
Reusing Thunks for 
Recursive Data Structures in
Lazy Functional Programs

Yasunao TAKANO (Coma-systems Co., Ltd.)
Hideya IWASAKI (The University of Electro-Communications)
Tomoharu UGAWA (The University of Electro-Communications)

1



Thunk (promise, suspension)

A thunk is created to delay the evaluation of an expression
A thunk contains the expression and the environment
 (a collection of pairs of bound variables and values)

The process of evaluating the expression in a thunk is called 
"forcing"

n+1 ➡ T{n+1}{n=2}
delay force

➡ 3

2



Our idea - Thunk Reuse

Lazy evaluation has significant run-time overheads
Allocating many thunks (space-consuming task)

We suppress thunk allocations by reusing the thunk that has 
been just forced

Our target is a thunk at the tail part of cons cell
We destructively update the environment of the thunk

3



The data constructor Cons ":" delays its arguments

Without thunk reuse

⇒	 1	 :	 T1{ints	 (n+1)}{n=1}ints	 1

ints	 n	 =	 n	 :	 ints	 (n	 +	 1)

4

ints	 (n+1)
n=1

1

T1

C1



The data constructor Cons ":" delays its arguments

Without thunk reuse

⇒	 1	 :	 T1{ints	 (n+1)}{n=1}ints	 1

ints	 n	 =	 n	 :	 ints	 (n	 +	 1)

5

Forcing T1

ints	 (n+1)
n=1

1

T1

C1



The data constructor Cons ":" delays its arguments

Without thunk reuse

⇒	 1	 :	 T1{ints	 (n+1)}{n=1}
⇒	 1	 :	 2	 :	 T2{ints	 (n+1)}{n=2}

ints	 1

ints	 n	 =	 n	 :	 ints	 (n	 +	 1)

6

ints	 (n+1)
n=1

2

T2
ints	 (n+1)
n=2

1

T1

C1 C2

Indirection



The data constructor Cons ":" delays its arguments

Without thunk reuse

⇒	 1	 :	 T1{ints	 (n+1)}{n=1}
⇒	 1	 :	 2	 :	 T2{ints	 (n+1)}{n=2}

ints	 1

ints	 n	 =	 n	 :	 ints	 (n	 +	 1)

Structures of T1 and T2 are almost the same.
7

ints	 (n+1)
n=1

2

T2
ints	 (n+1)
n=2

1

T1

C1 C2

Indirection



Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}ints	 1

8

RT1
ints	 (n+1)
n=1

1
C1



⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}

Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

9

Forcing RT1

ints	 1

RT1
ints	 (n+1)
n=1

1
C1



⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}

Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

10

Forcing RT1

ints	 1

RT1
ints	 (n+1)
n=1

1
C1



⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}

Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

⇒	 1	 :	 2	 :	 RT1{ints(n+1)}{n=2}
ints	 1

11

Destructively updates
the environment

RT1
ints	 (n+1)
n=1

1

2

2
C1 C2



⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}

Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

ints	 1

12

⇒	 1	 :	 2	 :	 RT1{ints(n+1)}{n=2}

Destructively updates
the environment

RT1
ints	 (n+1)
n=1

1

2

2
C1 C2

Makes C1 point to C2



Thunk reuse

ints	 n	 =	 n	 :	 ints	 (n+1)

ints	 1

13

Destructively updates
the environment

RT1

⇒	 1	 :	 RT1{ints	 (n+1)}{n=1}
⇒	 1	 :	 2	 :	 RT1{ints(n+1)}{n=2}

ints	 (n+1)
n=1

1

2

2
C1 C2

Makes C1 point to C2

Suppresses the allocation of  a new thunk



Singly referred condition

ints	 n	 =	 n	 :	 ints	 (n+1)

14

Destructively updates
the environment

RT1
ints	 (n+1)
n=1

1

2

2

Singly referred condition

   RT1 should be referred to only by the tail part of C2

C1 C2

Makes C1 point to C2



Remembering the reference of C1

ints	 n	 =	 n	 :	 ints	 (n+1)

15

Destructively updates
the environment

RT1
ints	 (n+1)
n=1

1

2

2

Before forcing RT1, we have to remember the reference of C1, 
because we are going to destructively update the C1's tail

C1 C2

Makes C1 point to C2



Our observation

16

1

xs
case	 (ints	 1)	 of
	 	 x:xs	 ->	 ..	 xs	 ..

