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HdpH — What is it and Why?

HdpH = Haskell distributed parallel Haskell is
a parallel Haskell (language extension)
for distributed memory
implemented entirely in Haskell (+ GHC extensions).

What is HdpH going to be used for?
The HPC-GAP project aims to scale parallel symbolic computation to
high-performance computers, e.g. to HECToR, the UK’s supercomputer with
currently 90,000 cores.
Concretely, HdpH will coordinate thousands of instances of the GAP
computer algebra system.

Requirements on HdpH
Dynamic work distribution
Locality control
Fault tolerance
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HdpH — Key Features

Monadic language for uniform shared- and distributed-memory parallelism
Extends the Par monad [Marlow et al, Haskell 2011]

Polymorphic serialisable closures
To build polymorphic strategies and skeletons [Marlow et al, Haskell 2010]
Based on Cloud Haskell ideas [Epstein et al, Haskell 2011]

BUT: Closures are truly polymorphic (no Typeable constraint).
AND: Function closures behave like functions.
AND: Cheap closure construction and elimination due to dual representation.

On-demand work distribution
Distributed random work stealing a la GUM [Trinder et al, PLDI 1996]

Emerging support for fault tolerance
Fault tolerant versions of polymorphic skeletons

BUT: Fault tolerance rules out determinism ...
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HdpH System Architecture
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Per core: one threadpool (concurrent deque) and scheduler
Per node: one sparkpool (concurrent deque) and message handler
Per node: one registry (concurrent map) for global references
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HdpH Primitives

Shared-memory types and primitives
Par a parallel computation monad (returning type a)
IVar a write-once buffer (of type a)

eval :: a -> Par a forcing evaluation

fork :: Par () -> Par () thread creation

new :: Par (IVar a) communication
put :: IVar a -> a -> Par () and
get :: IVar a -> Par a synchronisation

Distributed-memory types and primitives
Closure a serialisable explicit closure (of type a)
GIVar a serialisable global reference to IVar (of type a)

spark :: Closure(Par ()) -> Par () spark creation
pushTo :: Closure(Par ()) -> NodeId -> Par () and placement

glob :: IVar (Closure a) -> Par (GIVar (Closure a)) remote
rput :: GIVar (Closure a) -> Closure a -> Par () communication
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Computing with Polymorphic Closures

Example: Function closure application

apC :: Closure (a -> b) -> Closure a -> Closure b
apC clo_f clo_x = $(mkClosure [| unClosure clo_f $ unClosure clo_x |])

Truly polymorphic function closure operations.
No Typeable constraint.

Polymorphic operations on function closures are cheap.
Dual closure representation and lazy evaluation avoid unnecessary serialisation.
Dual representation mandates safe closure construction via Template Haskell.
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Computing with Polymorphic Closures

Example: Function closure application

apC :: Closure (a -> b) -> Closure a -> Closure b
apC clo_f clo_x = $(mkClosure [| unClosure clo_f $ unClosure clo_x |])

Truly polymorphic function closure operations.
No Typeable constraint.

Polymorphic operations on function closures are cheap.
Dual closure representation and lazy evaluation avoid unnecessary serialisation.
Dual representation mandates safe closure construction via Template Haskell.

Actual implementation (for want of GHC-supported Static)

apC :: Closure (a -> b) -> Closure a -> Closure b
apC clo_f clo_x = $(mkClosure [| apC_abs (clo_f, clo_x) |])

-- manually constructed toplevel closure abstraction
apC_abs (clo_f, clo_x) = unClosure clo_f $ unClosure clo_x
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High-level Abstractions — Strategies and Skeletons

Strategies for the Par monad

type Strategy a = a -> Par a

using :: a -> Strategy a -> Par a
x ‘using‘ strat = strat x

-- strategy combinator for lists (of Closures)
parList :: Closure (Strategy (Closure a)) -> Strategy [Closure a]

Algorithmic Skeletons built on Strategies

parMap :: Closure (Strategy (Closure b))
-> Closure (a -> b)
-> [Closure a]
-> Par [Closure b]

parMap clo_strat clo_f clo_xs =
map f clo_xs ‘using‘ parList clo_strat

where f = apC clo_f
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Scaling to 2000 Cores — Speedup

Problem: sum (map totient [1 .. 160k or 240k])

Simple data-parallel problem with irregular parallelism.

Architecture: HECToR (1 to 64 nodes, 32 cores each)

Two-level coordination strategy (controlling locality):
Main node divides input and explicitly pushes large tasks to all nodes,

deliberately over-subscribing nodes.

Each large task further sub-divides its input and sparks small tasks
to be distributed on-demand across all cores of current node, or
to be fished away by idle nodes.
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Scaling to 2000 Cores — Speedup

Problem: sum (map totient [1 .. 160k or 240k])

Simple data-parallel problem with irregular parallelism.
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input: 160k, sparks: 10240, pushes:  512
input: 240k, sparks: 20480, pushes: 1024
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Fault Tolerant Workpool — Cost of Recovery

Problem: sum (map liouville [1 .. 300M])

Architecture: PC cluster (10 nodes, 1 of which fails).

Fault tolerant coordination strategy:
Fault tolerant work pool monitors worker nodes, and
automatically reallocates tasks residing on failed nodes.
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Fault Tolerant Workpool — Cost of Recovery

Problem: sum (map liouville [1 .. 300M])

Architecture: PC cluster (10 nodes, 1 of which fails).
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Thanks for Listening

Ongoing Work
Tighter integration of fault tolerance and work distribution.
Refined locality control.
Profiling tools.

Public HdpH source repository:
https://github.com/PatrickMaier/HdpH
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