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  Abstract.  During last decade, the expression evaluators and the 
list monad had attracted both mathematicians (especially from the field of 
Category Theory) and computer scientists. For the last group, the main kind of 
applications comes from the field of DSL interpretation. As a consequence of 
our research, we are able to introduce a new kind of modular tree-less 
expression evaluator, which can be build by importing modular components 
into a main Haskell program. In order to keep the parser of the DSL modular, 
parser combinators from ParseLib [Hutton G., Meijer E., (1998) ] was used. In 
order to keep the source and the implicit syntax tree modular we have replace 
the data constructors by regular functions over the list monad, inspired by an 
idea from Haskell Report [Peyton Jones S. (editor) (2002)]: data constructors 
are in fact just simple functions. This gave us the idea of the replacement of 
data constructors with functions over monadic actions called by us 
pseudoconstructors. The modular evaluator was written in do-notation, on the 
idea that expressions should evaluate them-self nor by the help of an interpret-
function as in some papers like [Sheard T.; Benaissa Z. ; Pasalic E. (1999)] 
and others. As a consequence, the useful data declarations which usually 
appears in DSL implementations are completely missing, shortening the 
source and reducing the work of the programmer. A new vision of monadic 
semantics is now introduced. The semantics is not a function:interp :: Term -> 
Environment -> Monad but more likely a sort of Monad -> Monad -> ... 
Monad  specification in contrast with the papers [Wadler P. (1992-1995)] .  
 
Key words and phrases: Modular Monadic Interpreters, Type Classes, 
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  Let's note the idea and definition of pseudoconstructors functions over 
monadic actions. The pseudoconstructors are replacing the data values 
constructors from the right side of a data declaration. The paper was accepted 
as a talk by Anglo Hasekell 2008 organizers. 
 
1.   Introduction 
  Bigger interpreters and/or compilers has to be serviced from time to 
time, as the language itself evolves by versioning. On the other hand, 
compilers and interpreters are a sort of strong connected systems [Zenger M. 
(2004), Odersky M,  Zenger M (2005)], having their pieces strongly bind 
together. For decades, modular adaptable languages and compilers or 
interpreters were a sort of Saint Grail of the computer scientists community. 
The main problem was that we usually can not modify some parts of the 
system without the needs of rewriting other parts of it . Examples: If a fixed 
lookahead grammar is modified by adding a simple (but uninspired) rule, the 
so called "first" and "follow" sets have to be computed again and a monolithic 
parser have to be build again. The problem was finally solved by the 
introduction of monadic parser combinators in [Hutton G., Meijer E., (1998)] . 
The story of parser combinators is classified in [Hudak,P; Hughes,J; Peyton 
Jones S, Wadler, P, (2007)] as a successful story. Same problems were still 
encountered when dealing with the semantics. In order to modify the semantic 
of the language, all (or almost all) the recursive definitions of it have to be 
rewritten. No modularity here,too. The problem of modular semantics was 
solved by D.Espinosa in his PhD thesis, [Espinosa D. (1995)] using modular 
monadic semantics written in Scheme. The monad laws  becomes the support 
of the do-notation (in Haskell) and connecting them with the papers of 
[Wadler P. (1992-1995)] the way of the monadic interpretation of trees in do-
notation was open.  Languages and DSL-s was implementing in this way, 
including the Perl 6.  [Tang. A; ( 2005 )]. But the syntax trees are still used 
and, because the data declaration in Haskell is not modular (as the instance 
declarations is) , the whole system is not completely modular.  
  To our knowledge, our work, in this paper, shows and marks the first 
modular monadic tree-less interpreter. Shockingly enough, although 
conventional interpreters and compilers writers states that syntax trees are a 
fundamental structure of a language we believe that a different approach is 
necessary. Now, we view the parsers from the parser monad as returning usual 
functions (over a monad) nor data constructors of some trees. As a 
consequence of laziness of the Haskell language, the dynamically produced 
structure of the functions calls will work similarly with the tree and will not be 
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evaluated (it is still incomplete during the parsing phase) until the right 
moment comes. Therefore, we prove that the usual interpretation interp: Term 
-> Env -> Term is harmful (in terms of modularization) and can be replaced 
by pseudoconstructors defined on monadic values. Motivated by these 
observations, a smart methodology for modular tree-less interpreters and 
compilers building was developed.  This is a direct result of the elimination of 
abstract syntax tree declared with data constructors. Next point, the 
disadvantage of this type of approach, however, is that some usual syntax 
trees processing as the tree optimization have to be embedded somehow in the 
pseudoconstructors or inserted somehow between the return of the parser and 
the use of our pseudoconstructors. Various kind of operations with terms can 
be plugged in the system by simply instantiating the required class of 
operators. And we had realized our objectives in a modular, monadic, tree-less 
way, therefore highly adaptable. 
 
