ap -package

ap :: Monad m => m (a -> b) -> m a -> m b
base Control.Monad
In many situations, the liftM operations can be replaced by uses of ap, which promotes function application. > return f `ap` x1 `ap` ... `ap` xn is equivalent to > liftMn f x1 x2 ... xn
ap :: Graph gr => gr a b -> [Node]
fgl Data.Graph.Inductive.Query.ArtPoint
Finds the articulation points for a connected undirected graph, by using the low numbers criteria: a) The root node is an articulation point iff it has two or more children. b) An non-root node v is an articulation point iff there exists at least one child w of v such that lowNumber(w) >= dfsNumber(v).
appendFile :: FilePath -> String -> IO ()
base Prelude, base System.IO
The computation appendFile file str function appends the string str, to the file file. Note that writeFile and appendFile write a literal string to a file. To write a value of any printable type, as with print, use the show function to convert the value to a string first. > main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
app :: ArrowApply a => a (a b c, b) c
base Control.Arrow
appEndo :: Endo a -> a -> a
base Data.Monoid
approxRational :: RealFrac a => a -> a -> Rational
base Data.Ratio
approxRational, applied to two real fractional numbers x and epsilon, returns the simplest rational number within epsilon of x. A rational number y is said to be simpler than another y' if * abs (numerator y) <= abs (numerator y'), and * denominator y <= denominator y'. Any real interval contains a unique simplest rational; in particular, note that 0/1 is the simplest rational of all.
appE :: ExpQ -> ExpQ -> ExpQ
template-haskell Language.Haskell.TH.Lib, template-haskell Language.Haskell.TH
append :: ByteString -> ByteString -> ByteString
bytestring Data.ByteString, bytestring Data.ByteString.Char8
O(n) Append two ByteStrings
append :: ByteString -> ByteString -> ByteString
bytestring Data.ByteString.Lazy, bytestring Data.ByteString.Lazy.Char8
O(n\c)/ Append two ByteStrings
append :: OpenFileFlags -> Bool
unix System.Posix.IO.ByteString, unix System.Posix.IO
O_APPEND
append :: Text -> Text -> Text
text Data.Text
O(n) Appends one Text to the other by copying both of them into a new Text. Subject to fusion.
append :: Text -> Text -> Text
text Data.Text.Lazy
O(n\c)/ Appends one Text to another. Subject to fusion.
appendFile :: FilePath -> ByteString -> IO ()
bytestring Data.ByteString, bytestring Data.ByteString.Char8, bytestring Data.ByteString.Lazy, bytestring Data.ByteString.Lazy.Char8
Append a ByteString to a file.
appendFile :: FilePath -> Text -> IO ()
text Data.Text.IO, text Data.Text.Lazy.IO
Write a string the end of a file.
appK :: Kind -> Kind -> Kind
template-haskell Language.Haskell.TH.Lib, template-haskell Language.Haskell.TH
applet :: Html -> Html
html Text.Html, xhtml Text.XHtml.Transitional
apply :: Fun a b -> (a -> b)
QuickCheck Test.QuickCheck.Function
apply :: GT m g a -> m g -> m (a, g)
fgl Data.Graph.Inductive.Query.Monad
apply' :: Monad m => GT m g a -> g -> m (a, g)
fgl Data.Graph.Inductive.Query.Monad
applyWith :: Monad m => (a -> b) -> GT m g a -> m g -> m (b, g)
fgl Data.Graph.Inductive.Query.Monad
applyWith' :: Monad m => (a -> b) -> GT m g a -> g -> m (b, g)
fgl Data.Graph.Inductive.Query.Monad
appsE :: [ExpQ] -> ExpQ
template-haskell Language.Haskell.TH.Lib, template-haskell Language.Haskell.TH
appT :: TypeQ -> TypeQ -> TypeQ
template-haskell Language.Haskell.TH.Lib, template-haskell Language.Haskell.TH
AppendMode :: IOMode
base System.IO
class Functor f => Applicative f
base Control.Applicative
A functor with application. Instances should satisfy the following laws: * identity pure id <*> v = v * composition pure (.) <*> u <*> v <*> w = u <*> (v <*> w) * homomorphism pure f <*> pure x = pure (f x) * interchange u <*> pure y = pure ($ y) <*> u * ignore left value u *> v = pure (const id) <*> u <*> v * ignore right value u <* v = pure const <*> u <*> v The Functor instance should satisfy > fmap f x = pure f <*> x If f is also a Monad, define pure = return and (<*>) = ap. Minimal complete definition: pure and <*>.
module Control.Applicative
base Control.Applicative
This module describes a structure intermediate between a functor and a monad: it provides pure expressions and sequencing, but no binding. (Technically, a strong lax monoidal functor.) For more details, see Applicative Programming with Effects, by Conor McBride and Ross Paterson, online at http://www.soi.city.ac.uk/~ross/papers/Applicative.html. This interface was introduced for parsers by Niklas Röjemo, because it admits more sharing than the monadic interface. The names here are mostly based on recent parsing work by Doaitse Swierstra. This class is also useful with instances of the Data.Traversable.Traversable class.
aP_STACK_SPLIM :: Int
base GHC.Constants
AppE :: Exp -> Exp -> Exp
template-haskell Language.Haskell.TH.Syntax, template-haskell Language.Haskell.TH
> { f x }
AppendOnWrite :: FdOption
unix System.Posix.IO.ByteString, unix System.Posix.IO
O_APPEND
Applied :: NameIs
template-haskell Language.Haskell.TH.Syntax
AppT :: Type -> Type -> Type
template-haskell Language.Haskell.TH.Syntax, template-haskell Language.Haskell.TH
> T a b
April :: Month
old-time System.Time
module Graphics.Rendering.OpenGL.GL.Texturing.Application
OpenGL Graphics.Rendering.OpenGL.GL.Texturing.Application
This module corresponds to section 3.8.15 (Texture Application) of the OpenGL 2.1 specs.
concatMap :: (a -> [b]) -> [a] -> [b]
base Prelude, base Data.List
Map a function over a list and concatenate the results.
fmap :: Functor f => (a -> b) -> f a -> f b
base Prelude, base Data.Functor, base Control.Monad, base Control.Monad.Instances
map :: (a -> b) -> [a] -> [b]
base Prelude, base Data.List
map f xs is the list obtained by applying f to each element of xs, i.e., > map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] > map f [x1, x2, ...] == [f x1, f x2, ...]
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
base Prelude, base Control.Monad
mapM f is equivalent to sequence . map f.
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
base Prelude, base Control.Monad
mapM_ f is equivalent to sequence_ . map f.
class Arrow a => ArrowApply a
base Control.Arrow
Some arrows allow application of arrow inputs to other inputs.
concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
base Data.Foldable
Map a function over all the elements of a container and concatenate the resulting lists.

Show more results