Pattern matching can increase the number of references 
to a thunk



17

Evaluation of (tail#	 xxs) leads to forcing RT1
(tail#	 xxs) is almost the same as (tail	 xxs) except that 
(tail#	 xxs) remembers the address of xxs

Transforming pattern matching

case	 (ints	 1)	 of
	 x:xs	 ->	 ..	 xs	 ..

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

We replace each occurrence of xs with (tail#	 xxs) to 
avoid the duplication of references

1
xxs

tail#	 xxs
xxs	 =

RT1



Execution Model

Implementing our Idea to GHC

18

Runtime System

Storage Manager
Garbage Collection

Scheduler

Object
Definitions

Updates Thunks

Reuses Thunks

dealing reusable 
thunks on 
generational-copying 
GC

Adding object type 
for reusable thunks

Registers

Stacks

Haskell Source

Compiler

Core Language

STG Language

C--

Target Code

CoreToCore

STG To STGGenerates code for
thunk reuse

Finding reusable thunks

Transforming 
pattern-matches



19

1

RT1

Stack

xxs

This process resembles updating thunks.

Thunk reuse in GHC execution model

ints	 (n+1)
n=1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1



20

tail# pushes xxs and reuse_frame onto the stack.

1

Stack

reuse_frame

xxs

Thunk reuse in GHC execution model

ints	 (n+1)
n=1

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1



21

RT1 is forced

1

Stack

reuse_frame

xxs

forcing RT1

Thunk reuse in GHC execution model

ints	 (n+1)
n=1

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1



22

1 2

Stack

reuse_frame

xxs

Thunk reuse in GHC execution model

ints	 (n+1)
n=12

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 .. Register R1

C1 C2

RT1 is forced and as a result C2 is obtained.

RT1 is reused as the delayed computation at the tail of C2



23

1 2

Stack

reuse_frame

xxs

reuse_frame overwrites the tail of C1 with a pointer to C2.
C1's address can be obtained from the stack.

Register R1

Thunk reuse in GHC execution model

ints	 (n+1)
n=12

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1 C2



24

1 2

Stack

xxs
Register R1

Thunk reuse in GHC execution model

ints	 (n+1)
n=12

RT1

case	 (ints	 1)	 of
	 	 xxs@(x:_)	 ->	 ..	 (tail#	 xxs)	 ..

