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PARTIAL TYPE SIGNATURE

foo :: FilePath→ IO
foo file=do ...

Found hole ‘_’ with type: …

In the type signature: foo :: FilePath -> IO _

To use the inferred type,

enable PartialTypeSignatures
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MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

⇒ Mix annotated with inferred types using wildcards ( ).

foo :: → ( ,Bool) -- Inferred: Bool→ (Bool,Bool)
foo x= (x, x)

⇒ Combine type checking with type inference.

6 / 29



MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

⇒ Mix annotated with inferred types using wildcards ( ).

foo :: → ( ,Bool) -- Inferred: Bool→ (Bool,Bool)
foo x= (x, x)

⇒ Combine type checking with type inference.

6 / 29



MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

⇒ Mix annotated with inferred types using wildcards ( ).

foo :: → ( ,Bool) -- Inferred: Bool→ (Bool,Bool)
foo x= (x, x)

⇒ Combine type checking with type inference.

6 / 29



MOTIVATION

Dilemma: write the complete type signature or none at all?

Compromise: partial type signatures

⇒ Mix annotated with inferred types using wildcards ( ).

foo :: → ( ,Bool) -- Inferred: Bool→ (Bool,Bool)
foo x= (x, x)

⇒ Combine type checking with type inference.

6 / 29



MOTIVATION

During development:

▶ Functions & types change frequently

▶ Type signatures need to be updated

▶ Type signatures are omitted

▶ Documentation & type checking against signature lost

⇒ Partial type signatures

Annotate the fixed parts of the type and replace the variable
parts with wildcards.
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MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

bar :: (Char→ Int→ Bool) → (Char, Int) → Bool
bar f (x, y)=¬ ( f x y)

Emacs support for TypedHoles thanks to
Alejandro Serrano Mena’s GSoC project.
Relatively easy to add support for PartialTypeSignatures.
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MOTIVATION

The complete type is not yet known.
⇒ Agda-style hole-driven development

{-# LANGUAGE PartialTypeSignatures #-}

bar :: → (Char, Int) →
bar f (x, y)=¬ ( f x y)

No need to fill them in!
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MOTIVATION
replaceLoopsRuleP :: (ProductionRule p,
EpsProductionRule p,
RecProductionRule p phi r,
TokenProductionRule p t,
PenaltyProductionRule p) ⇒
PenaltyExtendedContextFreeRule phi r t v→
(∀ix.phi ix→ p [r ix ]) → (∀ix.phi ix→ p [r ix ]) → p v

Distinguish important type information from distracting type
information

replaceLoopsRuleP :: ⇒
PenaltyExtendedContextFreeRule phi r t v→
(∀ix.phi ix→ p [r ix ]) → (∀ix.phi ix→ p [r ix]) → p v
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Noninferable types, e.g. higher-rank types:

foo x= (x [True,False ], x [’a’, ’b’])

test= foo reverse -- reverse :: ∀a.[a] → [a]
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TYPE WILDCARDS
SYNTAX

filter :: (a→ Bool) → [a] → [a]
filter [ ]= [ ]
filter pred (x : xs)
| pred x = x : filter pred xs
| otherwise= filter pred xs
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SYNTAX

eq :: Eq a⇒ a→ a→ Bool
eq x y= x ≡ y
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FORMALISATION

Partial Type Signatures for Haskell.
Thomas Winant, Dominique Devriese,

Frank Piessens, Tom Schrijvers.
In Practical Aspects of Declarative Languages 2014

(PADL’14)
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( → → Bool) þ (ω1 → ω2 → Bool)
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PROOFS
FORMALISATION

Theorem 1: Conservative extension
For functions with non-partial type signatures, ghc
infers the same types as before.

Theorem 2: Generalisation of type inference
f :: ⇒ = e is equivalent with f = e.

Theorem 3: Algorithm soundness
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IMPLEMENTATION
▶ Parser support for wildcards

▶ Named wildcard syntax clashes with type variable syntax:

foo :: a→ a
foo x=¬ x
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IMPLEMENTATION
▶ Parser support for wildcards

▶ Named wildcard syntax clashes with type variable syntax:

{-# LANGUAGE NamedWildcards #-}

foo :: a→ a
foo x=¬ x

Found hole ‘_’ with type: Bool

In the type signature:

foo :: _a -> _a

backwards compatible unless the NamedWildcards extension
is enabled.

24 / 29



IMPLEMENTATION

▶ Disallow wildcards in particular types:

class Show a where
show :: a→

instance Show where ...
data Foo= {bar ::Maybe }
...
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IMPLEMENTATION
▶ Quantify desugared wildcards per TypeSig, imitating the

scoping behaviour of ScopedTypeVariables.

{-# LANGUAGE NamedWildcards #-}
foo :: a→ Char
foo x= let v=¬ x

g :: a→ a
g y= y

in (g ’z’)
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IMPLEMENTATION
▶ Quantify desugared wildcards per TypeSig, imitating the

scoping behaviour of ScopedTypeVariables.

{-# LANGUAGE NamedWildcards, ScopedTypeVariables #-}
foo :: a→ Char
foo x= let v=¬ x

g :: a→ a
g y= y

in (g ’z’)

Couldn’t match expected type ‘Bool’

with actual type ‘Char’

In the first argument of ‘g’, namely ‘’z’’

26 / 29



IMPLEMENTATION

▶ Just like for TypedHoles, when type checking, we
generate an insoluble hole constraint between each
wildcard unification variable and its inferred type.

▶ After solving the constraints, these hole constraints are
left over, and are converted into error messages.

▶ They are not generated when PartialTypeSignatures
is enabled.
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CODE
IMPLEMENTATION

Code https://github.com/mrBliss/ghc

Phabricator https://phabricator.haskell.org/D168

Trac Ticket #9478

Coming to GHC some time soon!
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THANK YOU

Q & A
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