Haskell Communities and Activities Report

http: //www.haskell.org/communities/

Sixteenth Edition — May 2009

Peter Achten

Tiago Miguel Laureano Alves

Emil Axelsson
Alistair Bayley
Gwern Branwen
Bjorn Buckwalter
Roman Cheplyaka
Sterling Clover
Jacome Cunha
Robert Dockins

Henrique Ferreiro Garcia

Peter Gavin
Andy Gill
Daniel Gorin
Claude Heiland-Allen
Jan Martin Jansen
Kevin Hammond
Guillaume Hoffmann
Csaba Hruska
Graham Hutton
Oleg Kiselyov
Michal Konec¢ny
Sean Leather
Ben Lippmeier
Tan Lynagh
José Pedro Magalhaes
Simon Marlow
Simon Michael
Neil Mitchell
Matthew Naylor
Johan Nordlander
Jens Petersen
Fabian Reck
Alberto Ruiz
Uwe Schmidt
Paulo Silva

Martijn van Steenbergen

Jon Strait
Wouter Swierstra
Wren Ng Thornton
Marcos Viera
Malcolm Wallace

Janis Voigtlander (ed.)
Andy Adams-Moran
Krasimir Angelov
Arthur Baars
Jean-Philippe Bernardy
Joachim Breitner
Denis Bueno
Olaf Chitil
Alberto Gémez Corona
Nils Anders Danielsson
Chris Eidhof
Marc Fontaine
Patai Gergely
George Giorgidze
Jurriaan Hage
Aycan Irican
Wolfgang Jeltsch
Enzo Haussecker
Martin Hofmann
Liyang HU
Farid Karimipour
Lennart Kolmodin
Eric Kow
Huiqing Li
Andres Loh
John MacFarlane
Ketil Malde
Michael Marte
Arie Middelkoop
Maarten de Mol
Rishiyur Nikhil
Jeremy O’Donoghue
Simon Peyton Jones
Claus Reinke
David Sabel
Martijn Schrage
Ben Sinclair
Dominic Steinitz
Martin Sulzmann
Hans van Thiel
Phil Trinder
Miguel Vilaca
Jinjing Wang
Brent Yorgey

Lloyd Allison
Heinrich Apfelmus
Justin Bailey
Clifford Beshers
Niklas Broberg
Andrew Butterfield
Jan Christiansen
Duncan Coutts
Atze Dijkstra
Conal Elliott
Nicolas Frisby
Brett G. Giles
Dimitry Golubovsky
Bastiaan Heeren
Judah Jacobson
Florian Haftmann
Christopher Lane Hinson
Creighton Hogg
Paul Hudak
Garrin Kimmell
Slawomir Kolodynski
Stephen Lavelle
Bas Lijnse
Rita Loogen
Christian Maeder
Blazevi¢ Mario
Bart Massey
Ivan Lazar Miljenovic
Dino Morelli
Thomas van Noort
Patrick O. Perry
Dan Popa
Alexey Rodriguez
Ingo Sander
Tom Schrijvers
Ganesh Sittampalam
Don Stewart
Doaitse Swierstra
Henning Thielemann
Jared Updike
David Waern
Kim-Ee Yeoh

http://www.haskell.org/communities/

Preface

This is the 16th edition of the Haskell Communities and Activities Report. There are a number
of completely new entries and many small updates. As usual, fresh entries are formatted using
a blue background, while updated entries have a header with a blue background. Entries on
which no activity has been reported for a year or longer have been dropped. Please do revive
them next time if you have news on them.

My aim for October is to significantly increase the percentage of blue throughout the pages
of the report. Clearly, there are two ways to achieve this: have more blue or have less white.
My preference is the former option, and I count on the community to make it feasible. In any
case, [will tend to be less conservative than this time around: I plan to drop, or simply replace
with pointers to previous versions, entries that see no update between now and then. A call for
new entries and updates to existing ones will be issued on the usual mailing lists.

Now enjoy the current report and see what other Haskellers have been up to in the last half
year. Any kind of feedback is of course very welcome (hcar@haskell.org), as are thoughts on the
plan outlined above.

Janis Voigtlander, Technische Universitat Dresden, Germany

mailto: hcar at haskell.org

Contents

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
29.1
29.2
293

3.1

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6
3.2

3.2.1
3.2.2
3.2.3
3.24
3.3

3.3.1
3.3.2

4.1

4.1.1
4.1.2
4.1.3
4.2

4.2.1
4.2.2
4.3

4.3.1
4.3.2
4.3.3

Information Sources

Book: Programming in Haskell
The Monad.Reader e e e
Haskell Wikibook e e e e e e
Monad Tutorial e e e e e
Oleg’s Mini tutorials and assorted small projects
Haskell Cheat Sheet e
The Happstack Tutorial o e

Implementations

The Glasgow Haskell Compiler
nhceO8 . . e e e
The Helium compiler L e e e
UHC, Utrecht Haskell Compiler (previously: EHC, “Essential Haskell” compiler)
Hugs as Yhc Core Producer e
Haskell frontend for the Clean compiler
SAPL, Simple Application Programming Language
The Reduceron o e e
Platforms e e
Haskell in Gentoo Linux e e e e
Fedora Haskell SIG e
GHC on OpenSPARC e

Language

Extensions of Haskell o e
Haskell Server Pages (HSP) e
GpH — Glasgow Parallel Haskell 0
Eden o e e
XHaskell project e e
HaskellActor e e e
HaskellJoin o e e

Timber e e
Type System / Program Analysis
Free Theorems for Haskell e
The Disciplined Disciple Compiler (DDC)

Tools

Scanning, Parsing, Transformations L L L
Alex version 2. L. e
Happy . . . o o e e
UUAG . . e
Documentation e e
Haddock o o
Ths2TEX . . o o
Testing, Debugging, and Analysis e
SmallCheck and Lazy SmallCheck
EasyCheck o o e
checkers L

4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.4

4.4.1
4.4.2
4.4.3
4.44
4.4.5
4.4.6
4.4.7

5.1

5.2

5.3

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.4

5.4.1
5.4.2
5.4.3
5.5

5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9
5.6

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.7

5.7.1
5.7.2
5.7.3
5.7.4
5.8

5.8.1
5.8.2
5.8.3
5.8.4
5.8.5

Gast . . . s 26

Concurrent Haskell Debugger 27
5 27
SourceGraph L 27
HLint . . . e 28
hp2any e 28
Development e e e 28
Hoogle — Haskell API Search e 28
HEAT: The Haskell Educational Advancement Tool 28
Haskell Mode Plugins for Vim 000 e 29
S ER 29
HaRe — The Haskell Refactorer 30
DarcsWatch e 30
CPPhS . . e 30
Libraries 31
Cabal and Hackage 0 e 31
Haskell Platform o e 31
Auxiliary Librarieso e e 32
lbmpd e e s 32
hmatrix L e e 32
The Neon Library o o e 32
unamb ... e e e e e e 33
leapseconds-announcedo e e e e e e e 33
Processing Haskell 0 . 33
hint . . . o e 33
mueval e 33
hscolour L e 34
Parsing and Transforming L e 34
HStringTemplate L o o e 34
CoreErlang L e e e 34
parse-dimacs: A DIMACS CNF Parser e 34
InterpreterLib L L 34
KURE 35
Typed Transformations of Typed Abstract Syntax (TTTAS) 35
ChristmasTree (previously: GRead) 36
Utrecht Parser Combinator Library: Old version 36
Utrecht Parser Combinator Library: New version 36
Mathematical Objects o e 37
Halculon: units and physical constants database 37
Numeric prelude L e 37
VECEOI-SPACE o o L e e e e e e e e 38
Nat . e e e 38
AERN-Real and friends 38
Haskell BLAS Bindings 39
logfloat L e 39
fad: Forward Automatic Differentiation L oL 39
Data types and data structures 40
HList — a library for typed heterogeneous collections 40
Edison e 40
MemoTrie o . o e e e e 41
bytestring-trie L L 41
Data processing 41
The Haskell Cryptographic Library o 41
The Haskell ASN.1 Library 41
MultiSetRewrite e 41
Graphalyze L e 42
Takusen L e e 42

5.9
9.9.1
5.9.2
5.9.3
5.9.4
9.9.5
5.9.6
5.9.7
5.10
5.10.1
5.10.2
5.10.3
5.10.4
5.10.5
5.11
5.11.1
5.11.2
5.11.3
5.12
5.12.1
5.12.2
5.13
5.13.1
5.13.2
5.13.3
5.14
5.14.1
5.14.2

6.1

6.1.1
6.1.2
6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.4

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6
6.5

6.5.1
6.5.2

Generic and Type-Level Programming 42
uniplate . . .o L e e e 42
Scrap Your Boilerplate (SYB) 42
Extensible and Modular Generics for the Masses (EMGM) 43
multirec: Generic programming with systems of recursive datatypes 44
Generic rewriting library for regular datatypes 44
2LT: Two-Level Transformation 0 e 45
Data.Label — “atoms” for type-level programming 46
User interfaces e e e e e 46
Gtk2HS e 46
HQK . . o e 47
wxHaskell e e e e e 47
Shellac e e e 48
Haskeline e e e 48
Graphics e 48
diagramso e 48
FieldTrip o o e e 49
LambdaCube e 49
MUsic 49
Haskore revision e 49
Euterpea o e 50
Web and XML programming Lo e e 50
Haskell XML Toolbox o e e e e 50
HaXml . . . o e 51
TAgSOUD o e e e e e 51
System e 52
hinotify e 52
hlibev . . . o 52
Applications and Projects 53
For the Masses 0 i e e e e 53
Darcs . . . o e e e 53
Xmonad e e e e e 53
Education e 54
Exercise Assistants e 54
Holmes, plagiarism detection for Haskell 0. 54
Lambda Shell o 54
INblobs — Interaction Nets interpreter 55
Soccer-Fun oL e e 55
Web Developmento e 56
Holumbus Search Engine Framework L 56
Top Writer L e e e 57
Bamboo blog engine (previously: Panda) / Hack Webserver interface 57
InputYourData.com e 57
Hircules o e e 58
HCluster o e 58
JavaScript Monadic Writer L 58
Haskell DOM Bindings o 0 o e e e e 59
Data Management and Visualization L 59
Pandoc e e 59
tiddlyisar e 59
HaExcel — From Spreadsheets to Relational Databases and Back 60
Between Types and Tables L L 60
SAfMetz e e e e e e e 60
The Proxima 2.0 generic editor e 61
Functional Reactive Programming L 61
Grapefruit L e 61
Reactive« L o 62

6.5.3
6.5.4
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6
6.7.7
6.7.8
6.7.9
6.8
6.8.1
6.8.2
6.8.3
6.8.4
6.9
6.9.1
6.9.2
6.9.3
6.9.4
6.10
6.10.1
6.10.2
6.10.3
6.11
6.11.1
6.11.2
6.12
6.12.1
6.12.2
6.12.3
6.12.4
6.12.5
6.12.6
6.12.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Functional Hybrid Modeling e 62

Elerea o L s 63
Audio and Graphics e 63
Audio signal processing e 63
hsProcMusic o 64
easyVISIOn e e e e e 64
photoname L L e e e 64
Simplex-Based Spatial Operations 0 e e 64
n-Dimensional Convex Decomposition of Polytops 65
DVD2473 . . o 66
Proof Assistants and Reasoning L o 66
Galculator e 66
funsat: DPLL-style Satisfiability Solver o 66
Saoithin: a 2nd-order proof assistant L Lo 67
Inference Services for Hybrid Logics 67
HyLoRes e e e 67
HTab . . . e 67
HGen o e e 68
Sparkle L e 68
Haskabelle o o e 68
Modeling and Analysis e e 68
Streaming Component Combinators 68
Raskell o e 69
iTasks o e 69
CSP-M Tools at University of Diisseldorf o o 70
Hardware Design L e 70
ForSyDe o o o e 70
Lava . . o o 71
Wired . . . o e 71
Oread 71
Natural Language Processing e 72
NLP . 72
Genl . . . o e 72
Grammatical Framework L 72
Inductive Programming L e 73
Inductive Programming L e 73
Igorll o e 73
Others . . . o o e 74
Bioinformatics toolso 74
Roguestar e e 74
Hpysics o o e 75
hledger o e 75
LQPL — A quantum programming language compiler and emulator 75
Yogurto e e 75
Dyna 2 e 76
Commercial Users 77
Well-Typed LLP o o 77
SeeReason Partners, LLC e 77
Credit Suisse Global Modeling and Analytics Group 77
Bluespec tools for design of complex chips oL 78
Galois, Inc. o e 79
IVU Traffic Technologies AG Rostering Group i 79
Tupil . . . e 80
Aflexi Content Delivery Network (CDN) 0 e e 80
Industrial Haskell Group e 80

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Research and User Groups 81
Functional Programming Lab at the University of Nottingham 81
Artificial Intelligence and Software Technology at Goethe-University Frankfurt 82
Functional Programming at the University of Kent 82
Foundations and Methods Group at Trinity College Dublin 83
Formal Methods at DFKI Bremen and University of Bremen 83
SClence project o o o e e 83
Haskell at K.U.Leuven, Belgium 84
Haskell in Romania e 84
Assorted Small Portland State University Haskell Bits 85
fp-syd: Functional Programming in Sydney, Australia. 86

1 Information Sources

1.1 Book: Programming in Haskell

Report by: Graham Hutton

Haskell is one of the leading languages for teaching
functional programming, enabling students to write
simpler and cleaner code, and to learn how to structure
and reason about programs. This introduction is ideal
for beginners: it requires no previous programming ex-
perience and all concepts are explained from first prin-
ciples via carefully chosen examples. Each chapter in-
cludes exercises that range from the straightforward to
extended projects, plus suggestions for further reading
on more advanced topics. The presentation is clear
and simple, and benefits from having been refined and
class-tested over several years.

Features include: freely accessible PowerPoint slides
for each chapter; solutions to exercises, and examina-
tion questions (with solutions) available to instructors;
downloadable code that is compliant with the latest
Haskell release.

Publication details:

o Published by Cambridge University Press, 2007.
Paperback: ISBN 0521692695; Hardback: ISBN:
0521871727; eBook: ISBN 051129218X; Kindle:
ASIN BO01FSKE6Q.

In-depth review:

o Duncan Coutts, The Monad.Reader (—1.2),
http://www.haskell.org/sitewiki/images/0/03/
TMR-Issue?.pdf

Further reading

http://www.cs.nott.ac.uk/~gmh/book.html

1.2 The Monad.Reader

Report by: Wouter Swierstra

There are plenty of academic papers about Haskell and
plenty of informative pages on the HaskellWiki. Unfor-
tunately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a Wiki page, but more casual than a jour-
nal article.

There are plenty of interesting ideas that maybe do
not warrant an academic publication — but that does
not mean these ideas are not worth writing about!
Communicating ideas to a wide audience is much more
important than concealing them in some esoteric jour-
nal. Even if it has all been done before in the Journal

of Impossibly Complicated Theoretical Stuff, explain-
ing a neat idea about “warm fuzzy things” to the rest
of us can still be plain fun.

The Monad.Reader is also a great place to write
about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.

Since the last HCAR there have been two new is-
sues, including another “Summer of Code” special.
With your submissions, I expect we can keep publishing
quarterly issues of the Monad.Reader. Check out the
Monad.Reader homepage for all the information you
need to start writing your article.

Further reading

http://www.haskell.org/haskellwiki/ The_Monad.Reader

1.3 Haskell Wikibook

Heinrich Apfelmus

Eric Kow, David House, Joeri van Eekelen,
and other contributors

active development

Report by:
Participants:

Status:

The goal of the Haskell wikibook project is to build a
community textbook about Haskell that is at once free
(as in freedom and in beer), gentle, and comprehensive.
We think that the many marvelous ideas of lazy func-
tional programming can and thus should be accessible
to everyone in a central place.

Currently, the wikibook is slowly advancing in breath
rather than depth, with a new sketch of a chapter on
polymorphism and higher rank types, and a new page
on Monoids. Additional authors and contributors that
help writing new contents or simply spot mistakes and
ask those questions we had never thought of are more
than welcome!

Further reading

o http://en.wikibooks.org/wiki/Haskell
o Mailing list: (wikibook@haskell.org)

1.4 Monad Tutorial

Hans van Thiel
stable, might be expanded later

Report by:
Status:

http://www.haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf
http://www.haskell.org/sitewiki/images/0/03/TMR-Issue7.pdf
http://www.cs.nott.ac.uk/~gmh/book.html
http://www.haskell.org/haskellwiki/The_Monad.Reader
http://en.wikibooks.org/wiki/Haskell
mailto: wikibook at haskell.org

The “Greenhorn’s Guide to becoming a Monad Cow-
boy” is yet another monad tutorial. It covers the basics,
with simple examples, and includes monad transform-
ers and monadic functions. The didactic style is a vari-
ation on the “for dummies” format. Estimated learning
time, for a monad novice, is 2-3 days. It is available at
http://www.muitovar.com/monad/moncow.xhtml

Further reading

http://www.muitovar.com/

1.5 Oleg’s Mini tutorials and
assorted small projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmij.org/ftp/Haskell/)
has received two additions:

Monadic Regions

Monadic Regions is a technique for managing resources
such as memory areas, file handles, database connec-
tions, etc. Regions offer an attractive alternative to
both manual allocation of resources and garbage col-
lection. Unlike the latter, region-based resource man-
agement makes resource disposal and finalization pre-
dictable. We can precisely identify the program points
where allocated resources are freed and finalization ac-
tions are run. Like other automatic resource manage-
ments schemes, regions statically assure us that no re-
source is used after it is disposed of, no resource is freed
twice, and all resources are eventually deallocated.

We first describe a very simple implementation of
Monadic Regions for the particular case of file 10, stat-
ically ensuring that there are no attempts to access an
already closed file handle, and all open file handles are
eventually closed. Many handles can be open simulta-
neously; the type system enforces the proper nesting
of their regions. The technique has no run-time over-
head and induces no run-time errors, requiring only the
rank-2-type extension to Haskell 98. The technique un-
derlies safe database interfaces of Takusen.

The simplicity of the implementation comes with a
limitation: it is impossible to store file handles in refer-
ence cells and return them from an inner region, even
when it is safe to do so. We show that practice often
requires more flexible region policies.

With Chung-chieh Shan, we developed a novel, im-
proved, and extended implementation of the Fluet and
Morrisett’s calculus of nested regions in Haskell, with
file handles as resources. Our library supports region
polymorphism and implicit region subtyping, along
with higher-order functions, mutable state, recursion,

10

and run-time exceptions. A program may allocate ar-
bitrarily many resources and dispose of them in any
order, not necessarily LIFO. Region annotations are
part of an expression’s inferred type. Our implemen-
tation assures timely deallocation even when resources
have markedly different lifetimes and the identity of the
longest-living resource is determined only dynamically.

For contrast, we also implement a Haskell library
for manual resource management, where deallocation is
explicit and safety is assured by a form of linear types.
We implement the linear typing in Haskell with the
help of phantom types and a parameterized monad to
statically track the type-state of resources.

http://okmij.org/ftp/Haskell /regions.html

Variable (type)state “monad”

The familiar State monad lets us represent computa-
tions with a state that can be queried and updated.
The state must have the same type during the entire
computation however. One sometimes wants to ex-
press a computation where not only the value but also
the type of the state can be updated — while main-
taining static typing. We wish for a parameterized
“monad” that indexes each monadic type by an initial
(type)state and a final (type) state. The effect of an ef-
fectful computation thus becomes apparent in the type
of the computation, and so can be statically reasoned
about.

In a parameterized monad m p q a, m is a type con-
structor of three type arguments. The argument a is
the type of values produced by the monadic compu-
tation. The two other arguments describe the type of
the computation state before and after the computa-
tion is executed. As in ordinary monad, bind is re-
quired to be associative and ret to be the left and the
right unit of bind. All ordinary monads are particular
case of parameterized monads, when p and q are the
same and constant throughout the computation. Like
the ordinary class monad, parameterized monads are
implementable in Haskell 98.

The web page describes various applications of the
type-state Monad:

o I0-like monad that statically enforces a locking pro-
tocol;

o statically tracking ticks so to enforce timing and pro-
tocol restrictions when writing device drivers and
their generators;

o implementing a form of linear types for resource
management.

http://okmij.org/ftp/Computation/monads.html#
param-monad

http://www.muitovar.com/monad/moncow.xhtml
http://www.muitovar.com/
http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Haskell/regions.html
http://okmij.org/ftp/Computation/monads.html#param-monad
http://okmij.org/ftp/Computation/monads.html#param-monad

1.6 Haskell Cheat Sheet

Report by: Justin Bailey

The “Haskell Cheat Sheet” covers the syntax, key-
words, and other language elements of Haskell 98. It
is intended for beginning to intermediate Haskell pro-
grammers and can even serve as a memory aid to ex-
perts.

The cheat sheet is distributed as a PDF and exe-
cutable source file in one package. It is available from
Hackage and can be installed with cabal.

Further reading

http://cheatsheet.codeslower.com
1.7 The Happstack Tutorial

Report by: Creighton Hogg

The Happstack Tutorial aims to be a definitive, up-to-
date, resource for how to use the Happstack libraries.
I have recently taken over the project from Thomas
Hartman. An instance of the Happstack Tutorial is
running as a stand-alone website, but in order to truly
dig into writing Happstack applications you can cabal
install it from Hackage and experiment with it locally.

Happstack Tutorial is updated along with the Happ-
stack Hackage releases, but the darcs head is generally
compatible with the darcs head of Happstack.

I am adding a few small tutorials to the package with
every release and am always looking for more feedback
from beginning Happstack users.

Further reading

o http://tutorial.happstack.com
o http://patch-tag.com/repo/happstack-tutorial

11

http://cheatsheet.codeslower.com
http://tutorial.happstack.com
http://patch-tag.com/repo/happstack-tutorial

2 Implementations

2.1 The Glasgow Haskell Compiler

Report by:
Participants:

Simon Peyton Jones
many others

The last six months have been busy ones for GHC.

The GHC 6.10 branch

We finally released GHC 6.10.1 on 4 November 2008,
with a raft of new features we discussed in the October
2008 status report.

A little over five months later we released GHC
6.10.2, with more than 200 new patches fixing more
than 100 tickets raised against 6.10.1. We hoped that
would be it for the 6.10 branch, but we slipped up and
6.10.2 contained a couple of annoying regressions (con-
cerning Control-C and editline). By the time you read
this, GHC 6.10.3 (fixing these regressions) should be
out, after which we hope to shift all our attention to
the 6.12 branch.

The new build system

Our old multi-makefile build system had grown old,
crufty, hard to understand. And it did not even work
very well. So we embarked on a plan to re-implement
the build system. Rather than impose the new system
on everyone immediately, Tan and Simon (Marlow) did
all the development on a branch, and invited others
to give it a whirl. Finally, on 25 April 2009, we went
“live” on the HEAD.

The new design is described on the Wiki. It still
uses make, but it is now based on a non-recursive
make strategy. This means that dependency tracking is
vastly more accurate than before, so that if something
“should” be built it “will” be built.

The new build system is also much less dependent
on Cabal than it was before. We now use Cabal only
to read package meta-data from the <pkg>.cabal file,
and emit a bunch of Makefile bindings. Everything else
is done in make. You can read more about the design
rationale on the Wiki.

We also advertised our intent to switch to Git as
our version control system (VCS). We always planned
to change the build system first, and only then tackle
the VCS. Since then, there has been lots of activity
on the Darcs front, so it is not clear how high priority
making this change is. We would welcome your opinion
({cvs-ghc@haskell.org)).

12

The GHC 6.12 branch

The main list of new features in GHC 6.12 remains
much the same as it was in our last status report. Hap-
pily, there has been progress on all fronts.

Parallel performance

Simon Marlow has been working on improving perfor-
mance for parallel programs, and there will be signifi-
cant improvements to be had in 6.12 compared to 6.10.
In particular

o There is an implementation of lock-free work-stealing
queues, used for load-balancing of sparks and also in
the parallel GC. Initial work on this was done by Jost
Berthold.

The parallel GC itself has been tuned to retain lo-
cality in parallel programs. Some speedups are dra-
matic.

The overhead for running a spark is much lower, as
sparks are now run in batches rather than creating
a new thread for each one. This makes it possible to
take advantage of parallelism at a much finer granu-
larity than before.

There is optional “eager-blackholing”, with the new
-feager-blackholing flag, which can help elimi-
nate duplicate computation in parallel programs.

Our recent ICFP submission Runtime Support for
Multicore Haskell describes all these in more detail,
and gives extensive measurements.

Things are not in their final state yet: for example,
we still need to work on tuning the default flag settings
to get good performance for more programs without
any manual tweaking. There are some larger possibili-
ties on the horizon too, such as redesigning the garbage
collector to support per-CPU independent GC, which
will reduce the synchronization overheads of the cur-
rent stop-the-world strategy.

Parallel profiling

GHC 6.12 will feature parallel profiling in the form
of ThreadScope, under development by Satnam Singh,
Donnie Jones and Simon Marlow. Support has been
added to GHC for lightweight runtime tracing (work
originally done by Donnie Jones), which is used by
ThreadScope to generate profiles of the program’s real-
time execution behavior. This work is still in the very
early stages, and there are many interesting directions
we could take this in.

mailto: cvs-ghc at haskell.org
http://ghcmutterings.wordpress.com/2009/03/03/new-paper-runtime-support-for-multicore-haskell/
http://ghcmutterings.wordpress.com/2009/03/03/new-paper-runtime-support-for-multicore-haskell/
http://raintown.org/?page_id=132

Data Parallel Haskell

Data Parallel Haskell remains under very active devel-
opment by Manuel Chakravarty, Gabriele Keller, Ro-
man Leshchinskiy, and Simon Peyton Jones. The cur-
rent state of play is documented on the Wiki. We also
wrote a substantial paper Harnessing the multicores:
nested data parallelism in Haskell for FSTTCS 2008;
you may find this paper a useful tutorial on the whole
idea of nested data parallelism.

The system currently works well for small programs,
such as computing a dot product or the product of a
sparse matrix with a dense vector. For such applica-
tions, the generated code is as close to hand written
C code as GHC’s current code generator enables us
to be (i.e., within a factor of 2 or 3). We ran three
small benchmarks on an 8-core x86 server and on an 8-
core UltraSPARC T2 server, from which we derived two
comparative figures: a comparison between x86 and T2
on a memory-intensive benchmark (dot product) and
a summary of the speedup of three benchmarks on x86
and T2. Overall, we achieved good absolute perfor-
mance and good scalability on the hardware we tested.

Our next step is to scale the implementation up to
properly handle larger programs. In particular, we
are currently working on improving the interaction be-
tween vectorized code, the aggressively-inlined array
library, and GHC’s standard optimization phases. The
current main obstacle is excessively long compile times,
due to a temporary code explosion during optimization.
Moreover, Gabriele started to work on integrating spe-
cialized support for regular multi-dimensional arrays
into the existing framework for nested data parallelism.

Type system improvements

The whole area of GADTs, indexed type families, and
associated types remains in a ferment of development.
It is clear that type families are jolly useful: many
people are using them even though they are only par-
tially supported by GHC 6.10. (You might enjoy a
programmers-eye-view tutorial Fun with type functions
that Oleg, Ken, and Simon wrote in April 2009.)

But these new features have made the type infer-
ence engine pretty complicated, and Simon PJ, Manuel
Chakravarty, Tom Schrijvers, Dimitrios Vytiniotis, and
Martin Sulzmann have been busy thinking about ways
to make type inference simpler and more uniform. Our
ICFP’08 paper Type checking with open type functions
was a first stab (which we subsequently managed to
simplify quite a bit). Our new paper (to be presented
at ICFP’09) Complete and decidable type inference for
GADTs tackles a different part of the problem. And we
are not done yet; for example, our new inference frame-
work is designed to smoothly accommodate Dimitrios’
work on FPH: First class polymorphism for Haskell
(ICFP’08).

13

Other developments

o Max Bolingbroke has revised and simplified his Dy-
namically Loaded Plugins summer of code project,
and we (continue to) plan to merge it into 6.12. Part
of this is already merged: a new, modular system
for annotations, rather like Java or C# attributes.
These attributes are persisted into interface files, can
be examined and created by plugins, or by GHC API
clients.

John Dias has continued work on rewriting GHC’s
backend. You can find an overview of the new ar-
chitecture on the Wiki. He and Norman and Simon
wrote Dataflow optimisation made simple, a paper
about the dataflow optimization framework that the
new back end embodies. Needless to say, the act of
writing the paper has made us re-design the frame-
work, so at the time of writing it still is not on GHC’s
main compilation path. But it will be.

Shared Libraries are inching ever closer to being com-
pleted. Duncan Coutts has taken up the reins and
is pushing our shared library support towards a fully
working state. This project is supported by the In-
dustrial Haskell Group.

Unicode text I/O support is at the testing stage, and
should be merged in in time for 6.12.1.

2.2 nhc98
Report by: Malcolm Wallace
Status: stable, maintained

nhc98 is a small, easy to install, compiler for Haskell’98.
nhc98 is still very much alive and working, although it
does not see many new features these days. We expect
a new public release (1.22) soon, to coincide with the
release of ghc-6.10.x, in particular to ensure that the
included libraries are compatible across compilers.

Further reading

o http://haskell.org/nhc98
o darcs get http://darcs.haskell.org/nhc98

2.3 The Helium compiler

Report by:
Participants:

Jurriaan Hage
Bastiaan Heeren, Arie Middelkoop

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of

http://research.microsoft.com/~simonpj/papers/ndp
http://research.microsoft.com/~simonpj/papers/ndp
http://justtesting.org/post/83014052/this-is-the-performance-of-a-dot-product-of-two
http://justtesting.org/post/83014052/this-is-the-performance-of-a-dot-product-of-two
http://justtesting.org/post/85103645/these-graphs-summarise-the-performance-of-data
http://justtesting.org/post/85103645/these-graphs-summarise-the-performance-of-data
http://research.microsoft.com/~simonpj/papers/assoc-types
http://research.microsoft.com/~simonpj/papers/assoc-types
http://research.microsoft.com/~simonpj/papers/gadt
http://research.microsoft.com/~simonpj/papers/gadt
http://research.microsoft.com/~simonpj/papers/boxy/
http://research.microsoft.com/~simonpj/papers/boxy/
http://research.microsoft.com/~simonpj/papers/c--
http://www.haskell.org/pipermail/glasgow-haskell-users/2009-February/016558.html
http://haskell.org/nhc98
http://darcs.haskell.org/nhc98

Helium is that it generates novice friendly error feed-
back. The latest versions of the Helium compiler are
available for download from the new website located
at http://www.cs.uu.nl/wiki/Helium. This website also
explains in detail what Helium is about, what it offers,
and what we plan to do in the near and far future.

We are still working on making version 1.7 available,
mainly a matter of updating the documentation and
testing the system. Internally little has changed, but
the interface to the system has been standardized, and
the functionality of the interpreters has been improved
and made consistent. We have made new options avail-
able (such as those that govern where programs are
logged to). The use of Helium from the interpreters is
now governed by a configuration file, which makes the
use of Helium from the interpreters quite transparent
for the programmer. It is also possible to use differ-
ent versions of Helium side by side (motivated by the
development of Neon (— 5.3.3)).

A student has added parsing and static checking for
type class and instance definitions to the language, but
type inferencing and code generating still need to be
added. The work on the documentation has progressed
quite a bit, but there has been little testing thus far,
especially on a platform such as Windows.

2.4 UHC, Utrecht Haskell Compiler
(previously: EHC, “Essential Haskell”
compiler)

Atze Dijkstra

Jeroen Fokker, Doaitse Swierstra, Arie
Middelkoop, Lucilia Camardo de
Figueiredo, Carlos Camardo de Figueiredo
active development

Report by:
Participants:

Status:

What is UHC? and EHC? UHC is the Utrecht
Haskell Compiler, supporting almost all Haskell 98 fea-
tures plus many experimental extensions. The first re-
lease of UHC was announced on April 18 at the 5th
Haskell Hackathon, held in Utrecht.

EHC is the Essential Haskell Compiler project, a se-
ries of compilers of which the last is UHC, plus an as-
pectwise organized infrastructure for facilitating exper-
imentation and extension.

The end-user will probably only be aware of UHC
as a Haskell compiler, whereas compiler writers will be
more aware of the internals known as EHC. The name
EHC however will disappear over time, both EHC and
UHC together will be branded as UHC.

UHC in its current state still very much is work in
progress. Although we feel it is stable enough to offer
the public, much work needs to be done to make it us-
able for serious development work. By design its strong
point is the internal aspectwise organization which we
started as EHC. UHC also offers more advanced and ex-
perimental features like higher-ranked polymorphism,

14

partial type signatures, and local instances.

Under the hood For the description of UHC an At-
tribute Grammar system (AG) is used as well as other
formalisms allowing compact notation like parser com-
binators. For the description of type rules, and the gen-
eration of an AG implementation for those type rules,
we use the Ruler system. For source code management
we use Shuffle, which allows partitioning the system
into a sequence of steps and aspects. (Both Ruler and
Shuffle are included in UHC).

The implementation of UHC also tackles other issues:

To deal with the inherent complexity of a compiler
the implementation of UHC is organized as a series
of increasingly complex steps. Each step corresponds
to a Haskell subset which itself is an extension of the
previous step. The first step starts with the essen-
tials, namely typed lambda calculus; the last step
corresponds to UHC.

Independent of each step the implementation is or-
ganized into a set of aspects. Currently the type
system and code generation are defined as aspects,
which can then be left out so the remaining part can
be used as a barebones starting point.

Each combination of step + aspects corresponds to
an actual, that is, an executable compiler. Each of
these compilers is a compiler in its own right.

The description of the compiler uses code fragments
which are retrieved from the source code of the com-
pilers. In this way the description and source code
are kept synchronized.

Part of the description of the series of EH compilers
is available as a PhD thesis.
What is UHC's status, what is new?

o UHC has seen daylight as a first release. At the
time of this writing the current release is 1.0.1, fixing
reported installation problems.

Previously started work is still continuing: GRIN
backend, full program analysis (Jeroen Fokker), type
system formalization and automatic generation from
type rules (Lucilia Camarao de Figueiredo, Arie Mid-
delkoop).

