
Virtualizing Real-World

Objects in FRP

Daniel Winograd-Cort

Department of Computer Science

Yale University

Haskell Implementors’ Workshop

September 23, 2011

The Context:

Functional Reactive Programming

 Programming with continuous values and
streams of events.

 Like drawing signal processing diagrams:

 Previously used in:

◦ Yampa: robotics, vision, animation

◦ Nettle: networking

◦ Euterpea: sound synthesis and audio processing

signal

function
y x

signal processing diagram

y <- sigfun -< x

equivalent arrow syntax in Haskell

Understanding arrow syntax

 Let’s write a program that integrates a

signal and then doubles it:

 arrow syntax in Haskell

sigfun :: SF Double Double
sigfun = proc x -> do
 y <- integral -< x
 returnA -< 2 * y

signal processing diagram

integral
 * x 2

The IO bottleneck of FRP

Run-time System

Main Program
(a signal function)

MIDI synthesizer

printer
console I/O

MIDI instrument

mouse

game

controller

electric piano

sound card

Add transparency by moving the

devices into the signal function

Run-time System

Main Program
(a signal function)

Main Program

MIDI synthesizer

printer
console I/O

MIDI instrument

game

controller

electric piano

sound card

mouse

An IO-transparent Signal Function

MIDI synthesizer

printer
console I/O

MIDI instrument

mouse

game

controller

electric piano

sound card

Main Program

sf1

sf3 sf4

sf5

sf6

sf7

sf2

An IO-transparent Signal Function

 IO devices are now

treated just like other

signal functions.

 The concept extends

further

◦ We can virtualize virtual objects (e.g.

widgets)

◦ We can use “wormhole” signal functions

to perform non-local effects.

The Problem of

Resource Duplication
 Consider this code fragment:

_ <- midiSynth <- noteList1
_ <- midiSynth <- noteList2

midiSynth is a single output device, but there are two

occurrences -- what happens?

 Interleaving? Non-determinism?

 Likewise, here is an example of input:

rands1 <- randomSF <- ()
rands2 <- randomSF <- ()

Do rands1 and rands2 return the same result, or are

they different?

Duplication resolved with

Resource Types
 Tag each virtualized object with a unique

resource type to prevent duplication.

midiSynth :: SF (S MidiSynth) (Event Notes) ()
randomSF :: SF (S RandomRT) () Double

 The first argument to SF is a set of resource

types; S MidiSynth and S RandomRT are singleton sets.

 With these types, the previous code fragments

will not type-check – resource types of

composed signal functions must be disjoint.

 Arrows, higher-order types, and type families

allow us to implement all this in Haskell.

Implementing Resource Types

 We need:

◦ Resource types

◦ A way to add resource types

◦ Restrictions on composition

 We cannot redefine function

application in general, so we use

arrows.

Arrows

 The standard Arrow class:

class Arrow a where
 arr :: (b -> c) -> a b c
 first :: a b c -> a (b,d) (c,d)
 (>>>) :: a b c -> a c d -> a b d
 loop :: a (b,d) (c,d) -> a b c

 All arrow syntax is translated into

these functions.

Arrows in use

f

arr f

sf1 sf2

sf1 >>> sf2

sf

first sf

sf

loop sf

Resource Type Inference Rules

Arrows with resource types

 We add a type parameter to Arrow:

class Arrow a where
 arr :: (b -> c) -> a Empty b c
 first :: a r b c -> a r (b,d) (c,d)
 (>>>) :: (Disjoint r1 r2, Union r1 r2 r3) =>
 a r1 b c -> a r2 c d -> a r3 b d
 loop :: a r (b,d) (c,d) -> a r b c

Arrows with resource types

 We add a type parameter to Arrow:

class Arrow a where
 arr :: (b -> c) -> a Empty b c
 first :: a r b c -> a r (b,d) (c,d)
 (>>>) :: (Disjoint r1 r2, Union r1 r2 r3) =>
 a r1 b c -> a r2 c d -> a r3 b d
 loop :: a r (b,d) (c,d) -> a r b c

 The Disjoint class assures that r1 and

r2 are disjoint.

Sets at the Type Level

 We represent type sets as either

Empty, Singleton sets, or Unions:

data Empty
data S a
data a `U` b

 Unioning sets is easy, but testing

disjointness is not.

