
HIW’14 • September 6th 2014

Partial Type Signatures

Thomas Winant



Dominique
Devriese

Frank
Piessens

Tom
Schrijvers

2 / 29



PARTIAL TYPE SIGNATURE

3 / 29



PARTIAL TYPE SIGNATURE

foo file=do ... ? ...

3 / 29



PARTIAL TYPE SIGNATURE

foo file=do ... ...

3 / 29



PARTIAL TYPE SIGNATURE

foo file=do ... ...

Found hole ‘_’ with type: …

Relevant bindings include

…

3 / 29



PARTIAL TYPE SIGNATURE

foo file=do ...

Found hole ‘_’ with type: …

Relevant bindings include

…

3 / 29



PARTIAL TYPE SIGNATURE

foo :: FilePath→ IO ?
foo file=do ...

Found hole ‘_’ with type: …

Relevant bindings include

…

3 / 29



PARTIAL TYPE SIGNATURE

foo :: FilePath→ IO
foo file=do ...

Found hole ‘_’ with type: …

Relevant bindings include

…

3 / 29



PARTIAL TYPE SIGNATURE

foo :: FilePath→ IO
foo file=do ...

Found hole ‘_’ with type: …

In the type signature: foo :: FilePath -> IO _

To use the inferred type,

enable PartialTypeSignatures

3 / 29



OVERVIEW

Motivation

Syntax

Formalisation

Implementation

4 / 29



MOTIVATION

5 / 29



MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

⇒ Mix annotated with inferred types using wildcards ( ).

foo :: → ( ,Bool) -- Inferred: Bool→ (Bool,Bool)
foo x= (x, x)

⇒ Combine type checking with type inference.

6 / 29



MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

⇒ Mix annotated with inferred types using wildcards ( ).

foo :: → ( ,Bool) -- Inferred: Bool→ (Bool,Bool)
foo x= (x, x)

⇒ Combine type checking with type inference.

6 / 29



MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

⇒ Mix annotated with inferred types using wildcards ( ).

foo :: → ( ,Bool) -- Inferred: Bool→ (Bool,Bool)
foo x= (x, x)

⇒ Combine type checking with type inference.

6 / 29



MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

⇒ Mix annotated with inferred types using wildcards ( ).

foo :: → ( ,Bool) -- Inferred: Bool→ (Bool,Bool)
foo x= (x, x)

⇒ Combine type checking with type inference.

6 / 29



MOTIVATION

During development:

▶ Functions & types change frequently

▶ Type signatures need to be updated

▶ Type signatures are omitted

▶ Documentation & type checking against signature lost

⇒ Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.

7 / 29



MOTIVATION

During development:

▶ Functions & types change frequently

▶ Type signatures need to be updated

▶ Type signatures are omitted

▶ Documentation & type checking against signature lost

⇒ Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.

7 / 29



MOTIVATION

During development:

▶ Functions & types change frequently

▶ Type signatures need to be updated

▶ Type signatures are omitted

▶ Documentation & type checking against signature lost

⇒ Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.

7 / 29



MOTIVATION

During development:

▶ Functions & types change frequently

▶ Type signatures need to be updated

▶ Type signatures are omitted

▶ Documentation & type checking against signature lost

⇒ Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.

7 / 29



MOTIVATION

During development:

▶ Functions & types change frequently

▶ Type signatures need to be updated

▶ Type signatures are omitted

▶ Documentation & type checking against signature lost

⇒ Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.

7 / 29



MOTIVATION

During development:

▶ Functions & types change frequently

▶ Type signatures need to be updated

▶ Type signatures are omitted

▶ Documentation & type checking against signature lost

⇒ Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.

7 / 29



MOTIVATION

During development:

▶ Functions & types change frequently

▶ Type signatures need to be updated

▶ Type signatures are omitted

▶ Documentation & type checking against signature lost

⇒ Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.

7 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar f (x, y)=¬ ( f x y)

8 / 29



MOTIVATION

The complete type is not yet known.

