Haskell distributed parallel Haskell

Patrick Maier, Rob Stewart, Phil Trinder, Majed Al Saeed
{P.Maier,R.Stewart,P.W.Trinder}@hw.ac.uk

School of Mathematical and Computer Sciences
Heriot-Watt University
Edinburgh

Haskell Implementors Workshop, 14 Sep 2012

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 1/10

HdpH — What is it and Why?

HdpH = Haskell distributed parallel Haskell is
@ a parallel Haskell (language extension)
o for distributed memory

@ implemented entirely in Haskell (+ GHC extensions).

What is HdpH going to be used for?

@ The HPC-GAP project aims to scale parallel symbolic computation to
high-performance computers, e.g. to HECToR, the UK's supercomputer with
currently 90,000 cores.

o Concretely, HdpH will coordinate thousands of instances of the GAP
computer algebra system.

Requirements on HdpH
@ Dynamic work distribution
@ Locality control
o Fault tolerance

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 2/ 10

HdpH — Key Features

@ Monadic language for uniform shared- and distributed-memory parallelism
o Extends the Par monad [Marlow et al, Haskell 2011]

@ Polymorphic serialisable closures
o To build polymorphic strategies and skeletons [Marlow et al, Haskell 2010]
o Based on Cloud Haskell ideas [Epstein et al, Haskell 2011]

@ BUT: Closures are truly polymorphic (no Typeable constraint).
@ AND: Function closures behave like functions.
@ AND: Cheap closure construction and elimination due to dual representation.

@ On-demand work distribution
o Distributed random work stealing a la GUM [Trinder et al, PLDI 1996]

@ Emerging support for fault tolerance
o Fault tolerant versions of polymorphic skeletons
o BUT: Fault tolerance rules out determinism ...

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 3/10

HdpH System Architecture
/ 'I/Othreads \.

sg handle

sg handle
threadpool

sparkpool

threadpool threadpool

registry

sparkpool
registry

N

Haskell heaps

@ Per core: one threadpool (concurrent deque) and scheduler
@ Per node: one sparkpool (concurrent deque) and message handler

@ Per node: one registry (concurrent map) for global references
Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 4 /10

HdpH Primitives

Shared-memory types and primitives

Par a parallel computation monad (returning type a)
IVar a write-once buffer (of type a)

eval :: a -> Par a forcing evaluation

fork :: Par () -> Par () thread creation

new :: Par (IVar a) communication

put :: IVar a -> a -> Par () and

get :: IVar a -> Par a synchronisation

Distributed-memory types and primitives

Closure a serialisable explicit closure (of type a)

GIVar a serialisable global reference to IVar (of type a)
spark :: Closure(Par ()) -> Par () spark creation
pushTo :: Closure(Par ()) -> NodeId -> Par () and placement

glob :: IVar (Closure a) -> Par (GIVar (Closure a)) remote
rput :: GIVar (Closure a) -> Closure a -> Par () communication

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 5/ 10

Computing with Polymorphic Closures

Example: Function closure application

apC :: Closure (a -> b) -> Closure a -> Closure b
apC clo_f clo_x = $(mkClosure [| unClosure clo_f $ unClosure clo_x |])

@ Truly polymorphic function closure operations.
o No Typeable constraint.
@ Polymorphic operations on function closures are cheap.

o Dual closure representation and lazy evaluation avoid unnecessary serialisation.
o Dual representation mandates safe closure construction via Template Haskell.

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell

HIW 2012 6 / 10

Computing with Polymorphic Closures

Example: Function closure application

apC :: Closure (a -> b) -> Closure a -> Closure b
apC clo_f clo_x = $(mkClosure [| unClosure clo_f $ unClosure clo_x |])

@ Truly polymorphic function closure operations.
o No Typeable constraint.
@ Polymorphic operations on function closures are cheap.

o Dual closure representation and lazy evaluation avoid unnecessary serialisation.
o Dual representation mandates safe closure construction via Template Haskell.