Sets at the Type Level

 Set disjointness:

class Disjoint xs ys

instance Disjoint Empty ys
instance (ElemOf x ys HFalse) =>
 Disjoint (S x) ys
instance (Disjoint xs zs, Disjoint ys zs) =>
 Disjoint (xs `U` ys) zs

Sets at the Type Level

 … which requires set membership:

class ElemOf x ys b | x ys -> b

instance ElemOf x Empty HFalse
instance (TypeEq x y b) =>
 ElemOf x (S y) b
instance (ElemOf x ys b1, ElemOf x zs b2, OR b1 b2 b) =>
 ElemOf x (ys `U` zs) b

 Set disjointness:

class Disjoint xs ys

instance Disjoint Empty ys
instance (ElemOf x ys HFalse) =>
 Disjoint (S x) ys
instance (Disjoint xs zs, Disjoint ys zs) =>
 Disjoint (xs `U` ys) zs

Sets at the Type Level

 … which requires set membership:

class ElemOf x ys b | x ys -> b

instance ElemOf x Empty HFalse
instance (TypeEq x y b) =>
 ElemOf x (S y) b
instance (ElemOf x ys b1, ElemOf x zs b2, OR b1 b2 b) =>
 ElemOf x (ys `U` zs) b

 … which requires type equality:

class TypeEq x y b | x y -> b

instance (HTrue ~ b) => TypeEq x x b
instance (HFalse ~ b) => TypeEq x y b

Arrows into Signal Functions

 We instantiate arrows with the

following signal function definition

data SF r a b = SF
 { sfFun :: a -> IO (b, SF r a b) }

 instance Arrow SF where
 arr g = SF h
 where h x = return (f x, SF h)

 first (SF f) = SF (h f)
 where h f (x, z) = do (y, SF f') <- f x
 return ((y, z), SF (h f'))

 SF f >>> SF g = SF (h f g)
 where h f g x = do (y, SF f') <- f x
 (z, SF g') <- g y
 return (z, SF (h f' g'))

From I/O to Resource Types

 How do we make these SFs?

◦ Continuous SFs

source :: IO c -> SF (S r) () c
sink :: (b -> IO ()) -> SF (S r) b ()
pipe :: (b -> IO c) -> SF (S r) b c

◦ Event-based SFs

sourceE :: IO c -> SF (S r) () (Event c)
sinkE :: (b -> IO ()) -> SF (S r) (Event b) ()
pipeE :: (b -> IO c) -> SF (S r) (Event b) (Event c)

From I/O to Resource Types

 These functions can be easily defined:

◦ source f = SF h where
 h _ = f >>= return . (\x -> (x, SF h))

◦ sink f = SF h where
 h x = f x >> return ((), SF h)

◦ pipe f = SF h where
 h x = f x >>= return . (\x -> (x, SF h))

 The event-based ones are more subtle

due to blocking and are outside the

scope of this talk.

From I/O to Resource Types

 With Haskell IO, we might have:

mSynth :: Notes -> IO ()

 Using resource typed SFs, we have:

data MIDISynth
midiSynth :: SF (S MidiSynth) (Event Notes) ()
midiSynth = sinkE mSynth

 Now our example from before won’t

even type check:

_ <- midiSynth <- noteList1
_ <- midiSynth <- noteList2

Making a GUI with Resource Types

 For virtual objects, we use a modified

version of Euterpea’s UI.

 We first make some widgets

ampSlider :: UISF (S ASlider) () Double
freqSlider :: UISF (S FSlider) () Double
graph :: UISF (S Graph) Double ()

ampSlider = title "Amplitude“ $ hSlider (0, 1) 0.5
freqSlider = title "Frequency“ $ hSlider (20, 2000) 400
graph = realtimeGraph (400,300) 400 20 Black

(UISF is a special signal function to handle UI.)

Making a GUI with Resource Types

 It’s trivial to bind the widgets together:

type sinWavRTs = S FSlider `U` S ASlider `U` S Graph

sinGraph :: UISF sinWavRTs () ()
sinGraph = proc _ -> do
 f <- freqSlider -< ()
 a <- ampSlider -< ()
 s <- freqToSin -< f
 graph -< s * a

freqToSin :: SF Empty Double Double

 Here is this program in action

Adding Debugging data

 Perhaps we want to show debug data

generated by freqToSin.

 We can update it to have type:

freqToSin :: SF Empty Double (Double, Double)

 But now all functions depending on

freqToSin will have type errors!

