Difference between revisions of "User:WillNess"

From HaskellWiki
Jump to navigation Jump to search
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
A perpetual Haskell newbie. I like ''[http://ideone.com/qpnqe this one-liner]'':
I'm interested in Haskell.
 
 
I like ''[http://ideone.com/qpnqe this]'':
 
   
 
<haskell>
 
<haskell>
-- inifinte folding idea due to Richard Bird
+
-- infinite folding idea due to Richard Bird
 
-- double staged production idea due to Melissa O'Neill
 
-- double staged production idea due to Melissa O'Neill
-- tree folding idea Dave Bayer / simplified formulation Will Ness
+
-- tree folding idea Dave Bayer / improved tree structure
  +
-- Heinrich Apfelmus / simplified formulation Will Ness
primes = 2 : g (fix g)
 
where
+
primes = 2 : _Y ((3:) . gaps 5
g ps = 3 : gaps 5 (foldi (\(q:qs) -> (q:) . union qs)
+
. foldi (\(x:xs) -> (x:) . union xs) []
[[p*p, p*p+2*p..] | p <- ps])
+
. map (\p-> [p*p, p*p+2*p..]))
gaps k s@(c:t)
 
| k < c = k : gaps (k+2) s -- | k<=c = minus [k,k+2..] s
 
| True = gaps (k+2) t -- fused to avoid a space leak
 
   
  +
_Y g = g (_Y g) -- multistage production
fix g = xs where xs = g xs -- global defn to avoid space leak
 
  +
  +
gaps k s@(c:t) -- == minus [k,k+2..] (c:t), k<=c,
 
| k < c = k : gaps (k+2) s -- fused for better performance
 
| otherwise = gaps (k+2) t -- k==c
 
</haskell>
 
</haskell>
   
 
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].
 
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].
   
Also, the math formula for Sieve of Eratosthenes,
+
The constructive definition of primes is the Sieve of Eratosthenes:
   
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{n p:n \in \mathbb{N}_{p}\}</math>
+
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math>
  +
using standard definition
 
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> &emsp; :)&emsp;:) .
   
 
Trial division sieve is:
where
 
 
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> &emsp; :)&emsp;:) .
 
   
 
::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}</math>
Trial division sieve:
 
   
  +
If you're put off by self-referentiality, just replace <math>\mathbb{S}</math> or <math>\mathbb{T}</math> on the right-hand side of equations with <math>\mathbb{N}_{2}</math>, but even ancient Greeks knew better.
::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\not\exists p \in \mathbb{T}) (p\leq \sqrt{n} \and p\mid n)\}</math>
 

Revision as of 09:30, 6 August 2013

A perpetual Haskell newbie. I like this one-liner:

--   infinite folding idea due to Richard Bird
--   double staged production idea due to Melissa O'Neill
--   tree folding idea Dave Bayer / improved tree structure 
--     Heinrich Apfelmus / simplified formulation Will Ness
primes = 2 : _Y ((3:) . gaps 5  
                      . foldi (\(x:xs) -> (x:) . union xs) []
                      . map (\p-> [p*p, p*p+2*p..])) 

_Y g = g (_Y g)  -- multistage production

gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
   | k < c     = k : gaps (k+2) s     --     fused for better performance
   | otherwise =     gaps (k+2) t     -- k==c

foldi is on Tree-like folds page. union and more at Prime numbers.

The constructive definition of primes is the Sieve of Eratosthenes:

using standard definition

  . . . or,     :) :) .

Trial division sieve is:

If you're put off by self-referentiality, just replace or on the right-hand side of equations with , but even ancient Greeks knew better.