Map +Data -bytestring

module Data.Map
containers Data.Map
Note: You should use Data.Map.Strict instead of this module if: * You will eventually need all the values stored. * The stored values don't represent large virtual data structures to be lazily computed. An efficient implementation of ordered maps from keys to values (dictionaries). These modules are intended to be imported qualified, to avoid name clashes with Prelude functions, e.g. > import qualified Data.Map as Map The implementation of Map is based on size balanced binary trees (or trees of bounded balance) as described by: * Stephen Adams, "Efficient sets: a balancing act", Journal of Functional Programming 3(4):553-562, October 1993, http://www.swiss.ai.mit.edu/~adams/BB/. * J. Nievergelt and E.M. Reingold, "Binary search trees of bounded balance", SIAM journal of computing 2(1), March 1973. Note that the implementation is left-biased -- the elements of a first argument are always preferred to the second, for example in union or insert. Operation comments contain the operation time complexity in the Big-O notation (http://en.wikipedia.org/wiki/Big_O_notation).
data Map k a
containers Data.Map.Lazy, containers Data.Map.Strict
A Map from keys k to values a.
map :: (a -> b) -> [a] -> [b]
base Prelude, base Data.List
map f xs is the list obtained by applying f to each element of xs, i.e., > map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] > map f [x1, x2, ...] == [f x1, f x2, ...]
map :: (Char -> Char) -> Text -> Text
text Data.Text, text Data.Text.Lazy
O(n) map f t is the Text obtained by applying f to each element of t. Subject to fusion. Performs replacement on invalid scalar values.
map :: (Key -> Key) -> IntSet -> IntSet
containers Data.IntSet
O(n*min(n,W)). map f s is the set obtained by applying f to each element of s. It's worth noting that the size of the result may be smaller if, for some (x,y), x /= y && f x == f y
map :: (a -> b) -> IntMap a -> IntMap b
containers Data.IntMap.Strict, containers Data.IntMap.Lazy
O(n). Map a function over all values in the map. > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]
map :: (a -> b) -> Map k a -> Map k b
containers Data.Map.Lazy, containers Data.Map.Strict
O(n). Map a function over all values in the map. > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")]
map :: Ord b => (a -> b) -> Set a -> Set b
containers Data.Set
O(n*log n). map f s is the set obtained by applying f to each element of s. It's worth noting that the size of the result may be smaller if, for some (x,y), x /= y && f x == f y
mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
base Data.List
The mapAccumL function behaves like a combination of map and foldl; it applies a function to each element of a list, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new list.
mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
base Data.Traversable
The mapAccumL function behaves like a combination of fmap and foldl; it applies a function to each element of a structure, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new structure.
mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
base Data.List
The mapAccumR function behaves like a combination of map and foldr; it applies a function to each element of a list, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new list.
mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
base Data.Traversable
The mapAccumR function behaves like a combination of fmap and foldr; it applies a function to each element of a structure, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new structure.
mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b)
base Data.Traversable
mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
base Data.Foldable
Map each element of a structure to a monadic action, evaluate these actions from left to right, and ignore the results.
mapMaybe :: (a -> Maybe b) -> [a] -> [b]
base Data.Maybe
The mapMaybe function is a version of map which can throw out elements. In particular, the functional argument returns something of type Maybe b. If this is Nothing, no element is added on to the result list. If it just Just b, then b is included in the result list.
mappend :: Monoid a => a -> a -> a
base Data.Monoid
mapAccum :: (a -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
containers Data.IntMap.Strict, containers Data.IntMap.Lazy
O(n). The function mapAccum threads an accumulating argument through the map in ascending order of keys. > let f a b = (a ++ b, b ++ "X") > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])
mapAccum :: (a -> b -> (a, c)) -> a -> Map k b -> (a, Map k c)
containers Data.Map.Lazy, containers Data.Map.Strict
O(n). The function mapAccum threads an accumulating argument through the map in ascending order of keys. > let f a b = (a ++ b, b ++ "X") > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")])
mapAccumL :: (a -> Char -> (a, Char)) -> a -> Text -> (a, Text)
text Data.Text, text Data.Text.Lazy
O(n) Like a combination of map and foldl'. Applies a function to each element of a Text, passing an accumulating parameter from left to right, and returns a final Text. Performs replacement on invalid scalar values.
mapAccumR :: (a -> Char -> (a, Char)) -> a -> Text -> (a, Text)
text Data.Text, text Data.Text.Lazy
The mapAccumR function behaves like a combination of map and a strict foldr; it applies a function to each element of a Text, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new Text. Performs replacement on invalid scalar values.

Show more results