Applied to a predicate and a list, all determines if all elements of the list satisfy the predicate. For the result to be True, the list must be finite; False, however, results from a False value for the predicate applied to an element at a finite index of a finite or infinite list.

Applied to a predicate and a list, any determines if any element of the list satisfies the predicate. For the result to be False, the list must be finite; True, however, results from a True value for the predicate applied to an element at a finite index of a finite or infinite list.

Determines whether all elements of the structure satisfy the predicate.

Determines whether any element of the structure satisfies the predicate.

The find function takes a predicate and a list and returns the first element in the list matching the predicate, or Nothing if there is no such element.

dropWhile p xs returns the suffix remaining after takeWhile p xs:
> dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3]
> dropWhile (< 9) [1,2,3] == []
> dropWhile (< 0) [1,2,3] == [1,2,3]

filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,
> filter p xs = [ x | x <- xs, p x]

takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p:
> takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
> takeWhile (< 9) [1,2,3] == [1,2,3]
> takeWhile (< 0) [1,2,3] == []

map f xs is the list obtained by applying f to each element of xs, i.e.,
> map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
> map f [x1, x2, ...] == [f x1, f x2, ...]

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:
> f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as map ($ 0) xs, or Data.List.zipWith ($) fs xs.

Strict (call-by-value) application, defined in terms of seq.

Apply a transformation everywhere in bottom-up manner

Apply a transformation everywhere in top-down manner

This function may be used as a value for Data.Foldable.foldMap in a Foldable instance.

until p f yields the result of applying f until p holds.

The find function takes a predicate and a structure and returns the leftmost element of the structure matching the predicate, or Nothing if there is no such element.

Direct MonadPlus equivalent of filter filter = (mfilter:: (a -> Bool) -> [a] -> [a] applicable to any MonadPlus, for example mfilter odd (Just 1) == Just 1 mfilter odd (Just 2) == Nothing