What will happen with UHC in the near future? We
plan to do the following:

o Improving installation of UHC and its use as a
Haskell compiler: use of Cabal, adding missing
Haskell 98 features.

o Work on adding static analyses (such as strictness
analysis), to enable optimizations.

http://www.cs.uu.nl/wiki/Helium

Further reading

UHC Homepage:
WebHome
Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT /AttributeGrammarSystem

Parser combinators: http://www.cs.uu.nl/wiki/HUT/
ParserCombinators

o Shuffle: http://www.cs.uu.nl/wiki/Ehc/Shuffle

o Ruler: http://www.cs.uu.nl/wiki/Ehc/Ruler

(¢]

http://www.cs.uu.nl/wiki/UHC/

2.5 Hugs as Yhc Core Producer

Report by: Dimitry Golubovsky
Status: experimental
Background

Hugs is one of the oldest implementations of Haskell
known, an interactive compiler and bytecode inter-
preter. Yhc is a fork of nhc98 (—2.2). Yhce Core is
an intermediate form Yhc uses to represent a compiled
Haskell program.

Yhe converts each Haskell module to a binary Yhe
Core file. Core modules are linked together, and all
redundant (unreachable) code is removed. The Linked
Core is ready for further conversions by backends.

Hugs loads Haskell modules into memory and stores
them in a way to some degree similar to Yhc Core.
Hugs is capable to dump its internal storage structure
in textual form (let us call it Hugs Core). The output
looks similar to Yhc Core, pretty-printed. This was ini-
tially intended for debugging purposes, however several
Hugs CVS (now darcs) log records related such output
to some “Snowball Haskell compiler” ca. 2001.

The experiment

The goal of the experiment described here was to con-
vert Hugs Core into Yhc Core, so Hugs might become
a frontend for existing and future Yhc Core optimiz-
ers and backends. At least one benefit is clear: Hugs
is well maintained to be compatible with recent ver-
sions of Haskell libraries and supports many of Haskell
language extensions that Yhc does not yet support.
The necessary patches were pushed to the main Hugs
repository in June 2008, thanks to Ross Paterson for
reviewing them. The following changes were made:

1. A configuration option was added to enable the gen-
eration of Hugs Core.

2. The toplevel Makefile was modified to build an ad-
ditional executable, corehugs.

3. Consistency of Hugs Core output in terms of naming
of modules and functions was improved.

15

The corehugs program converts Haskell source files
into Hugs Core files, one for one. All functions and
data constructors are preserved in the output, whether
reachable or not. Unreachable items will be removed
later using Yhe Core tools.

The conversion of Hugs Core to Yhc Core is per-
formed outside of Hugs using the hugs2yc package.
The package provides a parser for the syntax of Hugs
Core and an interface to the Yhc Core Linker. All Hugs
Core files written by corehugs are read in and parsed,
resulting in the set of Yhc Core modules in memory.
The modules are linked together using the Yhce Core
Linker, and all unreachable items are removed at this
point. A “driver” program that uses the package may
save the linked Yhc Core in a file, or pass it on to a
backend. The code of the hugs2yc package is compat-
ible to both Hugs and GHC.

Availability

In order to use the new Hugs functionality, obtain
Hugs from the “HEAD” darcs repo, see http://hackage.
haskell.org/trac/hugs/wiki/GettingTheSource. However,
Hugs obtained in such a way may not always compile.
This Google Code project: http://code.google.com/p/
corehugs/ hosts specialized snapshots of Hugs that are
more likely to build on a random computer and also in-
clude additional packages necessary to work with Yhc
Core.

Future plans

Further effort will be taken to standardize various as-
pects of Yhe Core, especially the specification of prim-
itives, because all backends must implement them uni-
formly. This Google spreadsheet: http://tinyurl.com/
prim-normal-set contains the proposal for an unified set
of Yhe Core primitives.

Work is in progress on various backends for Yhc
Core, including JavaScript, Erlang, Python, JVM,
NET, and others. This Wiki page: http://tinyurl.com/
ycore-conv-infra summarizes their development status.

There were no significant changes, additions, or im-
provements made to the project since November 2008.
After more testing and bugfixing, the Cabal package
with Hugs front-end to Yhec Core was released on Hack-
age. Also, the corehugs project page was updated
with new custom Hugs snapshot (as of February 16,
2009); this snapshot is recommended for experiments
with Yhe Core.

Further reading

o Yhc Core conversion infrastructure
http://tinyurl.com/ycore-conv-infra

o Download Hugs specialized snapshots
http://code.google.com/p/corehugs/

http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/Ehc/Shuffle
http://www.cs.uu.nl/wiki/Ehc/Ruler
http://hackage.haskell.org/trac/hugs/wiki/GettingTheSource
http://hackage.haskell.org/trac/hugs/wiki/GettingTheSource
http://code.google.com/p/corehugs/
http://code.google.com/p/corehugs/
http://tinyurl.com/prim-normal-set
http://tinyurl.com/prim-normal-set
http://tinyurl.com/ycore-conv-infra
http://tinyurl.com/ycore-conv-infra
http://tinyurl.com/ycore-conv-infra
http://code.google.com/p/corehugs/

Proposed specification of the Normal Set of primi-
tives

http://tinyurl.com/prim-normal-set

A brief example of using corehugs
http://code.google.com/p/corehugs/wiki/
Demonstration

The hugs2yc package on Hackage
http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/hugs2yc

The corehugs project downloads page
http://code.google.com/p/corehugs/downloads/list

2.6 Haskell frontend for the Clean

compiler
Report by: Thomas van Noort
Participants: John van Groningen, Rinus Plasmeijer
Status: active development

We are currently working on a frontend for the Clean
compiler (— 3.2.3) that supports a subset of Haskell 98.
This will allow Clean modules to import Haskell mod-
ules, and vice versa. Furthermore, we will be able to
use some of Clean’s features in Haskell code, and vice
versa. For example, we could define a Haskell module
which uses Clean’s uniqueness typing, or a Clean mod-
ule which uses Haskell’s newtypes. The possibilities are
endless!

Future plans

Although a beta version of the new Clean compiler is
released last year to the institution in Nijmegen, there
is still a lot of work to do before we are able to release it
to the outside world. So we cannot make any promises
regarding the release date. Just keep an eye on the
Clean mailing lists for any important announcements!

Further reading

http://wiki.clean.cs.ru.nl/Mailing__lists

2.7 SAPL, Simple Application
Programming Language

Jan Martin Jansen
experimental, active development

Report by:
Status:

SAPL is an experimental interpreter for a lazy func-
tional intermediate language. The language is more or
less equivalent to the core language of Clean (— 3.2.3).
SAPL implementations in C and Java exist. It is possi-
ble the write SAPL programs directly, but the preferred
use is to generate SAPL. We already implemented an
experimental version of the Clean compiler that gen-
erates SAPL as well. The Java version of the SAPL

16

interpreter can be loaded as a Plugln in web appli-
cations. Currently we use it to evaluate tasks from
the iTask 6.8.3 system at the client side and to handle
(mouse) events generated by a drawing canvas Plugln.

Future plans

For the near future we have planned to make the Clean
to SAPL compiler available in the standard Clean dis-
tribution. Also some further performance improve-
ments of SAPL are planned.

Further reading

o http://home.hetnet.nl/~janmartinjansen /saplinter

o http://home.hetnet.nl/~janmartinjansen/lambda

o http://www.st.cs.ru.nl/Onderzoek /Publicaties/
publicaties.html

2.8 The Reduceron

Report by: Matthew Naylor
Participants: Colin Runciman, Jason Reich
Status: experimental

Since the last HCAR, we have started a 15-month
project to further explore the potential of the Reduc-
eron. I have begun implementation of a new design,
and I presented initial results in talks at HFL’09 and at
Birmingham University. Slides of both talks are avail-
able online. Once complete, we will have a rather nippy
sequential reducer, and we plan to see if special-purpose
architectural features can also aid garbage collection
and parallel reduction.

There have also been some other developments in the
project. I have made a new Lava (— 6.9.2) clone sup-
porting multi-output primitives, RAMs, easy creation
of new primitives and back-ends, behavioral descrip-
tion, and sized-vectors. And Jason Reich is working
on a supercompiler for the Reduceron’s core language,
exploring some of Neil Mitchell’s ideas from Supero.

Further reading

http://www.cs.york.ac.uk/fp/reduceron/

2.9 Platforms

2.9.1 Haskell in Gentoo Linux

Report by: Lennart Kolmodin

Gentoo Linux is working towards supporting GHC
6.10.3 and the Haskell Platform (—5.2), and at the

http://tinyurl.com/prim-normal-set
http://code.google.com/p/corehugs/wiki/Demonstration
http://code.google.com/p/corehugs/wiki/Demonstration
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hugs2yc
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hugs2yc
http://code.google.com/p/corehugs/downloads/list
http://wiki.clean.cs.ru.nl/Mailing_lists
http://home.hetnet.nl/~janmartinjansen/saplinter
http://home.hetnet.nl/~janmartinjansen/lambda
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.cs.york.ac.uk/fp/reduceron/

time of writing both are available hard masked in
portage. For previous GHC versions we have binaries
available for alpha, amd64, hppa, ia64, sparc, and x86.

Browse the packages in portage at http://packages.
gentoo.org/category/dev-haskell?full_cat.

The GHC architecture/version matrix is available at
http://packages.gentoo.org/package/dev-lang/ghc.

Please report problems in the normal Gentoo bug
tracker at bugs.gentoo.org.

There is also a Haskell overlay providing another 300
packages. Thanks to the haskell developers using Cabal
and Hackage (—5.1), we have been able to write a
tool called “hackport” (initiated by Henning Giinther)
to generate Gentoo packages that rarely need much
tweaking.

The overlay is available at http://haskell.org/
haskellwiki/Gentoo. Using Darcs (— 6.1.1), it is easy to
keep updated and send patches. It is also available via
the Gentoo overlay manager “layman”. If you choose to
use the overlay, then problems should be reported on
IRC (#gentoo-haskell on freenode), where we coor-
dinate development, or via email (haskell@gentoo.org).

Lately a few of our developers have shifted focus, and
only a few developers remain. If you would like to help,
which would include working on the Gentoo Haskell
framework, hacking on hackport, writing ebuilds, and
supporting users, please contact us on IRC or email as
noted above.

2.9.2 Fedora Haskell SIG

Jens Petersen

Yaakov Nemoy, Bryan Sullivan, Konrad
Meyer, Fedora Haskell SIG

on-going

Report by:
Participants:

Status:

The Fedora Haskell SIG is an effort to provide good
support for Haskell in Fedora.

A new cabal2spec package now generates rpm-spec
files for Fedora’s Haskell Packaging Guidelines from
Cabal packages, making it easier than ever to pack-
age Haskell for Fedora. cabal2spec has been ported to
Haskell by Konrad and Yaakov.

Fedora 11 will ship with ghc-6.10.2, cabal-install and
an improved set of rpm macros at the end of May 2009.

For Fedora 12 we are planning to include xmonad
and hopefully haskell-platform. The latest ghc.spec in
development already supports building ghc-6.11 with
shared libraries.

Further reading

http://fedoraproject.org/wiki/SIGs/Haskell

17

2.9.3 GHC on OpenSPARC

Report by:
Participants:

Ben Lippmeier
Duncan Coutts, Darryl Gove, Roman
Leshchinskiy

Status: winding down

Through January—April this year I repaired GHC’s
back end support for the SPARC architecture, and
benchmarked its performance on haskell.org’s shiny
new SPARC T2 server. I also spent time refactoring
GHC’s native code generator to make it easier to un-
derstand and maintain, and thus less likely for pieces
to suffer bit-rot in the future.

The T2 architecture is interesting to functional pro-
grammers because of its highly multi-threaded nature.
The T2 has eight cores with eight hardware threads
each, for a total of 64 threads per processor. When one
of the threads suffers a cache miss, another can continue
on with little context switching overhead. All threads
on a particular core also share the same L1 cache, which
supports fast thread synchronization. This is a perfect
fit for parallel lazy functional programs, where mem-
ory traffic is high, but new threads are only a par
away. The following graph shows the performance of
the sumeuler benchmark from the nofib suite when run-
ning on the T2. Note that the performance scales al-
most linearly (perfectly) right up to the point where it
runs out of hardware threads.

suneuler 28 5008 18
Elapsed tine. Average of 5 runs,

T
Prescott 2n 1x2 3.8Ghz 16B ——
Heron 2x1 1.66hz 2GB ——

T2 dx8 1.46hz 1GB ——

T2 8x8 1,4Ghz 32GB ——

runtine(s)

8.1

18
threads

The project is nearing completion, pending tying up
some loose ends, but the port is fully functional and
available in the current head branch. More informa-
tion, including benchmarking is obtainable form the
link below. The GHC on OpenSPARC project was gen-
erously funded by Sun Microsystems.

Further reading

http://ghcsparc.blogspot.com

http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://haskell.org/haskellwiki/Gentoo
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
http://fedoraproject.org/wiki/SIGs/Haskell
http://ghcsparc.blogspot.com

3 Language

3.1 Extensions of Haskell
3.1.1 Haskell Server Pages (HSP)

Niklas Broberg
active development

Report by:
Status:

Haskell Server Pages (HSP) is an extension of Haskell
targeted at writing dynamic web pages. Key features
and selling points include:

o Use literal XML syntax in your Haskell code for cre-
ating values of appropriate datatypes. (Note though
that writing literal XML is quite optional, if you, like
me, do not really enjoy that language.)

o Guarantees that XML output is well-formed (and an
HTML output mode if that is what you need).

o A model that gives easy access to necessary environ-
ment variables.

o Simple programming model that is easy to use even
for non-experienced Haskell programmers, in partic-
ular with a very simple transition from static XML
pages to dynamic HSP pages.

o Easy integration with a DSL called HJScript that
makes it easy to write client-side (JavaScript) scripts.

o An extension of HAppS that can serve HSP pages on
the fly, making deployment of pages really simple.

HSP is continuously released onto Hackage. It consists
of a series of interdependent packages with package
hsp as the main top-level starting point, and package
happs-hsp for integration with HAppS. The best way
to keep up with development is to grab the darcs repos-
itories, all located under http://code.haskell.org/HSP.

Further reading

http://haskell.org/haskellwiki/HSP

3.1.2 GpH — Glasgow Parallel Haskell

Phil Trinder

Abyd Al Zain, Mustafa Aswad, Jost
Berthold, Jamie Gabbay, Murray Gross,
Hossein Haeri, Kevin Hammond, Vladimir
Janjic, Hans-Wolfgang Loidl

Report by:
Participants:

Status

A complete, GHC-based implementation of the parallel
Haskell extension GpH and of evaluation strategies is

available. Extensions of the runtime-system and lan-
guage to improve performance and support new plat-
forms are under development.

System Evaluation and Enhancement

o Both GpH and Eden parallel Haskells are being used
for parallel language research and in the SCIEnce
project (see below).

o We are making comparative evaluations of a range of
GpH implementations and other parallel functional
languages (Eden and Feedback Directed Implicit
Parallelism (FDIP)) on multicore architectures.

o We are teaching parallelism to undergraduates using
GpH at Heriot-Watt and Phillips Universitiat Mar-
burg.

o We are developing a big step operational semantics
for seq and using it to prove identities.

GpH Applications

As part of the SCIEnce EU FP6 I3 project (026133) (—
8.6) (April 2006 — April 2011) we use GpH and Eden
as middleware to provide access to computational grids
from Computer Algebra(CA) systems, including GAP,
Maple MuPad and KANT. We have designed, imple-
mented and are evaluating the SymGrid-Par interface
that facilitates the orchestration of computational al-
gebra components into high-performance parallel ap-
plications.

In recent work we have demonstrated that SymGrid-
Par is capable of exploiting a variety of modern paral-
lel/multicore architectures without any change to the
underlying CA components; and that SymGrid-Par is
capable of orchestrating heterogeneous computations
across a high-performance computational Grid.

Implementations

The GUM implementation of GpH is available in two
main development branches.

o The focus of the development has switched to ver-
sions tracking GHC releases, currently GHC 6.8, and
the development version is available upon request to
the GpH mailing list (see the GpH web site).

o The stable branch (GUM-4.06, based on GHC-4.06)
is available for RedHat-based Linux machines. The
stable branch is available from the GHC CVS repos-
itory via tag gum-4-06.

http://code.haskell.org/HSP
http://haskell.org/haskellwiki/HSP
http://www.macs.hw.ac.uk/~dsg/gph/#GPH
http://www.macs.hw.ac.uk/~dsg/gph/papers/html/Strategies/strategies.html
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.mathematik.uni-marburg.de/~eden/
http://www.symbolic-computation.org/
http://www.symbolic-computation.org/
http://www.macs.hw.ac.uk/~trinder/ParDistr/
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.mathematik.uni-marburg.de/~loogen/Lehre/ws02/pfp/vor02WSpfp.shtml
http://www.macs.hw.ac.uk/~dsg/gph/

We are exploring new, prescient scheduling mecha-
nisms for GpH.

Our main hardware platforms are Intel-based Be-
owulf clusters and multicores. Work on ports to other
architectures is also moving on (and available on re-
quest):

o A port to a Mosix cluster has been built in the
Metis project at Brooklyn College, with a first ver-
sion available on request from Murray Gross.

Further reading

o

GpH Home Page: http://www.macs.hw.ac.uk/~dsg/
gph/

o Stable branch binary snapshot: ftp://ftp.macs.hw.ac.
uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar

o Stable branch installation instructions: ftp://ftp.
macs.hw.ac.uk/pub/gph/README.GUM

Contact

(gph@macs.hw.ac.uk), (mgross@dorsai.org)

3.1.3 Eden
Report by: Rita Loogen

in Madrid: Ricardo Pefia, Yolanda
Ortega-Mallén, Mercedes Hidalgo,
Fernando Rubio, Alberto de la Encina,
Lidia Sanchez-Gil

in Marburg: Jost Berthold, Mischa
Dieterle, Oleg Lobachev, Thomas
Horstmeyer, Johannes May

ongoing

Participants:

Status:

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.

Eden’s main constructs are process abstractions and
process instantiations. The function process :: (a
-> b) -> Process a b embeds a function of type (a
-> b) into a process abstraction of type Process a b
which, when instantiated, will be executed in paral-
lel. Process instantiation is expressed by the prede-
fined infix operator (#) Process a b -> a —>
b. Higher-level coordination is achieved by defining
skeletons, ranging from a simple parallel map to so-
phisticated replicated-worker schemes. They have been
used to parallelize a set of non-trivial benchmark pro-
grams.

19

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Pena: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431-475.

Implementation

A major revision of the parallel Eden runtime envi-
ronment for GHC 6.8.1 is available from the Mar-
burg group on request. Support for Glasgow parallel
Haskell (— 3.1.2) is currently being added to this ver-
sion of the runtime environment. It is planned for the
future to maintain a common parallel runtime environ-
ment for Eden, GpH, and other parallel Haskells. Pro-
gram executions can be visualized using the Eden trace
viewer tool EdenTV. Recent results show that the sys-
tem behaves equally well on workstation clusters and
on multi-core machines.

Recent and Forthcoming Publications

o Jost Berthold, Mischa Dieterle, Oleg Lobachev,
Rita Loogen: Distributed Memory Programming on
Many-Cores - A Case Study Using Eden Divide- -
Conquer Skeletons, in Workshop on Many-Cores at
ARCS ’09, Delft, NL, March 2009, VDE Verlag 2009.
Mischa Dieterle, Jost Berthold, and Rita Loogen:
Implementing Parallel Google Map-Reduce in Eden,
in: EuroPar 2009, Delft, NL, August 2009, to appear
in LNCS.

Jost Berthold, Mischa Dieterle, Oleg Lobachev, Rita
Loogen: Parallel FFT With FEden Skeletons, in
PaCT 2009, Novosibirsk, Russia, September 2009,
to appear in LNCS.

Thomas Horstmeyer, Rita Loogen: Grace — Graph-
based Communication in FEden, in Draft Proceedings
of TFP, Kormarno, June 2009.

Oleg Lobachev, Rita Loogen: Benchmarking Parallel
Haskells Using Scientific Computing Algorithms, in
Draft Proceedings of TFP, Kormarno, June 2009.
Lidia Séanchez-Gil, Mercedes Hidalgo-Herrero,
Yolanda Ortega-Mallén: An Operational Seman-
tics for Distributed Lazy Fvaluation, in Draft
Proceedings of TFP, Kormarno, June 2009.

Further reading

http://www.mathematik.uni-marburg.de/~eden

3.1.4 XHaskell project

Martin Sulzmann
Kenny Zhuo Ming Lu

Report by:
Participants:

XHaskell is an extension of Haskell which combines
parametric polymorphism, algebraic data types, and

http://www.sci.brooklyn.cuny.edu/~metis/
http://www.macs.hw.ac.uk/~dsg/gph/
http://www.macs.hw.ac.uk/~dsg/gph/
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/gum-4.06-snap-i386-unknown-linux.tar
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
ftp://ftp.macs.hw.ac.uk/pub/gph/README.GUM
mailto: gph at macs.hw.ac.uk
mailto: mgross at dorsai.org
http://www.mathematik.uni-marburg.de/~eden

type classes with XDuce style regular expression types,
subtyping, and regular expression pattern matching.
The latest version can be downloaded via http://code.
google.com/p/xhaskell /

Latest developments

We are still in the process of turning XHaskell into a
library (rather than stand-alone compiler). We expect
results (a Hackage package) by August’09.

3.1.5 HaskellActor

Report by: Martin Sulzmann
The focus of the HaskellActor project is on
Erlang-style concurrency abstractions. See for

details: http://sulzmann.blogspot.com/2008,/10/
actors-with-multi-headed-receive.html.
Novel features of HaskellActor include

o Multi-headed receive clauses, with support for
o guards, and
o propagation

The HaskellActor implementation (as a library ex-
tension to Haskell) is available via http://hackage.
haskell.org/cgi-bin/hackage-scripts/package/actor.

The implementation is stable, but there is plenty of
room for optimizations and extensions (e.g. regular
expressions in patterns). If this sounds interesting to
anybody (students!), please contact me.

Latest developments

We are currently collecting “real-world” examples
where the Haskell Actor extension (multi-headed receive
clauses) proves to be useful.

3.1.6 HaskellJoin

Report by: Martin Sulzmann

HaskellJoin is a (library) extension of Haskell to sup-

port join patterns. Novelties are

o guards and propagation in join patterns,

o efficient parallel execution model which exploits mul-
tiple processor cores.

Latest developments

Olivier Pernet (a student of Susan Eisenbach) is cur-
rently working on a nicer monadic interface to the
HaskellJoin library.

20

Further reading

o http://sulzmann.blogspot.com/2008/12/
parallel-join-patterns-with-guards-and.html
The paper version is dated December’08. T will up-
date the paper in the next couple of weeks.

o http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/join

3.2 Related Languages
3.2.1 Curry

Jan Christiansen

Bernd BraBel, Michael Hanus, Wolfgang
Lux, Sebastian Fischer, and others
active development

Report by:
Participants:

Status:

Curry is a functional logic programming language with
Haskell syntax. In addition to the standard features of
functional programming like higher-order functions and
lazy evaluation, Curry supports features known from
logic programming. This includes programming with
non-determinism, free variables, constraints, declara-
tive concurrency, and the search for solutions. Al-
though Haskell and Curry share the same syntax, there
is one main difference with respect to how function dec-
larations are interpreted. In Haskell the order in which
different rules are given in the source program has an
effect on their meaning. In Curry, in contrast, the rules
are interpreted as equations, and overlapping rules in-
duce a non-deterministic choice and a search over the
resulting alternatives. Furthermore, Curry allows to
call functions with free variables as arguments so that
they are bound to those values that are demanded for
evaluation, thus providing for function inversion.

There are three major implementations of Curry.
While the original implementation PAKCS (Portland
Aachen Kiel Curry System) compiles to Prolog, MCC
(Miinster Curry Compiler) generates native code via a
standard C compiler. The Kiel Curry System (KiCS)
compiles Curry to Haskell aiming to provide nearly
as good performance for the purely functional part as
modern compilers for Haskell do. From these imple-
mentations only MCC will provide type classes in the
near future. Type classes are not part of the current
definition of Curry, though there is no conceptual con-
flict with the logic extensions.

Recently, new compilation schemes for translating
Curry to Haskell have been developed that promise sig-
nificant speedups compared to both the former KiCS
implementation and other existing implementations of
Curry.

There have been research activities in the area of
functional logic programming languages for more than
a decade. Nevertheless, there are still a lot of inter-
esting research topics regarding more efficient compila-

http://code.google.com/p/xhaskell/
http://code.google.com/p/xhaskell/
http://sulzmann.blogspot.com/2008/10/actors-with-multi-headed-receive.html
http://sulzmann.blogspot.com/2008/10/actors-with-multi-headed-receive.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/actor
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/actor
http://sulzmann.blogspot.com/2008/12/parallel-join-patterns-with-guards-and.html
http://sulzmann.blogspot.com/2008/12/parallel-join-patterns-with-guards-and.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/join
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/join

tion techniques and even semantic questions in the area 3.2.3 Clean
of language extensions like encapsulation and function

. . . . R : Th N
patterns. Besides activities regarding the language it- epc.>r.t by . .. omas van ¥ oort
CIf. th i als e devel ¢ I Participants: Rinus Plasmeijer, John van Groningen
self, there is also an active development of tools con- Status: active development

cerning Curry (e.g., the documentation tool Curry-

Doc, the analysis environment CurryBrowser, the ob-]

servation debuggers COOSy and iCODE, the debugger Clean is a'general purpose, state-of-the-art, pure and
B.I.O. (http://www-ps.informatik.uni-kiel.de/currywiki/ lazy.functlonal programuung language designed for
tools/oracle_debugger), EasyCheck (— 4.3.2), and Cy- maklng real—worl.d applications. q1ean is the or}ly func-
CoTest). Because Curry has a functional subset, these tional language in the world which offers uniqueness
tools can canonically be transferred to the functional tYPIE: This type system makes it possible in a pure
world. functional language to incorporate destructive updates

of arbitrary data structures (including arrays) and to
make direct interfaces to the outside imperative world.

Further reading Here is a short list with notable features:

o http://www.curry-language.org/

o http:/ /wiki.curry-language.org/ o Clean is a lazy, pure, and higher-order functional pro-

gramming language with explicit graph rewriting se-

mantics.
3.2.2 Agda
_ _ o Although Clean is by default a lazy language, one can
Rep?rF by: Nils Anders Danielsson smoothly turn it into a strict language to obtain op-
Peuiizens: N timal time/space behavior: functions can be defined
Status: actively developed

lazy as well as (partially) strict in their arguments;
any (recursive) data structure can be defined lazy as
well as (partially) strict in any of its arguments.

Do you crave for highly expressive types, but do not
want to resort to type-class hackery? Then Agda might
provide a view of what the future has in store for you.

Agda is a dependently typed functional program-
ming language (developed using Haskell). The lan-
guage has inductive families, i.e. GADTs which can be
indexed by walues and not just types. Other good-
ies include coinductive types, parameterized modules, o The uniqueness type system in Clean makes it possi-

o Clean is a strongly typed language based on an ex-
tension of the well-known Milner/Hindley/Mycroft
type inferencing/checking scheme including the com-
mon higher-order types, polymorphic types, abstract
types, algebraic types, type synonyms, and existen-
tially quantified types.

mixfix operators, and an interactive Emacs interface ble to develop efficient applications. In particular, it
(the type checker can assist you in the development of allows a refined control over the single threaded use
your code). of objects which can influence the time and space
A lot of work remains in order for Agda to become a behavior of programs. The uniqueness type system
full-fledged programming language (good libraries, ma- can be also used to incorporate destructive updates
ture compilers, documentation, etc.), but already in its of objects within a pure functional framework. It al-
current state it can provide lots of fun as a platform lows destructive transformation of state information
for experiments in dependently typed programming. and enables efficient interfacing to the non-functional
New since last time: world (to C but also to I/O systems like X-Windows)
offering direct access to file systems and operating

o Versions 2.2.0 and 2.2.2 have been released. The pre-
vious release was in 2007, so the new versions include
lots of changes. o Clean supports type classes and type constructor

classes to make overloaded use of functions and op-

erators possible.

systems.

o Agda is now available on Hackage (cabal install
Agda-executable).

o Clean offers records and (destructively updateable)
o Highlighted, hyperlinked HTML can be generated arrays and files.

from Agda source code using agda -html.
o Clean has pattern matching, guards, list comprehen-

o The Agda Wiki is better organized, so it should be sions, array comprehensions and a lay-out sensitive
easier for a newcomer to find relevant information. mode.

o Clean offers a sophisticated I/O library with which
window based interactive applications (and the han-
The Agda Wiki: http://wiki.portal.chalmers.se/agda/ dling of menus, dialogs, windows, mouse, keyboard,

Further reading

21

http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://www-ps.informatik.uni-kiel.de/currywiki/tools/oracle_debugger
http://www.curry-language.org/
http://wiki.curry-language.org/
http://wiki.portal.chalmers.se/agda/

timers, and events raised by sub-applications) can
be specified compactly and elegantly on a very high
level of abstraction.

o There is a Clean IDE and there are many libraries
available offering additional functionality.

Future plans

Please see the entry on a Haskell frontend for the Clean

compiler (— 2.6) for the future plans.

Further reading

o http://clean.cs.ru.nl/
o http://wiki.clean.cs.ru.nl/

3.2.4 Timber

Johan Nordlander

Bjorn von Sydow, Andy Gill, Magnus
Carlsson, Per Lindgren, and others
actively developed

Report by:
Participants:

Status:

Timber is a general programming language derived
from Haskell, with the specific aim of supporting devel-
opment of complex event-driven systems. It allows pro-
grams to be conveniently structured in terms of objects
and reactions, and the real-time behavior of reactions
can furthermore be precisely controlled via platform-
independent timing constraints. This property makes
Timber particularly suited to both the specification and
the implementation of real-time embedded systems.

Timber shares most of Haskell’s syntax but intro-
duces new primitive constructs for defining classes of re-
active objects and their methods. These constructs live
in the C'md monad, which is a replacement of Haskell’s
top-level monad offering mutable encapsulated state,
implicit concurrency with automatic mutual exclusion,
synchronous as well as asynchronous communication,
and deadline-based scheduling. In addition, the Tim-
ber type system supports nominal subtyping between
records as well as datatypes, in the style of its precursor
O’Haskell.

A particularly notable difference between Haskell
and Timber is that Timber uses a strict evaluation or-
der. This choice has primarily been motivated by a
desire to facilitate more predictable execution times,
but it also brings Timber closer to the efficiency of tra-
ditional execution models. Still, Timber retains the
purely functional characteristic of Haskell, and also
supports construction of recursive structures of arbi-
trary type in a declarative way.

The first public release of the Timber compiler was
announced in December 2008. It uses the Gnu C
compiler as its back-end and targets POSIX-based
operating systems. Binary installers for Linux and
MacOS X can be downloaded from the Timber web
site timber-lang.org.

22

The current source code repository (also available
on-line) contains numerous bug-fixes since the release,
but also initial cross-compilation support for ARMT7-
equipped embedded systems. A proper release of the
current version is in preparation.

Apart from this release, on-going work on Timber
is concerned with extending the compiler with a su-
percompilation pass, adding the iPhone as a cross-
compilation target, and taking a fundamental grip on
the generation of type error messages. The latter work
will be based on the principles developed in the context
of the Helium compiler.

Further reading

http:://timber-lang.org

3.3 Type System / Program Analysis

3.3.1 Free Theorems for Haskell

Janis Voigtlander
Florian Stenger, Daniel Seidel

Report by:
Participants:

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin is
the polymorphic lambda-calculus, but they have also
been applied to programs in more realistic languages
like Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs
to be refined and extended. We aim to provide such
new theoretical foundations, as well as to apply the
theoretical results to practical problems. Recent pub-
lications are “Parametricity for Haskell with Imprecise
Error Semantics” (TLCA’09) and “Free Theorems In-
volving Type Constructor Classes” (ICFP’09).

On the practical side, we maintain a library and tools
for generating free theorems from Haskell types, origi-
nally implemented by Sascha Béhme and with contri-
butions from Joachim Breitner. Both the library and
a shell-based tool are available from Hackage (as free-
theorems and ftshell, respectively). There is also a web-
based tool at http://linux.tcs.inf.tu-dresden.de/~voigt/
ft. General features include:

three different language subsets to choose from
equational as well as inequational free theorems

relational free theorems as well as specializations
down to function level

support for algebraic data types, type synonyms and
renamings, type classes

http://clean.cs.ru.nl/
http://wiki.clean.cs.ru.nl/
timber-lang.org
http:://timber-lang.org
http://linux.tcs.inf.tu-dresden.de/~voigt/ft
http://linux.tcs.inf.tu-dresden.de/~voigt/ft

While the web-based tool is restricted to algebraic data
types, type synonyms, and type classes from Haskell
standard libraries, the shell-based tool also enables the
user to declare their own algebraic data types and so on,
and then to derive free theorems from types involving
those. A distinctive feature of the web-based tool is to
export the generated theorems in PDF format.

Recent work with Daniel Seidel involves automat-
ically generating counterexamples to naive free the-
orems (“naive” meaning that the theorems ignore
the presence of general recursion and | in Haskell;
see screenshot below), and investigating how selective
strictness 4 la seq has to be put under control to tame
its impact on free theorems.

The Free Theorem

The theorem generated for functions of the type

f it ((Int -> [a]) -> Either Int Bool) -> [Int] ‘

forall t1,t2 in TYPES, g :: tl -> t2, g strict.
forall p :: (Int -> [t1]) -> Either Int Bool.
forall g :: (Int -> [t2]) -> Either Int Bool.
(forall r :: Int -> [t1].
forall s :: Int -> [t2].
(forall x :: Int. map g (r x) = s x) ==> (p r = q 5))
==> (T p="Ta)

The Counterexample

By disregarding the strictness condition on g the theorem becomes wrong. The term

|f = (\xL -> (case (x1 (\x2 -> [_[_])) of {Left x3 -> [_|_1})) ‘

is a counterexample.

