String +package

package string
package
Common things for strings Version 0.3.1
package string-class
package
String class library Version 0.1.5.1
package string-combinators
package
string-combinators provides handy polymorphic functions to build and combine string-like values. All functions are polymorphic in their string-like type but usually have a Monoid or IsString constraint. Version 0.6.0.4
package string-conversions
package
Provides a simple type class for converting values of different string types into values of other string types. Version 0.3.0.1
package string-qq
package
QuasiQuoter for non-interpolated strings, texts and bytestrings. Version 0.0.2
package string-quote
package
QuasiQuoter for non-interpolated strings, texts and bytestrings. Version 0.0.1
package string-similarity
package
algorithms for finding the longest common substring in a set of documents Version 0.1.0.0
package stringable
package
Data.Stringable provides a type class with a set of functions for converting to and from the most often used string-linke types in Haskell. Version 0.1.2
package stringbuilder
package
https://github.com/sol/stringbuilder#readme Version 0.4.0
package stringlike
package
Transformations to several string-like types Version 0.0.0
package stringprep
package
Implements the StringPrep algorithm Version 0.1.5
package strings
package
This package provides various functions for working with strings, such as join, split, toUppercase, etc. The functions in this package work with all kinds of strings such as Text, ByteString, String, and their respective lazy counter parts. There is also an interface which is agnostic of the underlying string type. v1.0.2: Fixed an issue with strSplitAll. Applied to the empty string it should return an empty list, but it returned a list containing a single empty string. It now returns correctly the empty list. v1.1: Added strToUpper, strToLower, strCapitalize, strCons, and  strMap. Also sCapitalize, sCons, and sMap. Version 1.1
package stringsearch
package
This package provides several functions to quickly search for substrings in strict or lazy ByteStrings. It also provides functions for breaking or splitting on substrings and replacing all occurrences of a substring (the first in case of overlaps) with another. GHC before 6.10 are no longer supported, other compilers only if they support BangPatterns. If you need it to work with other compilers, send a feature request. Version 0.3.6.5
package stringtable-atom
package
Memoize Strings as Atoms for fast comparison and sorting, with maps and sets Version 0.0.6.2
package base16-bytestring
package
Fast base16 (hex) encoding and decoding for ByteStrings Version 0.1.1.5
package base32-bytestring
package
base32 and base32hex codec according to RFC4648 http://tools.ietf.org/html/rfc4648 The package API is similar to base64-bytestring. Version 0.2.1.0
package base64-bytestring
package
Fast base64 encoding and decoding for ByteStrings Version 1.0.0.1
package base64-string
package
This Base64 implementation uses the characters A-Z a-z 0-9 + along with = to signal the number of characters mod 3. It is compliant with both PEM (RFC 989 RFC 1421) and MIME (RFC 2045). Version 0.2
package bitstring
package
Lazy bit strings, built on the top of bytestrings. Version 0.0.0
package bytestring
package
An efficient compact, immutable byte string type (both strict and lazy) suitable for binary or 8-bit character data. The ByteString type represents sequences of bytes or 8-bit characters. It is suitable for high performance use, both in terms of large data quantities, or high speed requirements. The ByteString functions follow the same style as Haskell's ordinary lists, so it is easy to convert code from using String to ByteString. Two ByteString variants are provided: * Strict ByteStrings keep the string as a single large array. This makes them convenient for passing data between C and Haskell. * Lazy ByteStrings use a lazy list of strict chunks which makes it suitable for I/O streaming tasks. The Char8 modules provide a character-based view of the same underlying ByteString types. This makes it convenient to handle mixed binary and 8-bit character content (which is common in many file formats and network protocols). The Builder module provides an efficient way to build up ByteStrings in an ad-hoc way by repeated concatenation. This is ideal for fast serialisation or pretty printing. There is also a ShortByteString type which has a lower memory overhead and can can be converted to or from a ByteString, but supports very few other operations. It is suitable for keeping many short strings in memory. ByteStrings are not designed for Unicode. For Unicode strings you should use the Text type from the text package. These modules are intended to be imported qualified, to avoid name clashes with Prelude functions, e.g. > import qualified Data.ByteString as BS Version 0.10.4.0
package bytestring-builder
package
This is the bytestring builder that is debuting in bytestring-0.10.4.0, which should be shipping with GHC 7.8, probably late in 2013. This builder has several nice simplifications and improvements, and more out-of-box functionality than the older blaze-builder. Note that this package detects which version of bytestring you are compiling against,  and if you are compiling against bytestring-0.10.4 or later, will be an empty package. This package lets the new interface and implementation be used with most older compilers without upgrading bytestring, which can be rather problematic.  In conjunction with blaze-builder-0.4 or later,  which offers an implementation of blaze-builder in terms of bytestring-builder, this should let most people try the new interface and implementation without causing undue compatibility problems with packages that depend on blaze-builder. GHC 7.6 did debut an almost identical interface and implementation, but with slightly different module names and organization.   Trying to re-export/rename the builder provided with 7.6 did not turn out to be very practical,  because this interface includes new functions that rely on Builder internals, which are not exported in 7.6.  Furthermore, these module names should be deprecated in 7.10. Version 0.10.4.0.1
