
Expression Problem
From Wikipedia, the free encyclopedia

The Expression Problem is a term used in discussing strengths and weaknesses
of various programming paradigms and programming languages. The expression

problem can treated as a use case in programming language design.[1] [2] [3] [4]

[5]

Philip Wadler coined the term:

The Expression Problem is a new name for an old problem. The goal is to define
a datatype by cases, where one can add new cases to the datatype and new
functions over the datatype, without recompiling existing code, and while

retaining static type safety (e.g., no casts). [6]

Wadler selected the term as a pun. On the one hand, the programmer is trying to
"express" a solution to a problem. On the other hand, the standard illustrative
example given is that of an interpreter for expressions in some simple calculator
language.

The expression problem is also a fundamental problem in multi-dimensional
Software Product Line design and in particular as an application (?) or special
case(?) of FOSD Program Cubes (http://en.wikipedia.org
/wiki/FOSD_Program_Cubes#Applications) .

News:

A modular solution of the expression problem was given by Lect.Drd. Dan Popa,
from Bacau University during the summer of 2008. His idea have at least three
important parts:

1)to produce a modular tree by using a sort of special functions called
pseudoconstructors

2)to produce a modular language interpreter or a modular language evaluator
using pseudoconstructors over monadic values instead of usual monadic
semantics

3)to NOT use an interpret or an eval function but to make every expression an
itself evaluator.

Basically, the main idea was to replace a typical case from the evaluator or
interpreter which is written in Haskell as

Expression Problem - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Expression_Problem

1 sur 3 29/07/2009 23:15

do {vx <-interp x env;
 vy <-interp y env;
 return(vx + vy); }:: M Float

by something very simple, a modular simple itself evaluator:

plus x y =
do { vx <-x;
 vy <-y;
 return(vx + vy); }:: M Float

supported by some definitions for numbers and classes of operations.Such
functions can be spread in various modules.

As a result,an interpreter or an evaluator can be built by simply imported all the
required modules in a main client module (program.)

In the figure above you may see GHCI including the modules and being able to
evaluate an abstract syntax tree which is built using pseudoconstructors. Note
the fact that pseudoconstructors did not use Capitals as the usual constructors
from the data declaration.

References

Direct modular evaluation of expressions using the monads and type classes
in Haskell by DAN V. POPA ; UNIVERSITATEA DIN BACĂU ;STUDII ŞI
CERCETĂRI ŞTIINŢIFICE ;Seria: MATEMATICĂ ; Nr. 18 (2008), pag. 233 –
248 (http://www.haskell.org/sitewiki/images/7/7d/POPA_D.pdf.)
Home Page of Dan Popa - The User:Ha$kell (http://www.haskell.org
/haskellwiki/User:Ha%24kell)
Applications of FOSD Program Cubes (http://en.wikipedia.org
/wiki/FOSD_Program_Cubes#Applications)

Expression Problem - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Expression_Problem

2 sur 3 29/07/2009 23:15

This page was last modified on 29 July 2009 at 16:47.
Text is available under the Creative Commons Attribution/Share-Alike
License; additional terms may apply. See Terms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a
non-profit organization.

Generic Programming (http://en.wikipedia.org/wiki/Generic_programming)

^ "User-defined types and procedural data structures as complementary
approaches to data abstraction". http://www.google.com/url?sa=U&
start=1&q=http://portal.acm.org/citation.cfm%3Fid%3D186680&
ei=iM3QSdLVNYLoyAWv3szRCQ&
usg=AFQjCNHnntAxyeeK5SzrnmPiJ77Qgr_pSw.

1.

^ "Object-Oriented Programming versues Abstract Data Types".
http://www.google.com/url?sa=U&start=1&q=http://www.cs.utexas.edu
/users/wcook/papers/OOPvsADT/CookOOPvsADT90.pdf&
ei=Ms7QSYOwAqCyyQXPioHKCQ&
usg=AFQjCNEx070KUZDcmbDS_x3uslsIYSaZCQ.

2.

^ "Synthesizing Object-Oriented and Functional Design to Promote
Re-Use". http://www.google.com/url?sa=U&start=2&q=http:
//citeseer.ist.psu.edu/krishnamurthi98synthesizing.html&
ei=xczQScHyNIvEyQWEv9nWCQ&
usg=AFQjCNEU3GvIyhjYeU2JndB3Uu3-1olEBQ.

3.

^ "Extensible Algebraic Datatypes with Defaults".
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.6778.

4.

^ "Independently extensible solutions to the expression problem".
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.4449.

5.

^ "The Expression Problem". http://www.daimi.au.dk/~madst/tool/papers
/expression.txt.

6.

Retrieved from "http://en.wikipedia.org/wiki/Expression_Problem"
Categories: Computer programming
Hidden categories: Computer science articles needing expert attention | Articles
needing expert attention from May 2009 | Articles lacking sources | All articles
lacking sources

Expression Problem - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Expression_Problem

3 sur 3 29/07/2009 23:15