⇒ Agda-style hole-driven development

bar f (x, y)=¬ ( f x y)

8 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar f (x, y)=¬ ( f x y)

8 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar :: → (Char, Int) →
bar f (x, y)=¬ ( f x y)

8 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar :: → (Char, Int) →
bar f (x, y)=¬ ( f x y)

Found hole ‘_’ with type: Char -> Int -> Bool

In the type signature:

bar :: _ -> (Char, Int) -> _

...

8 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar :: (Char→ Int→ Bool) → (Char, Int) →
bar f (x, y)=¬ ( f x y)

Found hole ‘_’ with type: Char -> Int -> Bool

In the type signature:

bar :: _ -> (Char, Int) -> _

...

8 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar :: (Char→ Int→ Bool) → (Char, Int) →
bar f (x, y)=¬ ( f x y)

Found hole ‘_’ with type: Bool

In the type signature:

bar :: _ -> (Char, Int) -> _

...

8 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar :: (Char→ Int→ Bool) → (Char, Int) → Bool
bar f (x, y)=¬ ( f x y)

Found hole ‘_’ with type: Bool

In the type signature:

bar :: _ -> (Char, Int) -> _

...

8 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar :: (Char→ Int→ Bool) → (Char, Int) → Bool
bar f (x, y)=¬ ( f x y)

Emacs support for TypedHoles thanks to
Alejandro Serrano Mena’s GSoC project.
Relatively easy to add support for PartialTypeSignatures.

8 / 29



MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

{-# LANGUAGE PartialTypeSignatures #-}

bar :: → (Char, Int) →
bar f (x, y)=¬ ( f x y)

No need to fill them in!

8 / 29



MOTIVATION
replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) ⇒
PenaltyExtendedContextFreeRule phi r t v→
(∀ix.phi ix→ p [r ix ]) → (∀ix.phi ix→ p [r ix ]) → p v

Distinguish important type information from distracting type
information

replaceLoopsRuleP :: ⇒
PenaltyExtendedContextFreeRule phi r t v→
(∀ix.phi ix→ p [r ix ]) → (∀ix.phi ix→ p [r ix]) → p v

9 / 29



MOTIVATION
replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) ⇒
PenaltyExtendedContextFreeRule phi r t v→
(∀ix.phi ix→ p [r ix ]) → (∀ix.phi ix→ p [r ix ]) → p v

Distinguish important type information from distracting type
information

replaceLoopsRuleP :: ⇒
PenaltyExtendedContextFreeRule phi r t v→
(∀ix.phi ix→ p [r ix ]) → (∀ix.phi ix→ p [r ix]) → p v

9 / 29



MOTIVATION
replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) ⇒
PenaltyExtendedContextFreeRule phi r t v→
(∀ix.phi ix→ p [r ix ]) → (∀ix.phi ix→ p [r ix ]) → p v

Distinguish important type information from distracting type
information

replaceLoopsRuleP :: ⇒
PenaltyExtendedContextFreeRule phi r t v→
(∀ix.phi ix→ p [r ix ]) → (∀ix.phi ix→ p [r ix ]) → p v

9 / 29



MOTIVATION

Noninferable types, e.g. higher-rank types:

foo x= (x [True,False ], x [’a’, ’b’])

test= foo reverse -- reverse :: ∀a.[a] → [a]

10 / 29



MOTIVATION

Noninferable types, e.g. higher-rank types:

foo :: (∀a.[a] → [a]) → ([Bool], [Char])

foo x= (x [True,False ], x [’a’, ’b’])

test= foo reverse -- reverse :: ∀a.[a] → [a]

10 / 29



MOTIVATION

Noninferable types, e.g. higher-rank types:

foo :: (∀a.[a] → [a]) →
foo x= (x [True,False ], x [’a’, ’b’])

test= foo reverse -- reverse :: ∀a.[a] → [a]

10 / 29



SYNTAX

11 / 29



TYPE WILDCARDS
SYNTAX

filter :: (a→ Bool) → [a] → [a]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter :: (a→ ) → [a ] → [a ]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter :: ( → Bool) → [a ] → [a ]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter :: → [a ] → [a ]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter :: → [a ] → [ ]

filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter :: → [a ] →
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter :: → →
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter :: →
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter ::
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



