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My motivation A\

Karlsruhe Institute of Technology

We need to provide our
programmers with better tools to

analyze
and
control

the space behaviour of their Haskell
programs.
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Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)
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Sharing can cause space leaks ﬂ(“'

let xs =[1..100000000]
in (last xs, length xs)

the programmer might want to avoid to have the list shared
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Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

/(,)\
N

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()
N
o T
N

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()
2N
*

F
T

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()
2N
*

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

()

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Source transformations may help ﬂ(“'

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())

3 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Source transformations may help ﬂ(“'

Karlsruhe Institute of

let xs () = [1..100000000]
in (last $ xs (), length $ xs ())
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works, but fragile — might be thwarted by compiler optimizations
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Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

/(,)\
N

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

(:)
N
o T
N

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

()
Q/ \T

N

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP




Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

()
2N
*

T

T

1

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

()
Q/ \T

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Allow the programmer to copy a thunk: dup AT

let xs =[1..100000000]
in (case dup xs of Box xs’ —> last xs’,
case dup xs of Box xs’ —> length xs’)

(,)
N
1e8 T

4 2012-09-14 Joachim Breitner - dup — Explicit un-sharing in Haskell PROGRAMMING PARADIGMS GROUP



Allow the programmer to copy a thunk: dup AT
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the consumer, not the generator, controls sharing. no code restructuring.
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The sledgehammer: deepDup ﬂ(“'

Karlsruhe Institute of

morally, deepDup x
copies the whole
heap reachable by x
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The sledgehammer: deepDup ﬂ(“'

morally, deepDup x
copies the whole
heap reachable by x
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really, deepDup x
copies the whole
heap reachable by x

lazily
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Comes with proofs included.

I''x—ex —é: x| A:z  x'fresh
I'x—e:dupx | A:z

Dup

X' elyi/y1, ... Yo/ Ynl,
[,x+ e, y;+> deepDupys,...,y, > deepDupy, : X' | A:z
ufv(e) = {ys,....¥a} X, ¥i,...,ynfresh
I'x+— e:deepDupx | A:z

Deep

(based on Launchbury’s ,A natural seantics for lazy evaluation®)
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Where to read more ﬂ(“.

Karlsruhe Institute of

See

http://arxiv.org/abs/1207.2017
for

more motiviation,

benchmarked comparison with other approaches to avoid sharing,
semantics and proofs,

details on the implementation and

a description of current shortcomings.

See

http://darcs.nomeata.de/ghc-dup
for

a the code.
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http://arxiv.org/abs/1207.2017
http://darcs.nomeata.de/ghc-dup

A related, younger idea ﬂ(“'

import GHC.Prim (noupdate)

let xs = noupdate [1..100000000]
in (last xs, length xs)

For a thunk wrapped in
noupdate :: a —> a,
no blackhole and no update frame is created

—> sharing is effectively prevented.

(Ask me for my ghc branch.)
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Also nice: ghc-vis

Karlsruhe Institute of Technology

Demonstration

see
http://hackage.haskell.org/package/ghc-vis
and
http://felsin9.de/nnis/ghc-vis/
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