
Introduction
Example

How it works
Future Work

Making cabal-install non-destructive

Philipp Schuster, Andres Löh

September 12, 2012

1 / 32

Introduction
Example

How it works
Future Work

Introduction

My name is Philipp Schuster.

I participated in Google Summer of Code 2012.

My supervisor was Andres Löh.

We wanted multiple instances of the same package version
installed.

Quite a few problems remain therefore nothing is merged yet.

2 / 32

Introduction
Example

How it works
Future Work

Example Packages

Knight-1

Pawn-1

King-1

Knight

Pawn

3 / 32

Introduction
Example

How it works
Future Work

Example Instances

Knight-1-f7a...

Pawn-1-e34...

King-1-b22...

4 / 32

Introduction
Example

How it works
Future Work

Listing the installed instances

$ ghc-pkg list --user -v

using cache: /home/pschuster/.ghc/i386-linux-7.6.0.20120815/package.conf.d/package.cache

using cache: /usr/local/lib/ghc-7.6.0.20120815/package.conf.d/package.cache

/home/pschuster/.ghc/i386-linux-7.6.0.20120815/package.conf.d

King-1 (King-1-165729ba77dabd7b827de2e721291b61-1020960593)

Knight-1 (Knight-1-d1e1f57c04f2a3f462eec2ee364c4dbe-1040356745)

Pawn-1 (Pawn-1-7a9672f4fce029cc4d72cc5957d45134-1022359486)

5 / 32

Introduction
Example

How it works
Future Work

Queen-1 and Pawn-2 are added

Knight-1

Queen-1

Pawn-2Pawn-1

King-1

Knight

Pawn
Pawn

Knight

Pawn ==2

6 / 32

Introduction
Example

How it works
Future Work

Instances with Pawn-2 installed

Knight-1-f7a...

Pawn-1-e34... Pawn-2-f89...

King-1-b22...

7 / 32

Introduction
Example

How it works
Future Work

Install Pawn-2

$ cd Pawn

$ cabal install

Resolving dependencies...

Configuring Pawn-2...

Building Pawn-2...

Preprocessing library Pawn-2...

[1 of 1] Compiling Pawn (Pawn.hs, dist/build/Pawn.o)

In-place registering Pawn-2...

Installing library in /home/pschuster/.cabal/lib/Pawn-2-1181001620

Registering Pawn-2...

Installed Pawn-2

8 / 32

Introduction
Example

How it works
Future Work

Instances with Queen installed

Knight-1-f7a...

Pawn-1-e34... Pawn-2-f89...

Knight-1-228...

Queen-1-bc7...King-1-b22...

9 / 32

Introduction
Example

How it works
Future Work

There used to be a conflict

Knight-1-f7a...

Pawn-1-e34... Pawn-2-f89...

Knight-1-228...

Queen-1-bc7...King-1-b22...

10 / 32

Introduction
Example

How it works
Future Work

Trying to install another Knight

$ cd ../Knight

$ cabal install

Resolving dependencies...

In order, the following would be installed:

Knight-1 (reinstall) changes: Pawn-1 -> 2

cabal: The following packages are likely to be broken by the reinstalls:

King-1

Use --force-reinstalls if you want to install anyway.

11 / 32

Introduction
Example

How it works
Future Work

Forcing to install another Knight

$ cabal install --force-reinstalls

Resolving dependencies...

Warning: The following packages are likely to be broken by the reinstalls:

King-1

Continuing even though the plan contains dangerous reinstalls.

Configuring Knight-1...

Building Knight-1...

Preprocessing library Knight-1...

[1 of 1] Compiling Knight (Knight.hs, dist/build/Knight.o) [Pawn changed]

In-place registering Knight-1...

Installing library in /home/pschuster/.cabal/lib/Knight-1-1213798927

Registering Knight-1...

Installed Knight-1

12 / 32

Introduction
Example

How it works
Future Work

Knight got installed in a different location

$ ghc-pkg field Knight id,library-dirs

id: Knight-1-2a238a015dfde8866586869fc773edcf-1213798927

library-dirs: /home/pschuster/.cabal/lib/Knight-1-1213798927

id: Knight-1-d1e1f57c04f2a3f462eec2ee364c4dbe-1040356745

library-dirs: /home/pschuster/.cabal/lib/Knight-1-1040356745

13 / 32

Introduction
Example

How it works
Future Work

Instances with Queen installed

Knight-1-f7a...

