
API Annotations
enabler for source code round tripping / modification

Background

Major issues
● Managing change

○ add / delete lines
○ changing indentation
○ preserving layout

● No separation of essential and accidental
code
○ fiddly token management

Solution : get rid of tokens

● Approach taken by exactprint in haskell-
src-exts

● But this is also brittle and fiddly
○ Annotated locations are present, but changing

anything requires changing everything
○ Basically same change problems as with tokens

● But still a step in the right direction

Concept for HaRe

● Use GHC AST updated as per HSE
● Convert the fixed locations into relative

○ Essentially convert to pretty printer directives
○ A HaRe intermediate step had been haskell-

token-utils, did something similar using dual-
tree from diagrams

GHC - 7.8 - Plan

● landmines in AST
● add API Annotations

○ basically the equivalent of HSE Annotated
● capture all original source literals

GHC 7.10.2

● 40 commits over 10 months
● But, able to round-trip most of hackage

Landmines - PlaceHolder.hs
- | Types that are not defined until after type checking
type family PostTc it ty :: * -- Note [Pass sensitive types]
type instance PostTc Id ty = ty
type instance PostTc Name ty = PlaceHolder
type instance PostTc RdrName ty = PlaceHolder

-- | Types that are not defined until after renaming
type family PostRn id ty :: * -- Note [Pass sensitive types]
type instance PostRn Id ty = ty
type instance PostRn Name ty = ty
type instance PostRn RdrName ty = PlaceHolder

API Annotations
data AnnKeywordId

= AnnAs
| AnnAt
| AnnBang -- ^ '!'

 ….
type ApiAnnKey = (SrcSpan,AnnKeywordId)
type ApiAnns = (Map.Map ApiAnnKey [SrcSpan]
 , Map.Map SrcSpan [Located AnnotationComment])

Parser
 | 'do' stmtlist {% ams (L (comb2 $1 $2)
 (mkHsDo DoExpr (snd $ unLoc $2)))
 (mj AnnDo $1:(fst $ unLoc $2)) }

-- |Add a list of AddAnns to the given AST element
ams :: Located a -> [AddAnn] -> P (Located a)
ams a@(L l _) bs = mapM_ (\a -> a l) bs >> return a

-- |Construct an AddAnn from the annotation keyword and the location
-- of the keyword
mj :: AnnKeywordId -> Located e -> AddAnn
mj a l = (\s -> addAnnotation s a (gl l))

Example
2: foo = do

3: let x = 1 -- a comment

4: return x
([((tests/examples/SimpleDo.hs:(2,1)-(4,10), AnnEqual), [tests/examples/SimpleDo.hs:2:5]),
 ((tests/examples/SimpleDo.hs:(2,1)-(4,10), AnnFunId), [tests/examples/SimpleDo.hs:2:1-3]),
 ((tests/examples/SimpleDo.hs:(2,1)-(4,10), AnnSemi), [tests/examples/SimpleDo.hs:5:1]),
 ((tests/examples/SimpleDo.hs:(2,7)-(4,10), AnnDo), [tests/examples/SimpleDo.hs:2:7-8]),
 ((tests/examples/SimpleDo.hs:3:3-14, AnnLet), [tests/examples/SimpleDo.hs:3:3-5]),
 ((tests/examples/SimpleDo.hs:3:3-14, AnnSemi), [tests/examples/SimpleDo.hs:4:3]),
 ((tests/examples/SimpleDo.hs:3:10-14, AnnEqual), [tests/examples/SimpleDo.hs:3:12]),
 ((tests/examples/SimpleDo.hs:3:10-14, AnnFunId), [tests/examples/SimpleDo.hs:3:10]),
 ((<no location info>, AnnEofPos), [tests/examples/SimpleDo.hs:5:1])],
 [(tests/examples/SimpleDo.hs:(2,7)-(4,10) [AnnLineComment "-- a comment"])])

ghc-exactprint

● inspired by haskell-src-exts exactprint
● but with changes driven by HaRe

○ Must allow changes to the AST
○ Fully local edit operations, and not dependent on

SrcSpan
○ Automatically manage layout rules

● modelled on pretty-printer
● separate library from HaRe

ghc-exactprint phases

● Delta - relativise annotations
● Transform - manipulate AST
● Print - recreate original source, with changes

ghc-exactprint annotations
data KeywordId = G GHC.AnnKeywordId
 | AnnSemiSep
 | AnnComment Comment
 | AnnString String
 | AnnUnicode GHC.AnnKeywordId
 deriving (Eq,Ord)
data AnnKey = AnnKey GHC.SrcSpan AnnConName
 deriving (Eq, Ord)
type Anns = Map.Map AnnKey Annotation

