
[Faculty of Science
Information and Computing Sciences]

1

Web browser programming with UHC’s
JavaScript backend

Atze Dijkstra, Jurriën Stutterheim, Alessandro Vermeulen,
and Doaitse Swierstra

Haskell Implementors Workshop, Sep 14, 2012

[Faculty of Science
Information and Computing Sciences]

2

“The JavaScript problem”

I JavaScript has several shortcomings
I Dynamic, weak typing
I Verbose syntax
I Peculiar equality and scoping rules

I JavaScript is the only cross-browser language
I Or use alternatives: plugins, Java applet, modify browser...

(http://www.haskell.org/haskellwiki/The_JavaScript_Problem)

http://www.haskell.org/haskellwiki/The_JavaScript_Problem

[Faculty of Science
Information and Computing Sciences]

3

UHC JavaScript backend

Use JavaScript as a high-level “machine” language for targeting
Haskell to

I And exploit freedom available in FFI entity strings

Alternative approaches

I Based on GHC: Haste, GHCJS
I (Javascript compilers for Haskell subsets:

haskellinjavascript)
I (Haskell functionality merged into Javascript: Functional

Javascript)
I (Already previously done: YHC)

(http://www.haskell.org/haskellwiki/The_JavaScript_Problem)

http://www.haskell.org/haskellwiki/The_JavaScript_Problem

[Faculty of Science
Information and Computing Sciences]

4

Other (potential) benefits

I Libraries can be used on both client and server
I Allows solutions used in Clean system (iTasks)

I Eliminate AJAX calls, improving responsiveness
I Use QuickCheck for indirectly testing JavaScript code
I ...

[Faculty of Science
Information and Computing Sciences]

5

This talk

Content

I Implementation machinery
I Interaction with Javascript

I Foreign function interface
I Embedding in Html
I Platform specific library
I Using objects

I JCU application
I Lessons

[Faculty of Science
Information and Computing Sciences]

6

Implementation machinery

Represent laziness by wrapper objects around Javascript
functions + explicit evaluation

I Functions: new _F_(function (..) {..})
I Function application: new _A_(new _F_(..), [..])
I Evaluation: _e_(..)

Plain Javascript values are recognized by the evaluator

[Faculty of Science
Information and Computing Sciences]

7

Implementation machinery

Example

I Haskell

add3 x y z = x + y + z

I JavaScript: function
var add3 = new _F_

(function (x, y, z) {return x + y + z;});
I JavaScript: application

var app345 = new _A_(add3, [3, 4, 5]);
I JavaScript: evaluation

var answer = _e_(app345);

[Faculty of Science
Information and Computing Sciences]

8

Interacting with JavaScript

I Useful programs need to interact with plain JavaScript
(DOM, libraries)

I Impedance mismatch: strict, imperative, OO vs. lazy,
purely functional

I Use the Foreign Function Interface (FFI) with JavaScript
calling convention

I Foreign Expression Language (FEL) to partly overcome
impedance mismatch

[Faculty of Science
Information and Computing Sciences]

9

Importing a JavaScript function

JavaScript

someStr.subString(start, length);

Haskell

foreign import js "%1.subString(%2, %3)"
subString :: JSString → Int → Int → JSString

JSString : Haskell type for a JavaScript string.

dynamic and wrapper imports work as expected.

[Faculty of Science
Information and Computing Sciences]

10

Exporting a Haskell function

Haskell

mySum :: Int → Int → Int
mySum x y = x + y

foreign export js "mySum" mySum :: Int → Int → Int

JavaScript

var mySum = function(x, y) {
return _e_(new _A_(haskMySum, [x, y])); }

[Faculty of Science
Information and Computing Sciences]

11

Javascript in a browser

Example: Copy text between fields

I Browser:

I Usual Html:
<!DOCTYPE html> <html> <head> <script>
function copyText()
{ document.getElementById("field2").value =

document.getElementById("field1").value; }
</script> </head> <body>
Field1: <input type="text" id="field1" value="Hello World!"/>

Field2: <input type="text" id="field2" />

<button onclick="copyText()">Copy Text</button>
</body> </html>

[Faculty of Science
Information and Computing Sciences]

12

Javascript in a browser

In Haskell

module HtmlDomUse where

import Language.UHC .JS .Prelude
import Language.UHC .JS ◦W3C .HTML5

copyText :: IO ()
copyText = do
d ← document
n1 ← documentGetElementById d (toJS "field1")
n2 ← documentGetElementById d (toJS "field2")
elementSetAttribute n2 "value"
(fromJS (elementValue n1))

foreign export js "copyText" copyText :: IO ()

main = return ()

[Faculty of Science
Information and Computing Sciences]

13

Javascript in a browser

Html loads generated code

<!DOCTYPE html> <html>
<script type="text/javascript" src="HtmlDomUse.js"></script>
<head> </head> <body>
...
</body> </html>

[Faculty of Science
Information and Computing Sciences]

14

JavaScript objects

The problem

I Existing JavaScript APIs expect and return objects
I How do we represent, create, query, and manipulate

JavaScript objects in a purely functional language?

