sequence -package -regex-posix

sequence :: Monad m => [m a] -> m [a]
base Prelude, base Control.Monad
Evaluate each action in the sequence from left to right, and collect the results.
sequence :: (Traversable t, Monad m) => t (m a) -> m (t a)
base Data.Traversable
sequence_ :: Monad m => [m a] -> m ()
base Prelude, base Control.Monad
Evaluate each action in the sequence from left to right, and ignore the results.
sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
base Data.Foldable
Evaluate each monadic action in the structure from left to right, and ignore the results.
sequenceA :: (Traversable t, Applicative f) => t (f a) -> f (t a)
base Data.Traversable
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
base Data.Foldable
Evaluate each action in the structure from left to right, and ignore the results.
sequenceQ :: [Q a] -> Q [a]
template-haskell Language.Haskell.TH.Syntax
module Data.Sequence
containers Data.Sequence
General purpose finite sequences. Apart from being finite and having strict operations, sequences also differ from lists in supporting a wider variety of operations efficiently. An amortized running time is given for each operation, with n referring to the length of the sequence and i being the integral index used by some operations. These bounds hold even in a persistent (shared) setting. The implementation uses 2-3 finger trees annotated with sizes, as described in section 4.2 of * Ralf Hinze and Ross Paterson, "Finger trees: a simple general-purpose data structure", Journal of Functional Programming 16:2 (2006) pp 197-217. http://www.soi.city.ac.uk/~ross/papers/FingerTree.html Note: Many of these operations have the same names as similar operations on lists in the Prelude. The ambiguity may be resolved using either qualification or the hiding clause.
subsequences :: [a] -> [[a]]
base Data.List
The subsequences function returns the list of all subsequences of the argument. > subsequences "abc" == ["","a","b","ab","c","ac","bc","abc"]