a -> a

id :: a -> a
base Prelude, base Data.Function
Identity function.
breakpoint :: a -> a
base GHC.Exts
inline :: a -> a
base GHC.Exts
The call '(inline f)' reduces to f, but inline has a BuiltInRule that tries to inline f (if it has an unfolding) unconditionally The NOINLINE pragma arranges that inline only gets inlined (and hence eliminated) late in compilation, after the rule has had a good chance to fire.
lazy :: a -> a
base GHC.Exts
The call '(lazy e)' means the same as e, but lazy has a magical strictness property: it is lazy in its first argument, even though its semantics is strict.
mapException :: (Exception e1, Exception e2) => (e1 -> e2) -> a -> a
base Control.Exception.Base, base Control.Exception
This function maps one exception into another as proposed in the paper "A semantics for imprecise exceptions".
everywhere :: (forall a. Data a => a -> a) -> (forall a. Data a => a -> a)
syb Data.Generics.Schemes
Apply a transformation everywhere in bottom-up manner
everywhere' :: (forall a. Data a => a -> a) -> (forall a. Data a => a -> a)
syb Data.Generics.Schemes
Apply a transformation everywhere in top-down manner
mapException :: (Exception -> Exception) -> a -> a
base Control.OldException
This function maps one exception into another as proposed in the paper "A semantics for imprecise exceptions".
const :: a -> b -> a
base Prelude, base Data.Function
Constant function.
asTypeOf :: a -> a -> a
base Prelude
asTypeOf is a type-restricted version of const. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the second.
fromMaybe :: a -> Maybe a -> a
base Data.Maybe
The fromMaybe function takes a default value and and Maybe value. If the Maybe is Nothing, it returns the default values; otherwise, it returns the value contained in the Maybe.
unGT :: GenericT' -> forall a. Data a => a -> a
syb Data.Generics.Aliases
assert :: Bool -> a -> a
base Control.Exception.Base, base Control.Exception, base Control.OldException
If the first argument evaluates to True, then the result is the second argument. Otherwise an AssertionFailed exception is raised, containing a String with the source file and line number of the call to assert. Assertions can normally be turned on or off with a compiler flag (for GHC, assertions are normally on unless optimisation is turned on with -O or the -fignore-asserts option is given). When assertions are turned off, the first argument to assert is ignored, and the second argument is returned as the result.
breakpointCond :: Bool -> a -> a
base GHC.Exts
appEndo :: Endo a -> a -> a
base Data.Monoid
traceShow :: Show a => a -> b -> b
base Debug.Trace
Like trace, but uses show on the argument to convert it to a String. > traceShow = trace . show
deepseq :: NFData a => a -> b -> b
deepseq Control.DeepSeq
deepseq: fully evaluates the first argument, before returning the second. The name deepseq is used to illustrate the relationship to seq: evaluates the top level of its argument, deepseq traverses the entire data structure evaluating it completely. deepseq can be useful for forcing pending exceptions, eradicating space leaks, or forcing lazy I/O to happen. It is also useful in conjunction with parallel Strategies (see the parallel package). There is no guarantee about the ordering of evaluation. The implementation may evaluate the components of the structure in any order or in parallel. To impose an actual order on evaluation, use pseq from Control.Parallel in the parallel package.
seq :: a -> b -> b
base Prelude
Evaluates its first argument to head normal form, and then returns its second argument as the result.
par :: a -> b -> b
base GHC.Conc.Sync, base GHC.Conc
par :: a -> b -> b
parallel Control.Parallel
Indicates that it may be beneficial to evaluate the first argument in parallel with the second. Returns the value of the second argument. a `par` b is exactly equivalent semantically to b. par is generally used when the value of a is likely to be required later, but not immediately. Also it is a good idea to ensure that a is not a trivial computation, otherwise the cost of spawning it in parallel overshadows the benefits obtained by running it in parallel. Note that actual parallelism is only supported by certain implementations (GHC with the -threaded option, and GPH, for now). On other implementations, par a b = b.

Show more results