C1 C2



Experiments

nofib	 benchmark

imaginary, spectral, real

GHC 7.0.3

AMD Opteron CPU, 8GB main memory, Linux 2.6.32

Compiled with -O2 flag

Measured by GHC's statistic option -S

25



Total memory allocations

25

50

75

100

125

150

an
na

at
om

aw
ar
ds

ba
nn
er

be
rn
ou
illi

bo
ye
r

bo
ye
r2

bs
pt

ca
le
nd
ar

ci
ch
el
li

ci
rc
si
m

cl
au
si
fy

co
m
pr
es
s

co
ns
tr
ai
nt
s

cr
yp
ta
rit
hm
1

cr
yp
ta
rit
hm
2

cs
e

di
gi
ts
-o
f-
e1

di
gi
ts
-o
f-
e2
el
iza

ex
p3
_8

ex
pe
rt

fe
m
ff
t2

fib
he
ap
s

fis
h

fu
ls
om

ga
m
te
b

gc
_b
en
ch gc
d

ge
n_
re
ge
xp
s

in
fe
r

in
te
ge
r

in
te
gr
at
e

kn
ig
ht
s

la
m
bd
a

la
st
-p
ie
ce lc
ss lif
e

lin
ea
r

m
ai
llis
t

m
an
de
l

m
an
de
l2

m
at
e

m
in
im
ax

m
ul
tip
lie
r

pa
ra

pa
ra
ff
in
s
pi
c

po
w
er

pr
et
ty

pr
im
es

pr
im
et
es
t

pr
ol
og

pu
zz
le

qu
ee
ns

re
pt
ile

re
w
rit
e

rf
ib rs
a

sc
c

sc
s

se
cr
et
ar
y

si
m
pl
e

so
rt
in
g

sp
he
re
s

sy
m
al
g
ta
k

tr
ee
jo
in

w
he
el
-s
ie
ve
1

w
he
el
-s
ie
ve
2

x2
n1

26

Geometric mean : 90.7 %%



Execution time

50

100

150

200

250

an
na

at
om

aw
ar
ds

ba
nn
er

be
rn
ou
illi

bo
ye
r

bo
ye
r2

bs
pt

ca
le
nd
ar

ci
ch
el
li

ci
rc
si
m

cl
au
si
fy

co
m
pr
es
s

co
ns
tr
ai
nt
s

cr
yp
ta
rit
hm
1

cr
yp
ta
rit
hm
2

cs
e

di
gi
ts
-o
f-
e1

di
gi
ts
-o
f-
e2
el
iza

ex
p3
_8

ex
pe
rt

fe
m
ff
t2

fib
he
ap
s

fis
h

fu
ls
om

ga
m
te
b

gc
_b
en
ch gc
d

ge
n_
re
ge
xp
s

in
fe
r

in
te
ge
r

in
te
gr
at
e

kn
ig
ht
s

la
m
bd
a

la
st
-p
ie
ce lc
ss lif
e

lin
ea
r

m
ai
llis
t

m
an
de
l

m
an
de
l2

m
at
e

m
in
im
ax

m
ul
tip
lie
r

pa
ra

pa
ra
ff
in
s
pi
c

po
w
er

pr
et
ty

pr
im
es

pr
im
et
es
t

pr
ol
og

pu
zz
le

qu
ee
ns

re
pt
ile

re
w
rit
e

rf
ib rs
a

sc
c

sc
s

se
cr
et
ar
y

si
m
pl
e

so
rt
in
g

sp
he
re
s

sy
m
al
g
ta
k

tr
ee
jo
in

w
he
el
-s
ie
ve
1

w
he
el
-s
ie
ve
2

x2
n1

27

Geometric mean : 111.0 %
%



Result

Total memory allocations
Thunk reuse is effective in many programs except programs 
which allocate thunks for tail#

Execution time
In many programs, the execution time is between 100% and 
110%, compared to the original GHC

28



Analysis on execution time

Advantage
Time for memory allocations
The number of GC cycles

Disadvantage
Overhead of tail#
Overhead of checking reusability of thunks

29



Summary

We have proposed a new implementation technique to suppress 
memory allocations by reusing thunks

On current our implementation, total allocation is reduced in 
many case, while extra execution time is necessary

30



We need advices
We should improve execution time

Elimination of the overhead of tail#
Can we use the technique of pointer tagging instead of 
allocating a thunk for tail# ?

Further optimization for self recursive functions such as map

We have to add new functions in STGtoSTG path, but we 
don't know how to do that

Modifying GHC is a very hard task for me

31
takano@coma-systems.com

map	 f	 []	 =	 []
map	 f	 (x:xs)	 =	 f	 x	 :	 map'	 f	 xs
	 	 where	 map'	 f	 []	 =	 []
	 	 	 	 	 	 	 	 map'	 f	 (x:xs)	 =	 f	 x	 :	 map'	 f	 xs

mailto:takano@coma-systems.com
mailto:takano@coma-systems.com