Pawn-1-e34... Pawn-2-f89...

Knight-1-228...

Queen-1-bc7...King-1-b22...

14 / 32

Introduction
Example

How it works
Future Work

Both instances of Knight are there

$ ghc-pkg field Knight id,depends

id: Knight-1-2a238a015dfde8866586869fc773edcf-1213798927

depends: base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7

Pawn-2-824eda7296a96dd8a5eb9c8cbf3e2f24-1181001620

id: Knight-1-d1e1f57c04f2a3f462eec2ee364c4dbe-1040356745

depends: base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7

Pawn-1-7a9672f4fce029cc4d72cc5957d45134-1022359486

15 / 32

Introduction
Example

How it works
Future Work

Installing another King

$ cd ../King

$ cabal install

Resolving dependencies...

In order, the following will be installed:

King-1 (reinstall)

Warning: Note that reinstalls are always dangerous. Continuing anyway...

Configuring King-1...

Building King-1...

Preprocessing library King-1...

[1 of 1] Compiling King (King.hs, dist/build/King.o) [Knight changed]

In-place registering King-1...

Installing library in /home/pschuster/.cabal/lib/King-1-1113590318

Registering King-1...

Installed King-1

16 / 32

Introduction
Example

How it works
Future Work

King depends on the new Knight instance

$ ghc-pkg field King id,depends

id: King-1-3ec40c2c9564c1fd109479a358a82eef-1113590318

depends: base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7

Knight-1-2a238a015dfde8866586869fc773edcf-1213798927

id: King-1-165729ba77dabd7b827de2e721291b61-1020960593

depends: base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7

Knight-1-d1e1f57c04f2a3f462eec2ee364c4dbe-1040356745

17 / 32

Introduction
Example

How it works
Future Work

Instances with another King installed

Knight-1-f7a...

Pawn-1-e34... Pawn-2-f89...

Knight-1-228...

Queen-1-bc7...King-1-b22... King-1-c5d...

18 / 32

Introduction
Example

How it works
Future Work

Calling the garbage collector

$ cabal remove --duplicates

"Would remove King-1-165729ba77dabd7b827de2e721291b61-1020960593"

"Would remove Knight-1-d1e1f57c04f2a3f462eec2ee364c4dbe-1040356745"

19 / 32

Introduction
Example

How it works
Future Work

Instances that would be garbage collected

Knight-1-f7a...

Pawn-1-e34... Pawn-2-f89...

Knight-1-228...

Queen-1-bc7...King-1-b22... King-1-c5d...

20 / 32

Introduction
Example

How it works
Future Work

Install location

Customizable in .cabal/config.

Default $libsubdir was $pkgid/$compiler for example
repa-3.1.4.2/ghc-7.4.1.

Default should be $pkgid-$unique for example
repa-3.1.4.2-1079787003.

$unique is resolved to a big random number but only by
cabal-install not by Cabal the library.

21 / 32

Introduction
Example

How it works
Future Work

Install location

Customizable in .cabal/config.

Default $libsubdir was $pkgid/$compiler for example
repa-3.1.4.2/ghc-7.4.1.

Default should be $pkgid-$unique for example
repa-3.1.4.2-1079787003.

$unique is resolved to a big random number but only by
cabal-install not by Cabal the library.

21 / 32

Introduction
Example

How it works
Future Work

Install location

Customizable in .cabal/config.

Default $libsubdir was $pkgid/$compiler for example
repa-3.1.4.2/ghc-7.4.1.

Default should be $pkgid-$unique for example
repa-3.1.4.2-1079787003.

$unique is resolved to a big random number but only by
cabal-install not by Cabal the library.

21 / 32

Introduction
Example

How it works
Future Work

Install location

Customizable in .cabal/config.

Default $libsubdir was $pkgid/$compiler for example
repa-3.1.4.2/ghc-7.4.1.

Default should be $pkgid-$unique for example
repa-3.1.4.2-1079787003.

$unique is resolved to a big random number but only by
cabal-install not by Cabal the library.

21 / 32

Introduction
Example

How it works
Future Work

Install location cont.

Defaults for cabal-install and Cabal the library would be
different.

Because of package Paths.hs the install location has to be
known at compile time.