TYPE WILDCARDS
SYNTAX

filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

12 / 29



NAMED WILDCARDS
SYNTAX

filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

13 / 29



NAMED WILDCARDS
SYNTAX

filter :: (a→ Bool) → [a] → [a]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

13 / 29



NAMED WILDCARDS
SYNTAX

filter :: ( x→ x) → [ x ] → [ x ]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

13 / 29



NAMED WILDCARDS
SYNTAX

Inferred: (Bool→ Bool) → [Bool ] → [Bool ]

filter :: ( x→ x) → [ x ] → [ x ]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

13 / 29



NAMED WILDCARDS
SYNTAX

filter :: ( x→ Bool) → [ x ] → [ x ]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

13 / 29



NAMED WILDCARDS
SYNTAX

Inferred: (w_x→ Bool) → [w_x ] → [w_x ]

filter :: ( x→ Bool) → [ x ] → [ x ]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs

13 / 29



NAMED WILDCARDS
SYNTAX

eq :: Eq a⇒ a→ a→ Bool
eq x y= x ≡ y

14 / 29



NAMED WILDCARDS
SYNTAX

eq :: Eq x⇒ x→ x→ Bool
eq x y= x ≡ y

14 / 29



NAMED WILDCARDS
SYNTAX

Inferred: Eq w_x⇒ w_x→ w_x→ Bool

eq :: Eq x⇒ x→ x→ Bool
eq x y= x ≡ y

14 / 29



NAMED WILDCARDS
SYNTAX

eq :: Eq x⇒ x→ x→ x

eq x y= x ≡ y

14 / 29



NAMED WILDCARDS
SYNTAX

Inferred: Eq Bool⇒ Bool→ Bool→ Bool

eq :: Eq x⇒ x→ x→ x

eq x y= x ≡ y

14 / 29



NAMED WILDCARDS
SYNTAX

Inferred: Bool→ Bool→ Bool

eq :: Eq x⇒ x→ x→ x

eq x y= x ≡ y

14 / 29



CONSTRAINT WILDCARDS
SYNTAX

15 / 29



CONSTRAINT WILDCARDS
SYNTAX

bar :: Ord a⇒ a→ a→ Bool
bar x y= x ≡ y

-- class Eq a => Ord x

15 / 29



CONSTRAINT WILDCARDS
SYNTAX

bar :: Ord ⇒ a→ a→ Bool
bar x y= x ≡ y

-- class Eq a => Ord x

15 / 29



CONSTRAINT WILDCARDS
SYNTAX

Mismatch: inferred Eq a vs. annotated Ord

bar :: Ord ⇒ a→ a→ Bool
bar x y= x ≡ y

-- class Eq a => Ord x

15 / 29



CONSTRAINT WILDCARDS
SYNTAX

16 / 29



CONSTRAINT WILDCARDS
SYNTAX

foo :: (Show a,Num a) ⇒ a→ String
foo x= show (x+ 1)

16 / 29



CONSTRAINT WILDCARDS
SYNTAX

foo :: a⇒ a→ String
foo x= show (x+ 1)

16 / 29



CONSTRAINT WILDCARDS
SYNTAX

Infer? Show a⇒ a→ String

foo :: a⇒ a→ String
foo x= show (x+ 1)

16 / 29



CONSTRAINT WILDCARDS
SYNTAX

Infer? Num a⇒ a→ String

foo :: a⇒ a→ String
foo x= show (x+ 1)

