The New Cloud Haskell

Duncan Coutts and Edsko de Vries

September 2012, Haskell Implementors Workshop

2 Well-Typed

The Haskell Consultants




This talk...

What | want to talk about today...

» Very quick recap on Cloud Haskell
» The cool new stuff

» details of the new implementation
» message semantics
» current status

Sorry, not a tutorial
(but come to the Haskell Exchange in London next month!)

B Well-Typed



Cloud Haskell recap



Cloud Haskell

What'’s it all about?

» Slogan could be “Erlang for Haskell” (as a library)
» Concurrent distributed programming in Haskell
» A programming model + an implementation

B Well-Typed



Cloud Haskell

What'’s the point?

» To let you program a cluster as a whole,
» or a data centre,

» or a bunch of VMs rented from Azure / Amazon / ...
(hence the “Cloud” marketing buzzword)

B Well-Typed



Cloud Haskell

What'’s the point?

» To let you program a cluster as a whole,
» or a data centre,

» or a bunch of VMs rented from Azure / Amazon / ...
(hence the “Cloud” marketing buzzword)

Key idea

Program the cluster as a whole, not individual nodes

B Well-Typed



Other people’s good ideas

Papers

» Jeff Epstein, Andrew Black and Simon Peyton Jones,
Towards Haskell in the Cloud, Haskell Symposium 2011

» Jeff Epstein, Functional programming for the data centre,
MPhil thesis, 2011

Prototype

» remote package by Jeff Epstein

B Well-Typed



Programming model

v

Explicit concurrency

v

Lightweight processes
No state shared between processes
Asynchronous message passing

v

v

Some people call this the “actor model”

B Well-Typed



The Cloud Haskell design

Basic approach

» Design is implementable as a library
» minimal language and RTS changes
» e.g. no distributed MVar as in GdH

» If in doubt, do it the way Erlang does it

(Other distributed middleware designs are also possible)

B Well-Typed



The core API

instance Monad Process
instance MonadlO Process

data Processld
data Nodeld

class (Typeable a, Binary a) = Serializable a

send :: Serializable a = Processld — a — Process ()
expect :: Serializable a = Process a

spawn :: Nodeld — Closure (Process ()) — Process Processld

getSelfPid :: Process Processld
getSelfNode :: Process Nodeld

B Well-Typed



Error handling style

Errors are everywhere in distributed programming

Cloud Haskell steals Erlang’s solution

» Let processes fail
» communication loss counts as failure
» Notify interested processes

» often they just fail too (linked processes)
» common pattern is to monitor and restart

link :: Processld — Process ()
monitor :: Processld — Process MonitorRef

B Well-Typed



What we’ve been up to...



A new implementation

Simon PJ asked us to start work on a new implementation...

Initial goals

» Same public API (more or less)
» Robust implementation
» Flexible implementation

Interesting problems we ran into

» The need for semantics (!)
» Network disconnect and reconnect

B Well-Typed



The need for flexibility

Variation between use cases

» Network data transport layer
(hardware and protocol)

» How to start your executable
on each machine

» How to configure each node

» How to find initial peers
or all peers

Examples

P
exotic non-IP HPC networks
shared memory or local pipes

remote login via ssh
cloud service API
cluster job scheduler

via ssh from master node
config files, env vars, string and glue
distributed via cluster job scheduler

discover dynamically on LAN
known from config

cluster job scheduler

peers created in new VMs

B Well-Typed



The new implementation

Key differences with the prototype implementation

» Swappable network transport layer
» Multiple Cloud Haskell backends to handle
» selection of transport implementation
» initialisation
» configuration
» peer discovery / creation
» More precisely specified semantics
» message passing
» node disconnect and reconnect

B Well-Typed



Existing prototype design

Your distributed
application

libraries of distributed
algorithms & patterns

Cloud Haskell

standard network
library (TCP/IP)

B Well-Typed



New internal design

Your distributed
application

libraries of distributed \

algorithms & patterns

Cloud Haskell
backend

Cloud Haskell

network transport
implementation

network transport
interface o

various network
libs and bindings

B Well-Typed



Network transport layer

Interface between network layer and Process layer

» Allows different network implementations
» Clarifies internal design of Cloud Haskell

Design considerations

Meet needs of Cloud Haskell
Be reusable in other projects if possible
Allow many implementations with common semantics

v

v

v

v

Allow high performance (latency)
Allow high scalability (big clusters)

v

B Well-Typed



Network transport layer

Key features

» heavyweight endpoints
bundle of many lightweight connections between endpoints

connections are
» message oriented (not stream)
» reliable and ordered (like TCP)
» unidirectional
single shared receive queue on each endpoint

» all incoming messages from all connections
» errors and other events

clear network failure behaviour

» explicit reporting of failures
» bundles fail as a whole, not individual connections

v

v

v

v

B Well-Typed



Network transport layer

Implementations

» TCP/IP
» multiplexes lightweight connections over a single
heavyweight TCP connection between endpoints

» Unix pipes (in progress)
» CCI (in progress)
(CCl is an HPC networking lib supporting infiniband etc)
Also possible

