
0 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

no sharing shared tree add. thunk partly eval’ed fully eval’ed run twice
MB sec. MB sec. MB sec. MB sec. MB sec. MB sec.

original 2 6.70 4 189 24.15 4 188 24.35 4 188 24.08 4 189 30.36 4 189 29.73
solveDup 2 6.71 3 6.74 4 188 24.32 4 188 24.03 4 189 30.50 2 13.47
rateDup 2 2.33 5 2.34 5 2.34 5 2.33 4 189 31.28 4 153 29.01
solveDeepDup 2 6.63 2 6.74 2 6.60 2 6.79 4 189 29.72 2 13.30
unit lifting 1 1.79 1 1.78 1 1.78 1 3.56
church encoding 2 7.12 2 7.06 2 7.19 2 14.35

Figure 2. Time and space performance for b = 4 and d = 4

original: T N

T T

N

N

N

TT

N

TT

T

N

N

N

TT

N

TT

N

N

TT

N

TT

N

N

N

TT

N

TT

N

N

TT

N

TT

solveDup: T T T T N

T T

T N

N

N

TT

N

TT

T

T N

N

N

TT

N

TT

N

N

TT

N

TT

T N

N

N

TT

N

TT

N

N

TT

N

TT

rateDup: T N

T T

N

T TT

N

T N

N

TT

N

TT

T

N

T N

N

TT

N

TT

T N

N

TT

N

TT

N

T N

N

TT

N

TT

T N

N

TT

N

TT

solveDup: N

T T

N N

T T

N N

T T

N N

N

N

TT

N

TT

T

N N

N

N

TT

N

TT

N

N

TT

N

TT

N N

N

N

TT

N

TT

N

N

TT

N

TT

solveDeepDup: N

T T

N

T T

N

D D

N

T T

N

T D

N

T T

N

N

N

TT

N

TT

D

N

T T

N

N

N

TT

N

TT

N

N

TT

N

TT

N

T T

N

N

N

TT

N

TT

N

N

TT

N

TT

T: thunk, N: node, =: dup’ed closure, garbage,
T : current argument of solve, T : current argument of rate

D: deepDup application thunk

Figure 3. The heap during original and dup’ed evaluation with b = 2 and d = 1

Figure 4. Comparing solveDup and solveDeepDup applied to a partly evaluated tree with b = 2 and d = 1

Joachim Breitner: dup – Explicit un-sharing in Haskell 3 2012/7/9

PROGRAMMING PARADIGMS GROUP

dup – Explicit un-sharing in Haskell

Haskell Implementors Workshop 2012 – Lightning Talk

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu



My motivation

1 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

We need to provide our
programmers with better tools to

analyze

and

control

the space behaviour of their Haskell
programs.



Sharing can cause space leaks

2 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (last xs, length xs)

(,)

T:1e8 T

T:

1

T

1

:

2

:

3

:

4

T· · ·

the programmer might want to avoid to have the list shared



Sharing can cause space leaks

2 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (last xs, length xs)

(,)

T

:1e8

T

T

:

1

T

1

:

2

:

3

:

4

T· · ·

the programmer might want to avoid to have the list shared



Sharing can cause space leaks

2 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (last xs, length xs)

(,)

T

:

1e8

T

T

:

1

T

1

:

2

:

3

:

4

T· · ·

the programmer might want to avoid to have the list shared



Sharing can cause space leaks

2 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (last xs, length xs)

(,)

T

:

1e8

T

T

:

1

T

1

:

2

:

3

:

4

T

· · ·

the programmer might want to avoid to have the list shared



Sharing can cause space leaks

2 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (last xs, length xs)

(,)

T

:

1e8

T

T

:

1

T

1

:

2

:

3

:

4

T

· · ·

the programmer might want to avoid to have the list shared



Sharing can cause space leaks

2 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (last xs, length xs)

(,)

T:

1e8 T

T

:

1

T

1

:

2

:

3

:

4

T

· · ·

the programmer might want to avoid to have the list shared



Sharing can cause space leaks

2 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (last xs, length xs)

(,)

T:

1e8 T

T

:

1

T

1

:

2

:

3

:

4

T

· · ·

the programmer might want to avoid to have the list shared



Source transformations may help

3 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

(,)

T

:1e8

T

F

T::

1

T

1

:

2

:

3

:

4

T:

4

· · ·

works, but fragile – might be thwarted by compiler optimizations



Source transformations may help

3 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

(,)

T

:

1e8

T

F

T::

1

T

1

:

2

:

3

:

4

T:

4

· · ·

works, but fragile – might be thwarted by compiler optimizations



Source transformations may help

3 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

(,)

T

:

1e8

T

F

T

::

1

T

1

:

2

:

3

:

4

T:

4

· · ·

works, but fragile – might be thwarted by compiler optimizations



Source transformations may help

3 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

(,)

T

:

1e8

T

F

T

:

:

1

T

1

:

2

:

3

:

4

T:

4

· · ·

works, but fragile – might be thwarted by compiler optimizations



Source transformations may help

3 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

(,)

T

:

1e8

T

F

T:

:

1

T

1

:

2

:

3

:

4

T

:

4

· · ·

works, but fragile – might be thwarted by compiler optimizations



Source transformations may help

3 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

(,)

T:

1e8 T

F

T:

:

1

T

1

:

2

:

3

:

4

T

:

4

· · ·

works, but fragile – might be thwarted by compiler optimizations



Source transformations may help

3 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

(,)

T:

1e8 T

F

T::

1

T

1

:

2

:

3

:

4

T

:

4

· · ·

works, but fragile – might be thwarted by compiler optimizations



Allow the programmer to copy a thunk: dup

4 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (case dup xs of Box xs’ −> last xs’,

case dup xs of Box xs’ −> length xs’)

(,)

T

:1e8

T

T

T::

1

T

1

:

2

:

3

:

4

T:

4

· · ·

the consumer, not the generator, controls sharing. no code restructuring.