22 / 32

Introduction
Example

How it works
Future Work

Install location cont.

Defaults for cabal-install and Cabal the library would be
different.

Because of package Paths.hs the install location has to be
known at compile time.

22 / 32

Introduction
Example

How it works
Future Work

InstalledPackageId

Was PackageId-ABIhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7.

Is PackageId-ABIhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

cabal-install determines the random number during
configuration.

Cabal the library only appends the given String.

InstalledPackageId can not be used as the install location
because it contains the ABI hash.

23 / 32

Introduction
Example

How it works
Future Work

InstalledPackageId

Was PackageId-ABIhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7.

Is PackageId-ABIhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

cabal-install determines the random number during
configuration.

Cabal the library only appends the given String.

InstalledPackageId can not be used as the install location
because it contains the ABI hash.

23 / 32

Introduction
Example

How it works
Future Work

InstalledPackageId

Was PackageId-ABIhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7.

Is PackageId-ABIhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

cabal-install determines the random number during
configuration.

Cabal the library only appends the given String.

InstalledPackageId can not be used as the install location
because it contains the ABI hash.

23 / 32

Introduction
Example

How it works
Future Work

InstalledPackageId

Was PackageId-ABIhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7.

Is PackageId-ABIhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

cabal-install determines the random number during
configuration.

Cabal the library only appends the given String.

InstalledPackageId can not be used as the install location
because it contains the ABI hash.

23 / 32

Introduction
Example

How it works
Future Work

InstalledPackageId

Was PackageId-ABIhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7.

Is PackageId-ABIhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

cabal-install determines the random number during
configuration.

Cabal the library only appends the given String.

InstalledPackageId can not be used as the install location
because it contains the ABI hash.

23 / 32

Introduction
Example

How it works
Future Work

Time-stamp

A field time-stamp was added to InstalledPackageInfo.

Used by cabal-install, Cabal and GHC to choose between
instances.

Not sure if shadowing in GHC still works.

24 / 32

Introduction
Example

How it works
Future Work

Time-stamp

A field time-stamp was added to InstalledPackageInfo.

Used by cabal-install, Cabal and GHC to choose between
instances.

Not sure if shadowing in GHC still works.

24 / 32

Introduction
Example

How it works
Future Work

Time-stamp

A field time-stamp was added to InstalledPackageInfo.

Used by cabal-install, Cabal and GHC to choose between
instances.

Not sure if shadowing in GHC still works.

24 / 32

Introduction
Example

How it works
Future Work

ghc-pkg does not overwrite anymore

When a new package is registered ghc-pkg used to remove all
other instances with the same version.

Now ghc-pkg never removes anything when registering.

It should probably warn when inserting a package with an
existing InstalledPackageId.

25 / 32

Introduction
Example

How it works
Future Work

ghc-pkg does not overwrite anymore

When a new package is registered ghc-pkg used to remove all
other instances with the same version.

Now ghc-pkg never removes anything when registering.

It should probably warn when inserting a package with an
existing InstalledPackageId.

25 / 32

Introduction
Example

How it works
Future Work

ghc-pkg does not overwrite anymore

When a new package is registered ghc-pkg used to remove all
other instances with the same version.

Now ghc-pkg never removes anything when registering.

It should probably warn when inserting a package with an
existing InstalledPackageId.

25 / 32

Introduction
Example

How it works
Future Work

cabal remove –duplicates

More of a proof of concept.

Suggests all unnecessary packages for removal.

A package is unnecessary if all packages that depend on it are
unnecessary

and it is not the latest instance of its version.

It does not even unregister.

26 / 32

Introduction
Example

How it works
Future Work

cabal remove –duplicates

More of a proof of concept.

Suggests all unnecessary packages for removal.

A package is unnecessary if all packages that depend on it are
unnecessary

and it is not the latest instance of its version.

It does not even unregister.

26 / 32

Introduction
Example

How it works
Future Work

cabal remove –duplicates

More of a proof of concept.

Suggests all unnecessary packages for removal.

A package is unnecessary if all packages that depend on it are
unnecessary

and it is not the latest instance of its version.

It does not even unregister.

26 / 32

Introduction
Example

How it works
Future Work

cabal remove –duplicates

More of a proof of concept.

Suggests all unnecessary packages for removal.