16 / 29



CONSTRAINT WILDCARDS
SYNTAX

Compromise

▶ Only named wildcards in constraints…

▶ …when present in the rest of the type

Eq ⇒ a→ a→ Bool No
Eq x⇒ a→ a→ Bool No
Eq x⇒ x→ x→ Bool Yes

17 / 29



CONSTRAINT WILDCARDS
SYNTAX

Compromise

▶ Only named wildcards in constraints…

▶ …when present in the rest of the type

Eq ⇒ a→ a→ Bool No

Eq x⇒ a→ a→ Bool No
Eq x⇒ x→ x→ Bool Yes

17 / 29



CONSTRAINT WILDCARDS
SYNTAX

Compromise

▶ Only named wildcards in constraints…

▶ …when present in the rest of the type

Eq ⇒ a→ a→ Bool No
Eq x⇒ a→ a→ Bool No

Eq x⇒ x→ x→ Bool Yes

17 / 29



CONSTRAINT WILDCARDS
SYNTAX

Compromise

▶ Only named wildcards in constraints…

▶ …when present in the rest of the type

Eq ⇒ a→ a→ Bool No
Eq x⇒ a→ a→ Bool No
Eq x⇒ x→ x→ Bool Yes

17 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

18 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

foo :: (Show a,Num a) ⇒ a→ String
foo x= show (x+ 1)

18 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

foo :: ⇒ a→ String
foo x= show (x+ 1)

18 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

Inferred constraints: (Show a,Num a)

foo :: ⇒ a→ String
foo x= show (x+ 1)

18 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

foo :: (Num a, ) ⇒ a→ String
foo x= show (x+ 1)

18 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

Inferred constraints: Show a

foo :: (Num a, ) ⇒ a→ String
foo x= show (x+ 1)

18 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

19 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

bar :: Show a⇒ a→ a
bar x= show x

19 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

bar :: ⇒ a→ a
bar x= show x

19 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

Inferred constraints: Show a
Inferred: Show a⇒ a→ a

bar :: ⇒ a→ a
bar x= show x

19 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

bar :: (Num a, ) ⇒ a→ a
bar x= show x

19 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

Inferred constraints: Show a
Inferred: (Num a, Show a) ⇒ a→ a

bar :: (Num a, ) ⇒ a→ a
bar x= show x

19 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

Inferred constraints: Show a
Inferred: (Num a, Show a) ⇒ a→ a

bar :: (Num a, ) ⇒ a→ a
bar x= show x

Proposed simplification:
ignore annotated constraints

19 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

Inferred constraints: Show a
Inferred: (�����Num a, Show a) ⇒ a→ a

bar :: (Num a, ) ⇒ a→ a
bar x= show x

Proposed simplification:
ignore annotated constraints

19 / 29



EXTRA-CONSTRAINTS WILDCARD
SYNTAX

Inferred constraints: Show a
Inferred: Show a⇒ a→ a

bar :: (Num a, ) ⇒ a→ a
bar x= show x

Proposed simplification:
ignore annotated constraints

19 / 29



FORMALISATION

Partial Type Signatures for Haskell.
Thomas Winant, Dominique Devriese,

Frank Piessens, Tom Schrijvers.
In Practical Aspects of Declarative Languages 2014

(PADL’14)

20 / 29



IDEA
FORMALISATION

21 / 29



IDEA
FORMALISATION

secondArg :: → → Bool
secondArg x= x

21 / 29



IDEA
FORMALISATION

secondArg x= x

21 / 29



IDEA
FORMALISATION

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

21 / 29



IDEA
FORMALISATION

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ)︸ ︷︷ ︸
Constraints

21 / 29



IDEA
FORMALISATION

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ)︸ ︷︷ ︸
Constraints

Solve the constraints: [γ 7→ β ]

21 / 29



IDEA
FORMALISATION

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ)︸ ︷︷ ︸
Constraints

Solve the constraints: [γ 7→ β ]
⇒ secondArg :: α → β → β

21 / 29



IDEA
FORMALISATION

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ)︸ ︷︷ ︸
Constraints

Solve the constraints: [γ 7→ β ]
⇒ secondArg :: α → β → β
⇒ Generalise: secondArg :: ∀a b.a→ b→ b

21 / 29



IDEA
FORMALISATION

secondArg :: → → Bool

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ)︸ ︷︷ ︸
Constraints

Solve the constraints: [γ 7→ β ]
⇒ secondArg :: α → β → β
⇒ Generalise: secondArg :: ∀a b.a→ b→ b