Allow the programmer to copy a thunk: dup

4 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (case dup xs of Box xs’ −> last xs’,

case dup xs of Box xs’ −> length xs’)

(,)

T

:

1e8

T

T

T::

1

T

1

:

2

:

3

:

4

T:

4

· · ·

the consumer, not the generator, controls sharing. no code restructuring.



Allow the programmer to copy a thunk: dup

4 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (case dup xs of Box xs’ −> last xs’,

case dup xs of Box xs’ −> length xs’)

(,)

T

:

1e8

T

T

T

::

1

T

1

:

2

:

3

:

4

T:

4

· · ·

the consumer, not the generator, controls sharing. no code restructuring.



Allow the programmer to copy a thunk: dup

4 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (case dup xs of Box xs’ −> last xs’,

case dup xs of Box xs’ −> length xs’)

(,)

T

:

1e8

T

T

T

:

:

1

T

1

:

2

:

3

:

4

T:

4

· · ·

the consumer, not the generator, controls sharing. no code restructuring.



Allow the programmer to copy a thunk: dup

4 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (case dup xs of Box xs’ −> last xs’,

case dup xs of Box xs’ −> length xs’)

(,)

T

:

1e8

T

T

T:

:

1

T

1

:

2

:

3

:

4

T

:

4

· · ·

the consumer, not the generator, controls sharing. no code restructuring.



Allow the programmer to copy a thunk: dup

4 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (case dup xs of Box xs’ −> last xs’,

case dup xs of Box xs’ −> length xs’)

(,)

T:

1e8 T

T

T:

:

1

T

1

:

2

:

3

:

4

T

:

4

· · ·

the consumer, not the generator, controls sharing. no code restructuring.



Allow the programmer to copy a thunk: dup

4 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

let xs = [1..100000000]
in (case dup xs of Box xs’ −> last xs’,

case dup xs of Box xs’ −> length xs’)

(,)

T:

1e8 T

T

T::

1

T

1

:

2

:

3

:

4

T:

4

· · ·

the consumer, not the generator, controls sharing. no code restructuring.



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

D

T

(,)

T T

really, deepDup x
copies the whole
heap reachable by x
lazily



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

T T

D

(,)

T T

really, deepDup x
copies the whole
heap reachable by x
lazily



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

T C

D

(,)

T T

really, deepDup x
copies the whole
heap reachable by x
lazily



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

T C

(,)

T T

(,)

D D

really, deepDup x
copies the whole
heap reachable by x
lazily



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

T C

(,)

T T

(,)

D
C

really, deepDup x
copies the whole
heap reachable by x
lazily



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

T C

(,)

T T

(,)

D
C

really, deepDup x
copies the whole
heap reachable by x
lazily



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

T C

(,)

T T

(,)

C T

really, deepDup x
copies the whole
heap reachable by x
lazily



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

T C

(,)

T T

(,)

C I

really, deepDup x
copies the whole
heap reachable by x
lazily



The sledgehammer: deepDup

5 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

morally, deepDup x
copies the whole
heap reachable by x

:

T C

(,)

T T

(,)

C I

really, deepDup x
copies the whole
heap reachable by x
lazily



Comes with proofs included.

6 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

Γ, x 7→ e, x ′ 7→ ê : x ′ ⇓ ∆ : z x ′ fresh

Γ, x 7→ e : dup x ⇓ ∆ : z
Dup

Γ, x 7→ e,
x ′ 7→ ê[y ′1/y1, . . . , y ′n/yn],
y ′1 7→ deepDup y1, . . . , y ′n 7→ deepDup yn : x ′ ⇓ ∆ : z

ufv(e) = {y1, . . . , yn} x ′, y ′1, . . . , yn fresh

Γ, x 7→ e : deepDup x ⇓ ∆ : z
Deep

(based on Launchbury’s „A natural seantics for lazy evaluation“)



Where to read more

7 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

See
http://arxiv.org/abs/1207.2017

for
more motiviation,
benchmarked comparison with other approaches to avoid sharing,
semantics and proofs,
details on the implementation and
a description of current shortcomings.

See
http://darcs.nomeata.de/ghc-dup

for
the code.

http://arxiv.org/abs/1207.2017
http://darcs.nomeata.de/ghc-dup


A related, younger idea

8 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

import GHC.Prim (noupdate)

let xs = noupdate [1..100000000]
in (last xs, length xs)

For a thunk wrapped in

noupdate :: a −> a,

no blackhole and no update frame is created

=⇒ sharing is effectively prevented.

(Ask me for my ghc branch.)



Also nice: ghc-vis

9 2012-09-14 Joachim Breitner - dup – Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

KIT

Demonstration

see
http://hackage.haskell.org/package/ghc-vis

and
http://felsin9.de/nnis/ghc-vis/

http://hackage.haskell.org/package/ghc-vis
http://felsin9.de/nnis/ghc-vis/

