
Why can’t I get a stack trace? 

Simon Marlow 



Motivation 

 



Background 

• A stack trace (or lexical call context) contains 
a lot of information, often enough to 
diagnose a bug. 

• In an imperative language, where every 
function call pushes a stack frame, the 
execution stack contains enough information 
to reconstruct the lexical call context. 

• The same isn’t true in Haskell, for various 
reasons... 

 



1. Tail Call Optimisation 

– TCO means that important information about the 
call chain is not retained on the stack 

– But TCO is essential, we can’t just turn it off 

 

main = do 
  [x] <- getArgs 
  print (f (read x)) 
 
f :: Int -> Int 
f x = g (x-1) 
 
g :: Int -> Int 
g x = 100 `div` x 

Execution stack: 
  main 
  g 



2. Lazy evaluation 

– Lazy evaluation results in an execution stack that 
looks nothing like the lexical call stack. 

– When a computation is suspended (a thunk) we 
should capture the call stack and store it with the 
thunk. 

 

main = do 
  [x] <- fmap (fmap read) getArgs 
  print (head (f x)) 
 
f x = map g [ x .. x+10 ] 
 
g :: Int -> Int 
g x = 100 `div` x 

Execution stack: 
  main 
  print 
  g 



3. Transformation and optimisation 

– we do not want the transformations done by 
GHC’s optimiser to lose information or mangle 
the call stack. 

– we’ve already established that strictness analysis 
should not distort the stack. 

– But even inlining a function will lose information 
if we aren’t careful. 



4. Even if we fix 1—3, high-level abstractions 
like monads result in strange stacks 

– examples coming... 

 

 

• We need a framework for thinking about the 
issues. 



A construct for pushing on the stack 

• “push label L on the stack while evaluating E” 
• this is a construct of the source language and the 

intermediate language (Core) 
• Compiler can add these automatically, or the user can add 

them 
• Think {-# SCC .. #-} in GHC 
• We get to choose how detailed we want to be: 

– exported functions only 
– top-level functions only 
– all functions (good for profiling) 
– call sites (good for debugging) 
– all sub-expressions (fine-grained debugging or profiling) 

push L E 



• Define stacks: 

type Stack = [Label] 
push :: Label -> Stack -> Stack 
call :: Stack -> Stack -> Stack 



• Define stacks: 

type Stack = [Label] 
push :: Label -> Stack -> Stack 
call :: Stack -> Stack -> Stack 

stack at the call site 



• Define stacks: 

type Stack = [Label] 
push :: Label -> Stack -> Stack 
call :: Stack -> Stack -> Stack 

stack at the call site 
stack of the 

function 



• Define stacks: 

type Stack = [Label] 
push :: Label -> Stack -> Stack 
call :: Stack -> Stack -> Stack 

stack at the call site 
stack of the 

function 

stack for the call 



Executable semantics 

 eval :: Stack -> Expr -> E (Stack,Expr) 
 
eval stk (EInt i)    = return (stk, EInt i) 
eval stk (ELam x e)  = return (stk, ELam x e) 
 
eval stk (EPush l e) = eval (push l stk) e 
 
eval stk (ELet (x,e1) e2) = do 
   insertHeap x (stk,e1) 
   eval stk e2 
 
eval stk (EApp f x) = do 
   (lam_stk, ELam y e) <- eval stk f 
   eval lam_stk (subst y x e) 



Executable semantics 

 eval :: Stack -> Expr -> E (Stack,Expr) 
 
eval stk (EInt i)    = return (stk, EInt i) 
eval stk (ELam x e)  = return (stk, ELam x e) 
 
eval stk (EPush l e) = eval (push l stk) e 
 
eval stk (ELet (x,e1) e2) = do 
   insertHeap x (stk,e1) 
   eval stk e2 
 
eval stk (EApp f x) = do 
   (lam_stk, ELam y e) <- eval stk f 
   eval lam_stk (subst y x e) 

current stack 



Executable semantics 

 eval :: Stack -> Expr -> E (Stack,Expr) 
 
eval stk (EInt i)    = return (stk, EInt i) 
eval stk (ELam x e)  = return (stk, ELam x e) 
 
eval stk (EPush l e) = eval (push l stk) e 
 
eval stk (ELet (x,e1) e2) = do 
   insertHeap x (stk,e1) 
   eval stk e2 
 
eval stk (EApp f x) = do 
   (lam_stk, ELam y e) <- eval stk f 
   eval lam_stk (subst y x e) 