21 / 29



IDEA
FORMALISATION

secondArg :: → → Bool

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ)︸ ︷︷ ︸
Constraints

Solve the constraints: [γ 7→ β ]
⇒ secondArg :: α → β → β
⇒ Generalise: secondArg :: ∀a b.a→ b→ b

Idea: replace wildcards with unification variables

21 / 29



IDEA
FORMALISATION

secondArg :: → → Bool

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ)︸ ︷︷ ︸
Constraints

Solve the constraints: [γ 7→ β ]
⇒ secondArg :: α → β → β
⇒ Generalise: secondArg :: ∀a b.a→ b→ b

Idea: replace wildcards with unification variables
Wildcard desugaring relation:

( → → Bool) þ (ω1 → ω2 → Bool)
21 / 29



IDEA
FORMALISATION

secondArg :: → → Bool

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ, (ω1 → ω2 → Bool) ∼ (α → β → γ))︸ ︷︷ ︸
Constraints

Solve the constraints: [γ 7→ β ]
⇒ secondArg :: α → β → β
⇒ Generalise: secondArg :: ∀a b.a→ b→ b

Idea: replace wildcards with unification variables
Wildcard desugaring relation:

( → → Bool) þ (ω1 → ω2 → Bool)
21 / 29



IDEA
FORMALISATION

secondArg :: → → Bool

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ, (ω1 → ω2 → Bool) ∼ (α → β → γ))︸ ︷︷ ︸
Constraints

Solve the constraints:
[γ 7→ Bool, β 7→ Bool, ω2 7→ Bool, α 7→ ω1 ]

Idea: replace wildcards with unification variables
Wildcard desugaring relation:

( → → Bool) þ (ω1 → ω2 → Bool)
21 / 29



IDEA
FORMALISATION

secondArg :: → → Bool

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ, (ω1 → ω2 → Bool) ∼ (α → β → γ))︸ ︷︷ ︸
Constraints

Solve the constraints:
[γ 7→ Bool, β 7→ Bool, ω2 7→ Bool, α 7→ ω1 ]
⇒ secondArg :: ω1 → Bool→ Bool

Idea: replace wildcards with unification variables
Wildcard desugaring relation:

( → → Bool) þ (ω1 → ω2 → Bool)
21 / 29



IDEA
FORMALISATION

secondArg :: → → Bool

secondArg ︸︷︷︸
α

x︸︷︷︸
β

=
β︷︸︸︷
x︸︷︷︸
γ

:

type︷ ︸︸ ︷
α → β → γ

⇝ (β ∼ γ, (ω1 → ω2 → Bool) ∼ (α → β → γ))︸ ︷︷ ︸
Constraints

Solve the constraints:
[γ 7→ Bool, β 7→ Bool, ω2 7→ Bool, α 7→ ω1 ]
⇒ secondArg :: ω1 → Bool→ Bool
⇒ Generalise: secondArg :: ∀a.a→ Bool→ Bool

Idea: replace wildcards with unification variables
Wildcard desugaring relation:

( → → Bool) þ (ω1 → ω2 → Bool)
21 / 29



PROOFS
FORMALISATION

Theorem 1: Conservative extension
For functions with non-partial type signatures, ghc
infers the same types as before.

Theorem 2: Generalisation of type inference
f :: ⇒ = e is equivalent with f = e.

Theorem 3: Algorithm soundness

22 / 29



PROOFS
FORMALISATION

Theorem 1: Conservative extension
For functions with non-partial type signatures, ghc
infers the same types as before.

Theorem 2: Generalisation of type inference
f :: ⇒ = e is equivalent with f = e.

Theorem 3: Algorithm soundness

22 / 29



PROOFS
FORMALISATION

Theorem 1: Conservative extension
For functions with non-partial type signatures, ghc
infers the same types as before.

Theorem 2: Generalisation of type inference
f :: ⇒ = e is equivalent with f = e.