Shared memory
SSH

UDP

TCP with SSL/TLS

The TCP implementation is already being used in projects
other than Cloud Haskell

vV v vYy

B Well-Typed



Process layer outline

» Cloud Haskell node manages a set of processes
» transport Endpoint per node

Each Process runs in a Haskell thread
» has a queue for incoming messages
A lightweight transport Connection per pair of
communicating processes
A thread per node to reveive events
» dispatches messges to per-process message queues

» passes messages and notifications to the node controller
» handles network error events (like peer node disconnect)

A thread per node as the “node controller”

» responsible for spawning, linking and monitoring
» also manages a process registry (named processes)

Other per-node service processes
» currently just a logger

v

v

v

v

v

B Well-Typed



Cloud Haskell backends

“SimpleLocalnet” backend

v

simple backend to get started quickly

no configuration

uses the TCP transport

node discovery using local UDP multicast

v

v

v

B Well-Typed



Cloud Haskell backends

Windows Azure backend

>

>

uses Linux VMs
uses the TCP transport between the VMs

» initialise with Azure account and SSL certificates
» Support for:

» VM enumeration
» copying binaries to VMs
» spawn nodes on VMs

special API required for communicating between on-cloud
and off-cloud nodes

not yet released

B Well-Typed



Semantics, semantics, semantics!



Process layer semantics

We started implementing the process layer...

B Well-Typed



Process layer semantics

We started implementing the process layer...

What is the behaviour supposed to be?
What is the spec exactly?

» original paper says the message passing is
“asynchronous, reliable, and buffered” but little more

B Well-Typed



Process layer semantics

We started implementing the process layer...

What is the behaviour supposed to be?
What is the spec exactly?

» original paper says the message passing is
“asynchronous, reliable, and buffered” but little more

For example, what does this do?

do link p; send p "hi!"; unlink p

does the link happen before the send ?

does the unlink guarantee the message was delivered?
are the link operations sync or async?

any reliability guarantee on message delivery?

vV vy VvYy

B Well-Typed



Process layer semantics

Remember? "If in doubt, do it the way Erlang does it."

B Well-Typed



Process layer semantics

Remember? "If in doubt, do it the way Erlang does it."

What is the Erlang spec exactly?

» most of the docs are fuzzy
» but a few good papers which reveal the gory details

B Well-Typed



Process layer semantics

Remember? "If in doubt, do it the way Erlang does it."

What is the Erlang spec exactly?

» most of the docs are fuzzy
» but a few good papers which reveal the gory details

The important questions

» behaviour of message passing between two processes?
» behaviour of linking and monitoring?

B Well-Typed



Message passing guarantees

Meaning of “reliable ordered” message delivery

Process A sends messages to process B:
my, Ma, Ms, ...

Process B may receive any prefix.

For example receiving my, ms cannot happen
The Erlang FAQ says

“if you think TCP guarantees delivery, which most
people probably do, then so does Erlang”

B Well-Typed



Message passing guarantees

Meaning of “reliable ordered” message delivery
Process A sends messages to process B:

my, Ma, Ms, ...

Process B may receive any prefix.

For example receiving my, ms cannot happen
The Erlang FAQ says

“if you think TCP guarantees delivery, which most
people probably do, then so does Erlang”

But it turns out Erlang does not guarantee this.

Process B can receive just my, mg

B Well-Typed



Erlang semantics

Erlang formal semantics guarantees ordered messaging
between pairs of processes.

It does not guarantee reliable delivery: intermediate messages
can be dropped.

B Well-Typed



Erlang semantics

Erlang formal semantics guarantees ordered messaging
between pairs of processes.

It does not guarantee reliable delivery: intermediate messages
can be dropped.

In practice dropping messages is rare but can happen when
Erlang nodes are disconnected and reconnected.

B Well-Typed



Proposed future Erlang semantics

We found a good paper:

» Svensson et al. A unified semantics for future Erlang,
Erlang workshop 2010

They propose what they think Erlang semantics should be

formal specification

does guarantee reliable ordered message delivery
simplified linking and monitoring

everything is asynchronous

covers node disconnect and reconnect (mostly)

vV v vy VY

We took this as the spec for our implementation.

B Well-Typed



Proposed future Erlang semantics

We found a good paper:

» Svensson et al. A unified semantics for future Erlang,
Erlang workshop 2010

They propose what they think Erlang semantics should be

formal specification

does guarantee reliable ordered message delivery
simplified linking and monitoring

everything is asynchronous

covers node disconnect and reconnect (mostly)

vV v vy VY

We took this as the spec for our implementation.

If in doubt, do it the way Erlang-dees-it
the Erlang people now think Erlang ought to do it

B Well-Typed



Reuvisiting the example

So what does does this do now?

do link p; send p "hi!"; unlink p

» all asynchronous
» link is not ordered wrt. send
» so this code guarantees almost nothing

B Well-Typed



Reuvisiting the example

So what does does this do now?
do link p; send p "hi!"; unlink p
» all asynchronous

» link is not ordered wrt. send
» so this code guarantees almost nothing

What we probably want instead is
do link p; send p "hi!"; reply < expect; unlink p

» order of link vs send does not matter here

Lessons

» linking has very little to do with message delivery
» to assure delivery you must receive a reply B Well-Typed



Reliable delivery

Question

Why does Erlang not provide reliable delivery when TCP does?