E is a State monad 
containing the Heap: 
a mapping from Var 

to (Stack,Expr) 



Executable semantics 

 eval :: Stack -> Expr -> E (Stack,Expr) 
 
eval stk (EInt i)    = return (stk, EInt i) 
eval stk (ELam x e)  = return (stk, ELam x e) 
 
eval stk (EPush l e) = eval (push l stk) e 
 
eval stk (ELet (x,e1) e2) = do 
   insertHeap x (stk,e1) 
   eval stk e2 
 
eval stk (EApp f x) = do 
   (lam_stk, ELam y e) <- eval stk f 
   eval lam_stk (subst y x e) 

Values are 
straightforward 



Executable semantics 

 eval :: Stack -> Expr -> E (Stack,Expr) 
 
eval stk (EInt i)    = return (stk, EInt i) 
eval stk (ELam x e)  = return (stk, ELam x e) 
 
eval stk (EPush l e) = eval (push l stk) e 
 
eval stk (ELet (x,e1) e2) = do 
   insertHeap x (stk,e1) 
   eval stk e2 
 
eval stk (EApp f x) = do 
   (lam_stk, ELam y e) <- eval stk f 
   eval lam_stk (subst y x e) 

push L on the 
stack, evaluate 

the body 



Executable semantics 

 eval :: Stack -> Expr -> E (Stack,Expr) 
 
eval stk (EInt i)    = return (stk, EInt i) 
eval stk (ELam x e)  = return (stk, ELam x e) 
 
eval stk (EPush l e) = eval (push l stk) e 
 
eval stk (ELet (x,e1) e2) = do 
   insertHeap x (stk,e1) 
   eval stk e2 
 
eval stk (EApp f x) = do 
   (lam_stk, ELam y e) <- eval stk f 
   eval lam_stk (subst y x e) 

suspend the 
computation e1 on the 

heap, capture the 
current stack 



Executable semantics 

 eval :: Stack -> Expr -> E (Stack,Expr) 
 
eval stk (EInt i)    = return (stk, EInt i) 
eval stk (ELam x e)  = return (stk, ELam x e) 
 
eval stk (EPush l e) = eval (push l stk) e 
 
eval stk (ELet (x,e1) e2) = do 
   insertHeap x (stk,e1) 
   eval stk e2 
 
eval stk (EApp f x) = do 
   (lam_stk, ELam y e) <- eval stk f 
   eval lam_stk (subst y x e) 

Application continues 
with the stack returned 

by evaluating the lambda 



Executable semantics (variables) 

 
eval stk (EVar x)  = do 
   r <- lookupHeap x 
   case r of 
     (stk', EInt i)   -> return (stk', EInt i) 
     (stk', ELam y e) -> return (call stk stk’, ELam y e) 
  
     (stk',e) -> do  
        deleteHeap x 
        (stkv, v) <- eval stk' e 
        insertHeap x (stkv,v) 
        eval stk (EVar x) 

Here’s where we are 
“calling” a function 



Given this semantics, define push & call 

• The problem now is to find suitable definitions 
of push and call that 

– Behave like a call stack 

– Have nice properties:  

• transformation-friendly 

• predictable/robust 

• implementable 



Lazy evaluation is dealt with 

• Lazy evaluation is dealt 
with by 
– capturing the current 

stack when we suspend a 
computation as a thunk 
in the heap 

– temporarily restoring the 
stack when the thunk is 
evaluated 

• Nothing controversial at 
all – we just need a 
mechanism for capturing 
and restoring the stack. 

eval stk (ELet (x,e1) e2) = do 
   insertHeap x (stk,e1) 
   eval stk e2 
 
eval stk (EVar x)  = do 
   r <- lookupHeap x 
   case r of 
     ... 
  
     (stk',e) -> do  
        deleteHeap x 
        (stkv, v) <- eval stk' e 
        insertHeap x (stkv,v) 
        eval stk (EVar x) 
 



Tail calls are dealt with 

• The semantics says nothing about tail calls – 
push always pushes on the stack. 

