Personal tools

User:WillNess

From HaskellWiki

(Difference between revisions)
Jump to: navigation, search
 
(5 intermediate revisions by one user not shown)
Line 1: Line 1:
I'm interested in Haskell.
+
A perpetual Haskell newbie. I like ''[http://ideone.com/qpnqe this one-liner]'':
 
I like ''[http://ideone.com/qpnqe this]'':
 
   
 
<haskell>
 
<haskell>
-- inifinte folding idea due to Richard Bird
+
-- infinite folding idea due to Richard Bird
 
-- double staged production idea due to Melissa O'Neill
 
-- double staged production idea due to Melissa O'Neill
-- tree folding idea Dave Bayer / simplified formulation Will Ness
+
-- tree folding idea Dave Bayer / improved tree structure
primes = 2 : g (fix g)
+
-- Heinrich Apfelmus / simplified formulation Will Ness
where
+
primes = 2 : _Y ((3:) . gaps 5
g xs = 3 : gaps 5 (foldi (\(c:cs) -> (c:) . union cs)
+
. foldi (\(x:xs) -> (x:) . union xs) []
[[x*x, x*x+2*x..] | x <- xs])
+
. map (\p-> [p*p, p*p+2*p..]))
gaps k s@(c:t)
 
| k < c = k : gaps (k+2) s -- minus [k,k+2..] (c:t), k<=c
 
| True = gaps (k+2) t -- fused to avoid a space leak
 
   
fix g = xs where xs = g xs -- global defn to avoid space leak
+
_Y g = g (_Y g) -- multistage production
  +
  +
gaps k s@(c:t) -- == minus [k,k+2..] (c:t), k<=c,
  +
| k < c = k : gaps (k+2) s -- fused for better performance
  +
| otherwise = gaps (k+2) t -- k==c
 
</haskell>
 
</haskell>
   
 
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].
 
<code>foldi</code> is on [[Fold#Tree-like_folds|Tree-like folds]] page. <code>union</code> and more at [[Prime numbers#Sieve_of_Eratosthenes|Prime numbers]].
   
The math formula for Sieve of Eratosthenes,
+
The constructive definition of primes is the Sieve of Eratosthenes:
 
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{n p:n \in \mathbb{N}_{p}\}</math>
 
 
where
 
   
  +
::::<math>\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}</math>
  +
using standard definition
 
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> &emsp; :)&emsp;:) .
 
::::<math>\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}</math> &emsp; . . . or, &ensp;<math>\textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}</math> &emsp; :)&emsp;:) .
   
Trial division sieve:
+
Trial division sieve is:
   
::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\not\exists p \in \mathbb{T}) (p\leq \sqrt{n}\,, p\mid n)\}</math>
+
::::<math>\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}</math>
   
If you're put off by self-referentiality, just replace <math>\mathbb{S}</math> or <math>\mathbb{T}</math> on the right-hand side of equations with <math>\mathbb{N}_{2}</math>.
+
If you're put off by self-referentiality, just replace <math>\mathbb{S}</math> or <math>\mathbb{T}</math> on the right-hand side of equations with <math>\mathbb{N}_{2}</math>, but even ancient Greeks knew better.

Latest revision as of 09:30, 6 August 2013

A perpetual Haskell newbie. I like this one-liner:

--   infinite folding idea due to Richard Bird
--   double staged production idea due to Melissa O'Neill
--   tree folding idea Dave Bayer / improved tree structure 
--     Heinrich Apfelmus / simplified formulation Will Ness
primes = 2 : _Y ((3:) . gaps 5  
                      . foldi (\(x:xs) -> (x:) . union xs) []
                      . map (\p-> [p*p, p*p+2*p..])) 
 
_Y g = g (_Y g)  -- multistage production
 
gaps k s@(c:t)                        -- == minus [k,k+2..] (c:t), k<=c,
   | k < c     = k : gaps (k+2) s     --     fused for better performance
   | otherwise =     gaps (k+2) t     -- k==c

foldi is on Tree-like folds page. union and more at Prime numbers.

The constructive definition of primes is the Sieve of Eratosthenes:

\textstyle\mathbb{S} = \mathbb{N}_{2} \setminus \bigcup_{p\in \mathbb{S}} \{p\,q:q \in \mathbb{N}_{p}\}

using standard definition

\textstyle\mathbb{N}_{k} = \{ n \in \mathbb{N} : n \geq k \}   . . . or,  \textstyle\mathbb{N}_{k} = \{k\} \bigcup \mathbb{N}_{k+1}   :) :) .

Trial division sieve is:

\textstyle\mathbb{T} = \{n \in \mathbb{N}_{2}: (\forall p \in \mathbb{T})(2\leq p\leq \sqrt{n}\, \Rightarrow \neg{(p \mid n)})\}

If you're put off by self-referentiality, just replace \mathbb{S} or \mathbb{T} on the right-hand side of equations with \mathbb{N}_{2}, but even ancient Greeks knew better.