Theorem 3: Algorithm soundness

22 / 29



IMPLEMENTATION

23 / 29



IMPLEMENTATION
▶ Parser support for wildcards

▶ Named wildcard syntax clashes with type variable syntax:

foo :: a→ a
foo x=¬ x

24 / 29



IMPLEMENTATION
▶ Parser support for wildcards

▶ Named wildcard syntax clashes with type variable syntax:

foo :: a→ a
foo x=¬ x

24 / 29



IMPLEMENTATION
▶ Parser support for wildcards

▶ Named wildcard syntax clashes with type variable syntax:

foo :: a→ a
foo x=¬ x

Couldn’t match expected type ‘_a’

with actual type ‘Bool’

‘_a’ is a rigid type variable bound by ...

24 / 29



IMPLEMENTATION
▶ Parser support for wildcards

▶ Named wildcard syntax clashes with type variable syntax:

{-# LANGUAGE NamedWildcards #-}

foo :: a→ a
foo x=¬ x

Couldn’t match expected type ‘_a’

with actual type ‘Bool’

‘_a’ is a rigid type variable bound by ...

backwards compatible unless the NamedWildcards extension
is enabled.

24 / 29



IMPLEMENTATION
▶ Parser support for wildcards

▶ Named wildcard syntax clashes with type variable syntax:

{-# LANGUAGE NamedWildcards #-}

foo :: a→ a
foo x=¬ x

Found hole ‘_’ with type: Bool

In the type signature:

foo :: _a -> _a

backwards compatible unless the NamedWildcards extension
is enabled.

24 / 29



IMPLEMENTATION

▶ Disallow wildcards in particular types:

class Show a where
show :: a→

instance Show where ...
data Foo= {bar ::Maybe }
...

25 / 29



IMPLEMENTATION
▶ Quantify desugared wildcards per TypeSig, imitating the

scoping behaviour of ScopedTypeVariables.

{-# LANGUAGE NamedWildcards #-}
foo :: a→ Char
foo x= let v=¬ x

g :: a→ a
g y= y

in (g ’z’)

26 / 29



IMPLEMENTATION
▶ Quantify desugared wildcards per TypeSig, imitating the

scoping behaviour of ScopedTypeVariables.

{-# LANGUAGE NamedWildcards #-}
foo :: a→ Char
foo x= let v=¬ x

g :: a→ a
g y= y

in (g ’z’)

26 / 29



IMPLEMENTATION
▶ Quantify desugared wildcards per TypeSig, imitating the

scoping behaviour of ScopedTypeVariables.

{-# LANGUAGE NamedWildcards, ScopedTypeVariables #-}
foo :: a→ Char
foo x= let v=¬ x

g :: a→ a
g y= y

in (g ’z’)

Couldn’t match expected type ‘Bool’

with actual type ‘Char’

In the first argument of ‘g’, namely ‘’z’’

26 / 29



IMPLEMENTATION

▶ Just like for TypedHoles, when type checking, we
generate an insoluble hole constraint between each
wildcard unification variable and its inferred type.

▶ After solving the constraints, these hole constraints are
left over, and are converted into error messages.

▶ They are not generated when PartialTypeSignatures
is enabled.

27 / 29



IMPLEMENTATION

▶ Just like for TypedHoles, when type checking, we
generate an insoluble hole constraint between each
wildcard unification variable and its inferred type.

▶ After solving the constraints, these hole constraints are
left over, and are converted into error messages.

▶ They are not generated when PartialTypeSignatures
is enabled.

27 / 29



IMPLEMENTATION

▶ Just like for TypedHoles, when type checking, we
generate an insoluble hole constraint between each
wildcard unification variable and its inferred type.

▶ After solving the constraints, these hole constraints are
left over, and are converted into error messages.

▶ They are not generated when PartialTypeSignatures
is enabled.

27 / 29



CODE
IMPLEMENTATION

Code https://github.com/mrBliss/ghc

Phabricator https://phabricator.haskell.org/D168

Trac Ticket #9478

Coming to GHC some time soon!

28 / 29

https://github.com/mrBliss/ghc
https://phabricator.haskell.org/D168


THANK YOU

Q & A

29 / 29