By setting t1 = t2 = ... = () and

the following would be a consequence of the thus "naivified" free theorem:

g = const () ‘

(fp) =(fq)
where

\xL -> (case (x1 0) of {[x2] -> Left 0}))
\xL -> (case (x1 0) of {[x2] -> (case x2 of {() -> Left 0})}))

p
q

(
(

But this is wrong since with the above f it reduces to:

[Lo-on

Further reading

http://wwwtcs.inf.tu-dresden.de/~voigt/project/

3.3.2 The Disciplined Disciple Compiler (DDC)

Ben Lippmeier
alpha, active

Report by:
Status:

Disciple is an explicitly lazy dialect of Haskell which is
being developed as part of my PhD project into pro-
gram optimization in the presence of side effects. Disci-
ple’s type system is based on Haskell 98, but extends it
with region, effect and closure information. This extra
information models the potential aliasing of data, in-
terference of computations, and the data sharing prop-
erties of functions.

Effect typing is offered as a practical alternative to
source level state monads, and allows the program-

23

mer to offload the task of maintaining the intended
sequence of computations onto the compiler. Disciple
can also directly express the “flat” T-monads discussed
in Wadler’s “The marriage of effects and monads”, if
one were that way inclined.

Disciple uses strict evaluation as the default, but the
programmer can suspend arbitrary function applica-
tions if desired. As the type system detects when the
combination of side effects and call-by-need evaluation
would yield a result different from the call-by-value
case, we argue that Disciple is still a purely functional
language by Sabry’s definition.

Future plans

DDC is currently a research prototype, but will compile
programs if you are nice to it. Work over the last six
months has consisted of cleaning up the theory, finish-
ing my thesis, and fixing bugs. Immediate plans consist
of fixing more bugs, doing a point release in July, and
writing a paper on it. DDC is open source, available
from the url below, and comes with some cute graphical
demos.

Further reading

http://www.haskell.org/haskellwiki/DDC

http://wwwtcs.inf.tu-dresden.de/~voigt/project/
http://www.haskell.org/haskellwiki/DDC

4 Tools

4.1 Scanning, Parsing, Transformations

4.1.1 Alex version 2

Simon Marlow
stable, maintained

Report by:
Status:

Alex is a lexical analyzer generator for Haskell, similar
to the tool lex for C. Alex takes a specification of a lex-
ical syntax written in terms of regular expressions, and
emits code in Haskell to parse that syntax. A lexical
analyzer generator is often used in conjunction with a
parser generator, such as Happy (— 4.1.2), to build a
complete parser.

The latest release is version 2.3, released October
2008. Alex is in maintenance mode, we do not antici-
pate any major changes in the near future.

Changes in version 2.3 vs. 2.2:
o Works with GHC 6.10.1 and Cabal 1.6.

o Support for efficient lexing of strict bytestrings, by
Don Stewart.

o The monadUserState wrapper type was added by
Alain Cremieux.

Further reading

http://www.haskell.org/alex/

4.1.2 Happy
Report by: Simon Marlow
Status: stable, maintained

Happy is a tool for generating Haskell parser code from
a BNF specification, similar to the tool Yacc for C.
Happy also includes the ability to generate a GLR
parser (arbitrary LR for ambiguous grammars).

The latest release is 1.18.2, released 5 November
2008.

Changes in version 1.18.2 vs. 1.17:

o Macro-like parameterized rules were added by Iavor
Diatchki.

o Works with GHC 6.10.1 and Cabal 1.6.
o A couple of minor bugfixes: Happy does not get con-

fused by Template Haskell quoted names in code, and
a multi-word token type is allowed.

24

Further reading

Happy’s web page is at http://www.haskell.org/
happy/. Further information on the GLR extension
can be found at http://www.dur.ac.uk/p.c.callaghan/

happy-glr/.

4.1.3 UUAG
Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell which makes
it easy to write catamorphisms (that is, functions that
do to any datatype what foldr does to lists). You can
define tree walks using the intuitive concepts of inher-
ited and synthesized attributes, while keeping the full
expressive power of Haskell. The generated tree walks
are efficient in both space and time.

New features are support for polymorphic abstract
syntax and higher-order attributes. With polymorphic
abstract syntax, the type of certain terminals can be
parameterized. Higher-order attributes are useful to
incorporate computed values as subtrees in the AST.

The system is in use by a variety of large and small
projects, such as the Haskell compiler EHC, the editor
Proxima for structured documents, the Helium com-
piler (— 2.3), the Generic Haskell compiler, and UUAG
itself. The current version is 0.9.10 (April 2009), is ex-
tensively tested, and is available on Hackage.

The last year, there have been bugfix releases only,
and one feature has been introduced. An alternative
syntax is now available which resembles the Haskell
syntax more closely. This syntax can be enabled by
means of a commandline flag. The old syntax is still
the default.

Further reading

o http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

o http://hackage.haskell.org/packages/archive/uuagc/
0.9.10/uuagc-0.9.10.tar.gz

http://www.haskell.org/alex/
http://www.haskell.org/happy/
http://www.haskell.org/happy/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.dur.ac.uk/p.c.callaghan/happy-glr/
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/packages/archive/uuagc/0.9.10/uuagc-0.9.10.tar.gz
http://hackage.haskell.org/packages/archive/uuagc/0.9.10/uuagc-0.9.10.tar.gz

4.2 Documentation

4.2.1 Haddock

David Waern
experimental, maintained

Report by:
Status:

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates docu-
mentation by parsing the Haskell source code directly
and including documentation supplied by the program-
mer in the form of specially-formatted comments in
the source code itself. Haddock has direct support
in Cabal (—5.1), and is used to generate the docu-
mentation for the hierarchical libraries that come with
GHC, Hugs, and nhc98 (http://www.haskell.org/ghc/
docs/latest/html/libraries).

The latest release is version 2.2.2; released August 5
2008.

Recent changes:

(¢]

Support for GHC 6.8.3

(¢]

The Hoogle backend is back, thanks to Neil Mitchell.

Show associated types in the documentation for class
declarations

Show associated types in the documentation for class
declarations

Show type family declarations
Show type equality predicates
Major bug fixes (#1 and #44)

It is no longer required to specify the path to GHC’s
lib dir

Remove unnecessary parenthesis in type signatures

Future plans

Currently, Haddock ignores comments on some lan-
guage constructs like GADTs and Associated Type syn-
onyms. Of course, the plan is to support comments for
these constructs in the future. Haddock is also slightly
more picky on where to put comments compared to the
0.x series. We want to fix this as well. Both of these
plans require changes to the GHC parser. We want
to investigate to what degree it is possible to decouple
comment parsing from GHC and move it into Haddock,
to not be bound by GHC releases.
Other things we plan to add in future releases:

o Support for GHC 6.10.1
o HTML frames (4 la Javadoc)

o Support for documenting re-exports from other pack-
ages

25

Further reading

o Haddock’s
haddock/

o Haddock’s developer Wiki and Trac:
haskell.org/haddock

homepage: http://www.haskell.org/

http://trac.

4.2.2 1hs2TEX
Report by: Andres Loh
Status: stable, maintained

This tool by Ralf Hinze and Andres Loh is a pre-
processor that transforms literate Haskell code into
ETEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by 1hs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax, and does not restrict the user to
Haskell 98.

The program is stable and can take on large docu-
ments.

Since the last report, version 1.14 has been released.
This version is compatible with (and requires) Cabal
1.6. Apart from minor bugfixes, experimental sup-
port for typesetting Agda (— 3.2.2) programs has been
added.

Further reading

http://www.cs.uu.nl/~andres/lhs2tex

4.3 Testing, Debugging, and Analysis

4.3.1 SmallCheck and Lazy SmallCheck

Report by: Matthew Naylor
Participants: Fredrik Lindblad, Colin Runciman
Status: stable, maintained

SmallCheck is a one-module lightweight testing library.
It adapts QuickCheck’s ideas of type-based generators
for test data and a class of testable properties. But in-
stead of testing a sample of randomly generated values,
it tests properties for all the finitely many values up to
some depth, progressively increasing the depth used.
Among other advantages, existential quantification is
supported, and generators for user-defined types can
follow a simple pattern and are automatically deriv-
able.

Lazy SmallCheck is like SmallCheck, but generates
partially-defined inputs that are progressively refined
as demanded by the property under test. The key
observation is that if a property evaluates to True or
False for a partially-defined input then it would also

http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://trac.haskell.org/haddock
http://trac.haskell.org/haddock
http://www.cs.uu.nl/~andres/lhs2tex

do so for all refinements of that input. By not gen-
erating such refinements, Lazy SmallCheck may test
the same input-space as SmallCheck using significantly
fewer tests. Lazy SmallCheck’s interface is a subset of
SmallCheck’s, often allowing the two to be used inter-
changeably.

Since the last HCAR, we have not made any signif-
icant new developments. We are still interested in im-
proving and harmonizing the two libraries and welcome
comments and suggestions from users.

Further reading

http://www.cs.york.ac.uk/fp/smallcheck/

4.3.2 EasyCheck

Report by: Jan Christiansen
Participants: Sebastian Fischer
Status: experimental

EasyCheck is an automatic test tool like QuickCheck or
SmallCheck (—4.3.1). It is implemented in the func-
tional logic programming language Curry (— 3.2.1).
Although simple test cases can be generated from noth-
ing but type information in all mentioned test tools,
users have the possibility to define custom test-case
generators — and make frequent use of this possibility.
Nondeterminism — the main extension of functional-
logic programming over Haskell — is an elegant con-
cept to describe such generators. Therefore it is eas-
ier to define custom test-case generators in EasyCheck
than in other test tools. If no custom generator is pro-
vided, test cases are generated by a free variable which
non-deterministically yields all values of a type. More-
over, in EasyCheck, the enumeration strategy is inde-
pendent of the definition of test-case generators. Un-
like QuickCheck’s strategy, it is complete, i.e., every
specified value is eventually enumerated if enough test
cases are processed, and no value is enumerated twice.
SmallCheck also uses a complete strategy (breadth-first
search) which EasyCheck improves w.r.t. the size of the
generated test data. EasyCheck is distributed with the
Kiel Curry System (KiCS).

Further reading
http://www-ps.informatik.uni-kiel.de/currywiki/tools/
easycheck

4.3.3 checkers

Conal Elliott
active development

Report by:
Status:

Checkers is a library for reusable QuickCheck proper-
ties, particularly for standard type classes (class laws

26

and class morphisms). For instance, much of Reac-
tive (—6.5.2) can be specified and tested using just
these properties. Checkers also lots of support for ran-
domly generating data values.

For the past few months, this work has been gra-
ciously supported by Anygma.

Further reading

http://haskell.org/haskellwiki/checkers

4.3.4 Gast
Report by: Peter Achten
Participants: Pieter Koopman
Status: stable, maintained

Gast is a fully automatic test system, written in
Clean (—3.2.3). Given a logical property, stated as
a function, it is able to generate appropriate test val-
ues, to execute tests with these values, and to evaluate
the results of these tests. In this respect Gast is similar
to Haskell’s QuickCheck.

Apart from testing logical properties, Gast is able to
test state based systems. In such tests, an extended
state machine (esm) is used instead of logical proper-
ties. This gives Gast the possibility to test properties
in a way that is somewhat similar to model checking
and allows you to test interactive systems, such as web
pages or GUI programs. In order to validate and test
the quality of the specifying extended state machine,
the esmViz tool simulates the state machine and tests
properties of this esm on the fly.

Gast is based on the generic programming techniques
of Clean which are very similar to Generic Haskell.
Gast is distributed as a library in the standard Clean
distribution. This version is somewhat older than the
version described in recent papers.

Future plans

We would like to determine the quality of the tests for
instance by determining the coverage of tests. As a
next step we would like to use techniques from model
checking to direct the testing based on esms in Gast.

Further reading

o http://www.cs.ru.nl/~pieter/gentest/gentest.html
o http://www.st.cs.ru.nl/Onderzoek /Publicaties/
publicaties.html

http://www.cs.york.ac.uk/fp/smallcheck/
http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck
http://www-ps.informatik.uni-kiel.de/currywiki/tools/easycheck
http://haskell.org/haskellwiki/checkers
http://www.cs.ru.nl/~pieter/gentest/gentest.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html

4.3.5 Concurrent Haskell Debugger

Report by: Fabian Reck
Participants: Frank Huch, Jan Christiansen
Status: experimental

Programming concurrent systems is difficult and
error prone. The Concurrent Haskell Debugger
is a tool for debugging and visualizing Concur-
rent Haskell and STM programs. By simply im-
porting CHD.Control.Concurrent instead of Con-
trol.Concurrent and CHD.Control.Concurrent.STM in-
stead of Control.Concurrent.STM the forked threads
and their concurrent actions are visualized by a GUIL.
Furthermore, when a thread performs a concurrent ac-
tion like writing an MVar or committing a transaction,
it is stopped until the user grants permission. This way
the user is able to determine the order of execution of
concurrent actions. Apart from that, the program be-
haves exactly like the original program.

An extension of the debugger can automatically
search for deadlocks and uncaught exceptions in the
background. The user is interactively led to a program
state where a deadlock or an exception was encoun-
tered. To use this feature, it is necessary to use a simple
preprocessor that comes with the package that is avail-
able at http://www.informatik.uni-kiel.de/~fre/chd/.

Another purpose of the preprocessor is to enrich the
source code with information for highlighting the next
concurrent action in a source code view.

Future plans

o provide a more powerful preprocessor that is able to
process imported modules

o add new views, like a visualization as a message se-
quence chart

o allow to undo concurrent actions

Further reading

o http://www.informatik.uni-kiel.de/~fre /docs/thesis.
pdf (German diploma thesis)

o http://www.informatik.uni-kiel.de/~jac/data/
ICFP2004.pdf

4.3.6 Hpc
Report by: Andy Gill
Participants: Colin Runciman
Status: released and used

Haskell Program Coverage (HPC) is a set of tools
for understanding program coverage. It consists of a
source-to-source translator, an option (-fhpc) in ghe,
a stand alone post-processor (hpc), a post-processor

for reporting coverage, and an AJAX based interactive
coverage viewer.

Hpc has been remarkably stable over the lifetime of
ghc-6.8, with only a couple of minor bug fixes, includ-
ing better support for .hsc files. The source-to-source
translator is not under active development, and is look-
ing for a new home. The interactive coverage viewer,
which was under active development in 2007 at Ga-
lois, has now been resurrected at Hpc’s new home in
Kansas. Thank you Galois, for letting this work be re-
leased. The plan is to take the interactive viewer, and
merge it with GHCi’s debugging API, giving an AJAX
based debugging tool.

Contact
(andygill@ku.edu)

4.3.7 SourceGraph

lvan Lazar Miljenovic
version 0.3

Report by:
Status:

SourceGraph is a utility program aimed at helping
Haskell programmers visualize their code and perform
simple graph-based analysis (representing functions as
nodes in the graphs and function calls as directed
edges). It is a sample usage of the Graphalyze li-
brary (— 5.8.4), which is designed as a general-purpose
graph-theoretic analysis library. These two pieces of
software are the focus of Ivan’s mathematical honors
thesis, “Graph-Theoretic Analysis of the Relationships
Within Discrete Data”.

Whilst fully usable, SourceGraph is currently limited
in terms of input and output. It takes in the Cabal file
of the project, and then analyzes all .hs and .lhs files
recursively found in that directory. It utilizes Haskell-
Src with Extensions, and should thus parse all exten-
sions (with the current exceptions of Template Haskell,
HaRP, and HSX); files requiring C Pre-Processing are
as yet unparseable, though this should be fixed in a
future release. However, all functions defined in Class
declarations and records are ignored due to difficulty in
determining which actual instance is meant. The final
report is then created in Html format in a “Source-
Graph” subdirectory of the project’s root directory. It
is envisaged that future versions will at least allow the
user to choose which output format to produce the re-
port in, and even customize which analyses are per-
formed (e.g., just create the graph of the entire code-
base, and not perform any analysis).

Current analysis algorithms utilized include: alter-
native module groupings, whether a module should be
split up, root analysis, clique and cycle detection as well
as finding functions which can safely be compressed
down to a single function. Please note however that
SourceGraph is not a refactoring utility, and that its

27

http://www.informatik.uni-kiel.de/~fre/chd/
http://www.informatik.uni-kiel.de/~fre/docs/thesis.pdf
http://www.informatik.uni-kiel.de/~fre/docs/thesis.pdf
http://www.informatik.uni-kiel.de/~jac/data/ICFP2004.pdf
http://www.informatik.uni-kiel.de/~jac/data/ICFP2004.pdf
mailto: andygill at ku.edu

analyses should be taken with a grain of salt: for exam-
ple, it might recommend that you split up a module,
because there are several distinct groupings of func-
tions, when that module contains common utility func-
tions that are placed together to form a library module
(e.g., the Prelude).

The output from running SourceGraph on itself
can be found at http://community.haskell.org/~ivanm/
SourceGraph /SourceGraph.html.

Further reading

o http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/SourceGraph

o http://code.haskell.org/SourceGraph

o http://ivanmiljenovic.files.wordpress.com/2008/11/
honoursthesis.pdf

4.3.8 HLint
Report by: Neil Mitchell
Status: vl4

HLint is a tool that reads Haskell code and suggests
changes to make it simpler. For example, if you call
maybe foo id it will suggest using fromMaybe foo in-
stead. HLint is compatible with almost all Haskell ex-
tensions, and can be easily extended with additional
hints.

Further reading

http://community.haskell.org/~ndm /hlint/

4.3.9 hp2any
Report by: Patai Gergely
Status: planned

hp2any is the codename for the 2009 Google Summer
of Code project titled “Improving space profiling expe-
rience”.

The aim of the project is to create a set of tools
that make heap profiling of Haskell programs easier.
In particular, the following components are planned:

o a library to process profiler output in an efficient way
and make it easily accessible for other tools;

o a real-time visualizer (most likely using OpenGL);

o some kind of history manager to keep track of pro-
filing data and make it possible to perform a com-
parative analysis of performance between different
versions of your program;

o amaintainable and extensible replacement for hp2ps.

Community input is greatly appreciated!

28

Further reading

o http://code.google.com/p/hp2any/
o http://socghop.appspot.com/student_ project/show/
google/gsoc2009/haskell /1124022468245

4.4 Development

4.4.1 Hoogle — Haskell APl Search

Neil Mitchell
v4.0

Report by:
Status:

Hoogle is an online Haskell API search engine. It
searches the functions in the various libraries, both by
name and by type signature. When searching by name,
the search just finds functions which contain that name
as a substring. However, when searching by types it at-
tempts to find any functions that might be appropriate,
including argument reordering and missing arguments.
The tool is written in Haskell, and the source code is
available online. Hoogle is available as a web interface,
a command line tool, and a lambdabot plugin.

Work is progressing to generate Hoogle search infor-
mation for all the libraries on Hackage.

Further reading

http://haskell.org/hoogle

4.4.2 HEAT: The Haskell Educational
Advancement Tool

Olaf Chitil
active

Report by:
Status:

Heat is an interactive development environment (IDE)
for learning and teaching Haskell. Heat was designed
for novice students learning the functional program-
ming language Haskell. Heat provides a small num-
ber of supporting features and is easy to use. Heat is
portable, small and works on top of the Haskell inter-
preter Hugs.
Heat provides the following features:

o Editor for a single module with syntax-highlighting
and matching brackets.

o Shows the status of compilation: non-compiled; com-
piled with or without error

o Interpreter console that highlights the prompt and
error messages.

http://community.haskell.org/~ivanm/SourceGraph/SourceGraph.html
http://community.haskell.org/~ivanm/SourceGraph/SourceGraph.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/SourceGraph
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/SourceGraph
http://code.haskell.org/SourceGraph
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://community.haskell.org/~ndm/hlint/
http://code.google.com/p/hp2any/
http://socghop.appspot.com/student_project/show/google/gsoc2009/haskell/t124022468245
http://socghop.appspot.com/student_project/show/google/gsoc2009/haskell/t124022468245
http://haskell.org/hoogle

o If compilation yields an error, then the source line
is highlighted and additional error explanations are
provided.

o Shows a program summary in a tree structure, giving
definitions of types and types of functions ...

o Automatic checking of all (Boolean) properties of a
program; results shown in summary.

The most recent Version 3.1 fixes some bugs and
makes Heat work more smoothly on Macs.

Further reading

http://www.cs.kent.ac.uk/projects/heat/

4.4.3 Haskell Mode Plugins for Vim

Report by: Claus Reinke
Participants: Haskell & Vim users
Status: maintenance mode

The Haskell mode plugins for Vim offer IDE-style pro-
grammer assistance for editing Haskell code in Vim.
Functionality and semantic information are derived
from GHC/GHCI, from Haddock-generated documen-
tation and indices (—4.2.1), and from instantiating
Vim’s own configurable program editing support with
Haskell-specific information. The plugins are dis-
tributed as a simple vimball archive, including help file
(after installation: :help haskellmode), and should
work on most platforms (Windows, Mac, Unix), in ter-
minal or GUI mode (some configuration required).

Features include quickfiz mode (call compiler, list
errors in quickfix window, jump to error locations in
source window), inferred type tooltips (persisted from
last successful :make, so you can still see some types
after introducing errors, or use types to guide editing,
e.g., function parameter order), various editing helpers
(insert import statement, type declaration or module
qualifier for id under cursor, expand implicit into ex-
plicit import statement, add option and language prag-
mas, ...), several insert mode completions (based on
identifiers currently in scope, on identifiers documented
in the central Haddock indices, on tag files, or on words
appearing in current and imported sources), and direct
access to locally installed Haddock documentation for
the id under cursor.

The haskellmode plugins for Vim are currently in
maintenance mode, with infrequent updates and bug
fixes, and the occasional new feature or improvement
of older code (please let me know if anything does
not work as advertised!). They have just moved to
haskell.org, where they have acquired a trac instance.
Apart from various bug- and portability fixes, recent
additions include a short series of screencasts illustrat-
ing most features, as well as Hoogle and Hayoo! lookup
for those who edit their programs while being online.

29

Further reading

o Haskell Mode Plugins for Vim:
haskell.org/haskellmode-vim/

o Screencasts, Documentation, Change Log:
http://projects.haskell.org/haskellmode-vim/
screencasts.html
http://projects.haskell.org/haskellmode-vim /vimfiles/
doc/haskellmode.txt
http://projects.haskell.org/haskellmode-vim /vimfiles/
haskellmode-files.txt

o haskell.org section listing these and
Vim files (please add your own):

/ /www.haskell.org/haskellwiki/Libraries_and_tools/

http://projects.

other
http:

Program__development#Vim

4.4.4 yi

Report by:
Participants:

Jean-Philippe Bernardy
Nicolas Pouillard, Jeff Wheeler, and many
others

Status: active development

Yi is an editor written in Haskell and extensible in

Haskell. We leverage the expressiveness of Haskell to

provide an editor which is powerful and easy to extend.
Defining characteristics:

o A purely functional buffer representation;

o Powerful EDSLs to describe editor actions and key-
bindings;

o Syntax-highlighters as Alex files;
o XMonad-style static/dynamic configuration;
o Uls written as plugins.

We are currently working on making the Gtk front-
end fully usable and improving the syntax highlighters.
A lot of work is also put into making the transition from
emacs or vim smoother.

Features:

o Special support for Haskell: layout-aware edition,
paren-matching, beautification of lambdas and ar-
rows, GHCI interface, Cabal build interface, ...

o unix console UI;

o Support for Linux and MacOS platforms;

o Syntax highlighting for many mainstream languages
beside Haskell;

Further reading

o More information can be found at: http://haskell.
org/haskellwiki/Yi

http://www.cs.kent.ac.uk/projects/heat/
http://projects.haskell.org/haskellmode-vim/
http://projects.haskell.org/haskellmode-vim/
http://projects.haskell.org/haskellmode-vim/screencasts.html
http://projects.haskell.org/haskellmode-vim/screencasts.html
http://projects.haskell.org/haskellmode-vim/vimfiles/doc/haskellmode.txt
http://projects.haskell.org/haskellmode-vim/vimfiles/doc/haskellmode.txt
http://projects.haskell.org/haskellmode-vim/vimfiles/haskellmode-files.txt
http://projects.haskell.org/haskellmode-vim/vimfiles/haskellmode-files.txt
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://www.haskell.org/haskellwiki/Libraries_and_tools/Program_development#Vim
http://haskell.org/haskellwiki/Yi
http://haskell.org/haskellwiki/Yi

o The source repository is available: darcs get
http://code.haskell.org/yi/

4.4.5 HaRe — The Haskell Refactorer
Report by: Huiqing Li

Chris Brown, Chaddai Fouché, Claus
Reinke, Simon Thompson

Participants:

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs, has
as its major goal to build a tool to support refactorings
in Haskell. The HaRe tool is now in its fourth major
release. HaRe supports full Haskell 98, and is inte-
grated with Emacs (and XEmacs) and Vim. All the
refactorings that HaRe supports, including renaming,
scope change, generalization and a number of others,
are module aware, so that a change will be reflected in
all the modules in a project, rather than just in the
module where the change is initiated. The system also
contains a set of data-oriented refactorings which to-
gether transform a concrete data type and associated
uses of pattern matching into an abstract type and calls
to assorted functions. The latest snapshots support the
hierarchical modules extension, but only small parts of
the hierarchical libraries, unfortunately.

In order to allow users to extend HaRe themselves,
HaRe includes an API for users to define their own
program transformations, together with Haddock (—
4.2.1) documentation. Please let us know if you are
using the API.

Snapshots of HaRe are available from our webpage,
as are related presentations and publications from
the group (including LDTA’05, TFP’05, SCAM’06,
PEPM’08, and Huiqing’s PhD thesis). The final re-
port for the project appears there, too.

Chris Brown has passed his PhD viva; his PhD the-
sis entitled “Tool Support for Refactoring Haskell Pro-
grams” will be available from our webpage soon.

Recent developments

o More structural and datatype-based refactorings
have been studied by Chris Brown, including trans-
formation between let and where, generative fold-
ing, introducing pattern matching, and introducing
case expressions;

o Clone detection and elimination support has been
added, to allow the automatic detection and semi-
automatic elimination of duplicated code in Haskell.

30

o Chaddai Fouché started to work on the porting of
HaRe to GHC API (— 2.1) during the summer 2008,
and this work is ongoing.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/

4.4.6 DarcsWatch

Joachim Breitner
working

Report by:
Status:

DarcsWatch is a tool to track the state of Darcs (—
6.1.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.

During the last six months, no changes to Darc-
sWatch were made, with the exception of some
JavaScript to load the toggleable display of the changes
of a patch on demand. It continues to be used by the
xmonad project (— 6.1.2) and a few developers. At the
time of writing, it was tracking 26 repositories and 2252
patches submitted by 129 users.

Further reading

o http://darcswatch.nomeata.de/
o http://darcs.nomeata.de/darcswatch /documentation.
html

4.4.7 cpphs
Report by: Malcolm Wallace
Status: stable, maintained

Cpphs is a robust drop-in Haskell replacement for the
C pre-processor. It has a couple of benefits over the
traditional cpp — you can run it when no C compiler
is available (e.g., on Windows); and it understands the
lexical syntax of Haskell, so you do not get tripped up
by C-comments, line-continuation characters, primed
identifiers, and so on. (There is also a pure text mode
which assumes neither Haskell nor C syntax, for even
greater flexibility.)

Cpphs can also unliterate .1lhs files during prepro-
cessing, and you can install it as a library to call from
your own code, in addition to the stand-alone utility.

The current release is 1.6: recent bugfixes have been
small — the major changes are to add new command-
line options -include and -strip-eol.

Further reading

http://haskell.org/cpphs

http://code.haskell.org/yi/
http://www.cs.kent.ac.uk/projects/refactor-fp/
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://haskell.org/cpphs

5 Libraries

5.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the Common Architecture for Building Appli-
cations and Libraries. It defines a common interface
for defining and building Haskell packages. It is imple-
mented as a Haskell library and associated tools which
allow developers to easily build and distribute pack-
ages.

Hackage is a distribution point for Cabal packages.
It is an online database of Cabal packages which can be
queried via the website and client-side software such as
cabal-install. Hackage enables end-users to download
and install Cabal packages.

cabal-install is the command line interface for the
Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

There has been some, but not a huge amount of activity
since the last HCAR. There have been a couple of minor
releases in the Cabal-1.6 series and a release of cabal-
install which is now at version 0.6.2. These releases
addressed a number of issues that were plaguing users.

The cabal-install tool is now relatively mature
(though by no means perfect). It replaces runhaskell
Setup.hs which had been the primary interface for
most users previously. The major advantage is that
it simplifies the process of downloading and installing
collections of inter-dependent packages from Hackage.
The primary problem with cabal-install now is getting
it into the hands of end users. This is being addressed
by the Haskell Platform (— 5.2) initiative.

Hackage passed the 1000 package mark, in fact the
number of packages since the last HCAR has increased
by about 50%. This represents a substantial amount of
Haskell code and a substantial amount of code re-use.

Looking forward

As ever, there are many improvements we want to make
to Cabal, cabal-install and Hackage but our limiting
factor is the amount of volunteer development time.
We have nearly 50 tickets targeted for Cabal 1.8 but
very few are currently being worked on. In addition
to the immediate task of refactoring, fixing bugs and

31

adding new features, the next big challenge is improv-
ing Cabal to handle larger projects which have more
complex requirements for a configuration and build sys-
tem. This challenge may require us to take a step back
and discuss a new design document for Cabal 2.0. Now
would be an excellent time to get involved in this cen-
tral piece of the Haskell infrastructure.

Hackage has a huge potential to help us manage and
improve the community’s package collection. cabal-
install is now able to report build results and the new
Hackage server implementation can accept them. This
should provide us with a huge amount of data on which
packages work in which environments and configura-
tions. More generally there is the opportunity to col-
lect all sorts of useful metrics on the quality of pack-
ages. The new Hackage server implementation exists
but needs more work before it reaches feature parity
with the current implementation. This is another im-
portant project that needs more developer time.

Further reading

o Cabal homepage: http://www.haskell.org/cabal
o Hackage package collection: http://hackage.haskell.

org/
o Bug tracker: http://hackage.haskell.org/trac/
hackage/

5.2 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of a new
“blessed” set of libraries and tools on which to build fur-
ther Haskell libraries and applications. It takes the best
packages from the more than 1000 on Hackage (— 5.1).
It is intended to provide a comprehensive, stable, and
quality tested base for Haskell projects to work from.

Historically, GHC has shipped with a collection of
packages under the name extralibs. The intention
is for GHC to get out of the business of shipping an
entire platform and for this role to be transferred to
the Haskell Platform.

Recent progress

By the time you read this we will have had the first
beta release of the platform, version 2009.2.0. This first
release contains the packages from the old extralibs
collection, plus cabal-install (—5.1).

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/

There will be follow-up minor releases 4 weeks and
10 weeks after the initial release. These will incorpo-
rate feedback on the installers and packaging. Your
comments and feedback will be appreciated.

The intention of this first major release series is to
get up to speed and test out our systems for making
releases. We want to have everything working smoothly
in time for GHC 6.12 when we hope to take over from
the GHC team the task of making end-user releases.

Now is therefore the time to make your suggestions
or to get involved with practical contributions towards
automating the process of making quality releases.

Looking forward

Major releases will be on a 6 month schedule. Major
releases may include new and updated packages while
minor releases will contain bug fixes and fixes for pack-
aging problems.

This is a project that must be owned by the com-
munity. We will be relying on the community to agree
policies such as what procedures we should use and
what level of quality we should demand for additions
to the platform. The discussion will take place on the
libraries@haskell.org mailing list, so subscribe if
you wish to have your say. We will also be looking
for members of a steering committee to guide the dis-
cussions on the libraries mailing list to ensure that the
necessary decisions do actually get made, recorded and
communicated to the release engineering team.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform

5.3 Auxiliary Libraries

5.3.1 libmpd
Report by: Ben Sinclair
Participants: Joachim Fasting
Status: maintained

LIBMPD is a client implementation of the MPD mu-
sic playing daemon’s network protocol. The interface
has mostly stabilized and is usable. Although the next
release will have an improved API using a typeclass,
it should be source compatible. In version 0.3.1 some
bugs have been addressed to fix the automatic recon-
nection feature and to be more permissive with data
from the server.
Support for bytestrings is planned for the future.

Further reading

The project’s web page is at http://projects.haskell.
org/libmpd/ and MPD can be found at http://www.

32

musicpd.org/.

5.3.2 hmatrix
Report by: Alberto Ruiz
Status: stable, maintained

This is a purely functional library for numerical linear
algebra, internally implemented using GSL, BLAS, and
LAPACK. The latest stable version is available from
Hackage.

Future plans include support for multidimensional
arrays, and a possible division of the library into
smaller, independent packages.

Further reading

http://www.hmatrix.googlepages.com

5.3.3 The Neon Library

Report by: Jurriaan Hage

As part of his master thesis work, Peter van Keeken im-
plemented a library to data mine logged Helium (— 2.3)
programs to investigate aspects of how students pro-
gram Haskell, how they learn to program, and how
good Helium is in generating understandable feedback
and hints. The software can be downloaded from http:
//www.cs.uu.nl/wiki/bin/view/Hage/Neon, which also
gives some examples of output generated by the sys-
tem. The downloads only contain a small sample of
loggings, but it will allow programmers to play with it.

The recent news is that a paper about Neon will
be published at SLE (1st Conference on Software Lan-
guage Engineering), where it came under the heading
of Tools for Language Usage.

On that note, there has been a posting by Simon
Thompson, Sally Fincher and myself for a PhD stu-
dent to work on understanding how students learn to
program (in Haskell), in Kent. Also, recently I acquired
a new master student to continue to the work of Pe-
ter van Keeken. One of this tasks will be to investigate
the kind of parse errors students make, and continue to
make. In the process, he shall add context properties
(did the student pass or fail, what kind of programming
background can we expect him or her to have) to our
database so that they can be employed by queries to
increase external validity.

http://haskell.org/haskellwiki/Haskell_Platform
http://projects.haskell.org/libmpd/
http://projects.haskell.org/libmpd/
http://www.musicpd.org/
http://www.musicpd.org/
http://www.hmatrix.googlepages.com
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon
http://www.cs.uu.nl/wiki/bin/view/Hage/Neon

5.3.4 unamb

Conal Elliott
active development

Report by:
Status:

Unamb is a package containing the unambiguous choice
operator unamb, which wraps thread racing up in a
purely functional, semantically simple wrapper. Given
any two arguments u and v that agree unless bottom,
the value of unamb u v is the more terminating of u
and v. Operationally, the value of unamb u v becomes
available when the earlier of u and v does. The agree-
ment precondition ensures unamb’s referential trans-
parency.