package bytestring-class
package
In theory, this allows the design of more data-agnostic APIs. Version 0.0.0
package bytestring-csv
package
Parse CSV formatted data efficiently Version 0.1.2
package bytestring-delta
package
Compute a patch between two ByteStrings which can later be applied to the first to produce the second.  This can be used to save bandwidth and disk space when many strings differing by a small number of bytes need to be transmitted or stored. The underlying implementation is written in C, and can also be found at http://ccodearchive.net/info/bdelta.html. Currently, a patch does not save any space when two strings differ by more than 1000 bytes.  This arbitrary limit serves to keep applications from spiking in memory and CPU usage, as the algorithm uses quadratic space and time with respect to the length of the patch.  A better algorithm may be introduced in a future version of bytestring-delta. Version 0.1.0.1
package bytestring-handle
package
package bytestring-lexing
package
Parse and produce literals efficiently from strict or lazy bytestrings. Some benchmarks for this package can be found at: http://community.haskell.org/~wren/bytestring-lexing/test/bench/html Version 0.4.3
package bytestring-mmap
package
This library provides a wrapper to mmap(2), allowing files or devices to be lazily loaded into memory as strict or lazy ByteStrings, using the virtual memory subsystem to do on-demand loading. Version 0.2.2
package bytestring-nums
package
Parse numeric literals from ByteStrings. Version 0.3.6
package bytestring-plain
package
More compact representation for strict ByteStrings avoiding the overhead and indirection caused by ForeignPtr. This representation is useful to reduce the incurred memory overhead when operating with many small, long-lived, distinct byte strings (such as keys for containers). See documentation in Data.ByteString.Plain for more details about this representation. As an alternative, recent `bytestring` versions provide Data.ByteString.Short which has a similiar overhead but uses unpinned memory instead (and thus requires an additional string data copy in contrast to Data.ByteString.Plain which allows to share the string data with the associated Data.ByteString value). Version 0.1.0.1
package bytestring-progress
package
In some cases, it is useful to know how fast a ByteString is being consumed. Typically, this could be to report some measure of progress to a waiting user, but it could also be to perform some form of testing on input / consumption code. Version 1.0.3
package bytestring-rematch
package
package bytestring-show
package
Efficient conversion of values into readable byte strings. Version 0.3.5.5
package bytestring-trie
package
An efficient finite map from (byte)strings to values. The implementation is based on big-endian patricia trees, like Data.IntMap. We first trie on the elements of Data.ByteString and then trie on the big-endian bit representation of those elements. Patricia trees have efficient algorithms for union and other merging operations, but they're also quick for lookups and insertions. If you are only interested in being able to associate strings to values, then you may prefer the hashmap package which is faster for those only needing a map-like structure. This package is intended for those who need the extra capabilities that a trie-like structure can offer (e.g., structure sharing to reduce memory costs for highly redundant keys, taking the submap of all keys with a given prefix, contextual mapping, extracting the minimum and maximum keys, etc.) Version 0.2.3
package bytestringparser
package
package bytestringparser-temporary
package
AttoParsec with a small patch so I can get on with my parser. Version 0.4.1
package bytestringreadp
package
This is a library of parser combinators, originally written by Koen Claessen. It parses all alternatives in parallel, so it never keeps hold of the beginning of the input string, a common source of space leaks with other parsers.  The '(+++)' choice combinator is genuinely commutative; it makes no difference which branch is "shorter". Adapted to use Data.ByteString by Gracjan Polak. Designed as a drop-in replacement for Text.ParserCombinators.ReadP. Version 0.2
package compact-string
package
Fast, packed, strict strings with a list interface. Based on Data.ByteString. Multiple encodings are supported. Version 0.3.1
package compact-string-fix
package
Fast, packed, strict strings with a list interface. Based on Data.ByteString. Multiple encodings are supported. This is the same package as compact-string-0.3.1 except for a small fix to work with the new Exception library. Once Twan updates that package, this package will be deprecated. Version 0.3.2
package data-stringmap
package
An efficient implementation of maps from strings to arbitrary values. Values can associated with an arbitrary byte key. Searching for keys is very fast, but the prefix tree probably consumes more memory than Data.Map. The main differences are the special prefixFind functions, which can be used to perform prefix queries. Version 0.9.2
package dstring
package
Difference strings: a data structure for O(1) append on strings. Note that a DString is just a newtype wrapper around a DList Char. The reason we need a new type instead of just a type synonym is that we can have an instance IsString DString without using language extensions (TypeSynonymInstances or FlexibleInstances) so we can write overloaded string literals of type DString. Version 0.4.0.4

Show more results