
Prelude.head: empty list

How do we get more information?

• Compile with –prof, run with +RTS –xc

• Hmm

<GHC.List.CAF>empty: Prelude.head: empty list

More ideas

• GHCi debugger
– Not really a stack trace, but can be useful

• mapException-type things
– Requires work on the part of the user

• Tristan Allwood’s “Finding the needle” (Haskell
Symposium 2009)
– automated source-to-source transformation guided by

user annotations, difficulties with CAFs

• HPC
– Look at which bits of your program are coloured

• Hat
– A bit dormant

A unified framework?

• Profiling, HPC, and the GHCi debugger
– All require feeding source-code locations through to

compiled code in some way

– HPC and GHCi share some infrastructure (ticks), but
profiling is done differently (cost centres)

– We also want:
• stack tracing

• cheap flat annotations for parallel profiling

– how can we share the infrastructure?

– Profiling generates stacks of a kind (cost centre
stacks), why don’t they work for error reporting?

Profiling: background

• Cost Centre profiling (Sansom thesis ’94)
– main innovation: cost centres abstract away from evaluation order, by saving and restoring the

cost centre when evaluating a thunk
– only flat profiling, no stacks (we later extended this to stacks)
– identified a difference between “lexical scoping” and “evaluation scoping”

• Difference: in “main = map f xs”
– Lexical scoping: [main,f]
– Evaluation scoping: [main,map,f]

• Ways to think about it:
– Eval scoping gives the stack that you would see in a strict language
– Lexical scoping gives you the stack obtained by tracing from uses to (top-level) definitions in

the source program, eval scoping gives you a dynamic call stack
– In eval scoping, an annotation (scc) captures the costs of evaluating an expression to NF but

not under lambdas, whereas lexical scoping also captures the repeated costs under lambdas

• Lots of other differences: e.g.
– “f = foo . bar”, f does not appear in the stack with eval
– “let f x = ... in f 1 + f 2”, no way to identify individual calls with lexical scoping
– in general, lexical scoping makes fewer distinctions

Lexical or evaluation scoping?

• Sansom advocated a hybrid scheme
• GHC implements stacks with lexical scoping (or tries to)

• Plan: switch to evaluation scoping
– lexical scoping has undesirable properties:

• the need to box higher-order arguments, “let x = y in f x” is not the
same as “f y”!

• lexical scoping restricts the transformations that apply
• never managed to find a semantics that worked properly for CAFs

– Eval scoping is far easier. Deleted lots of code from GHC.
• Easy to explain: “this is the stack you’d get in a strict language”
• one drawback: every lambda needs an annotation, whereas with

lexical scoping only need one annotation at the top level
• But, we can use this to give more information: where bindings get

identified separately.

Back to the unified framework

• Add two constructs to Core:

• Where s is a source code location. A tick counts
entries.

• (for “set cost centre”, naming subject to change)

• This is an annotation that scopes over E (in an
evaluation-scoping way).

• For stack tracing, scc corresponds to pushing an
item on the stack while evaluating E.

tick s E

scc s E

How do we use these?

• HPC decorates the program with tick
• Profiling/auto-all decorates the program with both scc and

tick
– because profiling counts entries too
– will have an option to use scc only, sacrificing entry counts for

optimisation

• Flat (parallel) profiling uses scc only
• Stack tracing uses scc
• All decorations are added by one pass, parameterised by

the strategy (formerly the Coverage module in GHC).
• Main point: by giving a semantics to these two constructs

only, we can implement many different profiling/debugging
features

Transformations

• Important: we want as many optimisations to apply as
possible, while retaining the correct semantics. e.g.

• no evaluation to do: lambda is in HNF, so can discard scc
– but could not discard tick: remember it has to count the

evaluation!

• Accept transformations that make a small change to the
cost attribution. After all: all optimisations change the cost
attribution in some way.

• Inlining or floating lambda: always valid (eval scoping only!)
• Inlining a redex: no!
• Important: the semantics tells us which transformations are

valid.

(scc s \x . e) => \x . e

Status

• scc and tick implemented (actually one construct
with flags internally)

• HPC and GHCi debugger adapted, working
• Profiling:

– now obeys eval scoping
– -auto-all decorates nested bindings too
– entry counts are correct
– more optimisations apply than before: profiled code

should be closer to –O, -fhpc should generate faster
code.