Further reading

http://haskell.org/haskellwiki/unamb

5.3.5 leapseconds-announced

Report by:
Status:

Bjorn Buckwalter
stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondTable with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.
up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.

Version 2009 of leapseconds-announced contains all
leap seconds up to 2009-01-01. A new version will be
uploaded if/when the IERS announces a new leap sec-
ond.

Further reading

o http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/leapseconds-announced
o http://github.com/bjornbm/leapseconds-announced

5.4 Processing Haskell

5.4.1 hint
Report by: Daniel Gorin
Status: active
Current release: 0.2.5

This library defines a Haskell Interpreter monad. It al-
lows to load Haskell modules, browse them, type-check
and evaluate strings with Haskell expressions, and even
coerce them into values. The operations are thread-safe
and type-safe (even the coercion of expressions to val-
ues).

33

It may be useful for those who need GHCi-like func-
tionality in their programs but do not want to mess
with the GHC-API innards. Additionally, unlike the
latter, hint provides an API that is consistent across
GHC versions.

Works with GHC 6.6.x and 6.8.x. Upcoming version
0.3.0.0 will also work with GHC 6.10

Further reading

The latest stable version can be downloaded from Hack-
age.

5.4.2 mueval

Gwern Branwen

Andrea Vezzosi, Daniel Gorin, Spencer
Janssen

active development

Report by:
Participants:

Status:

Mueval is a code evaluator for Haskell; it employs the
GHC API (as provided by the Hint library (— 5.4.1)).
It uses a variety of techniques to evaluate arbitrary
Haskell expressions safely & securely. Since it was be-
gun in June 2008, tremendous progress has been made;
it is currently used in Lambdabot live in #haskell).
Mueval can also be called from the command-line.
Mueval features:

o A comprehensive test-suite of expressions which
should and should not work

o Defeats all known attacks
o Optional resource limits and module imports
o The ability to load in definitions from a specified file

o Parses Haskell expressions with haskell-src-exts and
tests against black- and white-lists

o A process-level watchdog, to work around past and
future GHC issues with thread-level watchdogs

o Cabalized
We are currently working on the following;:

o Refactoring modules to render Mueval more useful
as a library

o Removing the POSIX-only requirement

Further reading

The source repository is available:

http://code.haskell.org/mubot/

darcs get

http://haskell.org/haskellwiki/unamb
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/leapseconds-announced
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/leapseconds-announced
http://github.com/bjornbm/leapseconds-announced
http://code.haskell.org/mubot/

5.4.3 hscolour

Malcolm Wallace
stable, maintained

Report by:
Status:

HsColour is a small command-line tool (and Haskell
library) that syntax-colorizes Haskell source code for
multiple output formats. It consists of a token lexer,
classification engine, and multiple separate pretty-
printers for the different formats. Current supported
output formats are ANSI terminal codes, HTML (with
or without CSS), LaTeX, and IRC chat codes. In all
cases, the colors and highlight styles (bold, underline,
etc.) are configurable. It can additionally place HTML
anchors in front of declarations, to be used as the target
of links you generate in Haddock (— 4.2.1) documen-
tation.

HsColour is widely used to make source code in blog
entries look more pretty, to generate library documen-
tation on the web, and to improve the readability of
GHC’s intermediate-code debugging output. The cur-
rent version is 1.10, which simply improves the title
element on HTML output.

Further reading

http://www.cs.york.ac.uk/fp/darcs/hscolour

5.5 Parsing and Transforming
5.5.1 HStringTemplate

Report by: Sterling Clover

HStringTemplate is a port of the StringTemplate li-
brary to Haskell. StringTemplate is a templating sys-
tem that enforces strict model-view separation via a
Turing-incomplete grammar that nonetheless provides
powerful recursive constructs. The library provides
template grouping and inheritance, as well as escaping.
It is especially suited for rapid and iterative develop-
ment of web applications. In the last period, a series
of minor bugs in options handling have been resolved,
but the code is otherwise stable and finding occasional
use. HStringTemplate is currently at release 0.4 and is
available via Hackage.

Further reading

o http://www.cs.usfca.edu/~parrt/papers/mvc.
templates.pdf

o HStringTemplate:
http://fmapfixreturn.wordpress.com

o StringTemplate: http://www.stringtemplate.org/

34

5.5.2 CoreErlang

Report by: Henrique Ferreiro Garcia
Participants: David Castro Pérez
Status: parses and pretty-prints all of Core Erlang

CoreErlang is a Haskell library which consists of a
parser and pretty-printer for the intermediate language
used by Erlang. The parser uses the Parsec library, and
the pretty-printer was modeled after the correspond-
ing module of the haskell-src package. It also exposes
a Syntax module which allows easy manipulation of
terms.

It is able to parse and pretty-print all of Core Er-
lang. Remaining work includes customizing the pretty
printer and refining the syntax interface.

Further reading

o It can be downloaded from hackage
o A darcs repository is available at:
haskell.org/CoreErlang

http://code.

5.5.3 parse-dimacs: A DIMACS CNF Parser

Denis Bueno
version 1.2

Report by:
Status:

Parse-dimacs parses a conjunctive normal form (CNF)
constraints in the DIMACS file format. CNF formulas
are often used as input to satisfiability solvers. DI-
MACS is a typical format for such formulas.

Version 1.2 is implemented in terms of lazy
bytestrings, which provides some speedups over the
previous string-based implementation.

Further reading

http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/parse-dimacs

5.5.4 InterpreterLib

Report by:
Participants:

Nicolas Frisby

Garrin Kimmell, Mark Snyder, Philip
Weaver, Perry Alexander

Nicolas Frisby

beta, actively maintained

Maintainer:
Status:

The InterpreterLib library is a collection of modules
for constructing composable, monadic interpreters in
Haskell. The library provides a collection of functions
and type classes that implement semantic algebras in
the style of Hutton and Duponcheel. Datatypes for re-
lated language constructs are defined as functors and
composed using a higher-order sum functor. The full
AST for a language is the least fixed point of the sum

http://www.cs.york.ac.uk/fp/darcs/hscolour
http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf
http://www.cs.usfca.edu/~parrt/papers/mvc.templates.pdf
http://fmapfixreturn.wordpress.com
http://www.stringtemplate.org/
http://code.haskell.org/CoreErlang
http://code.haskell.org/CoreErlang
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parse-dimacs
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/parse-dimacs

of its constructs’ functors. To denote a term in the lan-
guage, a sum algebra combinator composes algebras for
each construct functor into a semantic algebra suitable
for the full language, and the catamorphism introduces
recursion. Another piece of InterpreterLib is a novel
suite of algebra combinators conducive to monadic en-
capsulation and semantic re-use. The library also im-
plements a specialization of the SmashA generic pro-
gramming technique to support generic default alge-
bras and to override those defaults with functor-specific
behavior. The Algebra Compiler, an ancillary prepro-
cessor derived from polytypic programming principles,
generates functorial boilerplate Haskell code from min-
imal specifications of language constructs. As a whole,
the InterpreterLib library enables rapid prototyping,
re-use, and simplified maintenance of language proces-
sors.

The Oread (— 6.9.4) implementation employs Inter-
preterLib.

InterpreterLib is available for download at the link
provided below. Version 1.0 of InterpreterLib was re-
leased in April 2007.

Further reading

http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

(nfrisby@ittc.ku.edu)

5.5.5 KURE
Report by: Andy Gill
Status: alpha

The Kansas University Rewrite Engine (KURE, pro-
nounced cure) is a DSL for writing rewrite systems
over grammars with scope. It was used (along with
Template Haskell) to provide the basic rewrite abili-
ties inside HERA (Haskell Equational Reasoning As-
sistant). It has been recently rewritten and will be
published on hackage shortly. KURE provides combi-
nators for ordering the application of an abstract type,
Rewrite, combinators for building primitive rewrites,
and combinators performing rewrite searches. We plan
to use KURE to explore some rewrites inside our low-
level hardware description language Oread (— 6.9.4),
as well as power the next version of HERA.

Contact

(andygill@ku.edu)

35

5.5.6 Typed Transformations of Typed Abstract
Syntax (TTTAS)

Report by: Arthur Baars
Participants: Doaitse Swierstra, Marcos Viera
Status: actively developed

The TTTAS library, which has an arrow like interface,
supports the construction of analyses and transforma-
tions in a typed setting. The library uses typed abstract
syntax to represent fragments of embedded programs
containing variables and binding structures, while pre-
serving the idea that the type system of the host lan-
guage is used to emulate the type system of the em-
bedded language. Internally the library maintains a
collection of binding structures of the EDSL. A trans-
formation may introduce new bindings, and the binding
may even be mutually recursive. The library ensures
that in the end the bindings resulting from a transfor-
mation are consistent.

Introduction

Advantages of embedded domain-specific languages
(EDSLs) are that one does not have to implement a
separate type system nor an abstraction mechanism,
since these are directly borrowed from the host lan-
guage. Straightforward implementations of embedded
domain-specific languages map the semantics of the em-
bedded language onto a function in the host language.
The semantic mappings are usually compositional, i.e.,
they directly follow the syntax of the embedded lan-
guage.

One of the questions which arises is whether conven-
tional compilation techniques, such as global analysis
and resulting transformations, can be applied in the
context of EDSLs.

Run-time transformations on the embedded language
can have a huge effect on performance. In previous
work we present a case study comparing the Read
instances generated by Haskells deriving construct
with instances on which run-time grammar transfor-
mations (precedence resolution, left-factorization and
left-corner transformation) have been applied.

Background

The approach taken in TTTAS was proposed by Arthur
Baars, Doaitse Swierstra, and Marcos Viera.

The library is employed to implement the transfor-
mations used in the Haskell 2008 paper “Haskell, Do
You Read Me? Constructing and Composing Efficient
Top-down Parsers at Runtime” (— 5.5.7).

Future plans

A first version of TTTAS will soon be released on Hack-
age.

http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: nfrisby at ittc.ku.edu
mailto: andygill at ku.edu
http://www.haskell.org/haskell-symposium/2008/
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://hackage.haskell.org/
http://hackage.haskell.org/

Further reading

More information can be found on the TTTAS home
page.

5.5.7 ChristmasTree (previously: GRead)

Report by: Marcos Viera
Participants: Doaitse Swierstra, Eelco Lempsink
Status: actively developed

The ChristmasTree library provides an alternative to
the standard read (and show) function. Instead of
composing parsers, we dynamically compose grammars
describing datatypes, removing any left-recursion and
combining common prefixes of alternatives. From the
composed grammar, we generate a final parser using a
function gread that has a few improvements over read.

Introduction

The Haskell definition and implementation of read is
far from perfect. First, read is not able to handle
the infix operator associativity. This also puts con-
straints on the way show is defined and forces it to gen-
erate more parentheses than necessary. Second, it may
give rise to exponential parsing times. These problems
are due to the compositionality requirement for read
functions, which imposes a top-down parsing strategy.
ChristmasTree provides a different approach, based on
typed abstract syntax, in which grammars describing
the datatypes are composed dynamically.

We define a function gread with the following fea-
tures:

o Handle the associativity of infix operators. The cor-
responding gshow generates fewer parentheses than
the standard show.

o Read data in linear time. The standard read has an
exponential behavior in some cases of datatypes with
infix operators.

o Is able to repair possible errors in the input.

The instances of the class Gram (that make grammar
first-class values) can be automatically derived using
the function deriveGrammar.

Background

The approach taken in ChristmasTree was proposed by
Marcos Viera, Doaitse Swierstra, and Eelco Lempsink
in the Haskell 2008 paper “Haskell, Do You Read
Me? Constructing and Composing Efficient Top-down
Parsers at Runtime.” It uses the Typed Transforma-
tions of Typed Abstract Syntax library (— 5.5.6) de-
veloped by Arthur Baars and Doaitse Swierstra.

36

Further reading

o In a GHC bug ticket the problem we solved with this
library is explained.
o More information can be found on the TTTAS home

page.

5.5.8 Utrecht Parser Combinator Library: Old

version
Report by: Doaitse Swierstra
Status: actively maintained

The old version of the Utrecht Parser Combinator li-
brary (part of the wulib package) has remained largely
unmodified. One of its main uses is in the recently
released Utrecht Haskell Compiler. In the course of
testing that compiler versus the standard GHC pack-
ages we ran into a small misinterpretation of the offside
rule, which has been repaired.

A more serious problem is that the GHC actually
accepts a wider class of programs than specified by the
offside rule as specified in the Haskell 98 standard. We
may have to change out standard pBlock combinator
in order to cope with this. The solution for the time
being is to add some extra indentation.

Features
Fast, online, no spaceleaking implementation; stable
applicative style interface.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact (doaitse@swierstra.net).

5.5.9 Utrecht Parser Combinator Library: New

version
Report by: Doaitse Swierstra
Status: actively developed

The Utrecht Parser Combinator library has remained
largely unmodified for the last five years, and has served
us well. Over the years, however, new insights have
grown, and with the advent of GADTs some internals
could be simplified considerably. The Lernet summer
school in February 2008 (http://www.fing.edu.uy/inco/
eventos/lernet2008/) provided an incentive to start a
rewrite of the library; a newly written tutorial will ap-
pear in the lecture notes, which will be published by
Springer in the LNCS series. The text is also available
as a technical report at http://www.cs.uu.nl/research/
techreps/UU-CS-2008-044.html

http://www.cs.uu.nl/wiki/Center/TTTAS
http://www.cs.uu.nl/wiki/Center/TTTAS
http://www.haskell.org/haskell-symposium/2008/
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://www.cs.uu.nl/wiki/pub/Center/TTTAS/paper-read.pdf
http://hackage.haskell.org/trac/ghc/ticket/1544
http://www.cs.uu.nl/wiki/Center/TTTAS
http://www.cs.uu.nl/wiki/Center/TTTAS
mailto: doaitse at swierstra.net
http://www.fing.edu.uy/inco/eventos/lernet2008/
http://www.fing.edu.uy/inco/eventos/lernet2008/
http://www.cs.uu.nl/research/techreps/UU-CS-2008-044.html
http://www.cs.uu.nl/research/techreps/UU-CS-2008-044.html

Features

o Much simpler internals than the old library (—

5.5.8).

Online result production, error recovery, combina-
tors for parsing ambiguous grammars, an applicative
interface, a monadic interface.

Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

Fixes a potential black hole which went unnoticed for
years in the code for the monadic bind as presented
by Swierstra and Hughes in the ICFP 2003 paper:
Polish Parsers: Step by Step.

A first version of the new library was recently re-
leased as the wu-parsinglib library, which has found its
place in the Text. ParserCombinators category on Hack-
age.

Future plans

The final library, with an abstract interpretation part
in order to get the parsing speed we got used to, will
be release on Hackage again. We plan to extend the
short tutorial which will appear in the LNCS series (45
pages) into a long tutorial.

Since many aspects of the old library, such as its
applicative interface and the possibility to build e.g.
parser for permutation phrases, have now come avail-
able elsewhere in other packages, we will also try to
make the new library to conform as much as possible
with these new developments.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact (doaitse@swierstra.net).

5.6 Mathematical Objects

5.6.1 Halculon: units and physical constants

database
Report by: Jared Updike
Status: web application in beta, database stable

A number of Haskell libraries can represent numeri-
cal values with physical dimensions that are checked
at runtime or compile time (including dimensional and
the Numeric Prelude), but neither provide an exhaus-
tive, searchable, annotated database of units, measures,
and physical constants. Halculon is an interactive unit
database of 4,250 units, with a sample Haskell AJAX
web application, based on the units database created by

37

Alan Eliasen for the wonderful physical units program-
ming language Frink. (Because each unit in Frink’s
unit.txt database is defined in terms of more basic
unit definitions — an elegant approach in general —
units.txt is inconvenient for looking up a single random
unit; the entire file might need to be parsed to repre-
sent any given constant solely in terms of the base SI
units, which is precisely what the Halculon database
provides.)

Halculon also provides a carefully tuned, user- and
developer-friendly search string database that aims to
make interactive use pleasant. The database tables are
available online and downloadable as UTF-8 text.

Future plans for the sample calculator web applica-
tion include utilizing MPFR’s arbitrary precision floats
to bring greater range to Real calculations, in line with
those for Integers and Rationals (built in to Haskell).

Further reading
o http://www.updike.org/articles/Units

o http://www.updike.org/halculon/

5.6.2 Numeric prelude

Report by: Henning Thielemann
Participants: Dylan Thurston, Mikael Johansson
Status: experimental, active development

The hierarchy of numerical type classes is revised and
oriented at algebraic structures. Axiomatics for funda-
mental operations are given as QuickCheck properties,
superfluous super-classes like Show are removed, se-
mantic and representation-specific operations are sepa-
rated, the hierarchy of type classes is more fine grained,
and identifiers are adapted to mathematical terms.

There are both certain new type classes represent-
ing algebraic structures and new types of mathematical
objects. Currently supported algebraic structures are
group (additive), ring, principal ideal domain, field, al-
gebraic closures, transcendental closures, module and
vector space, normed space, lattice, differential algebra,
monoid.

There is also a collection of mathematical object
types, which is useful both for applications and testing
the class hierarchy. The types are lazy Peano number,
arbitrarily quantified non-negative lazy number (gener-
alization of Peano number), complex number, quater-
nion, residue class, fraction, partial fraction, number
equipped with physical units in two variants (dynam-
ically and statically checked) fixed point number with
respect to arbitrary bases and numbers of fraction dig-
its, infinite precision number in an arbitrary positional
system as lazy lists of digits supporting also numbers
with terminating representations, polynomial, power
series, LAURENT series root set of a polynomial, ma-
trix (basics only), algebra, e.g., multi-variate polyno-

mailto: doaitse at swierstra.net
http://www.updike.org/articles/Units
http://www.updike.org/halculon/

mial (basics only), Gaussians for exact Fourier trans-
form, permutation group.

Due to Haskell’s flexible type system, you can com-
bine all these types, e.g., fractions of polynomials,
residue classes of polynomials, complex numbers with
physical units, power series with real numbers as coef-
ficients.

Using the revised system requires hiding some of the
standard functions provided by Prelude, which is fortu-
nately supported by GHC. The library has basic Cabal
support and a growing test-suite of QuickCheck tests
for the implemented mathematical objects.

Each data type now resides in a separate module.
Cyclic dependencies could be eliminated by fixing some
types in class methods. E.g., power exponents became
simply Integer instead of Integral, which has also the
advantage of reduced type defaulting.

Further reading

http://www.haskell.org/haskellwiki/Numeric_Prelude

5.6.3 vector-space

Conal Elliott
active development

Report by:
Status:

vector-space is library that provides provides classes
and generic operations for additive groups, vector
spaces and affine spaces. There are also vector space
bases and a general notion of linear maps. The li-
brary also defines a type of infinite towers of gener-
alized derivatives. A generalized derivative is a linear
map rather than one of the usual concrete representa-
tions (scalars, vectors, matrices, .. .).

For the past few months, this work has been gra-
ciously supported by Anygma.

Further reading

http://haskell.org/haskellwiki/vector-space

5.6.4 Nat
Report by: Jan Christiansen
Status: experimental

Nat is a small library that provides an implementation
of natural numbers. It was motivated by a similar im-
plementation in the functional logic programming lan-
guage Curry (— 3.2.1). In contrast to most other im-
plementations it uses a binary representation instead of
Peano numbers. Therefore, the performance of arith-
metic operations is substantially better. Furthermore,
the operations are implemented in a least strict way.
That is, they do only evaluate their arguments as far
as necessary. It turned out that the implementation of
least strict functions is not at all as trivial as one would

38

expect. This implementation emerged from motivating
examples for a tool to check whether a function is least
strict, called StrictCheck. The implementation is avail-
able via hackage at http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/nat.

Further reading

http://www-ps.informatik.uni-kiel.de/currywiki/fun/
naturals

5.6.5 AERN-Real and friends

Report by: Michal Konecny
Participants: Amin Farjudian, Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of the following libraries for
fast exact real number arithmetic:

o AERN-Real: arbitrary precision interval arithmetic
with multiple backends (pure Haskell floating point
numbers, MPFR, correctly rounded doubles)

o AERN-RnToRm: arbitrary precision arithmetic of
piece-wise polynomial function enclosures (PFEs) for
functions over n-dimensional real intervals

o AERN-RnToRm-Plot: GTK window for inspecting
the graphs of PFEs in one variable (see figure below,
showing a screenshot of an AERN-RnToRm-Plot
window exploring an enclosure of cos(10z) (blue) and
an enclosure of its primitive function (red))

o AERN-Net: an implementation of distributed query-
based (i.e., lazy) computation over analytical and ge-
ometrical objects

L default x= [o3

f1
yL(x)=[6.375211872380805e-2,0.28
2
y2(x)= [-1.1089503078696064,-1.0!

coord system z00m/pan

set to defaults

zoom=[100 %

linear

The development is driven mainly by the needs of our
two research projects. We use the libraries extensively
to:

http://www.haskell.org/haskellwiki/Numeric_Prelude
http://haskell.org/haskellwiki/vector-space
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/nat
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/nat
http://www-ps.informatik.uni-kiel.de/currywiki/fun/naturals
http://www-ps.informatik.uni-kiel.de/currywiki/fun/naturals

prototype algorithms for reliable and ultimately con-
verging methods for solving differential equations in
many variables (AERN-RnToRm, AERN-Net)

solve numerical constraint satisfaction problems, es-
pecially those arising from verification of programs
that use floating point numbers (AERN-RnToRm)

For our purposes AERN-Real has been stable for al-
most a year and a half. It needs to be tested for a wider
variety of applications before we can label it as stable.
AERN-RnToRm is now also fairly stable thanks to a
period of debugging and a comprehensive test suite.
Nevertheless, it is rather slow as it has not been opti-
mized yet. The other libraries are very likely to contain
errors and we discover some every now and then.

The API of all the libraries is still occasionally chang-
ing but they provide a fairly extensive set of features
and are reasonably well documented.

The libraries are under active development and new
features and bug fixes are expected to be submitted
to Hackage during the rest of 2009. Notable planned
additions in this period include:

o optimizations to the function enclosure arithmetic

o inner-rounded interval and function enclosure oper-

ations suitable for verification of interval inclusions

infinite trees of enclosures for interval partial deriva-
tives computed using automatic differentiation

zooming, panning and better coordinate display in
the GTK graph display
Further reading

See Haddock documentation via Hackage — has links
to research papers.

5.6.6 Haskell BLAS Bindings

Patrick O. Perry
version 0.6

Report by:
Status:

The blas library is a set of high-level bindings to
the Basic Linear Algebra Subprograms (BLAS). The
project is part of a larger effort to make high perfor-
mance scientific computing in Haskell possible.

The design goal is to make using BLAS as natural as
possible without sacrificing functionality. In particular,
the library has both pure and impure data types, the
latter supporting destructive updates in the ST and I0
monads.

The library has just undergone a massive rewrite to
clean up the interface and support ST operations. At
this point most of the core functionality is in place, but
there may be some aesthetic changes in the future. The
latest version is available on Hackage.

39

If anyone would like to contribute to the project,
there is still plenty of work to do, and help is always
appreciated. Work on bindings for the rest of LAPACK
is about to begin.

Further reading

http://quantile95.com

5.6.7 logfloat
Report by: Wren Ng Thornton
Status: stable?
Current release: 0.12.0.1
Portability: GHC 6.8, GHC 6.10, Hugs Sept2006

The logfloat library provides a type for storing numbers
in the log-domain. This is primarily useful for avoid-
ing underflow when multiplying many small numbers
in probabilistic models.

It also includes support for dealing with IEEE-754
floating point numbers (more) correctly, including: a
class for types with representations for transfinite val-
ues, a class for partially ordered types, efficient and
correct conversion from Real to Fractional, and bug
fixes for Hugs’ Prelude.

Future plans
Add a signed variant so negative numbers can also be
projected into the log-domain.

Further reading

o Official source and documentation available on Hack-
age

o The development branch is available from http://
community.haskell.org/~wren/

5.6.8 fad: Forward Automatic Differentiation

Report by: Bjorn Buckwalter
Participants: Barak A. Pearlmutter, Jeffrey Mark

Siskind
Status: active

Fad is an attempt to make as comprehensive and us-
able a forward automatic differentiation (AD) library
as is possible in Haskell. Fad (a) attempts to be cor-
rect, by making it difficult to accidentally get a nu-
merically incorrect derivative; (b) provides not only
first-derivatives, but also a lazy tower of higher-order
derivatives; (c) allows nested use of derivative operators
while using the type system to reject incorrect nesting
(perturbation confusion); (d) attempts to be complete,
in the sense of allowing calculation of derivatives of
functions defined using a large variety of Haskell con-
structs; and (e) tries to be efficient, in the sense of both

http://quantile95.com
http://community.haskell.org/~wren/
http://community.haskell.org/~wren/

the defining properties of forward automatic differen-
tiation and in keeping the constant factor overhead as
low as possible.

Version 1.0 of fad was uploaded to Hackage on
April 3. Recent changes can be found via git clone
git://github.com/bjornbm/fad.git

Further reading

o http://github.com /bjornbm /fad
o http://flygdynamikern.blogspot.com/2009/04/
announce-fad-10-forward-automatic.html

5.7 Data types and data structures

5.7.1 HList — a library for typed heterogeneous

collections
Report by: Oleg Kiselyov
Participants: Ralf Lammel, Keean Schupke, Gwern
Branwen

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including
extensible polymorphic records and variants (— 1.5).
HList is analogous to the standard list library, pro-
viding a host of various construction, look-up, filter-
ing, and iteration primitives. In contrast to the reg-
ular lists, elements of heterogeneous lists do not have
to have the same type. HList lets the user formulate
statically checkable constraints: for example, no two
elements of a collection may have the same type (so
the elements can be unambiguously indexed by their
type).

An immediate application of HLists is the imple-
mentation of open, extensible records with first-class,
reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We, and now others (Alexandra
Silva, Joost Visser: PURe.CoddFish project), have also
used HList for type-safe database access in Haskell.
HList-based Records form the basis of OOHaskell (http:
//darcs.haskell.org/OOHaskell). The HList library relies
on common extensions of Haskell 98.

We are presently re-integrating the regression test
suite into the Hackage HList distribution and adjusting
the library for GHC 6.10.x. We are investigating the
use of type functions provided in the new versions of

GHC.

Further reading

o HList: http://homepages.cwi.nl/~ralf/HList/

40

o OOHaskell:
http://homepages.cwi.nl/~ralf/OOHaskell/

5.7.2 Edison
Report by: Robert Dockins
Status: stable, maintained

Edison is a library of purely function data structures
for Haskell originally written by Chris Okasaki. Con-
ceptually, it consists of two things:

1. A set of type classes defining data the following
data structure abstractions: “sequences”, “collec-
tions” and “associative collections”

2. Multiple concrete implementations of each of the ab-
stractions.

The following major changes have been made since
version 1.1, which was released in 1999.

o Typeclasses updated to use fundeps (by Andrew Bro-
mage)

o Implementation of ternary search tries (by Andrew
Bromage)

o Modules renamed to use the hierarchical module ex-
tension

o Documentation haddockized
o Source moved to a darcs repository
o Build system cabalized

o Unit tests integrated into a single driver program
which exercises all the concrete implementations
shipped with Edison

o Multiple additions to the APIs (mostly the associ-
ated collection APT)

Edison is currently in maintain-only mode. I do not
have the time required to enhance Edison in the ways I
would like. If you are interested in working on Edison,
do not hesitate to contact me.

The biggest thing that Edison needs is a benchmark-
ing suite. Although Edison currently has an extensive
unit test suite for testing correctness, and many of the
data structures have proven time bounds, I have no way
to evaluate or compare the quantitative performance
of data structure implementations in a principled way.
Unfortunately, benchmarking data structures in a non-
strict language is difficult to do well. If you have an
interest or experience in this area, your help would be
very much appreciated.

Further reading

http://www.cs.princeton.edu/~rdockins/edison /home/

http://github.com/bjornbm/fad
http://flygdynamikern.blogspot.com/2009/04/announce-fad-10-forward-automatic.html
http://flygdynamikern.blogspot.com/2009/04/announce-fad-10-forward-automatic.html
http://darcs.haskell.org/OOHaskell
http://darcs.haskell.org/OOHaskell
http://homepages.cwi.nl/~ralf/HList/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://www.cs.princeton.edu/~rdockins/edison/home/

5.7.3 MemoTrie

Conal Elliott
active development

Report by:
Status:

MemoTrie is functional library for creating efficient
memo functions, using tries. It is based on some code
from Spencer Janssen and uses type families.

Further reading
http://haskell.org/haskellwiki/MemoTrie

5.7.4 bytestring-trie

Report by: Wren Ng Thornton
Status: active development
Current release: 0.1.4
Portability: Haskell 98 + CPP

The bytestring-trie library provides an efficient imple-
mentation of “dictionaries” mapping strings to values,
using big-endian patricia tries (like Data.IntMap). In
general Trie is more efficient than Map ByteString
because memory and work is shared between strings
with common prefixes, though the specifics will vary
depending on the distribution of keys.

Future plans

o Min- and max-views for treating tries as priority
queues.

o Efficient intersection and difference functions.

Further reading

o Official source and documentation available on Hack-
age.

o The development branch is available from http://
community.haskell.org/~wren /.

5.8 Data processing

5.8.1 The Haskell Cryptographic Library

Report by: Creighton Hogg

The latest version is 4.2.0. It is primarily a bug fix
over 4.1.0 that should be cabal installable by any recent
GHC.

Having taken over the project from Dominic, the pri-
mary focus for the 5.0.0 release of Crypto will be im-
proved speed and bringing the entire codebase under a
BSD license.

Please note that the project has moved over to the
hosting site Patch-Tag.

This release contains:

DES

Blowfish

AES

TEA

BubbleBabble

Cipher Block Chaining (CBC)

PKCS#5 and nulls padding

SHA-1, SHA-2, SHA-224, SHA-256, SHA-384, SHA-
512

HMAC

MD5

RSA

OAEP-based encryption (Bellare-Rogaway)

Hex utilities

Support for Word128, Word192 and Word256, and
beyond

O O O 0O 0O O O O

O O O O O O

Further reading

http://patch-tag.com/repo/crypto

5.8.2 The Haskell ASN.1 Library

Report by: Dominic Steinitz

We are still working on a complete restructuring of the
library. Over 620 darcs patches have been committed
to support the Packed Encoding Rules (PER) using a
GADT to represent the Abstract Syntax Tree.

I do not suggest downloading the current working
version yet (unless you want to contribute). We are in
the process of moving all the original tests across to
work with the new version of the AST.

The currently release still supports BER for:

e}

X.509 identity certificates

[¢]

X.509 attribute certificates

o

PKCS#8 private keys

[¢]

PKCS#1 version 1.5

Further reading

http://haskell.org/asnl.

5.8.3 MultiSetRewrite

Report by: Martin Sulzmann

The MultiSetRewrite project is under active develop-
ment (latest update March’09). MultiSetRewrite is a
Haskell library extension to support multi-set rewrite
rules with guards. The MultiSetRewrite library forms
the core of

http://haskell.org/haskellwiki/MemoTrie
http://community.haskell.org/~wren/
http://community.haskell.org/~wren/
http://patch-tag.com/repo/crypto
http://haskell.org/asn1

o a Constraint Handling Rules (CHR) solver,

o an extension of join patterns with guards, propaga-
tion and a parallel execution model (available as a

separate package).

Further reading

o http://sulzmann.blogspot.com/2008/10/
multi-set-rewrite-rules-with-guards-and.html

o http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/multisetrewrite

5.8.4 Graphalyze

Report by:
Status:

Ivan Lazar Miljenovic
version 0.5

The Graphalyze library is a general-purpose, fully ex-
tensible graph-theoretic analysis library, which includes
functions to assist with graph creation and visualiza-
tion, as well as many graph-related algorithms. Also
included is a small abstract document representation,
with a sample document generator utilizing Pandoc (—
6.4.1). Users of this library are able to mix and match
Graphalyze’s algorithms with their own.

Graphalyze is used in SourceGraph (— 4.3.7), and
was developed as part of my Mathematics Hon-
ours’ thesis, Graph Theoretic Analysis of Relation-
ships Within Discrete Data. The focus on this
thesis was to develop computational tools to allow
people to analyze discrete data sets. The output
produced when running SourceGraph on Graphalyze
can be found at http://community.haskell.org/~ivanm/
Graphalyze/Graphalyze.html.

Further reading

o http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/Graphalyze

o http://code.haskell.org/Graphalyze

o http://ivanmiljenovic.files.wordpress.com/2008/11/
honoursthesis.pdf

5.8.5 Takusen

Report by: Alistair Bayley
Participants: Oleg Kiselyov
Status: active development

Takusen is a library for accessing DBMSs. Like
HSQL, we support arbitrary SQL statements (currently
strings, extensible to anything that can be converted to
a string).

Takusen’s “unique selling-point” is safety and effi-
ciency. We statically ensure that all acquired database
resources such as cursors, connection, and statement

42

handles are released, exactly once, at predictable times.
Takusen can avoid loading the whole result set in mem-
ory and so can handle queries returning millions of
rows, in constant space. Takusen also supports au-
tomatic marshaling and unmarshaling of results and
query parameters. These benefits come from the design
of query result processing around a left-fold enumera-
tor.

Currently we fully support Oracle, Sqlite, and Post-
greSQL. ODBC support is nearly complete; string out-
put bind-variables do not marshal correctly.

Things have been quiet. Since the last report we have
fixed a few bugs and got the install process working
with ghc-6.10.

Further reading

o Hackage: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/Takusen

o darcs get http://darcs.haskell.org/takusen/

o browse docs: http://darcs.haskell.org/takusen/doc/
html (see Database.Enumerator for Usage instruc-
tions and examples)

5.9 Generic and Type-Level Programming

5.9.1 uniplate

Report by: Neil Mitchell

Uniplate is a boilerplate removal library, with similar
goals to the original Scrap Your Boilerplate work. It re-
quires fewer language extensions, and allows more suc-
cinct traversals with higher performance than SYB (—
5.9.2). A paper including many examples was pre-
sented at the Haskell Workshop 2007. Since the original
version, the library has been further optimized and is
now about 15% faster.