• Even if the underlying execution model is 
doing TCO, the call stack simulation must not. 



Examples 

• The heap is initialised with the top-level bindings (give 
each the stack <CAF>) 

• When we get to (f y), current stack is <main> 
• f is already evaluated 
• call <main> <CAF> = <main> 
• eval <main> (push f y+y) 
• eval <main,f> (y+y) 
• at the +, the current stack is <main,f> 

 

 
f = λ x. push “f” x+x 
 
main = λ x. push “main”  
           let y = 1 in f y 
 

Let’s assume, for now, 
call Sapp Slam = Sapp 



Use the call-site stack? 

• Previous example suggests this might be a 
good choice? 

• After all, this gives exactly the call stack you 
would get in a strict language 

 

 
call sapp slam = sapp 
 



But we have to be careful 

• If instead of this: 

 

 

• We wrote this: 

 

 

• Now it doesn’t work so well: the “f” label is lost. 

• In this semantics, the scope of push does not 
extend into lambdas 

 
f = λx. push “f” x+x 
 
main = λx. push “main”  
           let y = 1 in f y 
 

 
f = push “f” (λx . x+x) 
 
main = λx. push “main”  
           let y = 1 in f y 
 



Just label all the lambdas? 

• Idea: make the compiler label all the lambdas 
automatically 

• e.g. the compiler inserts a push inside any 
lambda: 

 

 

 

• Now we get a useful stack again: <main,f1> 

 

 

 
f = push “f” (λx . push “f1” x+x) 
 
main = λx. push “main”  
           let y = 1 in f y 
 



Some properties 

• Adding an extra binding doesn’t change the 
stack 

 

 

 

• In this semantics ‘push L x == x’ 

• arguably useful: the stack is robust with 
respect to this transformation (by the 
compiler or user) 

 
f = push “f” (λ x . push “f1” x+x) 
 
g = push “g” f 
 
main = λ x. push “main” 
           let y = 1 in g y 
 



But... 

• eta-expansion changes the stack 

 

 

 

 

• Now the stack at the + will be <main,g,f> 

 
f = push “f” (λ x . push “f1” x+x) 
 
g = λ x . push “g” f x 
 
main = λ x. push “main”  
           let y = 1 in g y 
 



Concrete example 

• When we tried this for real, we found that in 
functions like 

 

 

• h does not appear on the stack, although in 

 

 

• now it does.  This is surprising and 
undesirable. 

 

h = f . g 

h x = (f . g) x 



Worse... 

• Let’s make a state monad: 

newtype M s a = M { unM :: s -> (s,a) } 
 
instance Monad (M s) where 
  (M m) >>= k = M $ λ s -> case m s of 
                            (s',a) -> unM (k a) s' 
  return a = M $ λ s -> (s,a) 
 
errorM :: String -> M s a 
errorM s = M $ λ _ -> error s 
 
runM :: M s a -> s -> a 
runM (M m) s = case m s of (_,a) -> a 

Suppose we want the 
stack when error is 

called, for debugging 



Using a monad 

• Simple example: 

 

 

 

 

                                  
                                

                      

main = print (runM (bar ["a","b"]) "state") 
 
bar :: [String] -> M s [String] 
bar xs = mapM foo xs 
 
foo :: String -> M s String 
foo x = errorM x 



Using a monad 

• Simple example: 

 

 

 

 

• We are looking for a stack like 
<main,runM,bar,mapM,foo,errorM> 

                      

main = print (runM (bar ["a","b"]) "state") 
 
bar :: [String] -> M s [String] 
bar xs = mapM foo xs 
 
foo :: String -> M s String 
foo x = errorM x 



Using a monad 

• Simple example: 

 

 

 

 

• We are looking for a stack like 
<main,runM,bar,mapM,foo,errorM> 

• Stack we get: <runM> 

 

main = print (runM (bar ["a","b"]) "state") 
 
bar :: [String] -> M s [String] 
bar xs = mapM foo xs 
 
foo :: String -> M s String 
foo x = errorM x 



Why? 