• all this might be in 7.4

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 103 0 0.0 0.0 100.0 100.0

res Main 207 1 0.0 0.0 100.0 100.0

disp Main 239 20 0.0 0.0 0.0 0.0

interleave Main 240 100 0.0 0.0 0.0 0.0

unicl Main 232 20 0.0 0.0 34.6 55.5

unicl.unicl' Main 233 106920 0.0 1.0 34.6 55.5

insert Main 238 20 0.0 0.0 0.0 0.0

tautclause Main 236 106920 0.0 3.4 0.0 3.4

clause Main 234 106920 0.0 1.5 34.6 51.1

clause.clause' Main 235 1989000 11.5 46.7 34.6 49.6

insert Main 237 1047960 23.1 2.9 23.1 2.9

split Main 229 20 0.0 0.0 0.0 3.4

split.split' Main 230 213820 0.0 3.4 0.0 3.4

disin Main 228 2450280 57.7 40.7 65.4 40.7

conjunct Main 231 2169580 7.7 0.0 7.7 0.0

negin Main 227 4620 0.0 0.1 0.0 0.1

elim Main 226 3980 0.0 0.1 0.0 0.1

parse Main 209 20 0.0 0.0 0.0 0.0

parse.(...) Main 210 20 0.0 0.0 0.0 0.0

parse' Main 211 800 0.0 0.0 0.0 0.0

while Main 222 60 0.0 0.0 0.0 0.0

red Main 225 40 0.0 0.0 0.0 0.0

spri Main 223 60 0.0 0.0 0.0 0.0

opri Main 224 40 0.0 0.0 0.0 0.0

parse'.(...) Main 216 60 0.0 0.0 0.0 0.0

while Main 218 180 0.0 0.0 0.0 0.0

red Main 221 120 0.0 0.0 0.0 0.0

spri Main 219 180 0.0 0.0 0.0 0.0

opri Main 220 180 0.0 0.0 0.0 0.0

spri Main 214 160 0.0 0.0 0.0 0.0

opri Main 215 140 0.0 0.0 0.0 0.0

opri Main 213 160 0.0 0.0 0.0 0.0

module Main where

import qualified Data.Map as Map

import Data.List (nub)

import Data.Char (digitToInt)

data Coord = Coord !Int !Int

deriving (Show,Eq,Ord)

(|+|) :: Coord -> Coord -> Coord

(|+|) (Coord x1 y1) (Coord x2 y2)

= Coord (x1 + x2) (y1 + y2)

isAccessible :: Coord -> Bool

isAccessible = (<=25) . sumCoord

where digits = map digitToInt . show

sumDigits = sum . digits

sumCoord (Coord x y)

= sumDigits x + sumDigits y

reachableCoords :: Coord -> [Coord]

reachableCoords c = map ((|+|) c) $

possibleMoves

where possibleMoves =

[Coord 1 0

,Coord (-1) 0

,Coord 0 1

,Coord 0 (-1)

]

type CoordMap = Map.Map Coord ()

emptyMap = Map.empty :: CoordMap

walk2 :: [Coord] -> CoordMap -> Int -> Int

walk2 [] _ count = count

walk2 (x:stack) seen count

| isOld x = walk2 stack seen count

| isAccessible x = walk2 stack' seen' (count+1)

| otherwise = walk2 stack seen' count

where seen' = Map.insert x () seen

stack' = reachableCoords x ++ stack

isOld p = Map.member p $ seen

walk :: [Coord] -> CoordMap -> Int -> Int

walk [] _ count = count

walk surface seen count = walk new seen' count'

where poss = nub . concat

. map reachableCoords $ surface

new = filter (\p -> isNew p &&

isAccessible p) $ poss

seen' = foldr (\k m ->

Map.insert k () m) seen poss

count' = count + length new

isNew p = not . Map.member p $ seen

main = print $ walk2 [Coord 1000 1000] emptyMap 0

main' = print $ walk [start] seen 1

where start = Coord 1000 1000

seen = Map.insert start () emptyMap

./ants +RTS -K32m -i0.01 -s

148848

268,071,308 bytes allocated in the heap

64,002,300 bytes copied during GC

7,485,040 bytes maximum residency (7 sample(s))

128,532 bytes maximum slop

19 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 505 collections, 0 parallel, 0.16s, 0.16s elapsed

