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Thunk (promise, suspension)

A thunk is created to delay the evaluation of an expression
A thunk contains the expression and the environment
 (a collection of pairs of bound variables and values)

The process of evaluating the expression in a thunk is called 
"forcing"

n+1 ➡ T{n+1}{n=2}
delay force

➡ 3
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Our idea - Thunk Reuse

Lazy evaluation has significant run-time overheads
Allocating many thunks (space-consuming task)

We suppress thunk allocations by reusing the thunk that has 
been just forced

Our target is a thunk at the tail part of cons cell
We destructively update the environment of the thunk

3



The data constructor Cons ":" delays its arguments

Without thunk reuse

⇒	 1	 :	 T1{ints	 (n+1)}{n=1}ints	 1

ints	 n	 =	 n	 :	 ints	 (n	 +	 1)
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The data constructor Cons ":" delays its arguments
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The data constructor Cons ":" delays its arguments

Without thunk reuse

⇒	 1	 :	 T1{ints	 (n+1)}{n=1}
⇒	 1	 :	 2	 :	 T2{ints	 (n+1)}{n=2}

ints	 1

ints	 n	 =	 n	 :	 ints	 (n	 +	 1)
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The data constructor Cons ":" delays its arguments

Without thunk reuse

⇒	 1	 :	 T1{ints	 (n+1)}{n=1}
⇒	 1	 :	 2	 :	 T2{ints	 (n+1)}{n=2}

ints	 1

ints	 n	 =	 n	 :	 ints	 (n	 +	 1)

Structures of T1 and T2 are almost the same.
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Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}ints	 1
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⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}

Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)
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⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}

Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)
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⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}

Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

⇒	 1	 :	 2	 :	 RT1{ints(n+1)}{n=2}
ints	 1
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⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}

Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

ints	 1
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Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

ints	 1
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Destructively updates
the environment

RT1

⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}
⇒	 1	 :	 2	 :	 RT1{ints(n+1)}{n=2}

ints	 (n+1)
n=1

1

2

2
C1 C2

Makes C1 point to C2

Suppresses the allocation of  a new thunk



Singly referred condition

ints	 n	 =	 n	 :	 ints	 (n+1)
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Destructively updates
the environment

RT1
ints	 (n+1)
n=1

1

2

2

Singly referred condition

   RT1 should be referred to only by the tail part of C2

C1 C2

Makes C1 point to C2



Remembering the reference of C1

ints	 n	 =	 n	 :	 ints	 (n+1)
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Destructively updates
the environment

RT1
ints	 (n+1)
n=1

1

2

2

Before forcing RT1, we have to remember the reference of C1, 
because we are going to destructively update the C1's tail

C1 C2

Makes C1 point to C2



Our observation
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1

xs
case	 (ints	 1)	 of
	 	 x:xs	 ->	 ..	 xs	 ..

Pattern matching can increase the number of references 
to a thunk



17

Evaluation of (tail#	 xxs) leads to forcing RT1
(tail#	 xxs) is almost the same as (tail	 xxs) except that 
(tail#	 xxs) remembers the address of xxs

Transforming pattern matching

case	 (ints	 1)	 of
	 x:xs	 ->	 ..	 xs	 ..

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

We replace each occurrence of xs with (tail#	 xxs) to 
avoid the duplication of references

1
xxs

tail#	 xxs
xxs	 =

RT1



Execution Model

Implementing our Idea to GHC
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Runtime System

Storage Manager
Garbage Collection

Scheduler

Object
Definitions

Updates Thunks

Reuses Thunks

dealing reusable 
thunks on 
generational-copying 
GC

Adding object type 
for reusable thunks

Registers

Stacks

Haskell Source

Compiler

Core Language

STG Language

C--

Target Code

CoreToCore

STG To STGGenerates code for
thunk reuse

Finding reusable thunks

Transforming 
pattern-matches



19

1

RT1

Stack

xxs

This process resembles updating thunks.

Thunk reuse in GHC execution model

ints	 (n+1)
n=1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1
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tail# pushes xxs and reuse_frame onto the stack.

1

Stack

reuse_frame

xxs

Thunk reuse in GHC execution model

ints	 (n+1)
n=1

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1
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RT1 is forced

1

Stack

reuse_frame

xxs

forcing RT1

Thunk reuse in GHC execution model

ints	 (n+1)
n=1

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1
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1 2

Stack

reuse_frame

xxs

Thunk reuse in GHC execution model

ints	 (n+1)
n=12

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 .. Register R1

C1 C2

RT1 is forced and as a result C2 is obtained.

RT1 is reused as the delayed computation at the tail of C2
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1 2

Stack

reuse_frame

xxs

reuse_frame overwrites the tail of C1 with a pointer to C2.
C1's address can be obtained from the stack.

Register R1

Thunk reuse in GHC execution model

ints	 (n+1)
n=12

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1 C2
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1 2

Stack

xxs
Register R1

Thunk reuse in GHC execution model

ints	 (n+1)
n=12

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1 C2



Experiments

nofib	 benchmark

imaginary, spectral, real

GHC 7.0.3

AMD Opteron CPU, 8GB main memory, Linux 2.6.32

Compiled with -O2 flag

Measured by GHC's statistic option -S
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Total memory allocations
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Geometric mean : 90.7 %%



Execution time
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Result

Total memory allocations
Thunk reuse is effective in many programs except programs 
which allocate thunks for tail#

Execution time
In many programs, the execution time is between 100% and 
110%, compared to the original GHC
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Analysis on execution time

Advantage
Time for memory allocations
The number of GC cycles

Disadvantage
Overhead of tail#
Overhead of checking reusability of thunks
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Summary

We have proposed a new implementation technique to suppress 
memory allocations by reusing thunks

On current our implementation, total allocation is reduced in 
many case, while extra execution time is necessary
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We need advices
We should improve execution time

Elimination of the overhead of tail#
Can we use the technique of pointer tagging instead of 
allocating a thunk for tail# ?

Further optimization for self recursive functions such as map

We have to add new functions in STGtoSTG path, but we 
don't know how to do that

Modifying GHC is a very hard task for me
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map	 f	 []	 =	 []
map	 f	 (x:xs)	 =	 f	 x	 :	 map'	 f	 xs
	 	 where	 map'	 f	 []	 =	 []
	 	 	 	 	 	 	 	 map'	 f	 (x:xs)	 =	 f	 x	 :	 map'	 f	 xs
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