SMART LOOP BREAKER CHOICE

Haskell Implementors Workshop 2011 - Tokyo

FCLHELT

Bas den Heijer
Master’s student at Utrecht University
Mail S.K.denHeijer@students.uu.nl / 6.keer.g@gmail.com
SRkype debasfoon

@7 2 [Faculty of Sciencel
%%zl § Universiteit Utrecht Information and

Computing Sciences

Hello

Bas den Heijer
Master’s student at Utrecht University
Mail S.K.denHeijer@students.uu.nl / 6.keer.g@gmail.com
SRkype debasfoon

@7 2 [Faculty of Sciencel
%%zl § Universiteit Utrecht Information and

Computing Sciences

Thesis supervised by Atze Dijkstra + Hans Bodlaender

Software Technology

e Functional Programming
e Compilers (UHC)

e Optimisation

Algorithms

e Big Oh’s

e Math

e NP-Completeness

e Fixed Parameter Tractability
e Treewidth

LOOP BREAKING

Inlining looking like a graph

Inlining looking like a graph

map f (] =[]
map f (x:xs) =f x : map f xs

map f (] =[]
map f (x:xs) =f x : map f xs

$ $

map f[] =[]
map f (x:xs) =f x : (case xs of [] -> [[;
y:ys -> fy:map fys)fxs

map f (] =]
map f (x:xs) =f x : map f xs

map f[] =[]
map f (x:xs) =f x : (case xs of [] -> [[;
y:ys -> fy:map fys)fxs

map f (] =[]

map f (x:xs) = f x : (case xs of [-> []; y:ys -
>fy:(caseys of []>[]; zzzs -> fz: map f
zs) fys) f xs

map f (] =]
map f (x:xs) =f x : map f xs

map f[] =[]
map f (x:xs) =f x : (case xs of [] -> [[;
y:ys -> fy:map fys)fxs

map f (] =[]

map f (x:xs) = f x : (case xs of [-> []; y:ys -
>fy:(caseys of []>[]; zzzs -> fz: map f
zs) fys) f xs

Loop breakers

* Choose a breaker on
every loop

* Don’t inline loop
breakers

Loop breakers

Choose a breaker on
every loop

Don’t inline loop
breakers

Loop breakers

Choose a breaker on
every loop

Don’t inline loop
breakers

Loop breakers

Goals
* Don’t break variables that would be nice to inline
 Pick as few loop breakers as possible

GHC loop breaker heuristic

Decompose into strongly connected components
For each component with a cycle:

A. Pick a node and make it a loop breaker

B. If still cyclic, repeat from step 1

Don’t pick a node with score n if nodes with score < n are
still available

For each score: after 2 random picks just make all nodes of
that score loop breaker

So, the loop breaker heuristic..

Can we do better?

Can we do so quickly?

Do programs actually benefit?

blackout

Thi*F eedback Vertex Set

In the mathematical discipline of graph theory, a
feedback vertex set of a graph is a set of vertices

whose removal leaves a graph without cycles.
- Wikipedia

= Applications in deadlock-mitigation, chip-design...
* NP-Complete

0
0 ds_dyzw
pinNegtinPos

0
o ds_d73M
pinPostinPos
0 0
partTree pinPostinNeg o
ds_d73C

0
o
ds_d746
fail_d74L inBoth .
nofib/real/bspt

(o]
ds_dyag

0
ds_dy4k

)
0 ds_d73w
pinNegtinPos

0
o ds_d73M
pinPostinPos
) 0
partTree pinPostinNeg

(o]
ds_d74g

ds_d73C

0
0 pinNegtinNeg 0
ds_d746
ds_d74k -

nofib/real/bspt

0
partTree

nofib/real/bspt

nofib/real/anna

0
0 0 tcletrec2
tcletrec tcletreca

tcap 0 [0
tcl tcl o phi_sTau_sTree_s

0
tau_final

phi
0
tccases

0
tcleta 0

tclambda S

(o] 0
tccase tccasen

rhsTc1

nofib/real/anna

nofib/real/anna

o
gen_minus_exp

0
binary_exp

5
0 0
gen_exp' gen_lambda_exp
5 5

arrayfns taggedfns
W s S 0]
gen_tuple_exp gen_tagged_exp gen_div_exp gen_mult_exp

