
SMART LOOP BREAKER CHOICE
Haskell Implementors Workshop 2011 - Tokyo



Bas den Heijer

• Master’s student at Utrecht University

• Mail S.K.denHeijer@students.uu.nl / 6.keer.9@gmail.com

• Skype debasfoon

はじめまして

2



Hello
Bas den Heijer

• Master’s student at Utrecht University

• Mail S.K.denHeijer@students.uu.nl / 6.keer.9@gmail.com

• Skype debasfoon

3



Thesis supervised by Atze Dijkstra + Hans Bodlaender

Software Technology
• Functional Programming
• Compilers (UHC)
• Optimisation

Algorithms
• Big Oh’s
• Math
• NP-Completeness
• Fixed Parameter Tractability
• Treewidth

4



5



Inlining looking like a graph

f = g

g = x + y
f g

x

y

+

6



Inlining looking like a graph

f = g

g = x + y
f g

x

y

+

f = x + y f

x

y

+ 7



map f [] = []

map f (x:xs) = f x : map f xs map

8



map f [] = []

map f (x:xs) = f x : map f xs map

map

map f [] = []

map f (x:xs) = f x : (case xs of [] -> []; 
y:ys -> f y : map f ys) f xs

9



map f [] = []

map f (x:xs) = f x : map f xs

map

map

map

map f [] = []

map f (x:xs) = f x : (case xs of [] -> []; 
y:ys -> f y : map f ys) f xs

10



map f [] = []

map f (x:xs) = f x : map f xs

map

map

map

map f [] = []

map f (x:xs) = f x : (case xs of [] -> []; 
y:ys -> f y : map f ys) f xs

11



Loop breakers

• Choose a breaker on 
every loop

• Don’t inline loop 
breakers

p r

g h

f q

12



Loop breakers

• Choose a breaker on 
every loop

• Don’t inline loop 
breakers

p r

g h

f q

13



Loop breakers

• Choose a breaker on 
every loop

• Don’t inline loop 
breakers

p r

g h

f q

14



Loop breakers

Goals

• Don’t break variables that would be nice to inline

• Pick as few loop breakers as possible

p g

q f h

15



GHC loop breaker heuristic
1. Decompose into strongly connected components

2. For each component with a cycle:
A. Pick a node and make it a loop breaker

B. If still cyclic, repeat from step 1

• Don’t pick a node with score if nodes with score are 
still available

• For each score: after 2 random picks just make all nodes of 
that score loop breaker

16



So, the loop breaker heuristic…

Can we do so quickly?

Do programs actually benefit?

Can we do better?

17



The Feedback Vertex Set

• Applications in deadlock-mitigation, chip-design…

• NP-Complete

In the mathematical discipline of graph theory, a 
feedback vertex set of a graph is a set of vertices 

whose removal leaves a graph without cycles.
- Wikipedia

18



19
nofib/real/bspt



20
nofib/real/bspt



21
nofib/real/bspt



nofib/real/anna
22



nofib/real/anna
23



nofib/real/anna
24



nofib/real/hpg
25



nofib/real/hpg
26



nofib/real/hpg
27



28



29

nofib/real/*

30491 nodes

98218 edges

29066 strongly conn. components

98% of which are singletons

52% of the rest are dictionary-nests

85 nodes in largest scc

24 scc’s larger than 10 nodes

GHC uses 2085 loop breakers,
only 1754 are needed



So, the loop breaker heuristic…

Yes

Can we do so quickly?

Do programs actually benefit?

Can we do better?

30



The exact algorithm

1. Split up in SCCs (strongly connected components)

2. Do the priowiggle to convert scores to blacked out nodes

3. Apply a few reduction rules

4. Branch & bound

31



The priowiggle
• Goal: black out nodes (make non-breaker) of high score, while 

making sure that it’s still possible to break all cycles

1. Find the lowest score such that breaking every node with 
score results in an acyclic component

2. Black out all nodes with score 

32



The priowiggle
• Goal: black out nodes (make non-breaker) of high score, while 

making sure that it’s still possible to break all cycles

1. Find the lowest score such that breaking every node with 
score results in an acyclic component

2. Black out all nodes with score 

33

1
1

1

5 5 1

1

5



Reduction rules
• Remove duplicate edges

• Keep splitting into SCCs

• Break self-loops

• Shortcut degree two

• Fix non-breaker cycles
34

f f

f g h f h



• Remove duplicate edges

• Keep splitting into SCCs

• Break self-loops

• Shortcut degree two

• Fix non-breaker cycles

35

f f

f g h f h

f g h

q p

f g h

q p



0

10

20

30

40

50

60

70

GHC -O1 Exact FVS

seconds

Compile time nofib/real

36



So, the loop breaker heuristic…

Yes

YesCan we do so quickly?

Do programs actually benefit?

Can we do better?

37



nofib-analyse
• mode=slow

• -O1

• 25 runs

38

Size Allocs Runtime Elapsed TotalMem

Min -0.0% -4.9% -6.4% -6.5% +0,0%

Max +0.1% +0.0% +1.5% +3.0% +0.0%

Geometric mean +0.0% -0.1% -0.4% -0.0% -0.0%



What’s going on here?
• Maybe loop breaker choice isn’t important

• More opportunities, but inliner ignores them (make more 
aggressive?)

• Blame the benchmark
• Tests are small: 48/91 programs take less than 200 ms, are 

ignored in totals

• Maybe improved components are not covered much by tests

• Untested advantages
• More flexible scoring possible: not just priorities but real scores 

(for example from a profile) 39



So, the loop breaker heuristic…

Yes

YesCan we do so quickly?

Do programs actually benefit?

Can we do better?

No..
not yet 40



Doing it on the edges

41

f g

p h



Doing it on the edges

42

f g

p h



Doing it on the edges
• More accurate portrayal of costs

• Call-site aware
• Opportunity for more fine-grained scores

• DFun special case is no longer necessary
43

x = Tree y z case x of
Tree _ _ → a
Leaf _ → b



Doing it on the edges
• Blackout feedback arc set

• Same trick, slightly different reduction rules

44

Optimum FAS is 44% smaller 
than GHC’s heuristic on 

nofib/real



So, the loop breaker heuristic…

Can we do so quickly?

Do programs actually benefit?

Can we do better? Yes

Yes

No..
not yet 45

Yes

Yes

??

nodes edges



spectral/boyer

46



spectral/boyer

47



spectral/boyer

48



spectral/boyer

49



spectral/boyer

50


