<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
  <meta content="text/html;charset=ISO-8859-1" http-equiv="Content-Type">
</head>
<body bgcolor="#ffffff" text="#000000">
Daniel Fischer wrote:
<blockquote cite="mid:201002182020.49657.daniel.is.fischer@web.de"
 type="cite">
  <pre wrap="">Am Donnerstag 18 Februar 2010 19:19:36 schrieb Nick Rudnick:
  </pre>
  <blockquote type="cite">
    <pre wrap="">Hi Hans,

agreed, but, in my eyes, you directly point to the problem:

* doesn't this just delegate the problem to the topic of limit
operations, i.e., in how far is the term &laquo;closed&raquo; here more perspicuous?
    </pre>
  </blockquote>
  <pre wrap=""><!---->
It's fairly natural in German, abgeschlossen: closed, finished, complete; 
offen: open, ongoing.

  </pre>
  <blockquote type="cite">
    <pre wrap="">* that's (for a very simple concept)
    </pre>
  </blockquote>
  <pre wrap=""><!---->
That concept (open and closed sets, topology more generally) is *not* very 
simple. It has many surprising aspects.
  </pre>
</blockquote>
&laquo;concept&raquo; is a word of many meanings; to become more specific: Its
*definition* is...<br>
<blockquote cite="mid:201002182020.49657.daniel.is.fischer@web.de"
 type="cite">
  <pre wrap="">
  </pre>
  <blockquote type="cite">
    <pre wrap="">the way that maths prescribes:
+ historical background: &laquo;I take "closed" as coming from being closed
under limit operations - the origin from analysis.&raquo;
+ definition backtracking: &laquo;A closure operation c is defined by the
property c(c(x)) = c(x).
    </pre>
  </blockquote>
  <pre wrap=""><!---->
Actually, that's incomplete, missing are
- c(x) contains x
- c(x) is minimal among the sets containing x with y = c(y).
  </pre>
</blockquote>
Even more workload to master... This strengthens the thesis that
definition recognition requires a considerable amount of one's effort...<br>
<blockquote cite="mid:201002182020.49657.daniel.is.fischer@web.de"
 type="cite">
  <blockquote type="cite">
    <pre wrap="">If one takes c(X) = the set of limit points of
    </pre>
  </blockquote>
  <pre wrap=""><!---->
Not limit points, "Ber&uuml;hrpunkte" (touching points).

  </pre>
  <blockquote type="cite">
    <pre wrap="">X, then it is the smallest closed set under this operation. The closed
sets X are those that satisfy c(X) = X. Naming the complements of the
closed sets open might have been introduced as an opposite of closed.&raquo;

418 bytes in my file system... how many in my brain...? Is it efficient,
inevitable? The most fundamentalist justification I heard in this regard
is: &laquo;It keeps people off from thinking the could go without the
definition...&raquo; Meanwhile, we backtrack definition trees filling books,
no, even more... In my eyes, this comes equal to claiming: &laquo;You have
nothing to understand this beyond the provided authoritative definitions
-- your understanding is done by strictly following these.&raquo;
    </pre>
  </blockquote>
  <pre wrap=""><!---->
But you can't understand it except by familiarising yourself with the 
definitions and investigating their consequences.
The name of a concept can only help you remembering what the definition 
was. Choosing "obvious" names tends to be misleading, because there usually 
are things satisfying the definition which do not behave like the "obvious" 
name implies.
  </pre>
</blockquote>
So if you state that the used definitions are completely unpredictable
so that they have to be studied completely -- which already ignores
that human brain is an analogous &laquo;machine&raquo; --, you, by information
theory, imply that these definitions are somewhat arbitrary, don't you?
This in my eyes would contradict the concept such definition systems
have about themselves.<br>
<br>
To my best knowledge it is one of the best known characteristics of
category theory that it revealed in how many cases maths is a
repetition of certain patterns. Speaking categorically it is good
practice to transfer knowledge from on domain to another, once the
required isomorphisms could be established. This way, category theory
itself has successfully torn down borders between several
subdisciplines of maths and beyond.<br>
<br>
I just propose to expand the same to common sense matters...<br>
<blockquote cite="mid:201002182020.49657.daniel.is.fischer@web.de"
 type="cite">
  <blockquote type="cite">
    <pre wrap="">Back to the case of open/closed, given we have an idea about sets -- we
in most cases are able to derive the concept of two disjunct sets facing
each other ourselves, don't we? The only lore missing is just a Bool:
Which term fits which idea? With a reliable terminology using
&laquo;bordered/unbordered&raquo;, there is no ambiguity, and we can pass on
reading, without any additional effort.
    </pre>
  </blockquote>
  <pre wrap=""><!---->
And we'd be very wrong. There are sets which are simultaneously open and 
closed. It is bad enough with the terminology as is, throwing in the 
boundary (which is an even more difficult concept than open/closed) would 
only make things worse.
  </pre>
</blockquote>
Really? As &laquo;open == not closed&raquo; can similarly be implied,
bordered/unbordered even in this concern remains at least equal...<br>
<blockquote cite="mid:201002182020.49657.daniel.is.fischer@web.de"
 type="cite">
  <blockquote type="cite">
    <pre wrap="">Picking such an opportunity thus may save a lot of time and even error
-- allowing you to utilize your individual knowledge and experience. I
    </pre>
  </blockquote>
  <pre wrap=""><!---->
When learning a formal theory, individual knowledge and experience (except 
coming from similar enough disciplines) tend to be misleading more than 
helpful.
  </pre>
</blockquote>
Why does the opposite work well for computing science?<br>
<br>
All the best,<br>
<br>
&nbsp;&nbsp;&nbsp; Nick<br>
<br>
</body>
</html>