Actual implementation (for want of GHC-supported Static)
apC :: Closure (a -> b) -> Closure a -> Closure b
apC clo_f clo_x = $(mkClosure [| apC_abs (clo_f, clo_x) [])

-- manually constructed toplevel closure abstraction
apC_abs (clo_f, clo_x) = unClosure clo_f $ unClosure clo_x

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012

High-level Abstractions — Strategies and Skeletons

Strategies for the Par monad

type Strategy a = a -> Par a

using :: a -> Strategy a -> Par a
x ‘using‘ strat = strat x

-- strategy combinator for lists (of Closures)
parList :: Closure (Strategy (Closure a)) -> Strategy [Closure a]

Algorithmic Skeletons built on Strategies

parMap :: Closure (Strategy (Closure b))
-> Closure (a -> b)
-> [Closure a]
-> Par [Closure b]
parMap clo_strat clo_f clo_xs =
map f clo_xs ‘using‘ parList clo_strat
where f = apC clo_f

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 7/ 10

Scaling to 2000 Cores — Speedup

Problem: sum (map totient [1 .. 160k or 240k])

@ Simple data-parallel problem with irregular parallelism.

Architecture: HECToR (1 to 64 nodes, 32 cores each)

Two-level coordination strategy (controlling locality):
@ Main node divides input and explicitly pushes large tasks to all nodes,
o deliberately over-subscribing nodes.
@ Each large task further sub-divides its input and sparks small tasks

e to be distributed on-demand across all cores of current node, or
o to be fished away by idle nodes.

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 8/ 10

Scaling to 2000 Cores — Speedup

Problem: sum (map totient [1 .. 160k or 240k])

@ Simple data-parallel problem with irregular parallelism.
Architecture: HECToR (1 to 64 nodes, 32 cores each)

SumeEuler scaling on HECToR, 1 to 64 nodes

N input: 160k, sparks: 10240, pushes: 512 —+— B
s 1338 ¢ input: 240k, sparks: 20480, pushes: 1024 —— < 1588
&
8 500 - 500
e
5
x
A
= 200 |- 4 200
=)
2
o 100 - 100
oy _

-
£ sof 7 150
© K
[~
Qo //
© ~
20 [-1 20
1 1 1 1 1 1 1
32 64 128 256 512 1024 2048
cores

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell

HIW 2012

8/ 10

Fault Tolerant Workpool — Cost of Recovery

Problem: sum (map liouville [1 .. 300M])
Architecture: PC cluster (10 nodes, 1 of which fails).

Fault tolerant coordination strategy:
o Fault tolerant work pool monitors worker nodes, and

@ automatically reallocates tasks residing on failed nodes.

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 9/ 10

Fault Tolerant Workpool — Cost of Recovery

Problem: sum (map liouville [1 .. 300M])

Architecture: PC cluster (10 nodes, 1 of which fails).

Summatory Liouville Runtimes with 1 Node Failure

120 T
Mean closure reallocation
Mean of failure free runtimes ------- q 33
Runtimes with failure ~ +
Using 9 nodes no failures o 4 30
115 |- Using 10 nodes no failures =
4 27
. 8
o - 24
110 | * e %
@
m + o
8 421 £
< 2
8 o
@ + 118 2
2 105 - $ + M ®
2 S g
£ + i . . 115 8
5 £ H 2
3 * t ! 3
@ + 112
100
49
46
95 -
13
90 L L L L L 0
0% 20 % 40 % 60 % 80 % 100 %

Time of Node Failure w.r.t. Estimated Runtime

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 9/ 10

Thanks for Listening

Ongoing Work
o Tighter integration of fault tolerance and work distribution.
@ Refined locality control.

@ Profiling tools.

Public HdpH source repository:
@ https://github.com/PatrickMaier/HdpH

References:

@ P. Maier, P. W. Trinder. Implementing a High-level Distributed-Memory parallel
Haskell in Haskell, In Proc. IFL 2011, Springer. To appear.
www.macs.hw.ac.uk/ pm175/papers/Maier_Trinder_IFL2011_XT.pdf

@ R. Stewart, P. W. Trinder, P. Maier. Supervised Workpools for Reliable Parallel
Computing, In Draft Proc. TFP 2012.
www.macs.hw.ac.uk/ “rs46/papers/tfp2012/TFP2012_Robert_Stewart.pdf

Maier, Stewart, Trinder, Al Saeed askell distributed parallel Haskell HIW 2012 10 / 10

https://github.com/PatrickMaier/HdpH
www.macs.hw.ac.uk/~pm175/papers/Maier_Trinder_IFL2011_XT.pdf
www.macs.hw.ac.uk/~rs46/papers/tfp2012/TFP2012_Robert_Stewart.pdf