If you are writing a compiler, or any program that
operates over values with many constructors and nested
types, you should be using a boilerplate removal library.
This library provides a gentle introduction to the field,
and can be used practically to achieve substantial sav-
ings in code size and maintainability.

Further reading

http://community.haskell.org/~ndm/uniplate

5.9.2 Scrap Your Boilerplate (SYB)

Report by: José Pedro Magalh3es
Participants: Sean Leather
Status: actively developed

Scrap Your Boilerplate (SYB) is a library for generic
programming in Haskell. It has been supported by
GHC since the 6.0 release. The library is based on

http://sulzmann.blogspot.com/2008/10/multi-set-rewrite-rules-with-guards-and.html
http://sulzmann.blogspot.com/2008/10/multi-set-rewrite-rules-with-guards-and.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/multisetrewrite
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/multisetrewrite
http://community.haskell.org/~ivanm/Graphalyze/Graphalyze.html
http://community.haskell.org/~ivanm/Graphalyze/Graphalyze.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Graphalyze
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Graphalyze
http://code.haskell.org/Graphalyze
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://ivanmiljenovic.files.wordpress.com/2008/11/honoursthesis.pdf
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Takusen
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/Takusen
http://darcs.haskell.org/takusen/
http://darcs.haskell.org/takusen/doc/html
http://darcs.haskell.org/takusen/doc/html
http://community.haskell.org/~ndm/uniplate

combinators and a few primitives for type-safe casting
and processing constructor applications.

It was originally developed by Ralf Lammel and Si-
mon Peyton Jones. Since then, many people have con-
tributed with research relating to SYB or its applica-
tions.

Recent changes

In the discussion towards the release of the 6.10 version
of GHC, it was decided that SYB would be separated
from the compiler itself. This allows for easier main-
tainability, since updating the library does not have
to depend on updating the compiler. This splitting
amounts to moving the Data.Generics modules from
the base package into a new package called syb.

One issue with splitting the Data.Generics modules
is that the Data class is tightly coupled to GHC’s au-
tomatic generation of instances. Completely moving
the entire SYB library from the base package would
give a false sense of separation, since the methods
of Data cannot be changed without also modifying
the compiler. As a result, Data was moved from the
Data.Generics.Basics module to Data.Data. Dis-
cussion on how to split SYB resulted in this and other
changes to the code. These changes not only allow the
library to be developed independently from GHC but
also reduce dependencies on SYB in cases where it is
not necessary.

Future plans

The next step is to create a separate repository for the
new syb package and develop it independently, releas-
ing it on Hackage. There are several ideas for future
improvements for SYB, namely increasing performance
and providing more generic functions (such as generic
map).

Contact

To report bugs or suggest improvements, please use
the issue tracker for SYB. For general concerns and
questions, please use the Generics mailing list.

Further reading

More information can be found on the new SYB home
page. For API documentation, refer to the Haddock
documentation. The original webpage also contains in-
formation and many examples.

43

5.9.3 Extensible and Modular Generics for the
Masses (EMGM)

Sean Leather

José Pedro Magalh3es, Alexey Rodriguez,
Andres Loh

actively developed

Report by:
Participants:

Status:

Extensible and Modular Generics for the Masses
(EMGM) is a general-purpose library for generic pro-
gramming with type classes.

Introduction

EMGM is a library for of datatype-generic pro-
gramming using type classes. We represent Haskell
datatypes as values using a sum-of-products structure
representation. The foundation of EMGM allows pro-
grammers to write generic functions by induction on
the structure of datatypes. The use of type classes
in EMGM allows generic functions to support ad-hoc
cases for arbitrary datatypes.

The library provides a sizable (and constantly grow-
ing) collection of ready-to-use generic functions. Here
are some examples of these functions:

o Crush, a useful generalization of fold-like opera-
tions that supports flattening, integer operations,
and logic operations on all values of an arbitrary
datatype

Extensible Read and Show functions to which one
might add special cases for certain types

Collect for collecting values of a certain type con-
tained within a value of a different type

ZipWith, a generic version of the standard zipWith

EMGM also comes with support for standard
datatypes such as lists, Either, Maybe, and tuples.
Adding support for your own datatype is straightfor-
ward using our new deriving API.

Background

The ideas for EMGM come from research by Ralf
Hinze, Bruno Oliveira, and Andres Loh. It was fur-
ther explored in a comparison of generic programming
libraries by Alexey Rodriguez, et al. Our particular im-
plementation was developed simultaneously along with
lecture notes for the 2008 Advanced Functional Pro-
gramming Summer School.

Recent Development

Since the last publication of this report, EMGM has
seen significant development. The most important is in

http://homepages.cwi.nl/~ralf/syb1/
http://thread.gmane.org/gmane.comp.lang.haskell.libraries/9962
http://thread.gmane.org/gmane.comp.lang.haskell.libraries/9962
http://www.cs.uu.nl/wiki/GenericProgramming/SYB#Handling_the_6_10_split
http://www.cs.uu.nl/wiki/GenericProgramming/SYB#Handling_the_6_10_split
http://hackage.haskell.org/
http://code.google.com/p/scrapyourboilerplate/issues/list
http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/SYB
http://www.cs.uu.nl/wiki/GenericProgramming/SYB
http://www.haskell.org/ghc/dist/stable/docs/libraries/syb/Data-Generics.html
http://www.haskell.org/ghc/dist/stable/docs/libraries/syb/Data-Generics.html
http://www.cs.vu.nl/boilerplate/
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Crush.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Read.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Show.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Collect.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-ZipWith.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Derive.html

deriving representations for datatypes. Previously, li-
brary users would need to write their own structure rep-
resentation and instances. Now, it is simply a matter of
using a collection of Template Haskell functions. The
deriving API provides both the single function derive
for ease-of-use and a very flexible set of functions to
allow programmers to choose exactly what they want.

The documentation of EMGM has seen major ex-
pansion and improvement. If you find something that
could be better documented, we would like to know.

Other changes include some new functions. The
function bimap allows one to map over bifunctors. The
functions everywhere and everywhere’ are similar to
functions found in the Scrap Your Boilerplate library.
They apply a transformation everywhere a certain type
is found in a value.

Future plans

We are continuing to develop more generic functions
and to explore the use of this library in many domains.
There should be one or two releases before the next
report. We welcome ideas or contributions from the
community.

Contact

We are definitely interested in knowing if you use
EMGM, how you use it, and where it can be improved.
Contact us on the Generics mailing list.

Further reading

More information can be found on the EMGM website.
Download and browse the API of the library at the
Hackage page for EMGM.

5.9.4 multirec: Generic programming with systems
of recursive datatypes

Alexey Rodriguez

Stefan Holdermans, Andres L6h, Johan
Jeuring

actively developed

Report by:
Participants:

Status:

Many generic programs require information about the
recursive positions of a datatype. Examples include
the generic fold, generic rewriting, or the Zipper data
structure. Several generic programming systems allow
to write such functions by viewing datatypes as fixed
points of a pattern functor. Traditionally, this view has
been limited to so-called regular datatypes such as lists
and binary trees. In particular, systems of mutually
recursive datatypes have been excluded.

With the multirec library, we provide a mechanism
to talk about fixed points of systems of datatypes that
may be mutually recursive. On top of this representa-
tions, generic functions such as the fold or the Zipper
can then be defined.

44

We expect that the library will be especially inter-
esting for compiler writers, because ASTs are typically
systems of mutually recursive datatypes, and with mul-
tirec it becomes easy to write generic functions on

ASTs.

Features and limitations

o Generalizes the fixed point view from single, regular
datatypes to systems of recursive datatypes.

o Includes detailed examples: generic fold and generic
compos (in the style of Bringert and Ranta, see be-
low). The Zipper and generic rewriting for systems of
datatypes will be released soon as separate libraries
that build on multirec.

o The generic compos functions do not require the user
to modify their existing systems of datatypes.

o In its current form, this library does not support
nested datatypes.

Future plans

At the moment the user is required to enable rewrit-
ing on a datatype by supplying a type-specific instance
declaration. In the future, we are planning to automate
this process using Template Haskell.

Contact

Please do get in touch with us using the Generics
mailing list (http://www.haskell.org/mailman/listinfo/
generics) if you find the library useful or if you want
to report bugs and make suggestions.

Further reading

o The library is available on Hackage as multirec.
More information will be made available on
the multirec home page (http://www.cs.uu.nl/wiki/
GenericProgramming/Multirec).

o Paper about the ideas underlying the library:
http://www.cs.uu.nl/~andres/Rec

o Paper about compos by Bringert and Ranta:
http://www.cs.chalmers.se/~bringert/publ/
composOp/composOp.pdf

5.9.5 Generic rewriting library for regular datatypes

Alexey Rodriguez

Thomas van Noort, Stefan Holdermans,
Johan Jeuring, Bastiaan Heeren
actively developed

Report by:
Participants:

Status:

This library provides a set of functions to apply rewrite
rules to a datatype. The rewrite functions are generic,
so it is not necessary to re-implement the matching

http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Derive.html
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Derive.html#v:derive
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM-Functions-Map.html#v:bimap
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM.html#v:everywhere
http://hackage.haskell.org/packages/archive/emgm/0.3.1/doc/html/Generics-EMGM.html#v:everywhere'
http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/EMGM
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/emgm
http://www.haskell.org/mailman/listinfo/generics
http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/Multirec
http://www.cs.uu.nl/wiki/GenericProgramming/Multirec
http://www.cs.uu.nl/~andres/Rec
http://www.cs.chalmers.se/~bringert/publ/composOp/composOp.pdf
http://www.cs.chalmers.se/~bringert/publ/composOp/composOp.pdf

and substitution machinery for every datatype. Addi-
tionally, the library provides a set of generic traversal
functions that can be used together with rewriting.

Features and limitations

o Generic rewriting machinery

o Generic traversals (top-down, bottom-up, etc.)

Rewrite rules are just datatypes and therefore ob-
servable. This means that you can, for example, in-
vert rewrite rules.

Rewrite rules are defined in the original domain. So
the user does not have to worry about internal im-
plementation details. For instance, the generic ex-
tension of datatypes with metavariables remains in-
ternal to the library.

This library can be used with regular datatypes, that
is, datatypes that exhibit simple recursion such as
lists and binary trees (nested datatypes and mutual
recursion are not supported)

Future plans

At the moment the user is required to enable rewrit-
ing on a datatype by supplying a type-specific instance
declaration. In the future, we are planning to automate
this process using Template Haskell.

For a version of the library that supports mutual
recursion, please have a look at multirec (— 5.9.4).

Contact

Please do get in touch with us using the Generics mail-
ing list if you find the library useful or if you want to
report bugs and make suggestions.

Further reading

More information can be found on the Rewriting home
page. References for the research that resulted in the
rewriting library can be found on the Hackage page for
rewriting.

5.9.6 2LT: Two-Level Transformation

Tiago Miguel Laureano Alves

Joost Visser, Pablo Berdaguer, Alcino
Cunha, José Nuno Oliveira, Hugo Pacheco
active

Report by:
Participants:

Status:

A two-level data transformation consists of a type-level
transformation of a data format coupled with value-
level transformations of data instances corresponding
to that format. Examples of two-level data transfor-
mations include XML schema evolution coupled with
document migration, and data mappings used for in-
teroperability and persistence.

45

In the 2LT project, support for two-level transforma-
tions is being developed using Haskell, relying in par-
ticular on generalized abstract data types (GADTS).
Currently, the 2LT package offers:

o A library of two-level transformation combinators.
These combinators are used to compose transforma-
tion systems which, when applied to an input type,
produce an output type together with the conver-
sion functions that mediate between input and out-
put types.

Front-ends for VDM-SL, XML, and SQL. These
front-ends support (i) reading a schema, (ii) apply-
ing a two-level transformation system to produce a
new schema, (iii) converting a document/database
corresponding to the input schema to a docu-
ment/database corresponding to the output schema,
and vice versa.

A combinator library for transformation of point-
free and structure-shy functions. These combinators
are used to compose transformation systems for op-
timization of conversion functions, and for migration
of queries through two-level transformations. Inde-
pendently of two-level transformation, the combina-
tors can be used to specialize structure-shy programs
(such as XPath queries and strategic functions) to
structure-sensitive point-free form, and vice versa.

Support for schema constraints using point-free ex-
pressions. Constraints present in the initial schema
are preserved during the transformation process and
new constraints are added in specific transformations
to ensure semantic preservation. Constraints can be
simplified using the already existent library for trans-
formation of point-free functions.

The various sets of transformation combinators are
reminiscent of the combinators of Strafunski and the
Scrap-your-Boilerplate (— 5.9.2) approach to generic
functional programming.

A release of 2LT is available from the project URL.

Future plans

New functionality is planned, such as elaboration of the
front-ends and the creation of a web interface. Further-
more, efforts are underway to reimplement the existent
functionality using lenses under the context of the PhD
student Hugo Pacheco.

Further reading

o Project URL: http://2lt.googlecode.com

o Alcino Cunha, José Nuno Oliveira, Joost Visser.
Type-safe Two-level Data Transformation. Formal
Methods 2006.

o Alcino Cunha, Joost Visser. Strongly Typed Rewrit-
ing For Coupled Software Transformation. RULE
2006.

http://www.haskell.org/mailman/listinfo/generics
http://www.haskell.org/mailman/listinfo/generics
http://www.cs.uu.nl/wiki/GenericProgramming/Rewriting
http://www.cs.uu.nl/wiki/GenericProgramming/Rewriting
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/rewriting
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/rewriting
http://2lt.googlecode.com

o Pablo Berdaguer, Alcino Cunha, Hugo Pacheco,
Joost Visser. Coupled Schema Transformation and
Data Conversion For XML and SQL. PADL 2007.

o Alcino Cunha and Joost Visser. Transformation of
Structure-Shy Programs, Applied to XPath Queries
and Strategic Functions. PEPM 2007.

o Tiago L. Alves, Paulo Silva and Joost Visser.
Constraint-aware Schema Transformation. RULE,
2008.

5.9.7 Data.Label — “atoms” for type-level
programming

Claus Reinke
experimental

Report by:
Status:

A common problem for type-level programming (ex-
tensible record libraries, type-level numbers, ...) in
Haskell is where to define shared atomic types (record
field labels, type tags, type numerals):

o identical types defined in separate modules are not
compatible

o common imports defining common types for several
projects hurt modularity

o SML-style parameterized modules and type-sharing
are not directly available

Using Template Haskell, and QuasiQuotes in partic-
ular, we can now at least work around this issue, by
splitting the atoms:-) Data.Label provides type let-
ters and combinators for constructing typed “atoms”
from these letters, as well as quasiquoting and Show
instances to hide some of this internal structure.

*Main> [$1|labell]

label
*Main> :t [$1]labell]
[$1]11abel|] :: L1 :< (La :< (Lb :< (Le :< L1)))

This workaround lets users choose between shared or
locally defined labels:

module A where

import Data.Label
data MyLabel

x = [$1]1labell]

y = undefined: :MyLabel

module B where

import Data.Label
data MyLabel

x = [$1]1labell]

y = undefined: :MyLabel

module C where
import Data.Label

import A

import B

ok = [A.x,B.x]
fails = [A.y,B.y]

It does so by offering a meta-level commonality: A
and B do not have to agree on a common module to
declare all their common types (Data.Label is unaf-
fected by the specific labels its importers might use),
they only need to agree on a common way of declaring
all their sharable “atomic” types.

46

Further reading

o Example code:
misc/labels.hs
http://community.haskell.org/~claus/misc/Data/Label /
TH.hs
http://community.haskell.org/~claus/misc/Data/Label.hs

o Discussion: http://www.haskell.org/pipermail /
haskell-cafe/2009-April /059819.html

http://community.haskell.org/~claus/

5.10 User interfaces

5.10.1 Gtk2Hs

Report by: Peter Gavin
Participants: Axel Simon, many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.

GUIs written using Gtk2Hs use themes to resemble
the native look on Windows and, of course, various
desktops on Linux, Solaris, FreeBSD, and Mac OS X
using X11.

Gtk2Hs features:

o Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

o Unicode support
o High quality vector graphics using Cairo

o Cross-platform, multi-format multimedia playback
with GStreamer

o Extensive reference documentation

o An implementation of the “Haskell School of Expres-
sion” graphics API

o Support for the Glade visual GUI builder

o Bindings to some Gnome extensions: GIO/GVfs,
GConf, GtkSourceView 1.0 and 2.0, and the Gtk-
MozEmbed widget for embedded web browsers

o An easy-to-use installer for Windows

o Packages for Fedora, Gentoo (— 2.9.1), Debian, and
FreeBSD

o New features:

— Model-view widgets with stores being imple-
mented in Haskell

http://community.haskell.org/~claus/misc/labels.hs
http://community.haskell.org/~claus/misc/labels.hs
http://community.haskell.org/~claus/misc/Data/Label/TH.hs
http://community.haskell.org/~claus/misc/Data/Label/TH.hs
http://community.haskell.org/~claus/misc/Data/Label.hs
http://www.haskell.org/pipermail/haskell-cafe/2009-April/059819.html
http://www.haskell.org/pipermail/haskell-cafe/2009-April/059819.html

Full drag-and-drop and clipboard support

Binding to GtkSourceView 2

Support for GHC 6.10 and newer

New demos and example code

The Gtk2HS library is continually being improved with
new bindings, documentation, and bug fixes. Outside
contributions are always welcome! We have recently
released version 0.10.0, and are in the process of pack-
aging 0.10.1 to be released soon.

In the future we hope to modularize Gtk2Hs and enable
it to be built and distributed with Cabal and Hackage.
This will enable people to just create, e.g., high-quality
PDF documents using Cairo and Pango, performing
image manipulation using Pixbuf and more. We also
plan to bind more of the Gnome platform libraries, to
allow compliant Gnome applications to be built entirely
in Haskell.

Further reading

o News, downloads, and documentation: http://

haskell.org/gtk2hs/
o Development version:
haskell.org/gtk2hs/

darcs get http://code.

5.10.2 HQK
Report by: Wolfgang Jeltsch
Participants: Thomas Moénicke
Status: provisional

HQK is an effort to provide Haskell bindings to large
parts of the Qt and KDE libraries. We have devel-
oped a generator which can produce binding code au-
tomatically. In addition, we have developed a small
Haskell module for accessing object-oriented libraries
in a convenient way. This module also supports parts
of Qt’s signal-slot mechanism. In contrast to the origi-
nal C++-based solution, type correctness of signal-slot
connections is checked at compile time with our library.

We plan to develop a HQK-based UI backend for
the Functional Reactive Programming library Grape-
fruit (—6.5.1).

Further reading

http://haskell.org/haskellwiki/HQK

47

5.10.3 wxHaskell

Jeremy O'Donoghue

Shelarcy, Eric Kow, Mads Lindstroem, and
others

beta, actively developed

Report by:
Participants:

Status:

The wxHaskell library provides Haskell bindings for a
large subset of the wxWidgets library, which provides
a cross-platform GUI library using native controls.

Using wxHaskell in a GUI project offers a number of
benefits:

o Extensive and highly functional set of widgets, many
of which have Haskell bindings which make develop-
ment more declarative in feel.

Native look and feel on all supported platforms (Win-
dows, Mac OS X, and Linux), due to the use of plat-
form native widgets in almost all cases.

Simple deployment: only a small number of shared
libraries need to be distributed with wxHaskell (e.g.,
one DLL on Windows).

o wxHaskell is used as the basis for a number of higher-
level libraries including AutoForms http://autoforms.
sourceforge.net/, wxGeneric, etc.

Over the past year, wxHaskell has seen considerable
development, and is beginning the gain a small com-
munity outside of the core developers. We particularly
appreciate the bugs found (and very often fixed) by
members of the community.

The main changes in wxHaskell over the past year or
so include:

o Release of version 0.10.3, including binary installers.
This added support for recent versions of the under-
lying wxWidgets library and for recent versions of
GHC. Prior to this release, getting started with wx-
Haskell was becoming difficult for new users.

Support for many new widget types. We now sup-
port almost all of the widgets provided in the wxWid-
gets distribution, including user-contributed widgets.

Many bugfixes.

Addition of support for XML descriptions of GUI
layouts using XRC. This has been the most requested
feature by users for some time, and has just been
committed to the Darcs repository. We anticipate
a new release with binary installers in the next few
weeks, to make this feature more widely available.

Work on porting to the GHC 6.10 release — wx-
Haskell in Darcs repository compiles out of the box
on 6.10 release candidates.

Improvements to Cabal support, with the intention
of providing Cabal installable packages for wxcore
and wx.

http://haskell.org/gtk2hs/
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://haskell.org/haskellwiki/HQK
http://autoforms.sourceforge.net/
http://autoforms.sourceforge.net/

Main repository moved from darcs.haskell.org to
code.haskell.org.

Dropped support for versions of wxWidgets prior to
2.8. We currently support building against wxWid-
gets 2.8.x and 2.9.x. This has resulted in a (small)
number of backward incompatible API changes, com-
pared to earlier versions.

We are working on a tutorial to complement the
Gtk2Hs chapter in the forthcoming “Real World
Haskell” book, so that interested developers can work
through developing a GUI for wxHaskell following a
similar sequence.

Further reading

o News, downloads, documentation and tutorials:
http://haskell.org/haskellwiki/WxHaskell

o Development version: darcs get http://code.haskell.
org/wxhaskell /

o Binary packages:
WxHaskell /Download

http://haskell.org/haskellwiki/

5.10.4 Shellac
Report by: Robert Dockins
Status: beta, maintained

Shellac is a framework for building read-eval-print style
shells. Shells are created by declaratively defining a set
of shell commands and an evaluation function. Shel-
lac supports multiple shell backends, including a “ba-
sic” backend, which uses only Haskell IO primitives,
and a full featured “readline” backend based on the
the Haskell readline bindings found in the standard li-
braries.

This library attempts to allow users to write shells
in a declarative way and still enjoy the advanced fea-
tures that may be available from a powerful line editing
package like readline.

Shellac is available from Hackage, as are the re-
lated Shellac-readline, Shellac-editline, and Shellac-
compatline packages. The readline and editline pack-
ages provide Shellac backends for readline and editline,
respectively. The compatline package is a thin wrapper
for either the readline or editline package, depending
on availability at build-time.

Shellac has been successfully used by several inde-
pendent projects and the API is now fairly stable.

Further reading

http://www.cs.princeton.edu/~rdockins/shellac/home

48

5.10.5 Haskeline

Judah Jacobson
active development

Report by:
Status:

The Haskeline library provides a user interface for line
input in command-line programs. It is similar in pur-
pose to readline or editline, but is written in Haskell
and aims to be more easily integrated into other Haskell
programs. A simple, monadic API allows this library to
provide guarantees such as restoration of the terminal
settings on exit and responsiveness to control-c events.

In its latest release (0.6.1.3), Haskeline supports Uni-
code and runs both on the native Windows console and
on POSIX-compatible systems. Its rich line-editing in-
terface is user-customizable and includes emacs and vi
modes, history recall and incremental search, undo sup-
port, and custom tab completion functions.

Recent work has extended compatibility to a wide
variety of platforms and environments. Plans for fur-
ther development include adding even more features to
the user interface.

Further reading

o Home page: http://trac.haskell.org/haskeline
o Releases: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/haskeline

5.11 Graphics

5.11.1 diagrams

Report by: Brent Yorgey
Participants: Dougal Stanton
Status: active development

The diagrams library provides an embedded domain-
specific language for creating simple pictures and dia-
grams, built on top of the Cairo rendering engine. Val-
ues of type Diagram are built up in a compositional
style from various primitives and combinators, and can
be rendered to a physical medium, such as a file in
PNG, PS, PDF, or SVG format.

For example, consider the following diagram to illus-
trate the 24 permutations of four objects:

http://haskell.org/haskellwiki/WxHaskell
http://code.haskell.org/wxhaskell/
http://code.haskell.org/wxhaskell/
http://haskell.org/haskellwiki/WxHaskell/Download
http://haskell.org/haskellwiki/WxHaskell/Download
http://www.cs.princeton.edu/~rdockins/shellac/home
http://trac.haskell.org/haskeline
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/haskeline
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/haskeline

The diagrams library was used to create this diagram
with very little effort (about ten lines of Haskell, in-
cluding the code to actually generate permutations).
The source code for this diagram, as well as other ex-
amples and further resources, can be found at http:
/code.haskell.org/diagrams/.

Version 0.2, which adds support for paths, poly-
gons, PDF, PS, and SVG output, text, more alignment
modes, and additional drawing attributes, will be re-
leased soon! Features planned for future versions in-
clude grid and tree layouts, connectors, and animation
support. New contributors and testers welcome!

Further reading

o http://code.haskell.org/diagrams/
o http://byorgey.wordpress.com/2008,/04/30/
new-haskell-diagrams-library/

5.11.2 FieldTrip

Conal Elliott
active development

Report by:
Status:

FieldTrip is a library for functional 3D graphics. It is
intended for building static, animated, and interactive
3D geometry, efficient enough for real-time synthesis
and display. Since FieldTrip is functional, one describes
what models are, not how to render them (being rather
than doing).

Surfaces are described as functions from 2D space to
3D space. As such, they are intrinsically curved rather
than faceted. Surface rendering tessellates adaptively,
caching tessellations in an efficient, infinite data struc-
ture (from the MemoTrie library (— 5.7.3)) for reuse.
Surface normals are computed automatically and ex-
actly, using the derivative tools in the vector-space li-
brary (— 5.6.3).

FieldTrip contains no support for animation, because
it can be used with the Reactive library (— 6.5.2) for
functional reactive programming (and possibly other
animation frameworks). By design, FieldTrip is com-
pletely orthogonal to any formulation or implementa-
tion of FRP.

Further reading

http://haskell.org/haskellwiki/Field Trip

5.11.3 LambdaCube

Csaba Hruska
active development

Report by:
Status:

LambdaCube aims to be the first general purpose 3D
rendering engine written in a functional language. The
main goal of this project is to provide a modern and fea-
ture rich graphical backend for various haskell projects

49

(e.g., FRP libraries). The engine uses the same model
and material format as Ogre3D (http://www.ogre3d.
org). Currently it supports some basic features such as
model loading, multitexturing, shaders, and resource
management. The existing code uses OpenGL, and it
runs at nearly same speed as a C/C++ rendering en-
gine. The project is under heavy development.

Further reading

http://code.google.com/p/lambdacube/

5.12 Music

5.12.1 Haskore revision
Report by: Paul Hudak
Participants: Henning Thielemann
Status: experimental, active development

Haskore is a Haskell library originally written by Paul
Hudak that allows music composition within Haskell,
i.e., without the need of a custom music programming
language. This collaborative project aims at improv-
ing consistency, adding extensions, revising design de-
cisions, and fixing bugs. Specific improvements include:

1. The Music data type has been generalized in the
style of Hudak’s “polymorphic temporal media.” It
has been made abstract by providing functions that
operate on it.

. The notion of instruments is now very general.
There are simple predefined instances of the Music
data type, where instruments are identified by
Strings or General MIDI instruments, but any other
custom type is possible, including types with instru-
ment specific parameters.

. Creation of CSound orchestra files in a functional
style including feedback and signal processors with
multiple outputs.

. Support for the software synthesizer SuperCollider
both in real-time and non-real-time mode through
the Haskell interface by Rohan Drape.

. Conversion between MIDI file and Haskore repre-
sentation of Music. Real-time MIDI is supported via
ALSA on Linux.

. A package for lists of events with time information
has been factored out, as well as a package for non-
negative numbers, which occur as time differences in
event lists.

. Support for infinite Music objects is improved.
CSound may be fed with infinite music data through
a pipe, and an audio file player like Sox can be fed

http:/code.haskell.org/diagrams/
http:/code.haskell.org/diagrams/
http://code.haskell.org/diagrams/
http://byorgey.wordpress.com/2008/04/30/new-haskell-diagrams-library/
http://byorgey.wordpress.com/2008/04/30/new-haskell-diagrams-library/
http://haskell.org/haskellwiki/FieldTrip
http://www.ogre3d.org
http://www.ogre3d.org
http://code.google.com/p/lambdacube/

with an audio stream entirely rendered in Haskell.
(See Audio Signal Processing project (— 6.6.1).)

Future plans

There is an ongoing effort by Paul Hudak to rewrite
Haskore targeting at education.

Further reading

http://www.haskell.org/haskellwiki/Haskore

5.12.2 Euterpea

Report by: Paul Hudak
Participants: Eric Cheng, Paul Liu, Donya Quick
Status: experimental, active development

Euterpea is a new Haskell library for computer music
applications. It is a descendent of Haskore and Has-
Sound, and is intended for both educational purposes as
well as serious computer music development. Euterpea
is a “wide-spectrum” library, suitable for high-level mu-
sic representation, algorithmic composition, and anal-
ysis; mid-level concepts such as MIDI; and low-level
audio processing, sound synthesis, and instrument de-
sign. It also includes a “musical user interface”, a set
of computer-music specific GUI widgets such as key-
boards, guitar frets, knobs, sliders, and so on. The
performance of Euterpea is intended to be as good or
better than any existing computer music language — it
can be used for real-time applications, not just using
MIDI, but also using a high-performance back-end for
real-time audio.

Euterpea is being developed at Yale in Paul Hudak’s
research group, where it has become a key component
of Yale’s new Computing and the Arts major. Hudak is
teaching a two-term sequence in computer music using
Euterpea, and is developing considerable pedagogical
material, including a new textbook tentatively titled
“The Haskell School of Music”. The name “Euterpea”
is derived from “Euterpe”, who was one of the nine
Greek Muses (goddesses of the arts), specifically the
Muse of Music.

History

Haskore is a Haskell library developed almost 15
years ago by Paul Hudak at Yale for high-level com-
puter music applications. HasSound is a more recent
Haskell library developed at Yale that serves as a func-
tional front-end to csound’s sound synthesis capabili-
ties. Haskore and HasSound have evolved in a number
of different ways over the years, most notably through
Henning Thielemann’s darcs library for Haskore, to
which many people have contributed. There are many
good ideas in that library, but it has become overly
complex and lacks a coherent design concept.

50

Future plans

The Euterpea developers’ plan is to shamelessly steal
good ideas from these previous efforts, integrate them
into a coherent new framework, remove dependencies
from as many non-Haskell libraries as possible, add new
features such as musical GUI widgets, and incorporate
new methods for high-performance stream processing
recently developed at Yale, to make Euterpea the li-
brary of choice for discriminating computer music hack-
ers.

Further reading

o http://plucky.cs.yale.edu/cs431
o http://plucky.cs.yale.edu/cs431/HaskoreSoeV-0.12.
pdf

5.13 Web and XML programming

5.13.1 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: seventh major release (current release: 8.3.0)
Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.

The Haskell XML Toolbox is based on the ideas of
HaXml (— 5.13.2) and HXML, but introduces a more
general approach for processing XML with Haskell.
The processing model is based on arrows. The arrow
interface is more flexible than the filter approach taken
in the earlier HXT versions and in HaXml. It is also
safer; type checking of combinators becomes possible
with the arrow approach.

HXT consists of two packages, the old first approach
(hxt-filter) based on filters and the newer and more
flexible and save approach using arrows (hxt). The old
package hxt-filter, will further be maintained to work
with the latest ghc version, but new development will
only be done with the arrow based hxt package.

Features
o Validating XML parser

o Very liberal HTML parser

o Lightweight lazy parser for XML/HTML based on
Tagsoup (— 5.13.3)

http://www.haskell.org/haskellwiki/Haskore
http://plucky.cs.yale.edu/cs431
http://plucky.cs.yale.edu/cs431/HaskoreSoeV-0.12.pdf
http://plucky.cs.yale.edu/cs431/HaskoreSoeV-0.12.pdf

o Easy de-/serialization between native Haskell data
and XML by pickler and pickler combinators

o XPath support

o Full Unicode support

o Support for XML namespaces

o Cabal package support for GHC

o HTTP access via Haskell bindings to libcurl
o Tested with W3C XML validation suite

o Example programs

o Relax NG schema validator

o An HXT Cookbook for using the toolbox and the
arrow interface

o Basic XSLT support

o Darcs repository with current development version
(8.3.1) under http://darcs2.th-wedel.de/hxt

Current Work

Currently mainly maintenance work is done. This in-
cludes space and runtime optimizations, the internal
representation of XML names has been changed to gain
less memory consumption. Equal XML names share
the same main memory.

It is planned to further develop and extend the vali-
dation part with Relax NG and the conversion from/to
Haskell internal data. The pickler approach used in
that task can be extended to derive DTDs, Relax NG
Schemas or XML Schemas for Validation of the exter-
nal XML representation.

The HXT library is extensively used in the Holumbus
project (— 6.3.1), there it forms the basis for the index
generation.

Further reading

The Haskell XML Toolbox Web page
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes downloads, online API documentation, a
cookbook with nontrivial examples of XML processing
using arrows and RDF documents, and master theses
describing the design of the toolbox, the DTD val-
idator, the arrow based Relax NG validator, and the
XSLT system.

A getting started tutorial about HXT is avail-
able in the Haskell Wiki (http://www.haskell.org/
haskellwiki/HXT). The conversion between XML
and native Haskell datatypes is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT /Conversion_of__Haskell_data_from /to_XML).

(http:

5.13.2 HaXml
Report by: Malcolm Wallace
Status: stable, maintained

HaXml provides many facilities for using XML from
Haskell. The public stable release on Hackage is 1.13.3,
with support for building via Cabal for ghc-6.8.x.

The development version (currently at 1.19.4, also
available on Hackage or through a Darcs repository)
includes a much-requested lazy parser and a SAX-like
streaming parser. Some minor work still(!) remains to
tidy things up before the development version is tagged
and released as stable.

The lazy parser combinators used by HaXml now live
in a separate library package called polyparse.

Further reading

http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-devel

darcs get http://darcs.haskell.org/packages/HaXml
http://www.cs.york.ac.uk/fp/polyparse

O O O O

5.13.3 tagsoup

Report by: Neil Mitchell

TagSoup is a library for extracting information out of
unstructured HTML code, sometimes known as tag-
soup. The HTML does not have to be well formed,
or render properly within any particular framework.
This library is for situations where the author of the
HTML is not cooperating with the person trying to
extract the information, but is also not trying to hide
the information.

The library provides a basic data type for a list of un-
structured tags, a parser to convert HTML into this tag
type, and useful functions and combinators for finding
and extracting information. The library has seen real
use in an application to give Hackage (— 5.1) listings,
and is used in the next version of Hoogle (—4.4.1).