Wormholes

 We can use a wormhole to fix this.

 data Wormhole r1 r2 a =
 Wormhole { whitehole :: SF (S r1) () a,
 blackhole :: SF (S r2) a () }
 makeWormhole :: a -> Wormhole r1 r2 a

◦ Wormholes are basically just mutable

variables (i.e. memory locations).

makeWormhole init = unsafePerformIO $ do
 r <- newIORef init
 return $ Wormhole (source $ readIORef r)
 (sink $ writeIORef r)

Wormholes

 We can use a wormhole to fix this.

 data Wormhole r1 r2 a =
 Wormhole { whitehole :: SF (S r1) () a,
 blackhole :: SF (S r2) a () }
 makeWormhole :: a -> Wormhole r1 r2 a

◦ Wormholes are basically just mutable

variables (i.e. memory locations).

◦ With resource types, we can guarantee that

they are only ever written to in one place and

only ever read from in one place.

◦ This assures safety.

Wormholes

 Wormholes are tagged with one resource
type for reading and one for writing

data DebugW
data DebugB
wormhole :: WormHole DebugW DebugB Double
wormhole = makeWormhole 0

 Now, freqToSin writes to the wormhole,

and only its resources:

freqToSin :: SF (S DebugB) Double Double

Wormholes

 We don’t even need to change

sinGraph. We simply read from the

wormhole for the stored debug info:

data DebugGraph
debugGraph :: UISF (S DebugGraph) Double ()
debugGraph = realtimeGraph (400,300) 400 20 Red

sinGraphWithDebug
 :: UISF (sinWavRTs `U` S DebugB `U`
 S DebugW `U` S DebugGraph) () ()
sinGraphWithDebug = proc _ -> do
 _ <- sinGraph -< ()
 d <- toUISF (whiteHole wormhole) -< ()
 _ <- title “Debug” debugGraph -< d
 returnA -< ()

 Another Demo

Future work

 Running signal functions in parallel
◦ SF work can be easily pushed to threads

◦ Perhaps we can use something like
wormholes to create safe communication
between threads

 Rebindable Syntax for Arrows
◦ Currently, arrow syntax in GHC doesn’t

accept resource types properly

 Local Resource Types
◦ Existential types for wormholes

◦ Type level counters for arbitrarily many virtual
resources

Conclusions

 Resource types clearly show what

resources are being used.

 They safely permit seemingly

dangerous non-local effects.

 They are straightforward and effective.

Questions

Extra Slides

Event-Based Signal Functions

 Transforming a continuous signal

function to an event based one is easy.

liftToEvent :: SF r a b -> SF r (Event a) (Event b)
liftToEvent sf = proc a -> do
 case a of
 Event a' -> sf >>> arr Event -< a'
 NoEvent -> returnA -< NoEvent

 But this doesn’t help if the signal

function blocks on input.

Running SFs in Parallel

 We need to run the blocking action in

parallel in a separate thread

 We use toSFE to do that:

 toSFE :: SF r a b -> SF r (Event a) (Event b)

◦ toSFE cleverly uses Chans to make sure

that data is available as soon as it’s ready.

◦ toSFE has an interesting sister function:

fromSFE :: SF r (Event a) (Event b) -> SF r a b

◦ par = fromSFE . toSFE :: SF r a b -> SF r a b

UISF

 We based UISF on the Euterpea UI.

 How do we make UISF without

redoing all our Euterpea UI work?

UISF

 There is no reason to pin SF to the IO

monad. In practice, it has a monadic

argument:

data SFM m r a b = SFM
 { sfmFun :: a -> m (b, SFM m r a b) }
newtype SF = SFM IO

 So, all we need is a UI monad that fits

nicely into SFM.

UISF

 Euterpea’s UI monad:

newtype UI a = UI
 { unUI :: CX -> Signal (Input, Sys) ->
 (Signal (Action, Sys, a), Layout) }
newtype Signal a = Signal { unS :: [a] }

 This encapsulates a primitive signal

function with itself.

 It also has a static rendering context.

UISF

 Ideally, we want something like:

newtype UI a = UI
 { unUI :: (Input, Sys) -> (Action, Sys, a) }

 This is the signal portion, but we also
need the context portion:

newtype UICTX a = UICTX
 { unUICTX :: CTX -> (Layout, a) }

 Together, we achieve:

newtype UISF r a b =
 UISF (UICTX (SFM UI r a b))