2.   Model 
  The "Direct Modular Evaluator of Expressions Using The List Monad 
and Type Classes" (DMEEULMTC) relies on one public Haskell library 
outlined in the classic famous work [Hutton G., Meijer E., (1998)] in the field 
of monadic parsing (and, of course, the list monad). A new one, like Parsec, 
described in [Leijen D.; Meijer E.; (2001) ] was also used by us with good 
results. The monad library is also included.  Figure 1 diagrams the conceptual 
relationship between our semantic modules and the modular monadic parser 
which provide the data pseudoconstructors according with the syntax of the 
expression (term or program).                                    

Figure 1: A simple DMEEULMTC tool. 
  The main module ParserSumaCifre which uses the Monad and the 
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ParseLib. The evaluated terms will consist of numbers (MyNum) and two 
different kind of operators (ClassPlus and ClassMinus). In every class we 
have declared a plug-in which is an instance of the class .The class is giving 
the signature of the operator. The instance provides the actual semantics of the 
operator. Overloading and type check are supported, both. 
  There is a huge set of references concerning interpreters and evaluators 
or virtual machines. The reader may want to check extra references. The list 
monad is also a well documented subject.  Therefore, the architecture of a 
simple DMEEULMTC tool is still not far away of others similar (but not 
modular) tools. Any natural expression evaluator or interpretor used by a 
client-server technology will clearly require a syntax of the terms or/and 
programs and a parser. Our tool is not different from this point of view. We 
considered a parsing algorithm based on parser combinators [Hutton G., 
Meijer E., (1998)] or [Leijen D.; Meijer E. ; (2001)]  which proved to be 
modular. As it is already known known, a parsing system does not require a 
syntax tree structure to parse correctly. Our system will produce a structure of 
pseudoconstructors (syntactically speaking they all looks like the similar tree 
constructors but - manipulates monadic values and – they are not written using 
a capital in the beginning of the identifier). 
  One of the problems was if we can add other types ? After few 
experiments we concluded that other types may be added by including other 
modules similarly with MyNum. The extensible architecture of a 
DMEEULMTC tool consists of independent semantic specifications for the 
operators belonging to one class, several independent classes of operators 
related to one (ore more) data-types  like MyNum and all this semantic 
specification is connected to a modular parser - the application itself.  
  The correct semantic behavior of a DMEEULMTC tool and the 
semantic errors reported depends on the carefully implementations of the 
operators in the class instances (like MyPlusNum).  The syntax error reports, 
on the other side, depends on the parser  combinator library used (better with 
Parsec). 
  We have ran a set of tests confirming that our architecture is feasible. 
Excluding the libraries (Monad and parser combinator library) the architecture 
for our system consists of four independent components:  
-  The main program including the modular parser. 
-  The set of data types: MyNum, MyFloat, MyChar, My Bool and so... 
- A class describing the signature (types and result, monadic packed) for any 
kind of operators. ( ClassPlus, ClassMinus, ClassMult,ClassDiv end so...) 
-  Monadic Semantics modules written as instances of the classes above. 
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3.   From the Idea to the Implementation 
3.1   History of aproaching modularity 
1) Modular parser = ?   The Problem was solved by ....   Parser combinators 
are a real success story. 
2) Modular trees = ? Nobody seems to try it ! Here is the place were we can 
work. 
3) Modular implementation of the interpreter = ? Usually  (in the papers by ...) 
the interpreter is defined as a function working on Terms and Environment 
and producing monadic Values. 
 
        interpret :: Term -> Env -> M Value  
 
Such a function is  not modular (it can not be decomposed and spread into 
different Haskell modules!) 
  So, it  should be replaced by something else. 
    
3.2.  How to obtain the modularity    
1) In order to keep the parser of the DSL modular, parser combinators  was 
used, being a tested solution. 
2) In order to keep the source (and the abstract syntax tree) modular we have 
replaced the data constructors by regular functions over the list monad, 
inspired by an idea of Simon P.J  from the [Haskell Report].  He said that data 
constructors are in fact just simple functions.  
3) This gave us the general idea of the replacement of data constructors by 
functions over monadic actions, called by us pseudoconstructors.  
  The modular evaluator was written in do-notation, on the idea that 
expressions should evaluate them self nor by the help of an interpret-function 
as in [Tim Sheard and Abidine. et all].  
  As a consequence, the useful data declarations which usually appears 
in all DSL implementations are completely missing, shortening the source and 
reducing the work of the programmer. 
 