Work continues on the API of tagsoup, and the im-
plementation. Lots of people have made use of tagsoup
in their applications, generating lots of valuable feed-
back.

Further reading

http://community.haskell.org/~ndm /tagsoup

http://darcs2.fh-wedel.de/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://haskell.org/HaXml
http://www.cs.york.ac.uk/fp/HaXml-devel
http://darcs.haskell.org/packages/HaXml
http://www.cs.york.ac.uk/fp/polyparse
http://community.haskell.org/~ndm/tagsoup

5.14 System

5.14.1 hinotify

Report by: Lennart Kolmodin
Status: alive

“hinotify” is a simple Haskell wrapper for the Linux
kernel’s inotify mechanism. inotify allows applications
to watch file changes, since Linux kernel 2.6.13. You
can for example use it to do a proper locking procedure
on a set of files, or keep your application up do date on
a directory of files in a fast and clean way.

As file and directory notification is available for many
operating systems, upcoming work will include to try
to find a common API that could be shared for all
platforms. Most recent work has been to see what is
possible to do under Microsoft Windows, and finding
a suitable API for both platforms. This has been a
joint work with Niklas Broberg. We are still looking
for contributors to *BSD and Mac OS X. If you are
interested, contact us.

Further reading

o Hackage: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/hinotify

o Development version:
darcs get
http://www.haskell.org/~kolmodin/code/hinotify/

o Latest released version: http://www.haskell.org/
~kolmodin/code/hinotify /download/

o Documentation: http://www.haskell.org/~kolmodin/
code/hinotify/docs/api

o inotify: http://www.kernel.org/pub/linux/kernel /
people/rml/inotify/

5.14.2 hlibev
Report by: Aycan Irican
Participants: Evrim Ulu
Status: unstable

hlibev is an FFI wrapper for “libev event loop”. Cur-
rently we only implemented 10 and Timer event types
on the Debian GNU/Linux platform. We implemented
a simple http responder to see its performance. You
can get it from hackage.

Further reading

http://software.schmorp.de/pkg/libev.html

52

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hinotify
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hinotify
http://www.haskell.org/~kolmodin/code/hinotify/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/download/
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.haskell.org/~kolmodin/code/hinotify/docs/api
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://www.kernel.org/pub/linux/kernel/people/rml/inotify/
http://software.schmorp.de/pkg/libev.html

6 Applications and Projects

6.1 For the Masses

6.1.1 Darcs
Report by: Eric Kow
Participants: Ganesh Sittampalam, Trent Buck, Gwern
Branwen

Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.

Our most recent release, darcs 2.2, was in January
2009. This release provides improved support for Win-
dows, a few low-level optimizations and a preliminary
version of the darcs library. It is also the first of our
biannual releases, with the next release scheduled for
July.

Meanwhile, we have been continuing to build up the
darcs community and are encouraged the developments
from the past 6 months:

1. Fundraising: In a recent fundraising drive, we man-
aged to raise $1072 (USD) to help pay for travel to
the our second darcs hacking sprint, held as part of
the Haskell Hackathon. Using these funds, we sub-
sidized travel costs to the Utrecht sprint for three of
the participating Darcs hackers, and we have some
left over the next sprint.

2. Software Freedom Conservancy: The Software Free-
dom Conservancy (SFC) is an organization com-
posed of Free and Open Source Software projects.
Joining the SFC allows darcs to receive tax-
deductible donations in the United States and to hold
assets, and also provides some protection to our de-
velopers from personal liability.

3. Google Summer of Code: Darcs developer Petr
Rokai has been selected to participate in the 2009
Google Summer of Code program. His project
will optimize darcs’ use of hashed storage reposito-
ries, making Darcs faster and more scalable. We
are extremely grateful for generous support of the

53

Haskell.org mentoring organization, which has pro-
vided us with one of their Google Summer of Code
slots.

4. Hosting: Last but not least, Thomas Hartman and
Matthew Elder have begun a commercial darcs host-
ing venture called Patch-tag. Patch-tag offers free
darcs hosting to open source projects, and paid host-
ing for others. We wish them luck!

We are excited about these recent developments and
their potential to help us continue to steadily improve
darcs. We still have a lot progress to make and are
always open to contributions. Haskell hackers, we need
your help!

Darcs is free software licensed under the GNU GPL.

Further reading

http://darcs.net

6.1.2 xmonad
Report by: Don Stewart
Status: active development

xmonad is a tiling window manager for X. Windows are
arranged automatically to tile the screen without gaps
or overlap, maximizing screen use. Window manager
features are accessible from the keyboard: a mouse is
optional. xmonad is written, configured, and extensi-
ble in Haskell. Custom layout algorithms, key bindings,
and other extensions may be written by the user in con-
fig files. Layouts are applied dynamically, and different
layouts may be used on each workspace. Xinerama is
fully supported, allowing windows to be tiled on several
physical screens.

The new release 0.7 of xmonad added full support for
the GNOME and KDE desktops, and adoption contin-
ues to grow, with binary packages of xmonad available
for all major distributions.

Further reading

o Homepage: http://xmonad.org/
o Darcs source:
darcs get http://code.haskell.org/xmonad
o IRC channel: #xmonad @ irc.freenode.org
o Mailing list: (xmonad@haskell.org)

http://darcs.net
http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org

6.2 Education

6.2.1 Exercise Assistants

Bastiaan Heeren

Alex Gerdes, Johan Jeuring, Josje Lodder,
José Pedro Magalh3es

experimental, active development

Report by:
Participants:

Status:

At the Open Universiteit Nederland we are continu-
ing our work on tools that support students in solving
exercises incrementally by checking intermediate steps.
These tools are written in Haskell. The distinguishing
feature of our tools is the detailed feedback that they
provide, on several levels. For example, we have an
online exercise assistant that helps to rewrite logical
expressions into disjunctive normal form. Students get
instant feedback when solving an exercise, and can ask
for a hint at any point in the derivation. Other areas
covered by our tools are solving linear equations, reduc-
ing matrices to echelon normal form, and simplifying
expressions in relation algebra. We have just started to
explore exercise assistants for learning how to program
in a (functional) programming language.

For each exercise domain, we need the same func-
tionality, such as unifying and rewriting terms, gener-
ating exercises, traversing terms, and testing for (top-
level) equality of two terms. For these parts we are
currently using the generic programming libraries Uni-
plate and Multirec, which help us to reduce code size
and improve the reliability of our code. We have re-
ported our experiences with generic programming for
domain reasoners, and identified some missing features
in the libraries. Fully exploiting generic programming
techniques is ongoing work.

We have recently integrated our tools with the Digi-
tal Mathematics Environment (DWO) of the Freuden-
thal Institute. This environment contains a collection
of applets for practicing exercises in mathematics. A
selected number of applets has been extended with our
facility to automatically generate hints and worked-out
examples, and the first results are promising. To offer
this service, we have introduced views for mathemati-
cal expressions, and combined these with our rewriting
technology. A view specifies a canonical form, and ab-
stracts over a set of algebraic laws. Our views are based
on the views proposed by Wadler.

An online prototype version for rewriting logical ex-
pressions is available and can be accessed from our
project page.

Further reading

o http://ideas.cs.uu.nl/trac
o Bastiaan Heeren and Johan Jeuring. Canonical
Forms in Interactive Exercise Assistants. To appear

54

in Mathematical Knowledge Management (MKM
2009).

Johan Jeuring, José Pedro Magalhaes, and Bastiaan
Heeren. Experience Report: Generic Programming
for Domain Reasoners. Draft version.

Alex Gerdes, Bastiaan Heeren, and Johan Jeuring.
Constructing Strategies for Programming. Proceed-
ings of the International Conference on Computer
Supported Education (CSEDU 2009).

6.2.2 Holmes, plagiarism detection for Haskell

Report by:
Participants:

Jurriaan Hage
Brian Vermeer

Years ago, Jurriaan Hage developed Marble to detect
plagiarism among Java programs. Marble was written
in Perl, takes just 660 lines of code and comments, and
does the job well. The techniques used there, however,
do not work well for Haskell, which is why a master
thesis project was started, starring Brian Vermeer as
the master student, to see if we can come up with a
working system to discover plagiarism among Haskell
programs. We are fortunate to have a large group of
students each year that try their hand at our functional
programming course (120-130 per year), and we have
all the loggings of Helium that we hope can help us tell
whether the system finds enough plagiarism cases. The
basic idea is to implement as many metrics as possible,
and to see, empirically, which combination of metrics
scores well enough for our purposes. The implementa-
tion will be made in Haskell. One of the things that
we are particularly keen about, is to make sure that for
assignments in which students are given a large part of
the solution and they only need to fill in the missing
parts, we still obtain good results.

We are currently at the stage that metrics can be
implemented on top of the Helium front-end. Many of
these metrics will be defined on an auxiliary structure,
the function-call flow graph. Dead-code removal has
taken place, fully qualified names are used throughout,
and template removal is now easily possible.

6.2.3 Lambda Shell

Robert Dockins
beta, maintained

Report by:
Status:

The Lambda Shell is a feature-rich shell environment
and command-line tool for evaluating terms of the pure,
untyped lambda calculus. The Lambda Shell builds on
the shell creation framework Shellac (— 5.10.4), and
showcases most of Shellac’s features.

Features of the Lambda Shell include:

o Evaluate lambda terms directly from the shell
prompt using normal or applicative order. In nor-

http://people.cs.uu.nl/bastiaan/GenericProgrammingExperience.html
http://people.cs.uu.nl/bastiaan/GenericProgrammingExperience.html
http://people.cs.uu.nl/bastiaan/CanonicalForms.html
http://people.cs.uu.nl/bastiaan/CanonicalForms.html
http://ideas.cs.uu.nl/trac
http://ideas.cs.uu.nl/trac
http://people.cs.uu.nl/bastiaan/CanonicalForms.html
http://people.cs.uu.nl/bastiaan/CanonicalForms.html
http://people.cs.uu.nl/bastiaan/GenericProgrammingExperience.html
http://people.cs.uu.nl/bastiaan/GenericProgrammingExperience.html
http://people.cs.uu.nl/bastiaan/StrategiesForProgramming.html

mal order, one can evaluate to normal form, head
normal form, or weak head normal form.

o Define aliases for lambda terms using a top level,
non-recursive “let” construct.

o Show traces of term evaluation, or dump the trace
to a file.

o Count the number of reductions when evaluating
terms.

o Test two lambda terms for beta-equivalence (that is;
if two terms, when evaluated to normal form, are
alpha equivalent).

o Programs can be entered from the command line (us-
ing the -e option) or piped into stdin (using the -s
option).

o Perform continuation passing style (CPS) transforms
on terms before evaluation using the double-bracket
syntax, e.g., “[[five]]”.

The Lambda Shell was written as a showcase and
textbook example for how to use the Shellac shell-
creation library. However, it can also be used to gain
a better understanding of the pure lambda calculus.

Further reading

o http://http://www.cs.princeton.edu/~rdockins/
lambda/home

o http://http://www.cs.princeton.edu/~rdockins/
shellac/home

6.2.4 INblobs — Interaction Nets interpreter

Report by: Miguel Vilaca
Participants: Daniel Mendes
Status: active, maintained
Portability: portable (depends on wxHaskell)

INblobs is an editor and interpreter for Interaction Nets
— a graph-rewriting formalism introduced by Lafont,
inspired by Proof-nets for Multiplicative Linear Logic.

INblobs is built on top of the front-end Blobs from
Arjan van Ijzendoorn, Martijn Schrage, and Malcolm
Wallace.

Features

o automatic transformation of textual functional terms
into interaction nets

o generation of textual descriptions allowing the use of
INblobs as an editor/frontend for textual IN compil-
ers

o Valid IN System check

55

Further reading

o Homepage:
http://haskell.di.uminho.pt/jmvilaca/INblobs/

o also available in Hackage (http://hackage.haskell.org/
cgi-bin/hackage-scripts/package/INblobs)

o Blobs: http://www.cs.york.ac.uk/fp/darcs/Blobs

6.2.5 Soccer-Fun

Peter Achten
active development

Report by:
Status:

Soccer-Fun is an educational project to stimulate func-
tional programming by thinking about, designing, im-
plementing, running, and competing with the brains
of football players! It is open for participation by ev-
erybody who likes to contribute. It is not restricted
to a particular functional programming language. The
current implementation is in Clean (— 3.2.3).

With Soccer-Fun you can program footballer brains
and run them in the environment that you see here:

The brain of a footballer is really a function, as was
once explained by Johan Cruijff himself:

“If T play the ball and want to pass it to someone,
then I need to consider my guardian, the wind,
the grass, and the velocity with which players are
moving. We compute the force with which to kick
and its direction within a tenth of a second. It
takes the computer two minutes to do the same!”
(De Tijd, 2 mei 1987)

The brain that you program has a different type than
the one above. It takes five parameters: the referee ac-
tions, the football (if freely available), all players on
the field except you, you, and your current memory.
Using these parameters, we compute a footballer’s ac-
tion such as moving, kicking the ball, as well as a new
memory value.

http://http://www.cs.princeton.edu/~rdockins/lambda/home
http://http://www.cs.princeton.edu/~rdockins/lambda/home
http://http://www.cs.princeton.edu/~rdockins/shellac/home
http://http://www.cs.princeton.edu/~rdockins/shellac/home
http://haskell.di.uminho.pt/jmvilaca/INblobs/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/INblobs
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/INblobs
http://www.cs.york.ac.uk/fp/darcs/Blobs

In a nutshell, it is your task to create a team of foot-
ballers, equip them with the brains that you have cre-
ated, and see whether you can beat other teams!

Future plans
There are many plans for the future:

o Use TCP/IP to allow individual footballers to “hook
in” the framework. Then, footballers can be pro-
grammed in arbitrary programming languages and

join Soccer-Fun.

Related: in the current framework, the code of all
footballers is included in the framework. What
about using interpreter technology, like Jan Martin
Jansen’s SAPL?

Also related: the semantics is less suited for an “in-
dividual” footballer approach, because individual ac-
tions can affect other players (think of gaining the
ball). A more fine grained semantic model can be de-
veloped to allow individual actions to be performed.

Currently, all footballers and the referee are panop-
tic, which is not very realistic. Programming brains
becomes much more challenging if we limit the view-
ing range of footballers. In that situation, footballers
need to maintain some sort of mental model of the
whereabouts of all players.

The current rendering is plain 2D. It would be more
informative to use a simple 2.5D rendering.

Further reading

o http://www.cs.ru.nl/P.Achten /SoccerFun/SoccerFun.
html

o http://www.st.cs.ru.nl/papers/2008/
achp08-FDPEO08-SoccerFun.pdf

6.3 Web Development

6.3.1 Holumbus Search Engine Framework

Uwe Schmidt

Timo B. Hiibel, Sebastian Reese,
Sebastian Schlatt, Stefan Schmidt, Bjoérn
Peemodller, Stefan Roggensack

first release

Report by:
Participants:

Status:

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,

56

e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.

An instance of the Holumbus framework is the
Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/). The web interface for Hayoo! is
implemented with the Janus web server, written in
Haskell and based on HXT (— 5.13.1).

The framework supports distributed computations
for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.

The framework is now separated into four packages,
all available on Hackage.

o The Holumbus Search Engine
o The Holumbus Distribution Library
o The Holumbus Storage System

o The Holumbus MapReduce Framework

The search engine package includes the indexer and
search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

o Highly configurable crawler module for flexible in-

dexing of structured data

Customizable index structure for an effective search
find as you type search

Suggestions

Fuzzy queries

Customizable result ranking

Index structure designed for distributed search

Darcs repository with current development version
under http://darcs2.fh-wedel.de/holumbus

Distributed building of search indexes

Current Work

The indexer and search module will be used and
extended to support the Hayoo! engine for search-
ing the hackage package library (http://holumbus.fh-
wedel.de/hayoo /hayoo.html).

Stefan Schmidt has finished his master thesis devel-
oping the Holumbus MapReduce system, a framework

http://www.cs.ru.nl/P.Achten/SoccerFun/SoccerFun.html
http://www.cs.ru.nl/P.Achten/SoccerFun/SoccerFun.html
http://www.st.cs.ru.nl/papers/2008/achp08-FDPE08-SoccerFun.pdf
http://www.st.cs.ru.nl/papers/2008/achp08-FDPE08-SoccerFun.pdf
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/
http://darcs2.fh-wedel.de/holumbus

for distributed computing with an architecture like the
Google map—reduce system.

A follow-up thesis bringing this MapReduce system
into a development status for real world distributed
applications has been started by Sebastian Reese. One
subgoal of this work is to write a cookbook for program-
ming with the MapReduce framework and for giving
tuning and configuration hints. The distributed recom-
putation and update of the Hayoo! index will be one of
the real world test cases of this project.

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Darcs web interface, cur-
rent status, requirements, and documentation. Timo
Hiibel’s master thesis describing the Holumbus in-
dex structure and the search engine is avail-
able at http://holumbus.fh-wedel.de/branches/develop/
doc/thesis-searching.pdf. Sebastian Schlatt’s the-
sis dealing with the crawler component is available
at http://holumbus.fh-wedel.de/src/doc/thesis-indexing.
pdf The thesis of Stefan Schmidt describing the
Holumbus MapReduce is available via http://holumbus.
fh-wedel.de/src/doc/thesis-mapreduce.pdf

6.3.2 Top Writer

Jon Strait
experimental, active development

Report by:
Status:

Top Writer is a web application for technical writers to
easily edit and assemble topic-oriented user guides and
other high level reference works. Application users edit
within a structured framework, using meaningful ap-
plication elements to chunk and contain content. Users
can extend the application with their own elements and
rules, if needed. Delivery of content is meant to be
multi-format, with each format having separate tem-
plating rules.

The server part of the application is coded in Haskell
using FastCGI on a lighttpd server and using the
HDBC library connecting to a PostgreSQL database
server. The client web browser part heavily uses the
jQuery JavaScript toolkit.

Future plans

Currently, the focus for delivering output is on gen-
erated HTML, but plans are also to generate PDF
and any other format that is reasonable. Other work
is focused on collaborative features, allowing multiple
clients to share projects, edit contained documents con-
currently, and see other project member’s changes im-
mediately. The more element-like structure for editing
a document can facilitate this, removing the complexity
of having to consider overlapping changes.

57

Further reading

http://www.moonloop.net/topwriter

6.3.3 Bamboo blog engine (previously: Panda) /
Hack Webserver interface

Report by:
Status:

Jinjing Wang
experimental

Bamboo is an upgrade to the Panda blog engine. While
keeping the same features from Panda, it runs on
multiple server backend, including Kibro / fcgi and
Happstack-server.

Hack Webserver interface plays a crucial rule in re-
alizing the portability of Bamboo. Hack is a port of
the Ruby’s Rack web server interface, which is inspired
by Python’s WSGI. Hack’s specification is defined in a
simple haskell data structure, that can be plugged into
different server handlers. Changing a server backend is
as simple as changing the name of the server handler
module which has been imported.

Bamboo is free software under GPL, future develop-
ment will focus on extending features by means of Hack
middleware.

Further reading

http://rack.rubyforge.org/
http://github.com/nfjinjing/bamboo
http://github.com/nfjinjing/hack
http://chrisdone.com/blog/tags/Kibro.html
http://happstack.com/

O O O O O

6.3.4 InputYourData.com

Enzo Haussecker
beta

Report by:
Status:

I would like to announce the publication of InputY-
ourData.com (beta) — the online resource tool for fi-
nancial, mathematical, and scientific calculations. All
web applications found at http://inputyourdata.com/
are written solely in Haskell and based on the Net-
work.CGI framework.

This website began as an experiment to familiarize
myself with the monadic features of Haskell and their
use in web programming. Namely, the mapping and
manipulation of user inputs as typed objects. Through
these experiments I found that Haskell allows for an
efficient system where a variety of operations can be
performed while minimizing as many resources (such
as time and memory space) as possible.

I am now interested in developing a similar type of
website, except Wiki style — where all web applica-
tions are created by the user. Essentially, I am de-
signing a web application where users can symbolically

http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://www.moonloop.net/topwriter
http://rack.rubyforge.org/
http://github.com/nfjinjing/bamboo
http://github.com/nfjinjing/hack
http://chrisdone.com/blog/tags/Kibro.html
http://happstack.com/
http://inputyourdata.com/

declare the arguments of a function and that function’s
call based on arbitrary variables. For example, say a
user would like to create a web application to com-
pute the roots of a second degree polynomial. He/she
would simply declare the arguments to her function —
three complex numbers a b and ¢, and the call of that
function — (—b £ sqrt (b — 4% a*c))/(2*a). The
product of that user’s inputs will render a web appli-
cation that looks similar to http://inputyourdata.com/
cgi-bin/quadratic.cgi (all text is to be updated by the
user as well). As one could imagine, other, more com-
plex functions involving vectors, matrices, stock prices,
and other arguments can also be defined in terms of
arbitrary variables and declared as inputs to my Wiki-
style web application.

If you are intrigued by this project and you have
substantial experience in designing Haskell-based web
applications, please send me ((ehaussecker@gmail.com))
your resume and a brief summery of why you are inter-
ested.

6.3.5 Hircules
Report by: Jens Petersen
Status: hibernating

Hircules is an IRC client built on top of gtk2hs (—
5.10.1).

No new changes released since last time. I am in the
progress of adding cabal and hierarchical modules.

I am still hoping to import the code to
code.haskell.org soon and finally make a new release
for ghc-6.10 on Hackage. I still would like to add sup-
port for multiple irc connections and get other people
involved.

Further reading

http://www.haskell.org/hircules/

6.3.6 HCluster

Report by: Alberto Gémez Corona

HCluster (provisional name) aims to be a massive re-
mote clustering middleware that permits:

o distributed transactions between connected nodes in
the Internet

o work with nodes online as well as offline + synchro-
nization

o hot plug-in of nodes
o no master nodes, no single point of failure/control

o theoretical massive scalability, reliability, availability

58

HCLuster idea was born as a solution for the problem
of verifiability in electronic democracy: How to avoid
tampering of the servers and/or results? By means of
a loosely coupled network of remote servers that exe-
cute the same software, can be connected and discon-
nected at any time, handle the same data and produce
the same result. Thus, it must work in the Internet,
can handle connection errors, re-synchronization and
support a great number of nodes. Splits and rejoin of
branches must be supported too. Essentially, it must
support that anyone interested can plug its personal
computer and repeat the process being verified.

This solution for plain verifiability also provides
availability in ordinary applications. Any node can
initiate a process (that may involve a transaction, a
query, a calculation etc.). The design of synchroniza-
tion permits nodes to work in online as well as offline
mode + periodic synchronization with certain restric-
tions. This is achieved by making visible, to the appli-
cation developer, the distinction between synchronous
and asynchronous transactions.

Theoretically, the synchronization algorithm accepts
distributed transactions, so that, for example, some
nodes can have datal and others data2 and still pro-
cess transactions that handle datal and data2 simul-
taneously. The distribution is transparent to the pro-
grammer, so re-locations of data can be done among
the nodes.

Finished basic services: HTTP protocol, reconnec-
tion, synchronization.

Future plans

To finish the design of higher level services: distributed
transactions. To test the synchronization services. To
create internet documentation.

Contact

(agocorona@gmail.com)

6.3.7 JavaScript Monadic Writer

Report by:
Status:

Dmitry Golubovsky
active development

JavaScript Monadic Writer (JSMW) is an extensible
monadic framework on top of the Haskell DOM bind-
ings. It provides an EDSL to encode JavaScript state-
ments and expressions in typesafe manner. It borrows
some ideas from HJScript, but uses slightly different
EDSL notation.

The idea behind JSWM is to provide an intermedi-
ate form that could be used as an end-point for con-
version from Haskell Core. The EDSL however may be
considered as a programming tool on its own. While
the EDSL alone is not sufficient for translation of an

http://inputyourdata.com/cgi-bin/quadratic.cgi
http://inputyourdata.com/cgi-bin/quadratic.cgi
mailto: ehaussecker at gmail.com
http://www.haskell.org/hircules/
mailto: agocorona at gmail.com

arbitrary Haskell program to JavaScript, Haskell type
system is still available to help produce correct code.
Further reading

The jsmw package on Hackage
http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/jsmw

6.3.8 Haskell DOM Bindings

Dmitry Golubovsky
active development

Report by:
Status:

Haskell DOM bindings is a set of monadic smart
constructors on top of the WebBits representation of
JavaScript syntax to generate JavaScript code that
calls DOM methods and accesses DOM objects’ at-
tributes.

In order to represent the hierarchy of DOM inter-
faces, Haskell type classes are used. For example, for
the interfaces Node and Document (the latter inher-
its from the former) there are two classes: CNode and
CDocument. Also, for each DOM interface, a phantom
data type is defined: TNode, and TDocument in this
case. Phantom types represent concrete values (refer-
ences to DOM objects) while type classes are used for
type constraints in functions working with DOM ob-
jects. The CDocument class is defined as:

class CNode a => CDocument a
data TNode

data TDocument

instance CNode TNode
instance CDocument TDocument
instance CNode TDocument

Type constraints are used to define methods of each
class, e. g.

hasChildNodes :: (Monad mn, CNode this)
=> Expression this -> mn (Expression Bool)

so, hasChildNodes can be called on both Node and
Document, but

(Monad mn, CDocument this,

CElement zz)

=> Expression String -> Expression this
-> mn (Expression zz)

createElement ::

only on nodes representing documents.

The bindings were auto-generated from OMG IDL
files provided by the Web Consortium. The IDL to
Haskell converter is based on H/Direct IDL parser. Au-
tomatic IDL conversion is expected to simplify Haskell
Web development because of the large number of
methods and attributes defined in contemporary DOM
whose type signatures are hard and time-consuming to
derive manually.

Further reading

o Document Object Model (DOM) Technical Reports
http://www.w3.0org/DOM/DOMTR

o The DOM package on Hackage
http://hackage.haskell.org/cgi-bin /hackage-scripts/
package/DOM

6.4 Data Management and Visualization

6.4.1 Pandoc
Report by: John MacFarlane
Participants: Recai Oktas, Andrea Rossato, Peter Wang

Status: active development

Pandoc aspires to be the swiss army knife of text
markup formats: it can read markdown and (with some
limitations) HTML, LaTeX, and reStructuredText, and
it can write markdown, reStructured Text, HTML, Doc-
Book XML, OpenDocument XML, ODT, RTF, groff
man, MediaWiki markup, GNU Texinfo, LaTeX, Con-
TeXt, and S5. Pandoc’s markdown syntax includes ex-
tensions for LaTeX math, tables, definition lists, foot-
notes, and more.

Since the last report, there have been two releases of
pandoc (1.1 and 1.2), including many bug fixes and the
following new features:

o Support for literate Haskell.

o New -jsmath and -email-obfuscation options.

[}

Better CSS styling in HTML tables.

o Windows installer no longer requires admin privi-
leges.

o

Support for citeproc-hs-0.2.

Further reading
http://johnmacfarlane.net/pandoc/

6.4.2 tiddlyisar

Slawomir Kolodynski
under development

Report by:
Status:

tiddlyisar is a tool for generating TiddlyWiki render-
ings of IsarMathLib source. IsarMathLib is a library
of mathematical proofs formally verified by the Is-
abelle/ZF theorem proving environment. The tiddly-
isar tool parses IsarMathLib source and generates Tid-
dlyWiki markup text. The generated view features
jsMath based mathematical symbols, cross referenced
theorems, and structured proofs expanded on request.

59

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/jsmw
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/jsmw
http://www.w3.org/DOM/DOMTR
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/DOM
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/DOM
http://johnmacfarlane.net/pandoc/

The rendering can be viewed on the Tiddly Formal
Math site. tiddlyisar is included in the IsarMathLib
distribution under GPLv3 license. The source can
be browsed at the IsarMathLib Subversion repository
URL provided below.

Further reading

o http://savannah.nongnu.org/projects/isarmathlib

o http://www.cl.cam.ac.uk/research /hvg/Isabelle/

o http://formalmath.tiddlyspot.com

o http://svn.savannah.gnu.org/viewvc/trunk/
isarmathlib/tiddlyisar/?root=isarmathlib

6.4.3 HaExcel — From Spreadsheets to Relational
Databases and Back

Report by: Jacome Cunha
Participants: Jodo Saraiva, Joost Visser
Status: unstable, work in progress

HaExcel is a framework to manipulate, transform,
and query spreadsheets. It is composed by a
generic/reusable library to map spreadsheets into rela-
tional database models and back: this library contains
an algebraic data type to model a (generic) spreadsheet
and functions to transform it into a relational model
and vice versa. Such functions implement the refine-
ment rules introduced in paper “From Spreadsheets
to Relational Databases and Back”. The library in-
cludes two code generator functions: one that produces
the SQL code to create and populate the database,
and a function that generates Excel/Gnumeric code to
map the database back into a spreadsheet. A MySQL
database can also be created and manipulated using
this library under HaskellDB.

The tool also contains a front-end to read spread-
sheets in the Excel and Gnumeric formats: the front-
end reads spreadsheets in portable XML documents us-
ing the UMinho Haskell Libraries. We reuse the spatial
logic algorithms from the UCheck project to discover
the tables stored in the spreadsheet.

Finally, two spreadsheet tools are available: a batch
and an online tool that allows the users to read, trans-
form, refactor, and query spreadsheets.

The sources and the online tool are available from
the project home page.

We are currently exploring foreign key constraints
from their detection to their migration to the generated
spreadsheet. Another topic under study is the direct
integration of the framework in Excel implemented as
an Excel plug-in.

Further reading

http://haskell.di.uminho.pt/jacome/index.html

60

6.4.4 Between Types and Tables

Report by: Bas Lijnse
Participants: Rinus Plasmeijer
Status: experimental

My master thesis project aimed at bridging the gap
between data stored in relational databases and data
structures in a functional language. We have developed
a method to derive both a relational database schema
and a set of data types in Clean (—3.2.3) from an
ORM (Object Role Modeling) model. We then realized
an automatic mapping between values of those Clean
types and their counterparts in the relational database
using Clean’s generic programming mechanism. We de-
fined a generic library which provides the basic CRUD
(Create, Read, Update, Delete) operations for any con-
ceptual entity defined in an ORM model.

Future plans

Currently, the library is a proof of concept that only
works with Clean on Linux and a MySQL database.
However, we intend to integrate this library with the
work on dynamic workflow specifications in the iTask
system (— 6.8.3) somewhere in the (near) future.

Further reading

o http://www.st.cs.ru.nl/papers/2008/
lijb08-Between TypesAnd TablesMaster T hesis. pdf

o http://www.st.cs.ru.nl/papers/2008/
lijb08-BetweenTypesAndTables-IFL2008-DRAFT .pdf

6.4.5 SdfMetz

Report by: Tiago Miguel Laureano Alves
Participants: Joost Visser
Status: stable, maintained

SdfMetz supports grammar engineering by calculating
grammar metrics and other analyses. Currently it sup-
ports four different grammar formalisms (SDF, DMS,
Antlr, and Bison). The category of supported met-
rics are size, complexity, structural and disambigua-
tion. The disambiguation metrics are applicable to the
SDF formalism only. Metrics output is a textual re-
port or in Comma Separated Value format. The addi-
tional analyses implemented are graph visualization of
the immediate successor graph, transitive closure graph
and strongly-connected components graph outputted
in DOT format, and visualization of the non-singleton
levels of a grammar.

The definition of all except the ambiguity and the
NPath metrics were taken from the paper A metrics
suite for grammar based-software by James F. Power
and Brian A. Malloy. The ambiguity metrics were de-
fined by the tool author exploiting specific aspects of
SDF grammars, and the NPath metric definition was

http://savannah.nongnu.org/projects/isarmathlib
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://formalmath.tiddlyspot.com
http://svn.savannah.gnu.org/viewvc/trunk/isarmathlib/tiddlyisar/?root=isarmathlib
http://svn.savannah.gnu.org/viewvc/trunk/isarmathlib/tiddlyisar/?root=isarmathlib
http://haskell.di.uminho.pt/jacome/index.html
http://www.st.cs.ru.nl/papers/2008/lijb08-BetweenTypesAndTablesMasterThesis.pdf
http://www.st.cs.ru.nl/papers/2008/lijb08-BetweenTypesAndTablesMasterThesis.pdf
http://www.st.cs.ru.nl/papers/2008/lijb08-BetweenTypesAndTables-IFL2008-DRAFT.pdf
http://www.st.cs.ru.nl/papers/2008/lijb08-BetweenTypesAndTables-IFL2008-DRAFT.pdf

taken from the paper NPATH: a measure of execution
path complexity and its applications.

The tool was used successfully in a grammar engi-
neering work presented in the paper A Case Study in
Grammar Engineering.

Future plans

Efforts are underway to develop functionalities to com-
pute quality profiles based on histograms. Further-
more, more metrics will be added, and a web-interface
is planned.

The tool was initially developed in the context of the
IKF-P project (Information Knowledge Fusion, http:
//ikf.sidereus.pt/) to develop a grammar for ISO VDM-
SL.

Further reading

The web site of SdfMetz (http://sdfmetz.googlecode.
com) includes the tool source code, and pointers to rel-
evant work about grammar metrication.

6.4.6 The Proxima 2.0 generic editor

Report by: Martijn Schrage
Participants: Lambert Meertens, Doaitse Swierstra
Status: actively developed

Proxima 2.0 is an open-source web-based version of the
Proxima generic presentation-oriented editor for struc-
tured documents.

o Proxima is a generic editor. This means that the edi-
tor can be instantiated for arbitrary document types,
supplemented by parser and presentation sheets.
The content of a Proxima document can be mixed
text, images and diagrams.

o Proxima is a presentation-oriented editor. This
means that the user performs the edit operations on
the WYSIWYG screen presentation of the document.

o Proxima is aware of the structure of the document.
Even while editing the presentation of the document,
the edit operations can be structural. For example,
a section can be changed into a subsection.

Another feature of Proxima is that it offers generic
support for specifying content-dependent computa-
tions. For example, it is possible to create a table of
contents of a document that is automatically updated
as chapters or sections are added or modified.

Proxima 2.0

Proxima 2.0 provides a web-interface for Proxima. In-
stead of rendering the edited document onto an appli-
cation window, Proxima 2.0 is a web-server that sends

61

an HTML rendering of the document to a client. The
client catches mouse and keyboard events, and sends
these back to the server, after which the server sends
incremental rendering updates back to the client. As a
result, advanced editors can be created, which run in
any browser.

