
Currently… Soon…

The State of the GHCJS

Luite Stegeman

Currently… Soon…

Currently…

Currently… Soon…

Works out of the box with GHC 7.10.2!

After Hackage release (soon…):

$ cabal install ghcjs
$ ghcjs-boot

Before it’s been actually uploaded, use a snapshot:

$ cabal install http://ghcjs.luite.com/improved-base.tar.gz
$ ghcjs-boot

Currently… Soon…

Where we are

Since last ICFP:

▶ Cabal support merged (version 1.22)
▶ Stack support
▶ Time profiling (node.js only)
▶ Base library rewrite (improved-base)
▶ GHCJSi REPL (experimental)
▶ Major performance improvements (linker, Template Haskell)
▶ FFI more flexible: More types allowed, return (unboxed) tuples
▶ Many bugs fixed!

Currently… Soon…

Improved-base
▶ Rewrite of the ghcjs-base package
▶ Batteries included for standard JavaScript:

▶ Data.JSString library with full Data.Text API and stream
fusion

▶ JavaScript.Array
▶ JavaScript.TypedArray
▶ JavaScript.Number
▶ JavaScript.Object

▶ Standard web API’s:
▶ JavaScript.Web.Canvas (used to be in ghcjs-canvas)
▶ JavaScript.Web.Storage
▶ JavaScript.Web.WebSocket
▶ JavaScript.Web.XMLHttpRequest

▶ Todo:
▶ JSON support unfinished (ideally: integration with aeson)

Currently… Soon…

Profiling

Based on Cost Centre Stacks, like GHC

▶ Heap Profiling
▶ Last year GSoC
▶ GUI still incomplete

▶ Time Profiling (node.js)
▶ Uses the built-in statistical profiler
▶ record Cost Centre Stacks in samples
▶ Requires installation of support library with npm
▶ see /utils/ghcjs-node-profiling

Currently… Soon…

Time Profiling report

98.8% 00.0% LazyCompile: ~Module._extensions..js module.js:476:37
98.8% 00.0% LazyCompile: ~Module._compile module.js:378:37
98.8% 00.0% Function: ~<anonymous> /home/luite/ghcjs/testc.js:1:11
98.5% 00.0% LazyCompile: ~h$cpuProfiler.runCC /home/luite/ghcjs/testc.js:27:17
59.1% 00.0% CostCentre: cost centre A main.hs:10:10
39.7% 00.0% CostCentre: cost centre B main.hs:14:3
39.7% 39.6% CostCentre: cost centre C main.hs:21:9
19.4% 19.4% CostCentre: cost centre C main.hs:21:9
39.4% 00.0% CostCentre: cost centre B main.hs:14:3
20.0% 19.8% CostCentre: cost centre A main.hs:10:10
00.2% 00.1% LazyCompile: *pow native math.js:89:17
19.4% 19.4% CostCentre: cost centre C main.hs:21:9

Currently… Soon…

GHCJSi
▶ Finally, a REPL! (experimental!)
▶ See ghcjsi branch on Github
▶ Works like GHCi with full DOM access and JavaScript FFI
▶ Code runs on node.js until a browser connects
▶ Uses incremental linking:

1. compile expression
2. collect JS code for dependencies not yet loaded
3. send code to JS engine and run

Limitation: Stepping and tracing not yet supported

GHCJS node.js Browser
socket.io

Figure 1: GHCJSi components

Currently… Soon…

Figure 2: GHCJSi

Currently… Soon…

Currently… Soon…

Soon…

Currently… Soon…

Figure 3: West Coast Trail

Currently… Soon…

Short-term goals

▶ Code size and performance improvements
▶ Better optimizer
▶ ES2015 support (tail calls)

▶ Better development tools
▶ Source maps
▶ Wider support for profiling
▶ Assertions
▶ make GHCJSi more robust

Currently… Soon…

Limitations of the Gen2 code generator

▶ Optimizer is slow and complicated
▶ Adding rules tricky: rewrite untyped JavaScript (JMacro)
▶ Generated code is hard to debug

▶ No flexibility in output naming, h$ prefixes everywhere
▶ Impossible to trade features for code size or speed (drop

threading for example)
▶ Cannot make use of new ES2015 features (tail calls!) since

they’re not supported everywhere

Reason: JavaScript AST and data stored in the js_o object files
too close to the final JavaScript
Solution: Change AST, but a large performance hit when linking is
unacceptable!

Currently… Soon…

Heaps of Thunks

▶ Haskell heap object

{ f: function, m: meta, d1: x, d2: y }

▶ Some data values represented directly as a Number, can be
distinguished from thunks using JavaScript’s typeof operator:

▶ Bool
▶ Int
▶ Char
▶ Double
▶ Word16
▶ enumerations

Currently… Soon…

Threads

function mainloop() {
var thread, f;
while((thread = scheduler()) !== null) {

f = thread.nextCall;
while(f !== stop && !endOfQuantum()) {
f = f();

}
}

}

Forces us to use global variables for arguments

Currently… Soon…

Forcing a thunk

f :: Maybe a -> (a -> Bool)
-> Bool

f x p = case x of
Nothing -> False
Just y -> p y

function f(x, p) {
var _x = reduce(x);
if(constrTag(_x) === 1) {

return false;
} else {

return apply1(p, _x.d1);
}

}

function f() {
var x = arg1;
var p = arg2;
push(p, f1);
return reduce(x);

}

function f1() {
var _x = arg1;
pop(); // pop f1
var p = pop();
if(constrTag(_x) === 1) {

arg1 = false;
return stack[sp];

} else {
return apply1(p, _x.d1);

}
}

Currently… Soon…

ES2015 tail calls
function f() {

var x = arg1;
var p = arg2;
push(p, f1);
return reduce(x);

}

function f1() {
var _x = arg1;
pop(); // pop f1
var p = pop();
if(constrTag(_x) === 1) {

arg1 = false;
return stack[sp];

} else {
return apply1(p, _x.d1);

}
}

ES2015:
function f(x, p) {
push(p, f1);
return reduce(x);

}

function f1(_x) {
pop(); // pop f1
var p = pop();
if(constrTag(_x) === 1) {

return stack[sp](false);
} else {

return apply1(p, _x.d1);
}

}

Currently… Soon…

New Code Generator (Tyr)
▶ Replaces JMacro based current generator (Gen2)
▶ Own AST, no more quasiquoter
▶ JavaScript with some extensions:

▶ Source location annotations
▶ Haskell calls
▶ Heap object construction / matching
▶ Tuples

▶ Two Phase (delay CPS transformation)
1. Non-preemptive threads
2. Preemptive threads (after CPS)

▶ Simple type system for optimizer, AST linter and runtime
assertions

▶ int, number, heap object, unknown
▶ Flexible (re)naming of Haskell symbols

▶ Keep track of origin of all generated names
▶ Get rid of fixed h$ prefixes
▶ Module system support?

Currently… Soon…

Conclusion

▶ Integration with build tools is complete
▶ improved-base library is a major step forward in usability
▶ REPL and profiling support in progress
▶ Further improvements and ES2015 require some internal

changes, addressed by Tyr

Other work to do:

▶ More comprehensive continuous integration testing (including
performance)

▶ Automated DOM testing

	Currently…
	Soon…