Representing objects

I JavaScript objects are represented as an opaque pointer
type JSPtr a

I This type has no constructors, so objects can only be
obtained via the FFI

[Faculty of Science
Information and Computing Sciences]

15

Creating, querying, and manipulating objects

I Use FFI accessible JavaScript functions that wrap around
JavaScript’s object syntax as primitive functions

I Result: object interaction with a functional flavour
I Imported and exposed via a UHC specific JavaScript library

[Faculty of Science
Information and Computing Sciences]

16

Primitives: creating JavaScript objects

Instantiate an object of a given constructor, creating the
constructor if needed:

mkObj :: JSString → IO (JSPtr a)

Instantiate an anonymous object ({} in JavaScript)

mkAnonObj :: IO (JSPtr a)

[Faculty of Science
Information and Computing Sciences]

17

Primitives: querying and modifying objects

getAttr :: JSString → JSPtr b → IO a
getAttr :: JSString → a → JSPtr b → IO (JSPtr b)
modAttr :: JSString → (a → b)→ JSPtr c → IO (JSPtr c)

I Similar primitives are available for prototype attributes
I Extensive use of IO due to JavaScript’s mutable nature
I Loss and gain of type-safety

I Low level primitives are polymorphic
I Restricting types delegated to caller of primitives
I JSPtr a not a phantom type, type may be freely chosen

but is supposed (!) to stand for actual Javascript object
(proto)type

[Faculty of Science
Information and Computing Sciences]

18

Pure variants

Pure operations can be simulated by cloning an object and
modifying the clone:

primClone :: JSPtr a → JSPtr a

Which allows pure (albeit inefficient) mutator functions:

pureSetAttr :: JSString → a → JSPtr b → JSPtr b
pureModAttr :: JSString → (a → b)→ JSPtr c → JSPtr c

[Faculty of Science
Information and Computing Sciences]

19

Creating objects

Create empty object, then set attributes

main :: IO ()
main = do
b ← mkObj "Book"
setAttr "author" "Lipovaca" b
setAttr "title" "LYAH" b
setAttr "pages" 400 b
setAttr ...
...

Somewhat laborious

[Faculty of Science
Information and Computing Sciences]

20

JavaScript objects and Haskell datatypes

Haskell constructors are very similar to JavaScript objects

book
= Book
{ author = toJSString "Lipovaca"
, title = toJSString "LYAH"
, pages = 400}

book
=
{ author : "Lipovaca"
, title : "LYAH"
, pages : 400 }

[Faculty of Science
Information and Computing Sciences]

21

Automatic conversion

Special object wrapper import

foreign import js "{}"
toObj :: a → IO (JSPtr b)

Knows constructor implementation, converts (at runtime) from
datatypes to JavaScript objects

main = do
let b′ = book {pages = pages book + 1}
b ← toObj b ′

p ← getAttr "pages" b
print p -- Prints 401

[Faculty of Science
Information and Computing Sciences]

22

Use case: JCU App

Web application for teaching about proofs and unification by
dragging and dropping Prolog rules on a Prolog query

I Heavy use of JavaScript
I Ported the entire front-end application to Haskell
I Retained all functionality
I Interface with jQuery for DOM manipulation, drag & drop

Online: http://jcu.chrisdone.com/
(Courtesy Chris Done)

http://jcu.chrisdone.com/

[Faculty of Science
Information and Computing Sciences]

23

Use case: JCU App

I Eliminated several AJAX request by using Haskell libraries
client-side

I Performance reasonable to good on WebKit-based
browsers, slow to reasonable on others

I Excessive Prolog backtracking extremely slow compared to
native Haskell

I Risk of infinite recursion hanging application, due to
current lack of threading

[Faculty of Science
Information and Computing Sciences]

24

Lessons

Or: hurdles and challenges

I Execution platform variation
I Artefact location
I (In)valid libraries and (regression) tests

I Advanced language features
I ...

[Faculty of Science
Information and Computing Sciences]

25

Lesson

Execution platform variation: artefact location

I UHC caters for multiple (virtual) machine + platform
combinations

I Artefacts (.hi, .o, .etc) end up in different locations
I Different paths through compiler

I But...
I Managing artefacts usually is done by a build system

I Cabal
I Has no knowledge of target + platform, so no UHC

compilation for Javascript via cabal
I Possible solution: cater for ‘way’, distinguishing

non-combinable (linkable) artefacts

And then there is Android, iOS, Java/JVM, ...

[Faculty of Science
Information and Computing Sciences]

26

Lesson

Execution platform variation: (in)valid libraries and tests

I Different platform
I Different available functionality
I Different sets of available libraries
I Library may partially work (e.g. base)
I Different sets of valid regression tests

I UHC (ad-hoc) uses {-# EXCLUDE_IF_TARGET js #-}
I Similar mechanism for regression test exclusion

I Possible solution: platform info can/must be specified by
programmer

I In: Haskell source, build (cabal) file, test, ...
I Has meaning for various tools (compiler, build system, ...)

[Faculty of Science
Information and Computing Sciences]

27

Lesson

Paradoxically, succes of advanced features

I Many ‘desirable’ libraries use non-standard features
I Type families, template haskell, ...
I Even base library: uses/defines extensible exceptions, which

use existentials packing class instances with data

I Difficult, if not impossible to keep up, yet there may be
value in pluriformity/variety

I Possible solution:
I Define base library against API for compiler

provided/required minimal functionality, i.e. split base into
per compiler base and compiler independent base

I Limit base libraries to comply to a standard or fixed
(minimal) set of extensions

[Faculty of Science
Information and Computing Sciences]

28

To do

UHC specific (future work)

I Optimizations, language features, ...

Javascript specific

I Deployment: linking/loading, minimizing code size,
obfuscation

Combination

I Portable GUI library/tools
I Not just wrapping around platform specific one, like e.g.

wxHaskell

I Threading, Web Workers, AJAX style client/browser
communication

[Faculty of Science
Information and Computing Sciences]

29

Conclusion

The good news

I It works!

The bad news

I It needs work!

More info...

I https://github.com/UU-ComputerScience
I http://uu-computerscience.github.com/uhc-js/

https://github.com/UU-ComputerScience
http://uu-computerscience.github.com/uhc-js/

