(a -> a) -> [a]

iterate :: (a -> a) -> a -> [a]
base Prelude, base Data.List
iterate f x returns an infinite list of repeated applications of f to x: > iterate f x == [x, f x, f (f x), ...]
fix :: (a -> a) -> a
base Data.Function, base Control.Monad.Fix
fix f is the least fixed point of the function f, i.e. the least defined x such that f x = x.
everywhere :: (forall a. Data a => a -> a) -> (forall a. Data a => a -> a)
syb Data.Generics.Schemes
Apply a transformation everywhere in bottom-up manner
everywhere' :: (forall a. Data a => a -> a) -> (forall a. Data a => a -> a)
syb Data.Generics.Schemes
Apply a transformation everywhere in top-down manner
map :: (a -> b) -> [a] -> [b]
base Prelude, base Data.List
map f xs is the list obtained by applying f to each element of xs, i.e., > map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] > map f [x1, x2, ...] == [f x1, f x2, ...]
gmapQ :: Data a => (forall d. Data d => d -> u) -> a -> [u]
base Data.Data
dropWhile :: (a -> Bool) -> [a] -> [a]
base Prelude, base Data.List
dropWhile p xs returns the suffix remaining after takeWhile p xs: > dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3] > dropWhile (< 9) [1,2,3] == [] > dropWhile (< 0) [1,2,3] == [1,2,3]
filter :: (a -> Bool) -> [a] -> [a]
base Prelude, base Data.List
filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e., > filter p xs = [ x | x <- xs, p x]
takeWhile :: (a -> Bool) -> [a] -> [a]
base Prelude, base Data.List
takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p: > takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2] > takeWhile (< 9) [1,2,3] == [1,2,3] > takeWhile (< 0) [1,2,3] == []
GT :: (forall a. Data a => a -> a) -> GenericT'
syb Data.Generics.Aliases
until :: (a -> Bool) -> (a -> a) -> a -> a
base Prelude
until p f yields the result of applying f until p holds.
parMap :: Strategy b -> (a -> b) -> [a] -> [b]
parallel Control.Parallel.Strategies
A combination of parList and map, encapsulating a common pattern: > parMap strat f = withStrategy (parList strat) . map f
fmapDefault :: Traversable t => (a -> b) -> t a -> t b
base Data.Traversable
This function may be used as a value for fmap in a Functor instance.
liftA :: Applicative f => (a -> b) -> f a -> f b
base Control.Applicative
Lift a function to actions. This function may be used as a value for fmap in a Functor instance.
sortWith :: Ord b => (a -> b) -> [a] -> [a]
base GHC.Exts
The sortWith function sorts a list of elements using the user supplied function to project something out of each element
mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
base Control.Monad
Direct MonadPlus equivalent of filter filter = (mfilter:: (a -> Bool) -> [a] -> [a] applicable to any MonadPlus, for example mfilter odd (Just 1) == Just 1 mfilter odd (Just 2) == Nothing
mapException :: (Exception -> Exception) -> a -> a
base Control.OldException
This function maps one exception into another as proposed in the paper "A semantics for imprecise exceptions".
cgiGet :: MonadCGI m => (CGIRequest -> a) -> m a
cgi Network.CGI.Monad
(<<) :: HTML a => (Html -> b) -> a -> b
html Text.Html
(<<) :: HTML a => (Html -> b) -> a -> b
xhtml Text.XHtml.Strict, xhtml Text.XHtml.Frameset, xhtml Text.XHtml.Transitional
Put something inside an HTML element.

Show more results