3.3.  Tree declarations like this - below - are harmful (from the 
modularity point of view) 
 
data Exp =  Constant Int      
           | Variable String      
           | Minus Exp Exp     
           | Greater Exp Exp   
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           | Times Exp Exp     
           deriving Show 
            
data Com =  Assign String Exp 
           | Seq Com Com               
           | Cond Exp Com Com           
           | While Exp Com              
           | Declare String Exp Com    
           | Print Exp                
          deriving Show 
 
  Adding new variants means to rewrite such declarations, in a way that 
it is not modular. 
 
3.4.  A new vision of monadic semantics  

A new vision of monadic semantics is now introduced. The semantics 
is not a function:  

 
interp :: Term -> Environment -> Monad  
 
but more likely a sort of Monad -> Monad -> ... -> Monad  
 
where the name is given by the pseudoconstructor itself. Let's see an example: 
 
Plus :: Exp -> Exp -> Exp 
 
will be replaced by a plus: 
 
plus :: [a] -> [a] -> [a]  or a  plus :: M a -> M a -> M a (M being any Monad !) 
 
3.5.  The data declarations of the trees will be absent, being replaced by 
a set of functions. 
  Let's see how, using a bigger example: 
 
data Exp =  Constant Int      
           | Variable String      
           | Minus Exp Exp     
           | Greater Exp Exp   
           | Times Exp Exp   



Direct modular evaluation of expressions using the monads and type classes in 
Haskell 

 239

 
  This data declarations becomes a set of functions having this set of 
signatures: 
   
constant :: Integer -> [Integer] 
variable :: String  -> [Integer] 
minus :: [Integer] -> [Integer] -> [Integer] 
greater :: [Integer] -> [Integer] -> [Integer] 
times :: [Integer] -> [Integer] -> [Integer]   
 
  So:   Minus ( Variable “x”) (Variable “y”) 
 
will be replaced by a  different version: 
 
          minus (variable “x”) (variable “y”)               (*) 
 
where minus, variable and  so ...are called pseudoconstructors. 
 
Remark 1: The relation (*) are representing both syntax (being unevaluated) 
and semantics (when Haskel's lazy evaluation  mechanism decides to compute 
the final semantic value) in the same time! 
Remark 2: There is no needs for such functions to be together, in the same 
module. We can describe / declare, for example,: 
 
log :: [Float] -> [Float] -> [Float ]          in a module and 
plus :: [Float] -> [Float] -> [Float]       in an other module 
 
and still be able to mix them in syntax and computations by using something 
like this, which is not a tree as you might expect: 
   
(plus (variable “x”) (log (constant 2)(variable “y”))   
 
  Notice the non capitals letters from the beginning of the identifiers. 
 

We are using the do-notation in order to express computations: 
 
  plus x y  =   do {  vx <-  x;   
                       vy <-  y;   
                       return  (vx +  vy); } 
    :: [Float]      
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but we have to specify the type of the monadic action which is the result. 
Remember: The traditional solution was usually more complex and all those 
“do”-s were stick together in the same function. Here is one of them: 
 
   do { vx <- interp x env;   
         vy <- interp y env;  
         return  (vx +  vy); }    :: M Float  
         
Remark: Our specifications are in contrast with the papers [Wadler P. (1992-
1995) ].   Remember the idea and the definition of pseudoconstructors as 
functions over monadic actions: The pseudoconstructors are replacing the 
data values constructors from the right side of a data declaration.         
 
3.6.  Where is the environment when we need it ? 
 plus x y  =   do {    vx <-  x; 
                        vy <-  y;   
                    return  (vx +  vy); } 
    :: M Float 
 
  As you may notice: This code – above - seems to have the 
environment hidden or no environment at all! Idea: If an environment is 
needed (and usually it is!) the list monad may be replaced with an other state 
or writer monad. Anyway, for simple expressions using constants and 
operators the list monad (or even the identity monad) is enough.  
 
