Reusing Thunks for
Recursive Data Structures in
Lazy Functional Programs

Yasunao TAKANO (Coma-systems Co., Ltd.)
Hideya IWASAKI (The University of Electro-Communications)
Tomoharu UGAWA (The University of Electro-Communications)

Thunk (promise, suspension)

e A thunk is created to delay the evaluation of an expression
e A thunk contains the expression and the environment
(a collection of pairs of bound variables and values)

e The process of evaluating the expression in a thunk is called
"forcing"

ntl = T{n+1}{n=2} =»

delay force

Our 1dea - Thunk Reuse

e Lazy evaluation has significant run-time overheads
e Allocating many thunks (space-consuming task)

¥

o We suppress thunk allocations by reusing the thunk that has
been just forced
e QOur target is a thunk at the tail part of cons cell
o We destructively update the environment of the thunk

Without thunk reuse

e The data constructor Cons ":" delays its arguments
PRS- RRa e e S SHE R 1)

BhEs s ¥ = =l e s en =

€]
1

!
!

Without thunk reuse

e The data constructor Cons ":" delays its arguments
PRS- RRa e e S SHE R 1)

BhEs s ¥ = =l e s en =

€]
1

!
l Forcing '1'1

Without thunk reuse

e The data constructor Cons ":" delays its arguments
PRS- RRa e e S SHE R 1)

lnEse s ¥ —r e =l e s en =

2ot s CnE R tn=2]
Co

1 BHn

Indirection l

&%

Without thunk reuse

e The data constructor Cons ":" delays its arguments
PRS- RRa e e S SHE R 1)

lnEse s ¥ —r e =l e s en =

— e falinte s Cir) in =2
Ci Co

1 /ZTI

Indirection

By T2 l

Structures of 11 and 12 are almost the same.

7

Thunk reuse

THES S = T RS TS
s te— e Rt s (Ca Tl 1)

Thunk reuse

THES S = T RS TS
s te— e Rt s (G Tl 1)

Forcing R'T'

Thunk reuse

THES S = T RS TS
s te— e Rt s (G Tl 1)

Forcing R'T'

Thunk reuse

TRES=N— R Thts: Chtl

s [te— e Rt s (Ca)= 1)

\:> e 2 R s Ch B ih=2

Ci1 |

Destructively updates
the environment

Thunk reuse

TRES=N— R Thts: Chtl

s [te— e Rt s (G 1= 1)

\=(>:11 i f(i[‘l{ints(n+1)}{n=2}

11| e

2]y |

Makes Clipoint to Cz

RT; ¥
Destructively updates
the environment

Thunk reuse

TRES=N— R Thts: Chtl

Suppresses the allocation of a new thunk

Ci C2
1| @ >

Makes C1 point to C2

2

Rl

Destructively updates
the environment

Singly referred condition

TRES=N— R Thts: Chtl

Ci C2
1| @ > | 2

Makes C1 point to C2

Rl
\

—> Destructively updates
the environment

-_—

Singly referred condition
RT1 should be referred to only by the tail part of Cz

14

Remembering the reference of C1

ints (n+1)

Co
> | 2

1| ¢
Makes C1:point to Cz

Rl Y

Destructively updates
the environment

Before forcing RT1, we have to remember the reference of Ci,

because we are going to destructively update the Ci's tail
15

Our observation

Pattern matching can increase the number of references
to a thunk

case (ints 1) of
YeX Sior s S et

Transforming pattern matching

We replace each occurrence of xs with (tail# xxs) to
avoid the duplication of references

case (ints 1) of
B, CS AR S (i

case (ints 1) of
» 6 AU S TS AR G of A e 5

RT:

]

)

Evaluation of (tail# xxs) leads to forcing RT1

(tail# xxs) is almost the same as (tail xxs) except that
(tail# xxs) remembers the ad1(71ress of xxs

Implementing our Idea to GHC

Haskell Source

Compiler 1

~ Transforming
¥ pattern-matches

l CoreToCore
P

STG Language : Finding reusable thunks

e ~——_
Generates code for oTG To STG

thunk reuse
i

C--

Target Code /

Core Language

Runtime System

Storage Manager
Garbage Collection

dealing reusable
thunks on
generational-copying

GC

Scheduler

Execution Model

Registers

Stacks

Updates Thunks

Object
Definitions

Adding object type
for reusable thunks

Reuses Thunks

Thunk reuse in GHC execution model

case (1nts 1) of
DS A S s S G G e S

XXS

Cif 1

\\\ Rl

Stack

This process resembles updating thunks.

19

Thunk reuse in GHC execution model

case (1nts 1) of
DS A S s S G G e S

XXS

Cy 1

reuse frame \ RT,

Stack

tail# pushes xxs and reuse_frame onto the stack.