Annotation
data Annotation = Ann
 { annEntryDelta :: DeltaPos
 , annPriorComments :: [(Comment, DeltaPos)]
 , annFollowingComments :: [(Comment, DeltaPos)]

 , annsDP :: [(KeywordId, DeltaPos)]
 , annSortKey :: (Maybe [GHC.SrcSpan])
 , annCapturedSpan :: (Maybe AnnKey)
 } deriving (Typeable,Eq)

{ tests/examples/SimpleDo.hs:(2,7)-(4,10) }
 Just (Ann (DP (0,1)) [] [] [((G AnnDo),DP (0,0))] Nothing Nothing)
 (HsDo
 (DoExpr)
 [
 ({ tests/examples/SimpleDo.hs:3:3-14 }
 Just (Ann (DP (1,2)) [] [] [((G AnnLet),DP (0,0))] Just [tests/examples/SimpleDo.hs:3:10-14] Nothing)
 (LetStmt
 (HsValBinds
 (ValBindsIn {Bag(Located (HsBind RdrName)):
 [
 ({ tests/examples/SimpleDo.hs:3:10-14 }
 Just (Ann (DP (0,4)) [] [] [] Nothing Nothing)
 (FunBind
 …..

2: foo = do

3: let x = 1 -- a comment

4: return x

foo xxx = let a = 1

 b = 2 in xxx + a + b

Flow layout

foo xxxlonger = let a = 1

 b = 2 in xxxlonger + a + b

ghc-exactprint Transform

● Transform monad
● manages annotations and new SrcSpans

○ SrcSpan AnnConName is only an index into anns,
can freely add or remove SrcSpans

● Provides operations to simplify modifications

HasDecls
class (Data t) => HasDecls t where

hsDecls :: t -> Transform [GHC.LHsDecl GHC.RdrName]
replaceDecls :: t -> [GHC.LHsDecl GHC.RdrName] -> Transform t

-- |This is a function
foo = x -- comment1

-- |This is a function
foo = x -- comment1
 where

nn = 2

class (Monad m) => (HasTransform m) where
 liftT :: Transform a -> m a

module RmDecl2 where

sumSquares x y = let sq 0=0

 sq z=z^pow

 pow=2

 in sq x + sq y

anotherFun 0 y = sq y

 where sq x = x^2

module RmDecl2 where

sumSquares x y = let sq 0=0
 sq z=z^pow
 in sq x + sq y

anotherFun 0 y = sq y
 where sq x = x^2

 doRmDecl lp = do
 let
 go :: GHC.LHsExpr GHC.RdrName -> Transform (GHC.LHsExpr GHC.RdrName)
 go e@(GHC.L _ (GHC.HsLet {})) = do
 decs <- hsDecls e
 e' <- replaceDecls e (init decs)
 return e’
 go x = return x

 SYB.everywhereM (SYB.mkM go) lp

Identity Transformation
● A source to source tool is useless if it cannot

do the identity transformation
● Matthew Pickering results for hackage

○ 50,000 files successfully roundtripped (excl CPP)
○ 40 failures well-categorised and being attended to

for GHC 7.12
■ CPP file end on Mac / Clang [not checked]
■ multi-line string literals in pragmas
■ unicode *

Apply-refact

● GSOC project to apply hlint hints via ghc-
exactprint (Matthew Pickering)

● Successful outcome - demo
● Validates ghc-exactprint approach

Next steps

● More AST cleanups for ParsedSource
○ Make sure every RdrName is Located

● Investigate keeping information in
RenamedSource AST

● OR providing lookup table from Located
RdrName to Name

● More GHC API support for tool makers

References
● https://github.com/alanz/ghc-exactprint
● https://github.com/alanz/HaRe
● https://github.com/mpickering/apply-refact
● http://mpickering.github.io/gsoc2015.html
● http://mpickering.github.io/posts/2015-07-23-ghc-

exactprint.html

https://github.com/alanz/ghc-exactprint
https://github.com/alanz/ghc-exactprint
https://github.com/alanz/HaRe
https://github.com/alanz/HaRe
https://github.com/mpickering/apply-refact
https://github.com/mpickering/apply-refact
http://mpickering.github.io/gsoc2015.html
http://mpickering.github.io/gsoc2015.html

Questions?