Future plans

Proxima 2.0 is an open source project. A basic pro-
totype has been constructed, which yields promising
results. Still, a lot of work needs to be done on the
underlying Proxima system, as well as on methods for
handling latency and low bandwidth. We are looking
for people who would like to participate in the project.

Further reading

http://www.oblomov.biz/proxima2.0.html

6.5 Functional Reactive Programming

6.5.1 Grapefruit

Wolfgang Jeltsch
provisional

Report by:
Status:

Grapefruit is a library for Functional Reactive Pro-
gramming (FRP) with a focus on user interfaces. FRP
makes it possible to implement reactive and interac-
tive systems in a declarative style. With Grapefruit,
user interfaces are described as networks of communi-
cating widgets and windows. Communication is done
via different kinds of signals which describe temporal
behavior.

There was a first Grapefruit release in February 2009.
Since then, Grapefruit was improved notably. This ar-
ticle describes the current development version.

Grapefruit consists of several packages, each having
interesting features:

grapefruit-frp core support for FRP

o proper handling of simultaneous events

o incrementally updating signals of sequences and
sets

o out-of-the-box signal memoization

o protection against signal values depending on
starting time

o scalable implementation
grapefruit-records a record system

o optional fields

o record reduction and field reordering through
pattern matching

http://ikf.sidereus.pt/
http://ikf.sidereus.pt/
http://sdfmetz.googlecode.com
http://sdfmetz.googlecode.com
http://www.oblomov.biz/proxima2.0.html

o general record types which are specialized
through “styles”

grapefruit-ui general support for UI programming

o support for different backends for using different
UI toolkits through the same API

o backend selection at compile time or runtime

grapefruit-ui-gtk UI backend based on Gtk2Hs (—
5.10.1)

grapefruit-examples several little demos

We hope to provide the following features in the fu-
ture:

o support for user interfaces with changing structure
o model-view-controller support for most widgets
o support for animated graphics

o UI backend based on HQK (— 5.10.2)

Further reading

http://haskell.org/haskellwiki/Grapefruit

6.5.2 Reactive

Conal Elliott
active development

Report by:
Status:

Reactive is a simple foundation for functional reac-
tive programming (FRP), including continuous, time-
varying behaviors and compositional functional events.
Some unusual features, relative to earlier FRP formu-
lations and implementations:

o Much of the original interface is replaced by instances
of standard type classes. In most cases, the deno-
tational semantics of these instances is simple and
inevitable, following from the principle of type class
morphisms.

The original idea of reactive behaviors is composed
out of two simple notions:

— Reactive values are temporally discrete and re-
active. They have a purely data representation,
and hence cache for free.

— Time functions are temporally continuous and
non-reactive.

Reactive provides and builds on functional futures,
which are time/value pairs with several handy type
class instances. Futures allow one to conveniently
compute with values before they can be known, with
a simple, purely functional semantics (no 10). Fu-
tures are polymorphic over both values and time,
requiring only that time is ordered.

62

o A particularly useful type of time, based on Warren
Burton’s “improving values”, reveals partial informa-
tion in the form of lower bounds and minima, before
the times can be known precisely. (Semantically non-
flat.)

Improving values are implemented on top of a seman-
tically simple “unambiguous choice” operator, (see
unamb (— 5.3.4)).

Reactive manages (I hope) to get the efficiency of
data-driven computation with a (sort-of) demand-
driven architecture. For that reason, Reactive is
garbage-collector-friendly.

For the past few months, this work has been gra-

ciously supported by Anygma.

Further reading

http://haskell.org/haskellwiki/Reactive

6.5.3 Functional Hybrid Modeling

George Giorgidze
experimental

Report by:
Status:

Under Henrik Nilsson’s supervision I am working on a
Functional Hybrid Modeling (FHM) project. The goal
of the project is to design and implement a new lan-
guage for non-causal, hybrid modeling and simulation
of physical systems.

Causal modeling languages are closely related to syn-
chronous data-flow languages. They model system be-
havior using ordinary differential equations (ODEs) in
explicit form. That is, cause-effect relationship be-
tween variables (which are computed from which) must
be explicitly specified by the modeler. In contrast,
non-causal languages model system behavior using dif-
ferential algebraic equations (DAEs) in implicit form,
without specifying their causality. Inferring causality
from usage context for simulation purposes is left to the
compiler. The fact that the causality can be left im-
plicit makes modeling in a non-causal language more
declarative (the focus is on expressing the equations
in a natural way, not on how to express them to en-
able simulation) and also makes the models much more
reusable.

FHM is an approach to modeling which combines
functional programming and non-causal modeling with
the aim to improve state of the art of non-causal mod-
eling languages. In particular, the FHM approach
proposes modeling with first class model fragments
(defined by continuous DAESs) using combinators for
their composition and discrete switching. The discrete
switching combinators enable modelling of hybrid sys-
tems (i.e. systems that exhibit both continuous and
discrete dynamic behavior). The key concepts of FHM

http://haskell.org/haskellwiki/Grapefruit
http://haskell.org/haskellwiki/Reactive
http://www.cs.nott.ac.uk/~nhn/

originate from work on Functional Reactive Program-
ming (FRP).

We are implementing Hydra, an FHM language, as a
domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting, a new
feature introduced in GHC 6.10, and enables model-
ers to use the domain specific syntax in their models.
The present prototype implementation of Hydra en-
ables modeling with first class model fragments, but
only supports continuous systems. Currently, we are
implementing discrete switching combinators and ex-
tending the simulator to enable modeling and simula-
tion of highly dynamic hybrid systems.

Further reading

http://www.cs.nott.ac.uk/~ggg/

6.5.4 Elerea
Report by: Patai Gergely
Status: experimental

Elerea (Eventless reactivity) is a tiny continuous-time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through a latch-
ing mechanism where a signal changes its behavior as
dictated by a boolean input signal.

Elerea provides an easy to use applicative inter-
face, supports recursive signals (a definition like sine
integral O (integral 1 (-sine)) works without
a hitch) and arbitrary external input. Cyclic dependen-
cies are detected on the fly and resolved by inserting
delays dynamically, unless the user does it explicitly.

The library is minimal by design, and it provides
low-level primitives one can build a cleaner set of com-
binators upon. Also, it is relatively easy to adapt it
to any imperative framework, although it is probably
not a good choice to program primarily event-driven
systems.

The code is readily available via cabal-install in
the elerea package. You are advised to install
elerea-examples as well to get an idea how to build
non-trivial systems with it. The examples are sepa-
rated in order to minimize the dependencies of the core
library.

Further reading

http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/elerea

63

6.6 Audio and Graphics

6.6.1 Audio signal processing

Report by:
Status:

Henning Thielemann
experimental, active development

In this project, audio signals are processed using pure
Haskell code and the Numeric Prelude framework (—
5.6.2). The highlights are:

o a basic signal synthesis backend for Haskore (—
5.12.1),

support for physical units while maintaining effi-
ciency,

frameworks for abstraction from sample rate, that
is, the sampling rate can be omitted in most parts
of a signal processing expression. We tried hard to
preserve the functional style of programming and do
not need Arrows and according notation.

We checked several low-level implementations in or-
der to achieve reasonable speed. We complement the
standard list structure with a lazy StorableVector
structure and a StateT s Maybe a generator, like in
stream-fusion.

support for causal processes. Causal signal processes
only depend on current and past data and thus are
suitable for real-time processing (in contrast to a
function like time reversal). These processes are
modeled as mapAccumL like functions. Many impor-
tant operations like function composition maintain
the causality property. They are important for shar-
ing on a per sample basis and in feedback loops where
they statically warrant that no future data is ac-
cessed.

Recent advances are:

Novel algorithm for independently modulating time
and phase of a sampled monophonic sound,

Stand-alone binding to Sox for audio format conver-
sion and playback,

Package for fusion of stream-fusion list operations
with storable vector that allows easy combination of
the flexibility of the first one with the efficiency of
the latter one,

improved safety of causal processes with physical di-
mensions,

enhanced type class framework for unifying signals
expressed as lists, storable vectors and signal gener-
ators.

http://www.cs.nott.ac.uk/~ggg/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/elerea
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/elerea

Further reading

o http://www.haskell.org/haskellwiki/Synthesizer

o http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
6.6.2 hsProcMusic

Stephen Lavelle
work ongoing

Report by:
Status:

A collection of several different music-related Haskell
programs, designed chiefly as compositional tools,
rather than as music-generation tools. Most of the pro-
grams are, unfortunately, not very well documented.
However, I would certainly welcome and respond to
any requests to explain any of the code.

o Generate a 2-part melodic canon from a motivic seed.
It implements a toy-version of first species counter-

point to generate canonical material.

Analyze sets of melodies and produce candidates
submelodies (including, optionally, slightly altered
submelodies) for prospective polyphonic combina-
tion. This is related to a currently unrealized pro-
gram to investigate cohomological aspects of coun-
terpoint.

Consonance-preserving map generator. Given two
collections of pitch-classes, this program (with some
harmonic assumptions) can generate all transforma-
tions from one to another that preserve relative con-
sonance.

A toy chord-progression generator based around Ler-
dahl’s Generative Theory of Tonal Music. This is
currently in active development, and I am aiming to
bulk out its harmonic capabilities over the following
months.

The source code can be downloaded from my website.

Further reading

http://www.maths.tcd.ie/~icecube/tag/hsprocmusic/

6.6.3 easyVision

Alberto Ruiz
experimental, active development

Report by:
Status:

The easyVision project is a collection of experimental
libraries for computer vision and image processing. The
low level computations are internally implemented by
optimized libraries (IPP, HOpenGL, hmatrix (— 5.3.2),
etc.). Once appropriate geometric primitives have been
extracted by the image processing wrappers we can de-
fine interesting computations using elegant functional
constructions.

64

Recent developments include support for off-line pro-
cessing, improved camera combinators, and a draft of
the tutorial.

Further reading

http://www.easyVision.googlepages.com

6.6.4 photoname

Dino Morelli
stable, maintained

Report by:
Status:

photoname is a command-line utility for renam-
ing/moving photo image files. The new folder location
and naming are determined by the EXIF photo shoot
date and the usually-camera-assigned serial number, of-
ten appearing in the filename.

Between versions 2.0 and 2.1 the software is largely
the same on the outside but has undergone extensive
changes inside. Most of this involved redesign with
monad transformers.

photoname is on Hackage and can be acquired using
darcs or other methods. See the project page below for
more.

Further reading

o Project page:
http://ui3.info/d/proj/photoname.html

o Source repository:
darcs get http://ui3.info/darcs/photoname

6.6.5 Simplex-Based Spatial Operations

Report by: Farid Karimipour
Participants: Andrew U. Frank
Status: active development

The project is to implement spatial operations inde-
pendent of dimension. There is much need in computa-
tional geometry and related fields to extend 2D spatial
operations to 3D and higher dimensions. Approaches
designed for a specific dimension lead to different im-
plementations for different dimensions. Following such
approaches, the code for a package that supports spa-
tial operations for both 2D and 3D cases is nearly two
times the code size for 2D. An alternative is dimen-
sion independent approaches. However, they are still
implemented separately for each dimension. The main
reason is lack of efficient data structures in the cur-
rent programming languages. This research goes one
step up the ladder of dimension independence in spa-
tial operations. It implements dimension independent
spatial operations using the concept of n-simplex. This
n-dimensional data type is defined as a list, and its
fundamental operations (e.g., dimension, orientation,
boundary, clockwise and anticlockwise tests, etc.) are

http://www.haskell.org/haskellwiki/Synthesizer
http://dafx04.na.infn.it/WebProc/Proc/P_201.pdf
http://www.maths.tcd.ie/~icecube/tag/hsprocmusic/
http://www.easyVision.googlepages.com
http://ui3.info/d/proj/photoname.html
http://ui3.info/darcs/photoname

developed as higher order functions over lists, which
are treated efficiently in functional programming lan-
guages. Some spatial operations (e.g., distance and
convex hull computations) have been implemented as
case studies. A graphical user interface written with
wxHaskell functions has been developed to illustrate
the graphical results. The following figure shows the
results of the convex hull computation for some 2D and
3D points.

(2D)

(3D)

Further reading

o F. Karimipour, M.R. Delavar, and A.U. Frank. A
Mathematical Tool to Extend 2D Spatial Opera-
tions to Higher Dimensions, Proceedings of the In-
ternational Conference on Computational Science
and Its Applications (ICCSA 2008), (O. Gervasi, B.
Murgante, A. Lagan, D. Taniar, Y. Mun, and M.
Gavrilova, eds.), Perugia, Italy, June 30 — July 3,
2008, Lecture Notes in Computer Science, Berlin:
Springer, Vol. 5072, pp. 153-164.

o F. Karimipour, A.U. Frank, and M.R. Delavar. An
Operation-Independent Approach to Extend 2D Spa-
tial Operations to 3D and Moving Objects, Proceed-
ings of the 16th ACM SIGSPATIAL International
Conference on Advances in Geographic Information
Systems (ACM GIS 2008), Irvine, CA, USA, Novem-
ber 5-7, 2008.

6.6.6 n-Dimensional Convex Decomposition of

Polytops
Report by: Farid Karimipour
Participants: Rizwan Bulbul, Andrew U. Frank
Status: active development

This is the continuation of the work on “Simplex-based
Spatial Operations” (— 6.6.5), where we showed how
to implement dimension independent spatial opera-
tions using the concept of n-simplexes. The results for
n-dimensional convex hull computation were demon-
strated through a graphical user interface written with
wxHaskell functions. In this report, we have applied
the same approach to a more complicated spatial anal-
ysis, i.e., convex decomposition of polytops. Convexity
is a simple but useful concept. Convex objects are much
easier to deal with in terms of storage and operations:

the intersection of two convex objects is a convex ob-
ject, the calculation of areas/volumes is straightforward
and so is the “point-in-polygon” problem, etc.

There are several approaches to decompose a poly-
top to convex components, some of which may be
adapted for different dimensions. However, they still
require separate implementations for each dimension.
The main reason is lack of suitable data structures in
the current programming languages. We use the n-
simplexes to implement an n-dimensional algorithm for
convex decomposition of polytops. It builds a tree of
signed convex components: components in even lev-
els are additive, whereas components in odd levels are
subtractive. An example figure:

v

The algorithm starts with placing the convex hull of
the input polytop as the root of the tree. Subtraction
of the computed convex hull from the input polytop
yields a set of split polytops, which are the elements of
the next level of the tree. The procedure applies to the
non-convex elements and it repeats until all of the ele-
ments are convex. The list data structures and list op-
erations are used for implementation of the algorithm.
Polytops are represented as a list of n-simplexes, which
are described as a list of points, per se. It allows us
to describe the operations for convex decomposition of
polytops as a combination of operations of n-simplexes,
which turns to be operations on lists. Since the repre-
sentation and operations are defined independent of di-
mension, the decomposition algorithm can be used for
polytops of any dimension. The following figure shows
a 2D example polytop which is decomposed to convex
components as the above figure.

65

Further reading

see other entry (— 6.6.5)

6.6.7 DVvD2473

Claude Heiland-Allen
complete

Report by:
Status:

DVD2473 is a generative DVD video artwork.

The somewhat abstract title is a semi-literal descrip-
tion with all the descriptive elements taken out - it is
a DVD of a perfect coloring in 24 colors of a 7,3 hy-
perbolic tiling. It uses the DVD virtual machine to
navigate around the space at pseudo-random.

The mathematics (permutations and Moebius trans-
forms) of the space were implemented in Haskell, with
rendering with Gtk2Hs/Cairo including a little C code
to copy and convert pixels from Cairo to ByteString.
The video encoding used HSH to pipe ByteString to
external tools. The XML control file for DVD author-
ing was generated with a separate Haskell program. A
bash script automates building an iso from the source
code directory.

There are no plans for further development, the art-
work is finished.

Further reading

http://claudiusmaximus.goto10.org/cm/2009-01-07__
dvd2473.html

6.7 Proof Assistants and Reasoning

6.7.1 Galculator

Paulo Silva
unstable, work in progress

Report by:
Status:

The Galculator is a prototype of a proof assistant based
on the algebra of Galois connections. When combined
with the pointfree transform and tactics such as the

66

indirect equality principle, Galois connections offer a
very powerful, generic device to tackle the complexity
of proofs. The implementation of Galculator strongly
relies on Generalized Algebraic Data Types (GADTs)
which are used in the definition of small Domain Spe-
cific Languages. Moreover, they are also used to build
an explicit type representation, allowing for a restricted
form of dependent type programming.

The prototype of Galculator is being developed un-
der an ongoing PhD project. It is still experimental and
things tend to change quickly. The current internal
allows us to represent polymorphic proof-objects and
having a type inference system to automatically infer
their type representations. The details of implementa-
tion can be found in an article published in PPDP’08.

The source code is available from a public SVN reposi-
tory accessible from the project homepage. After reach-
ing a stable version it will also be available from Hack-
age.

Currently, we are working on the automatic deriva-
tion of the so-called “free-theorems” of polymorphic
functions (—3.3.1) and their application to proofs.
Moreover, more complex constructions of Galois con-
nections are also being studied. Finally, we plan to in-
tegrate the Galculator with a theorem prover, namely
Cog.

Further reading

http://www.di.uminho.pt/research/galculator

6.7.2 funsat: DPLL-style Satisfiability Solver

Denis Bueno
version 0.6.0

Report by:
Status:

Funsat is a native Haskell SAT solver that uses modern
techniques for solving SAT instances. Our goal is to fa-
cilitate convenient embedding of a reasonably fast SAT
solver as a constraint solving backend in other applica-
tions. Currently funsat can solve constraints expressed
in conjunctive normal form (CNF) and as propositional
logic circuits (new in 0.6) via an efficient conversion to
CNF.

Funsat produces a total variable assignment for sat-
isfiable inputs, and a resolution proof of unsatisfiability
for unsatisfiable inputs. If unsatisfiable, funsat can also
generate a small, unsatisfiable subformula of the input
(unsatisfiable core). This latter feature is especially
useful for reporting to a user why a complicated logical
constraint was unsatisfiable.

We have tested funsat heavily. For each satisfiable
formula, its assignment is checked; for each unsatisfi-
able formula, the resolution proof is checked. Currently
funsat passes over 20,000 automated and over 3,000
static test cases.

http://claudiusmaximus.goto10.org/cm/2009-01-07_dvd2473.html
http://claudiusmaximus.goto10.org/cm/2009-01-07_dvd2473.html
http://www.di.uminho.pt/research/galculator

Current implementation details include two-watched
literals, conflict-directed learning, non-chronological
backtracking, a VSIDS-like dynamic variable order-
ing, and restarts. Funsat can solve many struc-
tured instances from satlib (http://www.cs.ubc.ca/
~hoos/SATLIB/benchm.html) including PARITY (16
series), BF, blocksworld, and logistics. Many are solved
in a few seconds.

Further reading

o http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/funsat

o The source code repository contains the latest funsat
as well as many problem instances for benchmarking.
It is available as a git repository, accessible like so:
$ git clone git://github.com/dbueno/funsat.git

6.7.3 Saoithin: a 2nd-order proof assistant

Andrew Butterfield
ongoing

Report by:
Status:

Saoithin (pronounced “Swee-heen”) is a GUI-based
2nd-order predicate logic proof assistant. The motiva-
tion for its development is the author’s need for support
in doing proofs within the so-called “Unifying Theo-
ries of Programming” paradigm (UTP). This requires
support for 2nd-order logic, equational reasoning, and
meets a desire to avoid re-encoding the theorems into
some different logical form. It also provides proof tran-
scripts whose style makes it easier to check their cor-
rectness.

Saothin is implemented in GHC 6.4 and wxHaskell
0.9.4, with elements of Mark Utting’s jaza tool for
Z, and has been tested on a range of Windows plat-
forms (98/XP/Vista), and should work in principle on
Linux/Mac OS X.

A version of the software has been trialled out
on 3rd-year students taking a Formal Methods elec-
tive course (https://www.cs.tcd.ie/Andrew.Butterfield/
Teaching/3BA31/#Software) A first public release of
the software under GPL will now happen during Sum-
mer 2009 — For now, Windows executables can be
downloaded from the above link.

Further reading

https://www.cs.tcd.ie/Andrew.Butterfield /Saoithin

6.7.4 Inference Services for Hybrid Logics

Guillaume Hoffmann
Carlos Areces, Daniel Gorin

Report by:
Participants:

“Hybrid Logic” is a loose term covering a number of
logical systems living somewhere between modal and

67

classical logic. For more information on this languages,
see http://hylo.loria.fr

The Talaris group at Loria, Nancy, France (http:
//talaris.loria.fr) and the GLyC group at the Computer
Science Department of the University of Buenos Aires,
Argentina (http://www.glyc.dc.uba.ar/) are developing
a suite of tools for automated reasoning for hybrid
logics, available at http://code.google.com/p/intohylo/.
Most of them are (successfully) written in Haskell. See
HyLoRes (—6.7.5), HTab (—6.7.6), and HGen (—
6.7.7).

6.7.5 HyLoRes

Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development

Current release: 2.4

HyLoRes is an automated theorem prover for hybrid
logics (—6.7.4) based on a resolution calculus. It is
sound and complete for a very expressive (but unde-
cidable) hybrid logic, and it implements termination
strategies for certain important decidable fragments.
The project started in 2002, and has been evolving
since then. It is currently being extended to handle
even more expressive logics (including, in particular,
temporal logics). We have very recently added support
for model-generation for satisfiable formulas.

The source code is available. It is distributed under
the terms of the Gnu GPL.

Further reading

o Areces, C. and Gorin, D. Ordered Resolution with
Selection for H(@). In Proceedings of LPAR 2004,
pp- 125-141, Springer, Montevideo, Uruguay, 2005.

o Areces, C. and Heguiabehere, J. HyLoRes: A Hybrid
Logic Prover Based on Direct Resolution. In Pro-
ceedings of Advances in Modal Logic 2002, Toulouse,
France, 2002.

o Site and source:
http://code.google.com/p/intohylo/

6.7.6 HTab
Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development

Current release: 1.3.5

HTab is an automated theorem prover for hybrid log-
ics (— 6.7.4) based on a tableau calculus. It implements
a terminating tableau algorithm for the basic hybrid
logic extended with the universal modality.

The source code is available. It is distributed under
the terms of the Gnu GPL.

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/funsat
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/funsat
git://github.com/dbueno/funsat.git
https://www.cs.tcd.ie/Andrew.Butterfield/Teaching/3BA31/#Software
https://www.cs.tcd.ie/Andrew.Butterfield/Teaching/3BA31/#Software
https://www.cs.tcd.ie/Andrew.Butterfield/Saoithin
http://hylo.loria.fr
http://talaris.loria.fr
http://talaris.loria.fr
http://www.glyc.dc.uba.ar/
http://code.google.com/p/intohylo/
http://code.google.com/p/intohylo/

Further reading

o Hoffmann, G. and Areces, C. HTab: a terminat-
ing tableaux system for hybrid logic. In Methods for
Modalities 5, Cachan, France, 2007.

o Site and source:
http://code.google.com/p/intohylo/

6.7.7 HGen
Report by: Guillaume Hoffmann
Participants: Carlos Areces, Daniel Gorin
Status: active development

Current release: 1.1

HGen is a random CNF (conjunctive normal form)
generator of formulas for different hybrid logics. It is
highly parameterized to obtain tests of different com-
plexity for the different languages. It has been exten-
sively used in the development of HyLoRes (— 6.7.5)
and HTab (—6.7.6).

The source code is available. It is distributed under
the terms of the Gnu GPL.

Further reading

o Areces, C. and Heguiabehere, J. hGen: A Random
CNF Formula Generator for Hybrid Languages. In
Methods for Modalities 3 (M4M-3), Nancy, France,
September 2003.

o Site and source:
http://code.google.com/p/intohylo/

6.7.8 Sparkle
Report by: Maarten de Mol
Participants: Marko van Eekelen, Rinus Plasmeijer
Status: stable, maintained

Sparkle is an LCF-style proof assistant dedicated to
reasoning about lazy functional programs. It oper-
ates on a simplified subset of Clean (— 3.2.3), and it
makes use of the Clean compiler to automatically trans-
late Clean programs to its accepted subset. Sparkle
fully supports the semantics of a lazy functional pro-
gramming language, including lazy evaluation, bottom-
values, and manual strictness. The reasoning steps of
Sparkle are tailored towards functional programmers,
and include both modified ones (such as Reduce and
Induction) and unique ones (such as Definedness).

Sparkle is a stand-alone application, written in Clean
and with an extensive graphical user interface written
in Object I/0. It is only available on Windows plat-
forms.

Further reading

http://www.cs.ru.nl/~Sparkle

68

6.7.9 Haskabelle

Florian Haftmann
working

Report by:
Status:

Since Haskell is a pure language, reasoning about
equational semantics of Haskell programs is conceptu-
ally simple. To facilitate machine-aided verification of
Haskell programs further, we have developed a con-
verter from Haskell source files to Isabelle theory files:
Haskabelle.

Isabelle itself is a generic proof assistant. It allows
mathematical formulas to be expressed in a formal lan-
guage and provides tools for proving those formulas in
a logical calculus. One such formal language is higher-
order logic, a typed logic close to functional program-
ming languages. This is used as translation target of
Haskabelle.

Both Haskabelle and Isabelle in combination allow to
formally reason about Haskell programs, particularly
verifying partial correctness.

The conversion employed by Haskabelle covers only
a subset of Haskell, mainly since the higher-order logic
of Isabelle has a more restrictive type system than
Haskell. A simple adaption mechanisms allows to tailor
the conversion process to specific needs.

So far, Haskabelle is working, but there is little expe-
rience for its application in practice. Suggestions and
feedback welcome.

Further reading

http://isabelle.in.tum.de/haskabelle.html
isabelle.in.tum.de/

and http://

6.8 Modeling and Analysis

6.8.1 Streaming Component Combinators

Blazevi¢ Mario
experimental, actively developed

Report by:
Status:

Streaming Component Combinators are an experiment
at modeling dataflow architecture by using composable
streaming components. All components are categorized
into a small set of component types. A number of
components can be composed into a compound com-
ponent using a component combinator. For example,
two transducer components can be composed together
using a pipe operator into another transducer; one split-
ter and two transducers can be composed using an if
combinator into a single compound transducer. Com-
ponents are implemented as coroutines, and the data
flow among them is synchronous.

There are two ways to use SCC: as an embedded
language in Haskell, or as a set of commands in a

http://code.google.com/p/intohylo/
http://code.google.com/p/intohylo/
http://www.cs.ru.nl/~Sparkle
http://isabelle.in.tum.de/haskabelle.html
http://isabelle.in.tum.de/
http://isabelle.in.tum.de/

command-line shell. The latter provides its own parser
and type checker, but otherwise relies on the former to
do the real work.

The original work was done in programming lan-
guage OmniMark. Haskell was the language of choice
for the second implementation because its strong
typing automatically makes the embedded language
strongly typed, and because its purity forces the im-
plementation to expose the underlying semantics.

Version 0.3 of SCC has introduced a set of compo-
nents for processing well-formed XML instances. Cur-
rent plans for the future work are to improve the par-
allelism of the streaming combinators and extend the
shell scripting language.

The latest stable version of SCC is available from
Hackage.

Further reading

o Hackage: http://hackage.haskell.org/cgi-bin/
hackage-scripts/package/scc-0.3

o Conference paper: Mario Blazevié, Stream-
ing component combinators, Extreme Markup
Languages, 2006. http://www.idealliance.org/
papers/extreme/proceedings/html/2006/Blazevic01/
EML2006Blazevic01.html

o OmniMark implementation:

/ /developers.omnimark.com /etcetera/

streaming-component-combinators.tar.gz

http:

6.8.2 Raskell

Nicolas Frisby

Garrin Kimmell, Mark Snyder, Philip
Weaver, Perry Alexander

beta, actively developed

Report by:
Participants:

Status:

Raskell is a Haskell-based analysis and interpreta-
tion environment for specifications written using the
system-level design language Rosetta. The goal of
Rosetta is to compose heterogeneous specifications into
a single semantic environment. Rosetta provides mod-
eling support for different design domains employing se-
mantics and syntax appropriate for each. Therefore, in-
dividual specifications are written using semantics and
vocabulary appropriate for their domains. Information
is then composed across these domains by defining in-
teractions between them.

The heart of Raskell is a collection of composable
interpreters that support type checking, evaluation,
and abstract interpretation of Rosetta specifications.
Algebra combinators allow semantic algebras for the
same constructs, but for different semantics, to be
easily combined. This facilitates further reuse of se-
mantic definitions. Using abstract interpretation, we
can transform specifications between semantic domains
without sacrificing soundness. This allows for analy-
sis of interactions between two specifications written

69

in different semantic domains. Raskell also includes a
Parsec-based Rosetta parser.

The Raskell environment is available for download at
the links below. It is continually being updated, so we
recommend checking back frequently for updates. To
build the Rosetta parser and type checker, you must
also install InterpreterLib (— 5.5.4), available at the
third link listed below.

Further reading

o http://www.ittc.ku.edu/Projects/SLDG/projects/
project-rosetta.htm+#raskell

o http://www.ittc.ku.edu/Projects/SLDG/projects/
project-raskell.htm

o http://www.ittc.ku.edu/Projects/SLDG/projects/
project-InterpreterLib.htm

Contact

(alex@ittc.ku.edu)

6.8.3 iTasks

Thomas van Noort

Rinus Plasmeijer, Peter Achten, Pieter
Koopman, Bas Lijnse

active development

Report by:
Participants:

Status:

The iTask system provides a set of combinators to
specify workflow in the pure and functional language
Clean (—3.2.3) at a very high level of abstraction.
Workflow systems are automated systems in which
tasks are coordinated that have to be executed by ei-
ther humans or computers. The combinators that are
available support workflow patterns commonly found
in commercial workflow systems. In addition, we intro-
duce novel workflow patterns that capture real world
requirements, but that cannot be dealt with by current
systems. For example, work can be interrupted and
subsequently directed to other workers for further pro-
cessing. Compared with contemporary workflow sys-
tems, the iTask system offers several further advan-
tages:

o

Tasks are statically typed and can be higher-order.

[¢]

Combinators are fully compositional.

o Dynamic and recursive workflow is supported.

[¢]

An executable web-based multi-user workflow appli-
cation is generated from a specification.

http://hackage.haskell.org/cgi-bin/hackage-scripts/package/scc-0.3
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/scc-0.3
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2006/Blazevic01/EML2006Blazevic01.html
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://developers.omnimark.com/etcetera/streaming-component-combinators.tar.gz
http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-rosetta.htm#raskell
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-raskell.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-InterpreterLib.htm
mailto: alex at ittc.ku.edu

=lalx|
ol

........

Note:

i

The iTask system makes extensive use of Clean’s
generic programming facilities and its iData toolkit
with which interactive, thin-client, form-based web ap-
plications can be created.

Future plans

Currently, we are working on workflow systems in
which running workflow processes can be modified dy-
namically.

Further reading

o http://wiki.clean.cs.ru.nl/ITasks
o http://www.st.cs.ru.nl/Onderzoek/Publicaties/
publicaties.html

6.8.4 CSP-M Tools at University of Diisseldorf

Marc Fontaine
ongoing

Report by:
Status:

CSP-M is a machine-readable syntax for communicat-
ing sequential processes, a formalism invented by Tony
Hoare, which is used by several formal-methods-tools.

We are using Haskell to develop tools for parsing, an-
alyzing, type-checking, pretty-printing and animating
CSP-M specifications. The ProB model-checker, which
is primarily written in Sicstus Prolog, uses a Parsec-
based CSP-M parser to read CSP-M syntax.

Further reading

http://www.stups.uni-duesseldorf.de/ProB/overview.
php

70

6.9 Hardware Design

6.9.1 ForSyDe

Report by: Ingo Sander
Participants: Alfonso Acosta, Axel Jantsch, Jun Zhu
Status: experimental

The ForSyDe (Formal System Design) methodology
has been developed with the objective to move system-
on-chip design to a higher level of abstraction. ForSyDe
is implemented as a Haskell-embedded behavioral DSL.

The current released is ForSyDe 3.0, which includes a
new deep-embedded DSL and embedded compiler with
different backends (Simulation, Synthesizable VHDL
and GraphML), as well as a new user-friendly tutorial.

The source code, together with example system mod-
els, is available from HackageDB under the BSD3 li-
cense.

Features

ForSyDe includes two DSL flavors which offer different
features:

1. Deep-embedded DSL

Deep-embedded signals (ForSyDe.Signal), based on
the same concepts as Lava (— 6.9.2), are aware of the
system structure. Based on that structural informa-
tion ForSyDe’s embedded compiler can perform dif-
ferent analysis and transformations.

Thanks to Template Haskell, computations are
expressed in Haskell, not needing to specifically
design a DSL for that purpose

Embedded compiler backends:

— Simulation

— VHDL (with support for Modelsim and
Quartus IT)

— GraphML (with yFiles graphical markup
support)

Synchronous model of computation
Support for components

Support for fixed-sized vectors

2. Shallow-embedded DSL

Shallow-embedded signals
(ForSyDe.Shallow.Signal) are modeled as streams
of data isomorphic to lists. Systems built with them
are restricted to simulation. However, shallow-
embedded signals provide a rapid-prototyping
framework which allows to simulate heterogeneous
systems based on different models of computation
(MoCs).

http://wiki.clean.cs.ru.nl/ITasks
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.st.cs.ru.nl/Onderzoek/Publicaties/publicaties.html
http://www.stups.uni-duesseldorf.de/ProB/overview.php
http://www.stups.uni-duesseldorf.de/ProB/overview.php

¢]

Synchronous MoC
Untimed MoC

Continuous Time MoC

o

[¢]

[¢]

Domain Interfaces allow connecting various
subsystems with different timing (domains) re-
gardless of their MoC

ForSyDe allows to integrate deep-embedded models
into shallow-embedded ones. This makes it possible
to simulate a synthesizable deep-embedded model to-
gether with its environment, which may consist of ana-
log, digital, and software parts. Once the functional-
ity of the deep-embedded model is validated, it can be
synthesized to hardware using the VHDL-backend of
ForSyDe’s embedded compiler.