20

Thunk reuse in GHC execution model

case (1nts 1) of
DS A S s S G G e S

XXS

Iforcing Rl Ci| 1

reuse frame \ RT;

Stack

RT1 1s forced

Thunk reuse in GHC execution model

case (ints 1) of
XXS@(X:_) s > Ctall# XXS) . Register R1

XXS N
Co
Ci[1] 3 2|y

reuse frame \ ﬁrﬁ/

Stack
RT} 1s forced and as a result C2 is obtained.

RT1 is reused as the delayed computation at the tail of Cz

22

Thunk reuse in GHC execution model

case (1nts 1) of
DS A S s S G G e S

Register R1

XXS \
Cl 1 5 CZ) Z T

reuse frame "\
— % Rl

t

Stack

reuse_frame overwrites the tail of C1 with a pointer to Co.

Ci's address can be obtained from the stack.
23

Thunk reuse in GHC execution model

case (1nts 1) of
DS A S s S G G e S

Register R1

XXS \

Rl

Experiments

e nofib benchmark

® |maginary, spectral, real
o GHC /7.0.3
o AMD Opteron CPU, 8GB main memory, Linux 2.6.32
o Compiled with -O2 flag

* Measured by GHC's statistic option -S

Total memory allocations

90.7 %

Geometric mean

[UZX
2OA3IS-|[9aym
[9A8IS-|[9aym
uloleaul

B
|[eWwAs
saJayds
punJos
a|dwis
AJelaloas
SOS

00S

es.

qlH
a1lumal
a|1dau
susanb
9|zznd
bojoud
1sa1awiid
sawlid
A1aid
Jamod
oid
suljjesed
eJe
Jajjdiynwi
xewliulwl
alew
Zlepuew
|opuew
1si|jrew
Jeaul|

el

SSO|
a09l1d-1se|
epgquie]
S1YbIUX \O
a1elbaqul N
Jabaqul
JoJul
sdxabal usab
pob
youaqg ob
ga1web
wios|ny

Ysi}
sdeayq}
SH

wid}

1Jodxo

Q ¢dxa

ezije
29-40-s1101p
| ©-J0-s1ibip
9s0
ZwyieldAuo
[WyllaerdAuo
S1UIBJ1SUOD
ssaidwod
AJisne|o
WwIS2JID
]|2Y2319
Jepus|ed
1ds

2J9A0(Q
J1aAoq
ljinou.Jaqg
Jsuueq
spJeme
wole

euue

L
=
e
-
O
e
=
O
O
<
L]

111.0 %

Geometric mean

|
(A TR AR ARRAEAACt R R IR

100

50

LUgX
ZOA3IS-[9ayM
| 9ABIS-[]oaym
uloleaul

Bl

|[eWwAs
salayds
PuIlI0S
a|dwis
Aleloauoas
SOS

00S

es.

ql3J
911uMaJ
o|inda.
susanb
9|zznd
pbojoud
1s918wWiid
sawld
Anelid
Jamod

oid
sul}jesed
eJe
Jaidiyinw
Xewiuiw
alewl
Zlepuew
|opuew
1sl||lew
Jeaul|

S|

SSO|
a0ald-1se|
epgque|
S1YbIUX
a1edbalul ﬂ
Jlabajul
JaJul
sdxabal uab
pob
youaq ob
go1web
wos|ny
Ysi}
sdeayqly
AR

wia)
}Jodxa

Q cdxs
ezl
2o-J0-s1bIp
| ©-J0-s1ibip
9SO
ZwyilaeirdAuo
[WyllaerdAuo
S1UIBJISUOD
ssoldwoo
AJisne|o
WwIisoJI0
[|2Y219
Jepus|ed
1ds
2J8A0Q
Jakoq
ljinouJsq
Jsuueq
spJeme
wole

euue

Result

e Total memory allocations
e Thunk reuse is effective in many programs except programs
which allocate thunks for tail#
e Execution time
e In many programs, the execution time is between 100% and
110%, compared to the original GHC

Analysis on execution time

o Advantage
e Time for memory allocations
e The number of GC cycles
e Disadvantage
e Overhead of tail#
e Overhead of checking reusability of thunks

Summary

e We have proposed a new implementation technique to suppress
memory allocations by reusing thunks

e On current our implementation, total allocation is reduced in
many case, while extra execution time is necessary

We need advices

® We should improve execution time
e Elimination of the overhead of tail#
e Can we use the technique of pointer tagging instead of
allocating a thunk for tail# ?
e Further optimization for self recursive functions such as map
map £ [] =[]
Map s XS = O Map =SS
where map' f [] = []
Nap R e Gy <=2 Fscamap

R

® We have to add new functions in STGtoSTG path, but we
don't know how to do that

e Modifying GHC is a very hard task for me

takano@coma-systems.com
Ok

mailto:takano@coma-systems.com
mailto:takano@coma-systems.com