0 0 o 5 0 0
gen_less_exp gen_drop_exp gen_take_exp charfns gen_list_exp gen_neg_exp
o o [o 0 0 o
int_binary_exp gen_array_exp gen_or_exp gen_and_exp gen_not_exp gen_decode_exp gen_int_id_exp
[(9 o
bool_binary_exp unary_exp gen_plus_exp

nofib/real/hpg

0
0
binary_exp
0
gen_exp

o 0
gen_lambda_exp

0 0 0 0
gen_tuple_exp gen_tagged_exp
0 0 0 0 0
gen_less_exp gen_drop_exp gen_take_exp gen_list_exp gen_neg_exp
0 0 0 0 0 0 0
int_binary_exp gen_array_exp gen_or_exp gen_and_exp gen_not_exp gen_decode_exp gen_int_id_exp
0 0 0 o
ds_dszt bool_binary_exp unary_exp gen_plus_exp

nofib/real/hpg

(o]
s_dszt

nofib/real/hpg

Toopiy av3} [bd]

>

main Main mainLoop {v rby'} [lidx]

nofib/real/*

98218 edges

29066 Strongly—conn. components

98% of which are singletons

L tooptvavay i)) |

(/"(o B =
o main Main mamLoap{v rby) [lidx]
3 gl 9

52% of the rest are dictionary-nests

85 nodes in largest scc

24 sccs larger than 10 nodes

So, the loop breaker heuristic..

Can we do better? Yes

Can we do so quickly?

Do programs actually benefit?

The exact algorithm

1. Split up in SCCs (strongly connected components)

Do the priowiggle to convert scores to blacked out nodes
Apply a few reduction rules

Branch & bound

W N

The priowiggle

Goal: black out nodes (make non-breaker) of high score, while
making sure that it’s still possible to break all cycles

Find the lowest score s such that breaking every node with
score < s results in an acyclic component

Black out all nodes with score > s

The priowiggle

Goal: black out nodes (make non-breaker) of high score, while
making sure that it’s still possible to break all cycles

Find the lowest score s such that breaking every node with
score < s results in an acyclic component

Black out all nodes with score > s

Reduction rules

* Remove duplicate edges
Keep splitting into SCCs
Break self-loops

Shortcut degree two

Fix non-breaker cycles

Remove duplicate edges
Keep splitting into SCCs
Break self-loops

Shortcut degree two

Fix non-breaker cycles

70
60
50
40

seconds
30
20
10

0]

Compile time nofib/real

GHC -01

I
Exact FVS

So, the loop breaker heuristic..

Can we do better? Yes

Can we do so quickly? Yes

Do programs actually benefit?

nofib-analyse

size | Allocs | Runtime | Elapsed | TotalMem

-0.0% '4.970 '6.470 '6.570 +O,OC70
+0.1% +0.0% +1 .570 +3.0<7o +0.0%

Geometric mean [EYoXoyA -0.1% -0.4% -0.0% -0.0%

What's going on here?

Maybe loop breaker choice isn’t important

* More opportunities, but inliner ignores them (make more
aggressive?)

Blame the benchmark

 Tests are small: 48/91 programs take less than 200 ms, are
ignored in totals

* Maybe improved components are not covered much by tests
Untested advantages

* More flexible scoring possible: not just priorities but real scores
(for example from a profile)

So, the loop breaker heuristic..

Can we do better? Yes

Can we do so quickly? Yes

Do programs actually benefit?

Doing it on the edges

Doing it on the edges

Doing it on the edges

More accurate portrayal of costs

Call-site aware
e Opportunity for more fine-grained scores

X=Treeyz case x of
Tree __ =>a
leaf _ =>b

DFun special case is no longer necessary

Doing it on the edges

» Blackout feedback arc set
» Same trick, slightly different reduction rules

Optimum FAS is 44% smaller

than GHC’s heuristic on
nofib/real

So, the loop breaker heuristic...

nodes edges

Do programs actually benefit?
not yet

Can we do better?

Can we do so quickly?

spectral/boyer

spectral/boyer

spectral/boyer

spectral/boyer

spectral/boyer