Generation 1: 7 collections, 0 parallel, 0.10s, 0.10s elapsed

INIT time 0.00s (0.00s elapsed)

MUT time 0.87s (0.87s elapsed)

GC time 0.25s (0.25s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 1.13s (1.13s elapsed)

GHC 7.0.3 –O2

./ants +RTS -K32m -i0.01 -s

148848

495,854,100 bytes allocated in the heap

102,483,988 bytes copied during GC

28,129,260 bytes maximum residency (8 sample(s))

15,826,960 bytes maximum slop

54 MB total memory in use (0 MB lost due to fragmentation)

Generation 0: 874 collections, 0 parallel, 4.13s, 4.14s elapsed

Generation 1: 8 collections, 0 parallel, 0.12s, 0.12s elapsed

INIT time 0.00s (0.00s elapsed)

MUT time 5.44s (5.46s elapsed)

GC time 4.25s (4.26s elapsed)

RP time 0.00s (0.00s elapsed)

PROF time 0.00s (0.00s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 9.69s (9.73s elapsed)

GHC 7.0.3 –O2 –prof –auto-all

474,715,900 bytes allocated in the heap

132,442,188 bytes copied during GC

23,746,884 bytes maximum residency (9 sample(s))

154,652 bytes maximum slop

47 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 878 colls, 0 par 0.26s 0.26s 0.0003s 0.0008s

Gen 1 9 colls, 0 par 0.17s 0.17s 0.0194s 0.0577s

INIT time 0.00s (0.00s elapsed)

MUT time 1.37s (1.37s elapsed)

GC time 0.43s (0.43s elapsed)

RP time 0.00s (0.00s elapsed)

PROF time 0.00s (0.00s elapsed)

EXIT time 0.00s (0.00s elapsed)

Total time 1.80s (1.80s elapsed)

Simon’s GHC –O2 –prof –auto-all

COST CENTRE MODULE no. entries %time %alloc

MAIN MAIN 1 0 0.0 0.0

CAF Main 268 10 0.0 0.0

reachableCoords Main 278 0 0.0 0.0

main Main 274 1 0.0 0.0

walk2 Main 276 595394 69.5 48.2

|+| Main 279 595392 0.4 5.8

isAccessible Main 277 535707 30.1 46.0

emptyMap Main 275 1 0.0 0.0

CAF GHC.IO.Handle.FD 204 2 0.0 0.0

CAF GHC.IO.Encoding.Iconv 162 2 0.0 0.0

CAF GHC.Conc.Signal 159 1 0.0 0.0

GHC 7.0.3 –O2 –prof –auto-all

individual inherited

COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 114 0 0.0 0.0 100.0 100.0

CAF GHC.IO.Handle.FD 142 0 0.0 0.0 0.0 0.0

CAF GHC.IO.Encoding.Iconv 134 0 0.0 0.0 0.0 0.0

CAF GHC.Conc.Signal 124 0 0.0 0.0 0.0 0.0

CAF Main 119 0 0.0 0.0 100.0 100.0

isAccessible Main 232 1 0.0 0.0 0.0 0.0

emptyMap Main 231 1 0.0 0.0 0.0 0.0

main Main 228 1 0.0 0.0 100.0 100.0

walk2 Main 229 595394 33.3 41.8 100.0 100.0

compare Main 237 3286902 0.7 0.0 0.7 0.0

reachableCoords Main 234 148848 5.7 15.1 5.7 15.1

|+| Main 235 595392 0.0 0.0 0.0 0.0

isAccessible.sumCoord Main 233 178569 17.7 42.0 17.7 42.0

walk2.isOld Main 230 595393 31.2 1.1 42.6 1.1

compare Main 236 10678924 11.3 0.0 11.3 0.0

Simon’s GHC –O2 –prof –auto-all

What about stack tracing?

• Well, now we have the mechanism in Core
• Certainly need to compile code for stack tracing, with

scc’s added
– don’t really want to have to use profiling to get stack traces

• also, profiling uses the wrong decoration strategy, for stack tracing
we want call sites

– need to make sure that errors in CAFs get useful stack
traces

– We could provide stack tracing in GHCi for interpreted
code, because the program is already decorated for the
GHCi debugger.

– tricky bit: can we track call stacks in a program that is only
partially annotated, and get partial information?
• when evaluating an unannotated thunk, have to save/restore the

stack.

Work in progress!

• Comments/questions welcome