A package is unnecessary if all packages that depend on it are
unnecessary

and it is not the latest instance of its version.

It does not even unregister.

26 / 32

Introduction
Example

How it works
Future Work

cabal remove –duplicates

More of a proof of concept.

Suggests all unnecessary packages for removal.

A package is unnecessary if all packages that depend on it are
unnecessary

and it is not the latest instance of its version.

It does not even unregister.

26 / 32

Introduction
Example

How it works
Future Work

Why not hash the build inputs?

The original idea was to hash all build inputs (compiler, tools,
source, dependencies).

Use this ”cabal-hash” to identify an instance and to detect if
an instance can be reused.

Conflating all build information into a hash has a drawback:

Two packages might be usable together although their build
inputs and therefore their hashes are not exactly the same.

27 / 32

Introduction
Example

How it works
Future Work

Why not hash the build inputs?

The original idea was to hash all build inputs (compiler, tools,
source, dependencies).

Use this ”cabal-hash” to identify an instance and to detect if
an instance can be reused.

Conflating all build information into a hash has a drawback:

Two packages might be usable together although their build
inputs and therefore their hashes are not exactly the same.

27 / 32

Introduction
Example

How it works
Future Work

Why not hash the build inputs?

The original idea was to hash all build inputs (compiler, tools,
source, dependencies).

Use this ”cabal-hash” to identify an instance and to detect if
an instance can be reused.

Conflating all build information into a hash has a drawback:

Two packages might be usable together although their build
inputs and therefore their hashes are not exactly the same.

27 / 32

Introduction
Example

How it works
Future Work

Why not hash the build inputs?

The original idea was to hash all build inputs (compiler, tools,
source, dependencies).

Use this ”cabal-hash” to identify an instance and to detect if
an instance can be reused.

Conflating all build information into a hash has a drawback:

Two packages might be usable together although their build
inputs and therefore their hashes are not exactly the same.

27 / 32

Introduction
Example

How it works
Future Work

Comparing hashes is an optimization

Let’s consider two theoretically possible modes for dependency
resolution in cabal-install:

Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

Mode 2: Take into account the installed packages and try to
prefer them when making the install plan.

Using a hash makes Mode 2 impossible unless all the
information is also available from InstalledPackageInfo.

Using a hash is an optimization.

28 / 32

Introduction
Example

How it works
Future Work

Comparing hashes is an optimization

Let’s consider two theoretically possible modes for dependency
resolution in cabal-install:

Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

Mode 2: Take into account the installed packages and try to
prefer them when making the install plan.

Using a hash makes Mode 2 impossible unless all the
information is also available from InstalledPackageInfo.

Using a hash is an optimization.

28 / 32

Introduction
Example

How it works
Future Work

Comparing hashes is an optimization

Let’s consider two theoretically possible modes for dependency
resolution in cabal-install:

Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

Mode 2: Take into account the installed packages and try to
prefer them when making the install plan.

Using a hash makes Mode 2 impossible unless all the
information is also available from InstalledPackageInfo.

Using a hash is an optimization.

28 / 32

Introduction
Example

How it works
Future Work

Comparing hashes is an optimization

Let’s consider two theoretically possible modes for dependency
resolution in cabal-install:

Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

Mode 2: Take into account the installed packages and try to
prefer them when making the install plan.

Using a hash makes Mode 2 impossible unless all the
information is also available from InstalledPackageInfo.

Using a hash is an optimization.

28 / 32

Introduction
Example

How it works
Future Work

Comparing hashes is an optimization

Let’s consider two theoretically possible modes for dependency
resolution in cabal-install:

Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

Mode 2: Take into account the installed packages and try to
prefer them when making the install plan.

Using a hash makes Mode 2 impossible unless all the
information is also available from InstalledPackageInfo.

Using a hash is an optimization.

28 / 32

Introduction
Example

How it works
Future Work

Compilation is not deterministic

Just a ”cabal-hash” is not enough for unique identification.

Even compiling with the same build inputs is not guaranteed
to yield the same instance.

Would not be a problem if there would only ever be one
instance per build inputs per machine.

But we have a global and a user database so there might
actually be two incompatible instances with the same build
inputs.

29 / 32

Introduction
Example

How it works
Future Work

Compilation is not deterministic

Just a ”cabal-hash” is not enough for unique identification.

