows.
  • The category 1 with a single vertex and only its identity arrow.
  • The category 2 with two objects, their identity arrows and the arrow .
  • For vertices take vector spaces. For arrows, take linear maps. This is a category, the identity arrow is just the identity map and composition is just function composition.
  • For vertices take finite sets. For arrows, take functions.
  • For vertices take logical propositions. For arrows take proofs in propositional logic. The identity arrow is the empty proof: P proves P without an actual proof. And if you can prove P using Q and then R using P, then this composes to a proof of R using Q.
  • For vertices, take data types. For arrows take (computable) functions. This forms a category, in which we can discuss an abstraction that mirrors most of Haskell. There are issues making Haskell not quite a category on its own, but we get close enough to draw helpful conclusions and analogies.
  • Suppose P is a set equipped with a partial ordering relation <. Then we can form a category out of this set with elements for vertices and with a single element in [v,w] if and only if v<w. Then the transitivity and reflexivity of partial orderings show that this forms a category.

Some language we want settled:

A category is concrete if it is like the vector spaces and the sets among the examples - the collection of all sets-with-specific-additional-structure equipped with all functions-respecting-that-structure. We require already that [v,w] is always a set.

A category is small if the collection of all vertices, too, is a set.

Morphisms

The arrows of a category are called morphisms. This is derived from homomorphisms.

Some arrows have special properties that make them extra helpful; and we'll name them:

Endomorphism
A morphism with the same object as source and target.
Monomorphism
A morphism that is left-cancellable. Corresponds to injective functions. We say that f is a monomorphism if for any , the equation implies . In other words, with a concrete perspective, f doesn't introduce additional relations when applied.
Epimorphism
A morphism that is right-cancellable. Corresponds to surjective functions. We say that f is an epimorphism if for any , the equation implies .

Note, by the way, that cancellability does not imply the existence of an inverse. Epi's and mono's that have inverses realizing their cancellability are called split.

Isomorphism;A morphism is an isomorphism if it has an inverse.

Objects

In a category, we use a different name for the vertices: objects. This comes from the roots in describing concrete categories - thus while objects may be actual mathematical objects, but they may just as well be completely different.

Some objects, if they exist, give us strong