TCP is connection oriented

» you establish a connection to an address and send data
over the connection

» network failure is reflected as the connection closing
Erlang (and Cloud Haskell) are connectionless

» you send messages direct to addresses (Processlds)

If we allow node reconnects it is hard to mix reliable delivery
and connectionless style

B Well-Typed



Node disconnect and reconnect

Example

Process A sends messages to process B: my, mo, ms, ...

Now the network between A and B fails. What should we do?

The nodes may be disconnected temporarily or permanently

B Well-Typed



Node disconnect and reconnect

Example

Process A sends messages to process B: my, mo, ms, ...
Now the network between A and B fails. What should we do?

The nodes may be disconnected temporarily or permanently

A few options

» buffer messages
» drop messages temporarily
» drop messages permanently (do not allow reconnect)

B Well-Typed



Node disconnect and reconnect

Current Erlang behaviour

» buffers messages temporarily
» then drops messages
» sacrifices reliability property

“Unified semantics for future Erlang”

» drops messages to dead nodes

v

buffers messages to disconnected nodes
keeps reliability property
impossible to implement

v

v

B Well-Typed



Node disconnect and reconnect

Our proposal for Cloud Haskell

» drop messages permanently (by default)

» this keeps the reliability property (!!)

» explicit reconnect primitive

» reconnect to accept intermediate message loss

We think this is a reasonable compromise

» simple reliability guarantee
» most code does not need to handle reconnect
» it simply fails on the initial disconnect

» code that wants to handle reconnect explicitly opts in and
accepts the reality of message loss

B Well-Typed



Implementation status



Current state of the implementation

Current status

Covers the full API
Made a first release and several minor bug-fix releases

v

v

v

Reasonable test suite

v

Reasonable performance

Ready for serious experiments, but not yet for serious use.

B Well-Typed



Current state of the implementation

Significant TODOs

» Larger scale testing

» Node disconnect and reconnect needs more work and
testing

» More demos

» Comparative benchmarking needed

Wishlist

Shared memory transport

SSH transport

Ability to use multiple transports

Implementation of the ‘static’ language extension
Higher level libraries, e.g. Erlang OTP’s gen_server

vV V.V v Y

Contributions welcome

B Well-Typed



Early benchmarks

Transport layer microbenchmark of the TCP implementation

» minimal overhead compared to network package
» some latency overhead compared to C

» primarily issues in the threaded RTS and GHC I/O manager
Process layer microbenchmark comparison with the prototype

» approx 4x lower latency
» approx 200x greater throughput

(running on Azure infrastructure)

This is not a surprising result:
the prototype uses synchronous message send

Benchmarking against Erlang is required

B Well-Typed



Cloud Haskell Packages

Cloud Haskell Packages on Hackage

distributed-process Main API, Process etc
distributed-process-simplelocalnet Simple backend
distributed-process-azure Windows Azure backend
network-transport Transport interface
network-transport-tcp TCP implementation

Sources and documentation on github
http://github.com/haskell-distributed/distributed-process

B Well-Typed



Thanks!

Questions?

B Well-Typed



Extra slides



Initialisation

Initialisation sequence looks something like

import Control.Distributed.Process
import Network.Transport. TCP

init :: (...) — Process () — 10 ()

init config initialProcess = do
transport < createTransport config
localnode < newLocalNode transport
runProcess localnode initialProcess

» initialise a transport, with some transport-specific config
» initialise the local Cloud Haskell node
» run the initial process

This is all hidden in a Cloud Haskell backend
B Well-Typed



Ping pong example

newtype Ping = Ping Processld deriving (Binary, Typeable)
ping :: Process ()
ping = do self «— getSelfPid
Ping partner < expect
send partner (Ping self)
say "ping!”
ping
initialProcess _ = do nid <« getSelfNode
ping1 < spawn nid ping__closure
ping2 < spawn nid ping__closure
send ping1 (Ping ping2)
$(remotable [‘ping]) -- Template Haskell magic

main = remotelnit (Just "config"”) [__remoteCallMetaData]
initialProcess

B Well-Typed



Asyncronous primitives

spawn :: Nodeld — Closure (Process ()) — Process Processld
spawn nid proc = do
us <« getSelfPid;
mRef < monitorNode nid
sRef «+ spawnAsync nid (childClosure proc)
mPid < receiveWait
[matchlf
(\(DidSpawn ref _) — ref = sRef)
(A(DidSpawn _ pid) — return (Right pid))
, matchlf
(A(NodeMonitorNotification ref _ _) — ref = mRef)
(A(NodeMonitorNotification _ _ err) — return (Left err))
]
unmonitor mRef
case mPid of
Left _err — return (nullProcessld nid)
Right pid — send pid () > return pid B Well-Typed