Even compiling with the same build inputs is not guaranteed
to yield the same instance.

Would not be a problem if there would only ever be one
instance per build inputs per machine.

But we have a global and a user database so there might
actually be two incompatible instances with the same build
inputs.

29 / 32

Introduction
Example

How it works
Future Work

Compilation is not deterministic

Just a ”cabal-hash” is not enough for unique identification.

Even compiling with the same build inputs is not guaranteed
to yield the same instance.

Would not be a problem if there would only ever be one
instance per build inputs per machine.

But we have a global and a user database so there might
actually be two incompatible instances with the same build
inputs.

29 / 32

Introduction
Example

How it works
Future Work

Compilation is not deterministic

Just a ”cabal-hash” is not enough for unique identification.

Even compiling with the same build inputs is not guaranteed
to yield the same instance.

Would not be a problem if there would only ever be one
instance per build inputs per machine.

But we have a global and a user database so there might
actually be two incompatible instances with the same build
inputs.

29 / 32

Introduction
Example

How it works
Future Work

Communicate the InstalledPackageId back to cabal-install

cabal-install comes up with an InstallPlan containing to be
installed packages.

Those depend upon each other as well as on already installed
packages.

We want to specify all of those dependencies with an
InstalledPackageId.

The InstalledPackageId is only known after installation.

It has to be communicated back to cabal-install.

The current workaround is to only specify those instances that
were already installed with an InstalledPackageId.

30 / 32

Introduction
Example

How it works
Future Work

Communicate the InstalledPackageId back to cabal-install

cabal-install comes up with an InstallPlan containing to be
installed packages.

Those depend upon each other as well as on already installed
packages.

We want to specify all of those dependencies with an
InstalledPackageId.

The InstalledPackageId is only known after installation.

It has to be communicated back to cabal-install.

The current workaround is to only specify those instances that
were already installed with an InstalledPackageId.

30 / 32

Introduction
Example

How it works
Future Work

Communicate the InstalledPackageId back to cabal-install

cabal-install comes up with an InstallPlan containing to be
installed packages.

Those depend upon each other as well as on already installed
packages.

We want to specify all of those dependencies with an
InstalledPackageId.

The InstalledPackageId is only known after installation.

It has to be communicated back to cabal-install.

The current workaround is to only specify those instances that
were already installed with an InstalledPackageId.

30 / 32

Introduction
Example

How it works
Future Work

Communicate the InstalledPackageId back to cabal-install

cabal-install comes up with an InstallPlan containing to be
installed packages.

Those depend upon each other as well as on already installed
packages.

We want to specify all of those dependencies with an
InstalledPackageId.

The InstalledPackageId is only known after installation.

It has to be communicated back to cabal-install.

The current workaround is to only specify those instances that
were already installed with an InstalledPackageId.

30 / 32

Introduction
Example

How it works
Future Work

Communicate the InstalledPackageId back to cabal-install

cabal-install comes up with an InstallPlan containing to be
installed packages.

Those depend upon each other as well as on already installed
packages.

We want to specify all of those dependencies with an
InstalledPackageId.

The InstalledPackageId is only known after installation.

It has to be communicated back to cabal-install.

The current workaround is to only specify those instances that
were already installed with an InstalledPackageId.

30 / 32

Introduction
Example

How it works
Future Work

Communicate the InstalledPackageId back to cabal-install

cabal-install comes up with an InstallPlan containing to be
installed packages.

Those depend upon each other as well as on already installed
packages.

We want to specify all of those dependencies with an
InstalledPackageId.

The InstalledPackageId is only known after installation.

It has to be communicated back to cabal-install.

The current workaround is to only specify those instances that
were already installed with an InstalledPackageId.

30 / 32

Introduction
Example

How it works
Future Work

Future work

More fine grained build inputs.

Garbage collection that does something.

Andres still wants a cabal hash.

31 / 32

Introduction
Example

How it works
Future Work

Future work

More fine grained build inputs.

Garbage collection that does something.

Andres still wants a cabal hash.

31 / 32

Introduction
Example

How it works
Future Work

Future work

More fine grained build inputs.

Garbage collection that does something.

Andres still wants a cabal hash.

31 / 32

Introduction
Example

How it works
Future Work

Thank you

Questions/Discussion

32 / 32

	Introduction
	Example
	How it works
	Future Work