3.7.  May we have overloaded functions ? Usually, some arithmetic 
operators are overloaded: 
 
  plus x y  =   do {  vx <-  x;   
                       vy <-  y;   
                       return  (vx +  vy); } 
    :: [Float]  
 
  plus x y  =   do {  vx <-  x;   
                       vy <-  y;   
                       return  (vx +  vy); } 
    :: [Integer]  
  Or, more generaly: 
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  plus x y  =   do {  vx <-  x;   
                       vy <-  y;   
                       return  (vx +  vy); } 
    :: M Float  
 
  plus x y  =   do {  vx <-  x;   
                       vy <-  y;   
                       return  (vx +  vy); } 
    :: M Integer  
 
  Can we use two or more kind of “plus” in different modules? After 
some experiments the answer was: Yes, using multi-parameter type classes, 
which is a common extension of Haskell 98. (i.e. the program must be run 
using the “-98” switch with Hugs.) 
  
module MyPlusFloat where 
import MyFloat 
import ClassPlus  
instance Plus Float Float Float where 
  plus x y  =   do { vx <-  x;   vy <-  y; 
                             return  (vx +  vy); } :: [Float] 
 
  A more general form is: 
 
module MyPlusFloat where 
import MyFloat 
import ClassPlus  
instance Plus Float Float Float where 
  plus x y  =   do { vx <-  x;   vy <-  y; 
                             return  (vx +  vy); } :: M Float 
 
M being an arbitrary monad. 
 
  Exercise for the ambitious reader: Write similars modules: MyPlusInt, 
MyPlusChar, MyPlusComplex, ... 
 
  Example: modular specification for an overloaded “plus” using a 
multiparameter type class: ClassPlus. It looks like... 
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module ClassPlus where 
 
class Plus a b c where 
  plus :: [a] -> [b] -> [c] 
   
{----------------------------- 
    A triple of types a b c belongs to the Plus Class “ClassPlus” if (and 
only if)    there exist a function “plus” having the   signature as above.   The 
hypothesis that three types belongs (as a triple) to the ClassPluss will be 
provided by an instantiation of that class, as we saw. 
   You are free to use any traditionally used monad, for example the 
StOut monad from the paper of [Sheard T.; Benaissa Z. ; Pasalic E. (1999) ], 
or any other monad, built using monad transformers.  
--} 
 
3.8  But how are the numbers defined?  

Let's see the module which is used to define numbers: 
 
module MyNum where 
--- Modular evaluator for Integers producing monadic values [Integer] in the 
list monad. 
 
evalnum :: Integer -> [Integer] 
evalnum x = [x] 
 
---The pseudoconstructor is producing monadic values, in this case lists 
having exactly one element. 
 
constant :: Integer -> [Integer] 
constant x    = do { vx <- evalnum x ; 
                                return vx ; } 
 
... well, we will not discuss optimization, yet! 
 
  When an evaluator / interpreter is build all the required modules are 
used and nothing more: 
module ParserSumaCifre where     --main prg. 
import Monad                      --use monads, 
import ParseLib                   --parsers, 
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import MyNum                      --numbers, 
import ClassPlus                  --plus, 
import ClassMinus                 --minus: 
import MyPlusNum                 --one plus   
import MyMinusNum                --one minus 
 
Remark 3: Other parser combinators (like Parsec) may be used instead of 
ParseLib, or we can work only with pseudoconstructors, as you see below. 
 

Figure 2. Pseudoconstructors in action 
 
3.9.  Optimizing a module using monad's laws.  

An optimized module may look like the next one, where both sources 
are shown, the old one being commented. 
 
module MyChar where 
evalchar :: Char -> [Char] 
evalchar x = [x]  
 
----Old implementation of the pseudoconstructor 
--char ::Char -> [Char] 
--char x = do {vx <- evalchar x; 
--               return vx; }    ----Applying one of the monad's law  => 
 
----New implementation of the pseudoconstructor 
char ::Char -> [Char] 
char x = [x] 



D. POPA 

 244

4.  Evaluation of our solution 
Our  evaluation seeks to prove four hypotheses:  

(1) that the increment of the RAM space used is approx.  5% or less when 
adding modularity on this way 
(2) that missing syntax trees have no important impact in system design;  and 
finally 
(3) optimizing the code using the monad rules is a good improvement  
 
4.1  Hardware and Software Configuration 
  The programs was tested using the Hugs 2002 interpreter included in 
The Mandrake 10.0 Linux distribution. The OS was upgraded to the new 
Mandriva 2007 Spring Free Edition running on a 3.4 GHz Pentium D. The 
smallest usable configuration seems to be an IBM dual processor (2x133Mhz) 
with 80MB Ram and a 4GB SCSI HDD running Mandrake Linux 8.2.  
 
