AT

Karlsruhe Institute of Technology

dup — Explicit un-sharing in Haskell
Haskell Implementors Workshop 2012 — Lightning Talk

PROGRAMMING PARADIGMS GROUP

N N NN NN
/\ I\ ARARANA
TTTT TTTTTTTT
| | | |
N N N N
o a0 e e
D|T<D T=T|T<D T T<D TiRT N
N N NN NN
\]\ ARARANA
TTTT TTTTTTTT

KIT — University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

My motivation A\

Karlsruhe Institute of Technology

We need to provide our
programmers with better tools to

analyze
and
control

the space behaviour of their Haskell
programs.

2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)

2 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)

T /(,)\T
\/

2 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)

./(,)\T
\/

2 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)

2 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)

Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)

Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)

the programmer might want to avoid to have the list shared

2 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

/(,)\
N

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()
N
o T
N

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()
2N
*

F
T

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()
2N
*

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Source transformations may help ﬂ(“'

Karlsruhe Institute of

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()
N
1e8 T
/

F

works, but fragile — might be thwarted by compiler optimizations

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

/(,)\
N

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

(:)
N
o T
N

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

()
Q/ \T

N

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

()
2N
*

T

T

1

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

()
Q/ \T

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

(,)
N
1e8 T

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

(,)
N
1e8 T
/

T

the consumer, not the generator, controls sharing. no code restructuring.

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

The sledgehammer: deepDup ﬂ(“'

Karlsruhe Institute of

morally, deepDup x
copies the whole
heap reachable by x

4—0—@

TN

T T

5 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

The sledgehammer: deepDup ﬂ(“'

Karlsruhe Institute of

morally, deepDup x
copies the whole
heap reachable by x

T—

(,)/
T/ \T

=
|
D

5 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

The sledgehammer: deepDup ﬂ(“'

Karlsruhe Institute of

morally, deepDup x
copies the whole
heap reachable by x

5 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

The sledgehammer: deepDup

morally, deepDup x
copies the whole
heap reachable by x

T C
()l ().
T%D>\D\T

5 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

The sledgehammer: deepDup

morally, deepDup x
copies the whole
heap reachable by x

T C
() L6
0,
T—C T

5 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

The sledgehammer: deepDup

morally, deepDup x
copies the whole
heap reachable by x

T ¢
(,)*
D
T/C T

5 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

The sledgehammer: deepDup

morally, deepDup x
copies the whole
heap reachable by x

5 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

The sledgehammer: deepDup ﬂ(“'

Karlsruhe Institute of

morally, deepDup x
copies the whole
heap reachable by x

5 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

5

The sledgehammer: deepDup ﬂ(“'

morally, deepDup x
copies the whole
heap reachable by x

2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell

really, deepDup x
copies the whole
heap reachable by x

lazily
T C
() £ G)
7 Cﬁ\ T

PROGRAMMING PARADIGMS GROUP

6

Comes with proofs included.

I''x—ex —é: x| A:z x'fresh
I'x—e:dupx | A:z

Dup

X' elyi/y1, ... Yo/ Ynl,
[,x+ e, y;+> deepDupys,...,y, > deepDupy, : X' | A:z
ufv(e) = {ys,....¥a} X, ¥i,...,ynfresh
I'x+— e:deepDupx | A:z

Deep

(based on Launchbury’s ,A natural seantics for lazy evaluation®)

2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

7

Where to read more ﬂ(“.

Karlsruhe Institute of

See

http://arxiv.org/abs/1207.2017
for

more motiviation,

benchmarked comparison with other approaches to avoid sharing,
semantics and proofs,

details on the implementation and

a description of current shortcomings.

See

http://darcs.nomeata.de/ghc-dup
for

a the code.

2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

http://arxiv.org/abs/1207.2017
http://darcs.nomeata.de/ghc-dup

A related, younger idea ﬂ(“'

import GHC.Prim (noupdate)

let xs = noupdate [1..100000000]
in (last xs, length xs)

For a thunk wrapped in
noupdate :: a —> a,
no blackhole and no update frame is created

—> sharing is effectively prevented.

(Ask me for my ghc branch.)

8 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

Also nice: ghc-vis

Karlsruhe Institute of Technology

Demonstration

see
http://hackage.haskell.org/package/ghc-vis
and
http://felsin9.de/nnis/ghc-vis/

2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP

http://hackage.haskell.org/package/ghc-vis
http://felsin9.de/nnis/ghc-vis/