• Take a typical monadic function: 

 

• Desuraging gives 

 

• Adding push: 

 

• Expanding out (>>): 

 

• recall that push L (λ x . e) = λ x. e 

 

f = do p; q 

f = p >> q 

f = push “f” (p >> q) 

f = push “f” (λ s -> case p s of (a,s’) -> b s’) 



The IO monad 

• In GHC the IO monad is defined like the state 
monad given earlier. 

• We found that with this stack semantics, we 
get no useful stacks for IO monad code at all. 

• When profiling, all the costs were attributed 
to main. 



call Sapp Slam = Sapp? 

• We recovered the non-lazy non-TCO call stack, 
which is the stack you would get in a strict 
functional language. 

 

• But it isn’t good enough. 

– at least when used with monads or other high-
level functional abstractions 



Can we find a better semantics? 

• call Sapp Slam = ? 

• non-starter: call Sapp Slam = Slam 

– ignores the calling context 

– gives a purely lexical stack, not a call stack 

– (possibly useful for flat profiling though) 

• Clearly we want to take into account both Sapp 
and Slam somehow. 



The definitions I want to use 

 

 

• Behaves nicely with inlining: 
– “common prefix” is intended to capture the call 

stack up to the point where the function was 
defined 

• useful for profiling/debugging: the top-of-
stack label is always correct, we just truncate 
the stack on recursion. 

 

 

 

 

 

 

call Sapp Slam = Sapp ++ Slam’ 
  where (Spre, Sapp’, Slam’) = commonPrefix Sapp Slam 
 
push l s | l `elem` s  =  dropWhile (/= l) s 
         | otherwise   =  l : s 



Status 

• GHC 7.4.1 has a new implementation of 
profiling using push 

• +RTS –xc prints the call stack when an 
exception is raised 

• Programmatic access to the call stack: 

 



Status 

• GHC 7.4.1 has a new implementation of 
profiling using push 

• +RTS –xc prints the call stack when an 
exception is raised 

• Programmatic access to the call stack: 

 -- | like 'trace', but additionally prints a call 
-- stack if one is available. 
traceStack :: String -> a -> a 
 
-- | like ‘error’, but includes a call stack 
errorWithStackTrace :: String –> a 
 



Demo 



Programmatic access to stack trace 

• The GHC.Stack module provides runtime 
access to the stack trace 

• On top of which is built this: 

 

 

 

• e.g. now when GHC panics it emits a stack 
trace (if it was compiled with profiling) 



Programmatic access to stack trace 

• The GHC.Stack module provides runtime 
access to the stack trace 

• On top of which is built this: 

 

 

 

• e.g. now when GHC panics it emits a stack 
trace (if it was compiled with profiling) 

-- | like 'trace', but additionally prints a call stack if one is 
-- available. 
traceStack :: String -> a -> a 
 



Properties 

• This semantics has some nice properties. 

push L x            => x 
 
push L (λx . e)     => λx . e 
push L (C x1 .. xn) => C x1 .. xn 
 
       
let x = λy . e in push L e'  
    => push L (let x = λy . e in e') 
           
push L (let x = e in e')  
   => let x = push L e in push L e 



Properties 

• This semantics has some nice properties. 

push L x            => x 
 
push L (λx . e)     => λx . e 
push L (C x1 .. xn) => C x1 .. xn 
 
       
let x = λy . e in push L e'  
    => push L (let x = λy . e in e') 
           
push L (let x = e in e')  
   => let x = push L e in push L e 

since the stack 
attached to a 
lambda is 
irrelevant (except 
for heap profiling) 



Properties 

• This semantics has some nice properties. 

push L x            => x 
 
push L (λx . e)     => λx . e 
push L (C x1 .. xn) => C x1 .. xn 
 
       
let x = λy . e in push L e'  
    => push L (let x = λy . e in e') 
           
push L (let x = e in e')  
   => let x = push L e in push L e 

O(1) change to cost 
attribution, no 
change to profile 
shape 



Properties 

• This semantics has some nice properties. 

push L x            => x 
 
push L (λx . e)     => λx . e 
push L (C x1 .. xn) => C x1 .. xn 
 
       
let x = λy . e in push L e'  
    => push L (let x = λy . e in e') 
           
push L (let x = e in e')  
   => let x = push L e in push L e 

Note if e is a 
value, the push 
L will disappear 



Inlining 

• We expect to be able to substitute a function’s 
definition for its name without affecting the 
stack. e.g. 

