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no sharing shared tree add. thunk partly eval’ed fully eval’ed run twice
MB sec. MB sec. MB sec. MB sec. MB sec. MB sec.

original 2 6.70 4 189 24.15 4 188 24.35 4 188 24.08 4 189 30.36 4 189 29.73
solveDup 2 6.71 3 6.74 4 188 24.32 4 188 24.03 4 189 30.50 2 13.47
rateDup 2 2.33 5 2.34 5 2.34 5 2.33 4 189 31.28 4 153 29.01
solveDeepDup 2 6.63 2 6.74 2 6.60 2 6.79 4 189 29.72 2 13.30
unit lifting 1 1.79 1 1.78 1 1.78 1 3.56
church encoding 2 7.12 2 7.06 2 7.19 2 14.35

Figure 2. Time and space performance for b = 4 and d = 4
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Figure 3. The heap during original and dup’ed evaluation with b = 2 and d = 1

Figure 4. Comparing solveDup and solveDeepDup applied to a partly evaluated tree with b = 2 and d = 1
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My motivation
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We need to provide our
programmers with better tools to

analyze

and

control

the space behaviour of their Haskell
programs.



Sharing can cause space leaks
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Source transformations may help
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Allow the programmer to copy a thunk: dup
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let xs = [1..100000000]
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The sledgehammer: deepDup
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Comes with proofs included.
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Γ, x 7→ e, x ′ 7→ ê : x ′ ⇓ ∆ : z x ′ fresh

Γ, x 7→ e : dup x ⇓ ∆ : z
Dup

Γ, x 7→ e,
x ′ 7→ ê[y ′1/y1, . . . , y ′n/yn],
y ′1 7→ deepDup y1, . . . , y ′n 7→ deepDup yn : x ′ ⇓ ∆ : z

ufv(e) = {y1, . . . , yn} x ′, y ′1, . . . , yn fresh

Γ, x 7→ e : deepDup x ⇓ ∆ : z
Deep

(based on Launchbury’s „A natural seantics for lazy evaluation“)



Where to read more
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See
http://arxiv.org/abs/1207.2017

for
more motiviation,
benchmarked comparison with other approaches to avoid sharing,
semantics and proofs,
details on the implementation and
a description of current shortcomings.

See
http://darcs.nomeata.de/ghc-dup

for
the code.

http://arxiv.org/abs/1207.2017
http://darcs.nomeata.de/ghc-dup


A related, younger idea
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import GHC.Prim (noupdate)

let xs = noupdate [1..100000000]
in (last xs, length xs)

For a thunk wrapped in

noupdate :: a −> a,

no blackhole and no update frame is created

=⇒ sharing is effectively prevented.

(Ask me for my ghc branch.)



Also nice: ghc-vis
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Demonstration

see
http://hackage.haskell.org/package/ghc-vis

and
http://felsin9.de/nnis/ghc-vis/

http://hackage.haskell.org/package/ghc-vis
http://felsin9.de/nnis/ghc-vis/

