
Expression Problem
From Wikipedia, the free encyclopedia

The Expression Problem is a term used in discussing strengths and weaknesses
of various programming paradigms and programming languages. The expression

problem can treated as a use case in programming language design.[1] [2] [3] [4]

[5]

Philip Wadler coined the term:

The Expression Problem is a new name for an old problem. The goal is to define
a datatype by cases, where one can add new cases to the datatype and new
functions over the datatype, without recompiling existing code, and while

retaining static type safety (e.g., no casts). [6]

Wadler selected the term as a pun. On the one hand, the programmer is trying to
"express" a solution to a problem. On the other hand, the standard illustrative
example given is that of an interpreter for expressions in some simple calculator
language.

The expression problem is also a fundamental problem in multi-dimensional
Software Product Line design and in particular as an application (?) or special
case(?) of FOSD Program Cubes (http://en.wikipedia.org
/wiki/FOSD_Program_Cubes#Applications) .

News:

A modular solution of the expression problem was given by Lect.Drd. Dan Popa,
from Bacau University during the summer of 2008. His idea have at least three
important parts:

1)to produce a modular tree by using a sort of special functions called
pseudoconstructors

2)to produce a modular language interpreter or a modular language evaluator
using pseudoconstructors over monadic values instead of usual monadic
semantics

3)to NOT use an interpret or an eval function but to make every expression an
itself evaluator.

Basically, the main idea was to replace a typical case from the evaluator or
interpreter which is written in Haskell as
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do {vx <-interp x env;
    vy <-interp y env;
    return(vx +  vy); }:: M Float

by something very simple, a modular simple itself evaluator:

plus x y  =
do { vx <-x;
     vy <-y;
     return(vx +  vy); }:: M Float

supported by some definitions for numbers and classes of operations.Such
functions can be spread in various modules.

As a result,an interpreter or an evaluator can be built by simply imported all the
required modules in a main client module (program.)

In the figure above you may see GHCI including the modules and being able to
evaluate an abstract syntax tree which is built using pseudoconstructors. Note
the fact that pseudoconstructors did not use Capitals as the usual constructors
from the data declaration.
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