sequence -base -package

sequenceQ :: [Q a] -> Q [a]
template-haskell Language.Haskell.TH.Syntax
module Data.Sequence
containers Data.Sequence
General purpose finite sequences. Apart from being finite and having strict operations, sequences also differ from lists in supporting a wider variety of operations efficiently. An amortized running time is given for each operation, with n referring to the length of the sequence and i being the integral index used by some operations. These bounds hold even in a persistent (shared) setting. The implementation uses 2-3 finger trees annotated with sizes, as described in section 4.2 of * Ralf Hinze and Ross Paterson, "Finger trees: a simple general-purpose data structure", Journal of Functional Programming 16:2 (2006) pp 197-217. http://www.soi.city.ac.uk/~ross/papers/FingerTree.html Note: Many of these operations have the same names as similar operations on lists in the Prelude. The ambiguity may be resolved using either qualification or the hiding clause.
module Text.Regex.Posix.Sequence
regex-posix Text.Regex.Posix.Sequence
This provides String instances for RegexMaker and RegexLike based on Text.Regex.Posix.Wrap, and a (RegexContext Regex String String) instance. To use these instance, you would normally import Text.Regex.Posix. You only need to import this module to use the medium level API of the compile, regexec, and execute functions. All of these report error by returning Left values instead of undefined or error or fail.