 

 

• should be the same as 

 

 

• and indeed it is in this semantics. 
– (inlining functions is crucial for optimisation in GHC) 

 

f = λx . push “f1” x+x 
 
main = λx. push “main”  
           let y = 1 in f y 

main = λx. push “main”  
           let y = 1 in 
           (λx . push “f1” x+x) y 



Think about what properties we want 

• Push inside lambda: 

 

– (recall that the previous semantics allowed 
dropping the push here) 

– This will give us a push that scopes over the inside 
of lambdas, not just outside. 

• which will in turn give us that stacks are robust to eta-
expansion/contraction 

push L (λ x. e)   ==   λ x. push L e 



What does it take to make this true? 

• Consider 

 

 

• If we work through the details, we find that 
we need 

 

 

• Not difficult: e.g.  

 

 

 

 

 

 

let f = push “f” λ x . e  
in  ... f ... 

call S (push L Sf)  ==  push L (call S Sf) 

 let f = λ x . push “f” e 
 in  ... f ... 

type Stack = [Label] 
push = (:) 
call = foldr push 

like flip (++), but 
useful to define it 

this way 



Recursion? 

• We do want finite stacks 
– the mutator is using tail recursion 

• Simplest approach: push is a no-op if the label 
is already on the stack somewhere: 

 

 

• still satisfies the push-inside-lambda property 

• but: not so good for profiling or debugging 
– the label on top of the stack is not necessarily 

where the program counter is  

 

push l s  | l `elem` s  =  s 
          | otherwise   =  l : s 



Inlining of functions 

• (remember, allowing inlining is crucial) 

• Consider 

 

 

• Work through the details, and we need that 

 

• interesting: calling a function whose stack is a 
prefix of the current stack should not change 
the stack. 

 

 

let g = λ x.e in 
let f = push “f” g in 
f y 

let f = push “f” λ x.e in 
f y 

call (push L S) S  ==  push L S 



Break out the proof tools 

             

 

 

 

 

                          
                
         



Break out the proof tools 

• QuickCheck. 

 

 

 

 

                          
                
         



Break out the proof tools 

• QuickCheck. 

 

 

 

 

                          
                
         

prop_append2 = forAllShrink stacks shrinkstack $ \s -> 
               forAll Main.labels $ \x -> 
                      call (s `push` x) s == s `push` x 
 
*** Failed! Falsifiable (after 8 tests and 2 shrinks):     
(E :> "e") :> "b" 
"e" 
 



Break out the proof tools 

• QuickCheck. 

 

 

 

 

• but this corresponds to 
something very 
strange: 

 

prop_append2 = forAllShrink stacks shrinkstack $ \s -> 
               forAll Main.labels $ \x -> 
                      call (s `push` x) s == s `push` x 
 
*** Failed! Falsifiable (after 8 tests and 2 shrinks):     
(E :> "e") :> "b" 
"e" 
 



Break out the proof tools 

• QuickCheck. 

 

 

 

 

• but this corresponds to 
something very 
strange: 

 

prop_append2 = forAllShrink stacks shrinkstack $ \s -> 
               forAll Main.labels $ \x -> 
                      call (s `push` x) s == s `push` x 
 
*** Failed! Falsifiable (after 8 tests and 2 shrinks):     
(E :> "e") :> "b" 
"e" 
 

push “f” 
... 
let g = λ x.e in 
let f = push “f” g in 
f y 



A more restricted property 

• This is a limited form of the real property we 
need for inlining 

• The push-inside-lambda property behaves 
similarly: we need to restrict the use of duplicate 
labels to make it go through. 



A more restricted property 

• This is a limited form of the real property we 
need for inlining 

• The push-inside-lambda property behaves 
similarly: we need to restrict the use of duplicate 
labels to make it go through. 

prop_stack2a = forAllShrink stacks shrinkstack $ \s -> 
                forAll Main.labels $ \x -> 
                      x `elemstack` s || 
                      call (s `push` x) s == s `push` x 
 
*Main> quickCheck prop_stack2a 
+++ OK, passed 100 tests. 
 