4.2   Experiments and Results 
  We have ran six experiments using two different kind of terms:  
(1) we had measured the spaced used by the evaluation of a simple expression 
(no paranthesis, 10 numbers)  using a classic evaluator with trees but no lists . 
(2) we had measured the spaced used by the evaluation of a simple expression 
(no paranthesis, 10 numbers)  using a classic modified evaluator with trees 
and numbers represented by lists, in order to determine the overloading 
introduced by the lists. 
(3) we had measured the spaced used by the evaluation of a simple expression 
(no paranthesis, 10 numbers)  using a our new modular evaluator with trees 
and the list monad, in order to see the overloading introduced by the monad 
structure . 
(4) we had measured the spaced used by the evaluation of a simple expression 
(more paranthesis, 10 numbers)  using a classic evaluator with trees but no 
lists . 
(5) we had measured the spaced used by the evaluation of a simple expression 
(more paranthesis, 10 numbers)  using a classic modified evaluator with trees 
and numbers represented by lists, in order to see the overloading introduced 
by the lists. 
(6) we had measured the spaced used by the evaluation of a simple expression 
(more paranthesis, 10 numbers)  using our new modular evaluator with trees 
and the list monad, in order to see the overloading introduced by the monad 
structure. The three last tests was repeated. 
  The space was computed by Hugs, using the ":set +s" command. All 
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sources had included the same modular parser written using ParseLib, in order 
to evaluate the impact of our modular evaluator on a complete (minimal) 
system. The source of the modular system was optimized using the monad 
rules, in order to reduce the consumed space. We have just described out 
evaluation setup; now, let's talk about our results. 

Figure 3: Three solutions was compared: Standard evaluator, Modified 
standard evaluator and The New modular monadic evaluator 
Cyclamen = Standard evaluator: Parser , Trees, Integer 
Yellow = Modified std. evaluator: Parser, Trees, [Integer], Lists to see how 
much overload is got by lists 
Magenta = New monadic evaluator: Parser, no Trees, Modularity, [Integer], 
The List Monad 
(all three had ran on the same  P4 3.40 GHz Intel PC). 
 
5.  Conclusions  
  Space consumed adding lists and modularization: Adding lists to a 
standard evaluator (i.e. storing values as lists with only one element instead of 
elements) increases space with aprox 4% (considering a whole system, 
including the parser). Adding modularity increases space again with aprox  
2%. Adding both we get a value a little big than 5% but far less than 10%. We 
consider that increasing the memory even with 10% is still a good price for 
modularity of a monadic interpreter or evaluator.  So, such kind of modularity 
is affordable and we are able to build evaluators, interpreters and even 
compilers by simply including the requested (reusable) modules in the main 
program. In fact the modularity itself overloads the space with aprox 2%. 
Remark 4: The lazy evaluation system based in fact on Hugs semantics 
caused sometimes dual experimental results, due to the different ways of lazy 
evaluation. That is why we have to evaluate the second expression two times. 
The biggest values are shown as Experiment 3: 
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                                             Exp.1       Exp.2      Exp. 3                     Colour    
Modular Monadic Ev. 
Standard Evaluator 
Modified Std. Evaluator 

 

Figure 4-5: The effective values of space used in our first experiments, 
(captured from Gnumeric). 

 
Relative differences between solutions are less than 6%.  The first line 

is the relative difference between the New Modular Monadic Evaluator and 
The Standard Tree Evaluator.  The main part of the difference is introduced by 
the lists nor by the modularization (see the second line) – aprox 4% of it. 

  On the other side, pseudoconstructors over monadic actions – 
introduced here – had proved to be a good tool for the modularization of 
interpreters, compilers or evaluators. Of course, modular parsers have to 
produce values expressed by pseudoconstructors and not by usual data 
constructors.   

The syntax trees proved harmful in terms of modularity. 
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6.   Future and In-Progress Work 
  Replacing the Parser Combinators from ParseLib with a modern 
library as Parsec or one of his successors leads to a better control and report of 
the syntax errors made by the parser. Replacing the list monad with an State 
and IO monad can be a simple way of building modular systems like web-
pages generators, and, therefore, we will be able to dynamically serve clients 
with pages produced by a modular, easy updated system. Replacing the list 
monad with a more complex monad, having IO, state, errors, context and so, 
is a way of building modular imperative (local, national) programming 
languages as Rodin. [Dan Popa, (2008)] In this Project, the 
pseudoconstructors are also used as a replacement of normal data constructors 
used by the data declarations  of The Haskell Language. 
  There is a possible relation between our research and The Expression 
Problem, raised by [Wadler (1998)]. But they are different problems with 
different solutions. The relation between them, anyway, should be 
investigated. 
  Also, a parallel between our work and [Swierstra, W. (2008)] should 
be made, even there are different ideas. (Functors versus Monadic 
Pseudoconstructors). 
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