Integral b => a -> b -> [a]

genericReplicate :: Integral i => i -> a -> [a]
base Data.List
The genericReplicate function is an overloaded version of replicate, which accepts any Integral value as the number of repetitions to make.
genericDrop :: Integral i => i -> [a] -> [a]
base Data.List
The genericDrop function is an overloaded version of drop, which accepts any Integral value as the number of elements to drop.
genericTake :: Integral i => i -> [a] -> [a]
base Data.List
The genericTake function is an overloaded version of take, which accepts any Integral value as the number of elements to take.
(^) :: (Num a, Integral b) => a -> b -> a
base Prelude
raise a number to a non-negative integral power
(^^) :: (Fractional a, Integral b) => a -> b -> a
base Prelude
raise a number to an integral power
const :: a -> b -> a
base Prelude, base Data.Function
Constant function.
genericIndex :: Integral a => [b] -> a -> b
base Data.List
The genericIndex function is an overloaded version of !!, which accepts any Integral value as the index.
seq :: a -> b -> b
base Prelude
Evaluates its first argument to head normal form, and then returns its second argument as the result.
par :: a -> b -> b
base GHC.Conc.Sync, base GHC.Conc
par :: a -> b -> b
parallel Control.Parallel
Indicates that it may be beneficial to evaluate the first argument in parallel with the second. Returns the value of the second argument. a `par` b is exactly equivalent semantically to b. par is generally used when the value of a is likely to be required later, but not immediately. Also it is a good idea to ensure that a is not a trivial computation, otherwise the cost of spawning it in parallel overshadows the benefits obtained by running it in parallel. Note that actual parallelism is only supported by certain implementations (GHC with the -threaded option, and GPH, for now). On other implementations, par a b = b.
pseq :: a -> b -> b
base GHC.Conc.Sync, base GHC.Conc
pseq :: a -> b -> b
parallel Control.Parallel
Semantically identical to seq, but with a subtle operational difference: seq is strict in both its arguments, so the compiler may, for example, rearrange a `seq` b into b `seq` a `seq` b. This is normally no problem when using seq to express strictness, but it can be a problem when annotating code for parallelism, because we need more control over the order of evaluation; we may want to evaluate a before b, because we know that b has already been sparked in parallel with par. This is why we have pseq. In contrast to seq, pseq is only strict in its first argument (as far as the compiler is concerned), which restricts the transformations that the compiler can do, and ensures that the user can retain control of the evaluation order.
replicate :: Int -> a -> [a]
base Prelude, base Data.List
replicate n x is a list of length n with x the value of every element. It is an instance of the more general Data.List.genericReplicate, in which n may be of any integral type.
scanr :: (a -> b -> b) -> b -> [a] -> [b]
base Prelude, base Data.List
scanr is the right-to-left dual of scanl. Note that > head (scanr f z xs) == foldr f z xs.
scanl :: (a -> b -> a) -> a -> [b] -> [a]
base Prelude, base Data.List
scanl is similar to foldl, but returns a list of successive reduced values from the left: > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...] Note that > last (scanl f z xs) == foldl f z xs.
intersperse :: a -> [a] -> [a]
base Data.List
The intersperse function takes an element and a list and `intersperses' that element between the elements of the list. For example, > intersperse ',' "abcde" == "a,b,c,d,e"
unGM :: GenericM' m -> forall a. Data a => a -> m a
syb Data.Generics.Aliases
div :: Integral a => a -> a -> a
base Prelude
gcd :: Integral a => a -> a -> a
base Prelude
gcd x y is the greatest (positive) integer that divides both x and y; for example gcd (-3) 6 = 3, gcd (-3) (-6) = 3, gcd 0 4 = 4. gcd 0 0 raises a runtime error.
lcm :: Integral a => a -> a -> a
base Prelude
lcm x y is the smallest positive integer that both x and y divide.

Show more results