Further reading

http://www.ict.kth.se/forsyde/

6.9.2 Lava

Emil Axelsson
Koen Claessen, Mary Sheeran, Satnam
Singh

Report by:
Participants:

Lava is a hardware description library embedded in
Haskell. By modeling hardware components as func-
tions from inputs to outputs, Lava allows struc-
tural hardware description using standard functional
programming techniques. The version developed
at Chalmers University (http://www.cs.chalmers.se/
~koen/Lava/) has a particular aim to support formal
verification in a convenient way. The version devel-
oped at Xilinx Inc. (http://raintown.org/lava/) focuses
on FPGA core generation, and has been successfully
used in real industrial design projects.

Some recent Lava-related work at Chalmers is Mary
Sheeran’s parallel prefix generators, which use a clever
search to find networks with a good balance between
speed and low power. The most visible activity on Lava
itself over the last years is that the Chalmers version
has been made available from Hackage.

Further reading

http://www.cs.chalmers.se/~koen/Lava/

6.9.3 Wired

Emil Axelsson
Koen Claessen, Mary Sheeran

Report by:
Participants:

Wired is an extension to the hardware description li-
brary Lava (— 6.9.2), targeting (not exclusively) semi-
custom VLSI design. A particular aim of Wired is to

71

give the designer more control over on-chip wires’ ef-
fects on performance.
The goal is a system with the following features:

1. Convenient circuit description in monadic style.

2. Layout/wiring expressed using optional annota-
tions, allowing incremental specification of physical
aspects.

3. Export designs to several formats:

o Lava (for, e.g., verification)
o Postscript (visualizing layout and wiring)

o Design Exchange Format (interfacing to stan-
dard CAD tools)

4. Accurate, wire-aware timing/power analysis within
the system.

5. Support for a few modern cell libraries.
6. Automatic modeling of cell libraries.

We are not very far from this goal. The missing parts
are power analysis and support for cell library compila-
tion; and sequential circuits are not yet fully supported.

Wired includes an open-source 45nm standard cell li-
brary from Nangate allowing users to play with cutting-
edge VLSI technology without the need for any expen-
sive and complicated CAD tools. The system is still
quite unstable and has not yet been tested in any larger
scale.

The following picture shows the layout of a 32-bit
multiplier. Wired was used for generating the netlist
and placing the reduction tree.

Further reading

http://www.cs.chalmers.se/~emax/wired /

6.9.4 Oread
Report by: Garrin Kimmell
Participants: Ed Komp, Perry Alexander
Status: beta, actively developed

The Computer Systems Design Lab is investigating
the use of functional languages in the development of

http://www.ict.kth.se/forsyde/
http://www.cs.chalmers.se/~koen/Lava/
http://www.cs.chalmers.se/~koen/Lava/
http://raintown.org/lava/
http://www.cs.chalmers.se/~koen/Lava/
http://www.cs.chalmers.se/~emax/wired/

mixed-fabric (hardware and software) embedded sys-
tems. To this end, we have developed a language,
Oread, and an accompanying toolset, implemented
in Haskell. Oread is a strict functional language,
combined with monadic message-passing architecture,
which allows a system to be compiled to both tradi-
tional CPU instruction sets and FPGA hardware. The
principal application target for Oread programs is the
construction of software-defined radio components.

Oread is available for download at the link provided
below. Version 0.1 of Oread was released in November
2008.

Further reading

http://www.ittc.ku.edu/Projects/SLDG/projects/
project-Oread.htm

Contact

(kimmell@ittc.ku.edu)

6.10 Natural Language Processing

6.10.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.

The Haskell NLP community was founded in March
2009. We are in the process of recruiting NLP re-
searchers and users from the Haskell community. In
the future, we hope to use the community to discuss
libraries and bindings that would be most useful to us
and ways of spreading awareness about Haskell in the
NLP world.

Further reading

http://projects.haskell.org/nlp

6.10.2 Genl

Report by: Eric Kow

Genl is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen as the last stage in a nat-
ural language generation pipeline. Genl in particular
takes an FB-LTAG grammar and an input semantics
(a conjunction of first order terms), and produces the
set of sentences associated to the input semantics by

72

the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was devel-
oped within the TALARIS project and is free software
licensed under the GNU GPL.

eoe

Files last loaced

Ceni Project

trees: substtest3.geni
lexicon: etc/perftest/lemmas.glex
test suite: etc/perftest/semantics-t33

Test case = 1, T] Algorithm
semantics: [|1:agent{el x1) 12:agent(e2 x2) [3:agent{e3 x4) 12:avertir @ simple
(e2) |L:demander{el) jean(x1) marc(x5) marie(x3) |2:patient(e2 x3) =
pierre(x2) pierrette(x4) se(noene) 13:souvenir(e3) 12 theme(eZ e3)) simple-1p
13:theme(e3 x5) I1:topic(el e2)] i
() CKY
") Earley
Optimisations
@ Polarities
Extra:

| Semantic filters

__ldx acc filter
o—Quit—) _!Inspect lex [Debug) (Generate)
en6 Genl Debugger - simple edition
lexical selection automata | simple-session |
___AGENDA___
Marie Pierre avertid s avertir_n0Vnlcs2-TnoVnlcs2-78
Pierre avertir Marie|
Pierre avertir Pierrg / \
Pierre avertir Pierrg
N avertir N § (1) nd sarde # s Marie_propernane-Tpropernane- 1257
N avertir SN (1)
N avertir N que § (/ \\
N avertir que SN (
N demander S (1) n:x2 vp:.e2 sl !
—_AUXILIARY___
___CHART___
Marie N avertir 5 (Il

Marie (1) vel:avertir #
Pierre avertir Jean ¢
Jean demander i F
Pierre avertir Jean ¢
Jean demander Pie
Pierre avertir Jean ¢
Jean demander i F
Pierre avertir Jean ¢
Jean demander Pie
Pierre avertir Jean ¢
Jean demander Pie
Pierre avertir Pierre
Plerrette se souven

name: avertir_n0Vnlcs2-Tn0Vnlcsz-786
semantics: [l2:agent(s2 x2) l2:avertir(e2) marie(x3) l2:patient(e2 x3) 12:thems(e2 &3)]

[Show features

itr 56 chart sz: 56 P 7 S i —
comparisons: 1046 Start over) (" Leap by...) 56 step(s) (Continue

Genl is available on Hackage, and can be installed
via cabal-install. Our most recent release of Genl was
version 0.17.4, which offers simplified installation with
an optional graphical mode, and better help text. For
more information, please contact us on the geni-users
mailing list.

Further reading

o http://trac.loria.fr/~geni

o Paper from Haskell Workshop 2006:
http://hal.inria.fr/inria-00088787 /en

o http://websympa.loria.fr/wwsympa/info/geni-users

6.10.3 Grammatical Framework

Report by:
Participants:

Krasimir Angelov
Aarne Ranta, Bjorn Bringert, Hakan
Burden

Grammatical Framework (GF) is a programming lan-
guage for multilingual grammar applications. It can

http://www.ittc.ku.edu/Projects/SLDG/projects/project-Oread.htm
http://www.ittc.ku.edu/Projects/SLDG/projects/project-Oread.htm
mailto: kimmell at ittc.ku.edu
http://projects.haskell.org/nlp
http://trac.loria.fr/~geni
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users

be used as a more powerful alternative to Happy but
in fact its main usage is to describe natural language
grammars instead of for programming languages. The
language itself will look familiar for most Haskell or
ML users. It is a dependently typed functional lan-
guage based on Per Martin-Lo6f’s type theory.

An important objective in the language development
was to make it possible to develop modular gram-
mars. The language provides modular system inspired
from ML but adapted to the specific requirements in
GF. The modules system was exploited to a large ex-
tent in the Resource Libraries project. The library
provides large linguistically motivated grammars for a
number of languages. When the languages are closely
related the common parts in the grammar could be
shared using the modules system. Currently there
are complete grammars for Bulgarian, Danish, English,
Finnish, French, German, Interlingua, Italian, Norwe-
gian, Russian, Spanish, and Swedish. Some still in-
complete grammars are available for Arabic, Catalan,
Latin, Thai, and Hindi/Urdu. On top of these gram-
mars a user with limited linguistic background can
build application grammars for a particular domain.

In June 2008 a beta version of GF 3.0 was released.
This is a major refactoring of the existing system. The
code base is about half in size and makes a clear separa-
tion between compiler and runtime system. A Haskell
library is provided that allows GF grammars to be
easily embedded in the user applications. There is a
translator that generates JavaScript code which allows
the grammar to be used in web applications as well.
The new release also provides new parser algorithm
which works faster and is incremental. The incremen-
tality allows the parser to be used for word prediction,
i.e., someone could imagine a development environment
where the programming language is natural language
and the user still can press some key to see the list of
words allowed in this position just like it is possible in
Eclipse, JBuilder, etc.

Further reading

www.digitalgrammars.com /gf

6.11 Inductive Programming

6.11.1 Inductive Programming

Report by: Lloyd Allison

Inductive Programming (IP): The learning of general
hypotheses from given data.

The project is (i) to use Haskell to examine what
are the products of artificial-intelligence (AI)/data
mining/machine-learning from a programming point of
view, and (ii) to do data analysis with them.

IP 1.2 now contains estimators, from given weighted
and unweighted data, to the Poisson and Geometric

73

distributions over non-negative integer variables, and
Student’s t-Distribution over continuous variables. The
new (and the earlier) distributions may be used as com-
ponents to the learners (estimators) of structured mod-
els such as unsupervised classifications (mixture mod-
els), classification- (decision-, regression-) trees and
other function-models (regressions), mixed Bayesian
networks, and segmentation models. A small prototype
module of numerical/scientific functions, in Haskell,
has been added to IP 1.2, to support the implemen-
tation of Student’s t-Distribution in the first instance.
I am working on some routines for the analysis of la-
beled graphs (networks), and on reorganizing the mod-
ules slightly to suit Haskell’s module system better.

Prototype code is available (GPL) at the URL below.

Future plans

Planned are continuing extensions, applications to real
data-sets, and comparisons against other learners.

Further reading

o http://www.allisons.org/Il/FP/IP/
o http://www.csse.monash.edu.au/~lloyd/tildeFP /Il /

6.11.2 Igorll
Report by: Martin Hofmann
Participants: Emanuel Kitzelmann, Ute Schmid
Status: experimental, active development

IGORII is a new method and an implemented prototype
for constructing recursive functional programs from a
few non-recursive, possibly non-ground, example equa-
tions describing a subset of the input/output behavior
of a target function to be implemented.

For a simple target function like reverse the sole
input would be the following, the k smallest w.r.t. the
input data type, examples:

reverse [] =0
reverse [a] = [a]
reverse [a,b] = [b,a]
reverse [a,b,c] = [c,b,al

The result, shown below, computed by IGORII is a
recursive definition of reverse, where the subfunctions
last and init have been automatically invented by the
program.

1

(last (x:xs)):(reverse (init (x:xs))

reverse []
reverse (x:xs)

last [x] =x

last (x:y:ys) = last (y:ys)
init [x] = [

init (x:y:ys) = x:(init (y:ys))

www.digitalgrammars.com/gf
http://www.allisons.org/ll/FP/IP/
http://www.csse.monash.edu.au/~lloyd/tildeFP/II/

Features

o termination by construction
o handling arbitrary user-defined data types
o utilization of arbitrary background knowledge

o automatic invention of auxiliary functions as subpro-
grams

o learning complex calling relationships (tree- and
nested recursion)

o allowing for variables in the example equations

o simultaneous induction of mutually recursive target
functions

Current Status and Future Plans

IGORII is currently still implemented in the reflective
rewriting based programming and specification lan-
guage MAUDE, and is available on the project page.
The porting of IGORII from MAUDE to HASKELL is
currently work in progress.

For the future, we plan to move the system to a
higher-order context to use morphisms like map and
fold during synthesis, as well as using a polymorphic
type system with classes instead of monomorphic types
to facilitate the use of background knowledge. Fur-
thermore, the introduction of additional functional con-
structs (e.g., let) and accumulator variables is one of
our major goals.

Further reading

o http://www.cogsys.wiai.uni-bamberg.de/effalip/
o http://www.inductive-programming.org/

6.12 Others

6.12.1 Bioinformatics tools

Report by: Ketil Malde

The Haskell bioinformatics library supports working
with nucleotide and protein sequences and associated
data. File format support includes sequences in Fasta
(with associated quality information), TwoBit, and
PHD formats. Recently, support for reading and writ-
ing SFF files (from 454-type sequencing) has been
added, and also functionality for working with loca-
tions.

There is support for sequence alignment tools in the
form of parsers for BLAST XML output, Bowtie out-
put, or ACE files. In addition, the standard alignment
algorithms (and some non-standard ones) are provided,

as well as sequence indexing, complexity calculation,
protein translation, etc.

The library is considered in development (meaning
things will be added, some functionality may not be as
complete or well documented as one would wish, and so
on), but central parts should be fairly well documented
and come with a QuickCheck test and benchmarking
suite.

The library abstracts functionality that is used in a
handful of applications, including:

o flower — a program for extracting information from
and analyzing SFF files.

o xsact — an EST clustering program
o RBR — a repeat detector/masker

o clusc — a tool for calculating cluster similarity with
a bunch of metrics

o dephd — a sequence quality assessment tool
o xml12x — a BLAST postprocessor and GO annotator

Everything is GPLed and available as Darcs repos,
at http://malde.org/~ketil /biohaskell /.

6.12.2 Roguestar

Christopher Lane Hinson
early development

Report by:
Status:

Roguestar is a science fiction themed roguelike game
written in Haskell. Roguestar uses a client-server
model: roguestar-engine is the backend game engine,
while roguestar-gl is the OpenGL client.

RSAGL is the RogueStar Animation and Graph-
ics Library, which was written specifically to support
roguestar-gl. Every effort has been made to make it ac-
cessible to other projects. It includes various levels of
support for 3D mathematics, modeling, reactivity and
animation, scene composition, and to a limited extent
ray tracing.

Roguestar is licensed under the Affero General Pub-
lic License. RSAGL is licensed under a permissive li-
cense.

The 0.4 version is planned for release within the next
six months. This should support more combat models,
resource gathering and item creation.

Further reading

o http://roguestar.downstairspeople.org
o http://blog.downstairspeople.org

74

http://www.cogsys.wiai.uni-bamberg.de/effalip/
http://www.inductive-programming.org/
http://malde.org/~ketil/biohaskell/
http://roguestar.downstairspeople.org
http://blog.downstairspeople.org

6.12.3 Hpysics

Roman Cheplyaka
experimental

Report by:
Status:

Hpysics is a 3-D physics engine written in Haskell.

At the moment Hpysics supports polyhedral shapes
using VClip algorithm for narrow-phase collision detec-
tion. A simple OpenGL visualization is included.

Further development plans include, apart from im-
proving engine itself, integration with Grapefruit FRP
framework and Lambda-Cube render engine.

Potential users of the physics engine are welcome to
guide further development of the project.

The source code is available from public darcs repos-
itory under the BSD license.

Further reading
http://haskell.org/haskellwiki/Hpysics

6.12.4 hledger

Report by: Simon Michael

hledger is a (primarily) command-line accounting tool
similar to John Wiegley’s “ledger”. It reads a plain text
journal file describing money or commodity transac-
tions, or timelog entries, and generates precise activity
and balance reports.

Since the last report, hledger has reached release 0.4
on Hackage. It has 60 test cases, new features such
as basic curses and web-based interfaces, and has had
some performance tuning. It is now quite useful for day
to day reporting of money and time. Also, the project
has a new web address (hledger.org), and has attracted
two new committers.

Further reading

http://hledger.org

6.12.5 LQPL — A quantum programming language
compiler and emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: in development

LQPL (Linear Quantum Programming Language) con-
sists of two main pieces, a compiler for a functional
quantum programming language and an associated as-
sembler / emulator.

The system was the main subject of the author’s
master thesis and was inspired by Peter Selinger’s

paper “Toward a Quantum Programming Language”.
LQPL incorporates a simplified module / include sys-
tem (more like C’s include than Haskell’s import),
various predefined unitary transforms, algebraic data
types, and operations on purely classical data. The
compiler translates LQPL programs into an assembler
like language. The emulator, written using Gtk2Hs,
translates the assembler to machine code and provides
visualization of the program as it executes.

For example, the following procedure implements
quantum teleportation:

teleport:: (n:Qubit,a:Qubit,b:Qubit;b:Qubit) =
{ Not a <= n ;

Had n;
measure a of

[0> => {} [|1> => {Not b};
measure n of

0> => {} |1> => {RhoZ b}

The emulator will allow a person to step through this
program, displaying the quantum values as a tree. The
figure below is a screen shot showing the results after
the first measure in teleport.

X| Quantum Stack Machine - teleport.qpo
jew Help ‘

Execution/Display
] Go Step = Trim
n(3 F) 1.868)
Step Count 1 B
bi2 F) “Sen) b2 F) @(-0.500) b2 Fl'g (-0.500) b (8.508)
Show Trace
) !))
8.500 -n.508 -8.500 .50
View Contrals
Stream Depth o =
Tree Depth 5 [

Since the publication of the thesis, some time and at-
tention has been spent on improving performance and
the UI of the emulator.

We plan to release this to the public sometime this
year. It will be made available from the first au-
thor’s website and the programming languages research
group’s website at the University of Calgary.

Further reading

http://pages.cpsc.ucalgary.ca/~gilesb/research /index.
html

6.12.6 Yogurt

Report by: Martijn van Steenbergen

Yogurt is a MUD client embedded in Haskell. The
API allows users to define variables of arbitrary types
and hooks that trigger on output from the MUD or
input from the user. Other features include timers,
multithreading, and logging. Most MUD clients rely
on their own custom language; Yogurt, however, re-
lies on Haskell. Even though Yogurt programs are full

[0)

http://haskell.org/haskellwiki/Hpysics
http://hledger.org
http://pages.cpsc.ucalgary.ca/~gilesb/research/index.html
http://pages.cpsc.ucalgary.ca/~gilesb/research/index.html

Haskell programs, Yogurt is able to dynamically load
and reload them using the GHC API, effectively mak-
ing Yogurt a scripting language.

Ideas for the future include compatibility with
Tintin++ scripts to make migration to Yogurt even
more tempting and an expect-like interface for easier
interaction with processes.

Further reading

http://code.google.com/p/yogurt-mud/

6.12.7 Dyna 2
Report by: Wren Ng Thornton
Participants: Nathaniel W. Filardo, Jason Eisner
Status: active research

Dyna is a valued-logic programming language with
first-class support for dynamic programming. A ma-
jor goal of the language is to automate many of the
common algorithms and optimizations used in natu-
ral language parsers and machine translation decoders,
making them available for general logic programs.

Starting from Prolog we extend Horn clauses to
“Horn equations” by associating each grounding of a
rule with a value (not just provability) and aggregating
these values to get the value of an item. This extends
logic programming with some elements of functional
programming, including weighted-logic systems where
the form of Horn equations is restricted to a semiring.

My master thesis work was developing a powerful
type system which expresses algebraic data types with
non-linearity constraints, refinement subtyping, and
some aspects of dependent typing. This type system
is further enhanced to allow heterogeneous storage of
the same semantic type, so that different representa-
tions of “the same value” can be used simultaneously
in different parts of a program.

Unlike most logic languages, Dyna will have a mod-
ule system for separating proof universes, which allows
multiple programs to share the same RTS instance and
allows presenting programs, data sets, and deductive
databases with the same API. Dyna will also support
agenda-based mixed forward-/backward-chaining infer-
ence with memoization and declarative truth mainte-
nance.

Previous work implemented a prototype compiler
that generated C++ classes for a restricted form of
the language. Currently we are implementing an in-
terpreter in Haskell that covers a broader portion of
the language, and are working on the formal under-
pinnings of these extensions. We intend to use this in
the long term as a reference implementation for test-
ing improved algorithms for a next generation Dyna
compiler.

76

Further reading

o Work on the type system and unification algorithms
for Dyna 2 can be found in the following papers.
These are currently not available online, though re-
fined versions should be available soon.

— W. Thornton (2008). “Typed Unification in
Dyna: An Exploration of the Design Space.”
Masters Project Report, Johns Hopkins Univer-
sity.

— W. Thornton (2008). “Heterogeneous Strate-
gies for Unification: Variable-Value Ordering
and Optimized Structures.” Masters Paper,
Johns Hopkins University.

o This paper discusses program transformations for
Dyna and gives an early view of the semantics for
mixed inference.

— http://www.cs.jhu.edu/~jason/papers/#fg06

o This paper introduces Dyna 1 where Horn equations
are restricted to a semiring.

— http://cs.jhu.edu/~jason/papers/
#emnlp05-dyna

o In association with Dyna there is work on a graphical
debugger, called Dynasty, which allows lazy explo-
ration of hypergraphs (representing proof forests).

— http://cs.jhu.edu/~jason/papers/#infovis06

http://code.google.com/p/yogurt-mud/
http://www.cs.jhu.edu/~jason/papers/#fg06
http://cs.jhu.edu/~jason/papers/#emnlp05-dyna
http://cs.jhu.edu/~jason/papers/#emnlp05-dyna
http://cs.jhu.edu/~jason/papers/#infovis06

7 Commercial Users

7.1 Well-Typed LLP

lan Lynagh
Bjorn Bringert, Duncan Coutts

Report by:
Participants:

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a develop-
ment platform. We also offer consulting services, con-
tracting, and training. For more information, please
take a look at our website or drop us an e-mail at
(info@well-typed.com).

We are pleased to have been able to continue to play
a role in the development of GHC and the release of
6.10.2, as well as other core parts of the community
infrastructure, such as Cabal and the Haskell Platform.

As well as more conventional contracts, we have
also been involved in setting up the Industrial Haskell
Group (—17.9), along with partners including Galois
and Amgen. The THG provides companies with a way
to give back to the community, while at the same time
benefitting from improvements to the Haskell develop-
ment platform.

It has been just over a year since we announced the
formation of Well-Typed. Looking back, we are pleased
with how this first year has gone, and we are excited
by the possibilities and challenges that our second year
promises to provide. Until next time, happy hacking!

Further reading

o http://www.well-typed.com/
o Blog: http://blog.well-typed.com/

7.2 SeeReason Partners, LLC

Clifford Beshers
David Fox, Jeremy Shaw

Report by:
Participants:

Clifford Beshers, David Fox, and Jeremy Shaw com-
prise SeeReason Partners, LLC. We develop web ser-
vices using Haskell to build our applications. We are
currently using AJAX techniques, with JavaScript code
generated from Haskell, deployed using HAppS as a
web server. We initially planned working with Adobe
Flash, based on early work on a Haskell to Flash com-
piler, but have postponed that work for now.

We have developed and deployed a website for cre-
ating art appraisal reports, in use by a private firm.
These documents require specific formatting that must
be more flexible than simple boilerplate, but for which

standard commercial word processing tools proved to
be too cumbersome. Multiple users can edit reports
simultaneously through a web interface using Wiki
markup, which is converted to LaTeX and rendered
in PDF format.

We are currently working towards launching Alge-
braZam.com, a site to teach mathematics skills, be-
ginning with elementary algebra. The initial launch,
expected fourth quarter 2008, will begin with an inter-
active tool for solving simple algebraic equations.

Formerly core members of the operating systems
group at Linspire, Inc., we continue to maintain the
tools for managing a Debian Linux distribution that
we developed there. Source code for these tools can be
found at our public source code repository http://src.
seereason.com/. These include a package build system
(autobuilder) as well as Cabal to Debian conversion
tool (cabal-debian). We provide current archives of
many Haskell packages (including GHC 6.8.3 built with
Haddock 2.x) built for recent versions of Debian (un-
stable) and Ubuntu (8.04 and soon 8.10.) Packages are
available at http://deb.seereason.com/. We welcome in-
quiries from developers interested in using these pack-
ages or helping out with continued development.

We can be reached at ((cliff,david, jeremy)@seereason.
com) and on #haskell respectively as thetallguy, dsfox,
and stepcut.

7.3 Credit Suisse Global Modeling and
Analytics Group

Report by: Ganesh Sittampalam

GMAG, the quantitative modeling group at Credit Su-
isse, has been using Haskell for various projects since
the beginning of 2006, with the twin aims of improving
the productivity of modelers and making it easier for
other people within the bank to use GMAG models.
Many of GMAG’s models use Excel combined with
C++ addin code to carry out complex numerical com-
putations and to manipulate data structures. This
combination allows modelers to combine the flexibility
of Excel with the performance of compiled code, but
there are significant drawbacks: Excel does not sup-
port higher-order functions and has a rather limited
and idiosyncratic type system. It is also extremely dif-
ficult to make reusable components out of spreadsheets
or subject them to meaningful version control.
Because Excel is (in the main) a side-effect free en-
vironment, functional programming is in many ways a
natural fit, and we have been using Haskell in various

7

mailto: info at well-typed.com
http://www.well-typed.com/
http://blog.well-typed.com/
http://src.seereason.com/
http://src.seereason.com/
http://deb.seereason.com/
mailto: (cliff,david,jeremy) at seereason.com
mailto: (cliff,david,jeremy) at seereason.com

ways to replace or augment the spreadsheet environ-
ment.

Our past projects include:

Adding higher-order functions to Excel, implemented
via (Haskell) addin code.

Tools to transform spreadsheets into directly exe-
cutable code.

A “lint” tool to check for common errors in spread-
sheets.

Our main project for the last couple of years has
been Paradise, a domain-specific language embedded
in Haskell for implementing reusable components that
can be compiled into multiple target forms. Current
backends are Excel spreadsheets and .NET components
based on either Winforms or WPF.

A number of modelers have been exposed directly
to Haskell by using Paradise, and they have generally
picked it up fairly quickly. All new recruits are intro-
duced to Haskell as part of our internal training pro-
gram.

Our main focus at the moment is the automatic
generation of Paradise models for a particular finan-
cial product, starting from an algebraic datatype that
defines the product. Modelers can override parts of
the automatically generated model with a hand-crafted
Paradise component if they choose to, providing a good
trade-off between speed of development and “beautiful”
results.

Further reading

CUFP 2006 talk about Credit Suisse:
http://cufp.galois.com/slides /2006 /HowardMansell.
pdf

ICFP 2008 experience report about Paradise:
http://www.earth.li/~ganesh /research/
paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh /research/
paradise-icfp08/talk.pdf

(¢]

7.4 Bluespec tools for design of complex
chips

Report by:
Status:

Rishiyur Nikhil
commercial product

Bluespec, Inc. provides a language, BSV, which is be-
ing used for all aspects of ASIC and FPGA system de-
sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.

78

Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. BSV is universal, accommodating the di-
verse range of blocks found in SoCs, from algorithmic
“datapath” blocks to complex control blocks such as
processors, DMAs, interconnects and caches.

Bluespec’s core tool synthesizes (compiles) BSV into
high-quality RTL (Verilog), which can be further syn-
thesized into netlists for ASICs and FPGAs using other
commercial tools. Automatic synthesis from atomic
transactions enables design-by-refinement, where an
initial executable approximate design is systematically
transformed into a quality implementation by succes-
sively adding functionality and architectural detail.
Other products include fast BSV simulation and devel-
opment tools. Bluespec also uses Haskell to implement
its tools (well over 100K lines of Haskell).

This industrial strength tool has enabled some large
designs (over a million gates) and significant architec-
ture research projects in academia and industry. This
kind of research was previously feasible only in soft-
ware simulation. BSV permits the same convenience
of expression as SW languages, and its synthesizability
further allows execution on FPGA platforms at three
orders of magnitude greater speeds, making it possible
now to study realistic scenarios.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor companies and universities. The
tools are free for academic teaching and research.

Recent news (last 6 months): (1) Much new infras-
tructure and libraries to move computation kernels eas-
ily onto commodity FPGA boards, for greater speed
and/or lower energy; (2) a strange loop, where one cus-
tomer is applying the capability 1 to a computation ker-
nel written in Haskell; and (3) development of PAClib
(Pipeline Architecture Combinators) that make exten-
sive use of higher-order functions to describe DSP algo-
rithms succinctly and with powerful architectural pa-
rameterization, exceeding the capabilities of tools that
synthesize hardware from C codes.

Further reading

o R.S.Nikhil, Bluespec, a General-Purpose Approach

to High-Level Synthesis Based on Parallel Atomic

Transactions, in High Level Synthesis: from Algo-

rithm to Digital Circuit, Philippe Coussy and Adam

Morawiec (editors), Springer, 2008, pp. 129-146.

Small illustrative examples: http://www.bluespec.

com /wiki/SmallExamples

o Winning entry in MEMOCODE 2008 design contest:
http://rijndael.ece.vt.edu/memocontest08/

o MIT courseware, “Complex Digital Systems”: http:
//csg.csail.mit.edu/6.375

http://cufp.galois.com/slides/2006/HowardMansell.pdf
http://cufp.galois.com/slides/2006/HowardMansell.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/paper.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/talk.pdf
http://www.earth.li/~ganesh/research/paradise-icfp08/talk.pdf
http://www.bluespec.com/wiki/SmallExamples
http://www.bluespec.com/wiki/SmallExamples
http://rijndael.ece.vt.edu/memocontest08/
http://csg.csail.mit.edu/6.375
http://csg.csail.mit.edu/6.375

o A fun example with many functional-programming
features — BluDACu, a parameterized Bluespec
hardware implementation of Sudoku: http://www.
bluespec.com /products/BluDACu.htm

7.5 Galois, Inc.

Report by: Andy Adams-Moran

Galois is an employee-owned software development
company based in Beaverton, Oregon, U.S.A. Ga-
lois started in late 1999 with the stated purpose of
using functional languages to solve industrial prob-
lems. These days, we emphasize the needs of our
clients and their problem domains over the tech-
niques, and the slogan of the Commercial Users of
Functional Programming Workshop (see http://cufp.
functionalprogramming.com/) exemplifies our approach:
Functional programming as a means, not an end.

Galois develops software under contract, and every
project (bar three) that we have ever done has used
Haskell. The exceptions used ACL2, Poly-ML, SML-
NJ, and OCaml, respectively, so functional program-
ming languages and formal methods are clearly our “se-
cret sauce”. We deliver applications and tools to clients
in industry and the U.S. government. Some diverse ex-
amples: Cryptol, a domain-specific language for cryp-
tography (with an interpreter and a compiler, with mul-
tiple targets, including FPGAs); a GUI debugger for a
specialized microprocessor; a specialized, high assur-
ance, cross-domain web and file server, and Wiki for
use in secure environments, and numerous smaller re-
search projects that focus on taking cutting-edge ideas
from the programming language and formal methods
community and applying them to real world problems.

Web-based technologies are increasingly important
to our clients, and we believe Haskell has a key role
to play in the production of reliable, secure web soft-
ware. The culture of correctness Haskell encourages
is ideally suited to web programming, where issues of
security, authentication, privacy, and protection of re-
sources abound. In particular, Haskell’s type system
makes possible strong static guarantees about access
to resources, critical to building reliable web applica-
tions.

To help push further the adoption of Haskell in the
domain of web programming, Galois released a suite of
Haskell libraries, including:

o json: Support for JavaScript Object Notation
o xml: A simple, lightweight XML parser/generator.
o utf8-string: A UTFS layer for IO and Strings.

o selenium: Communicate with a Selenium Remote
Control server.

o curl: libcurl is a rich client-side URL transfer library.

79

o sqlite: Haskell binding to sqlite3 databases.
o feed: Interfacing with RSS and Atom feeds

o mime: Haskell support for working with MIME

types.

Continuing our deep involvement in the Haskell com-
munity, Galois was happy to sponsor the two Haskell
hackathons held in the past year, Hac 07 I1, in Freiburg,
Germany, and Hac4 in Gothenburg, Sweden. Galois
also sponsored the second BarCamp Portland, held in
early May 2008.

Further reading

http://www.galois.com/.

7.6 IVU Traffic Technologies AG Rostering

Group
Report by: Michael Marte
Status: released

The rostering group at IVU Traffic Technologies AG
has been using Haskell to check rosters for compliance
with the “EC Regulation No 561/2006 on the harmo-
nization of certain social legislation relating to road
transport” which “lays down rules on driving times,
breaks and rest periods for drivers engaged in the car-
riage of goods and passengers by road”.

By reduction from SEQUENCING WITH RE-
LEASE TIMES AND DEADLINES (Garey & John-
son, Computers & Tractability, 1977), it is easy to show
that EC 561,/2006 is NP complete due to combinatorial
rest-time compensation rules.

Our implementation is based on an embedded DSL
to combine the regulation’s single rules into a solver
that not only decides on instances but, in the case of a
faulty roster, finds an interpretation of the roster that
is “favorable” in the sense that the error messages it
entails are “helpful” in leading the dispatcher to the
resolution of the issue at hand.

Our EC 561/2006 solver comprises about 1700 lines
of Haskell code (including about 250 lines for the C
APT), is compiled to a DLL with ghc, and linked dy-
namically into C++ and Java applications. The solver
is both reliable (due to strong static typing and referen-
tial transparency — we have not experienced a failure
in three years) and efficient (due to constraint propa-
gation, a custom search strategy, and lazy evaluation).

Our EC 561/2006 component is part of the IVU.crew
software suite and as such is in wide-spread use all over
Europe, both in planning and dispatch. So the next
time you enter a regional bus, chances are that the
driver’s roster was checked by Haskell.

http://www.bluespec.com/products/BluDACu.htm
http://www.bluespec.com/products/BluDACu.htm
http://cufp.functionalprogramming.com/
http://cufp.functionalprogramming.com/
http://www.galois.com/

Further reading

o EC 561/2006 at EurLex
o The IVU.suite for public transport

7.7 Tupil

Chris Eidhof
Eelco Lempsink

() tupil

Tupil builds reliable web software with Haskell. Us-
ing Haskell’s powerful ways of abstraction, we feel we
can develop even faster than with dynamic scripting
languages but with the safety and performance of a
language that is statically checked and compiled.

In the last year we were able to successfully use
Haskell for different projects: high score web services,
music mashups, a payment system for a client and
more. It would not have been possible without the
vast amount of packages that are available for Haskell
these days.

Report by:
Participants:

Further reading

o http://tupil.com
o http://blog.tupil.com

7.8 Aflexi Content Delivery Network
(CDN)

Report by: Kim-Ee Yeoh

The Aflexi Content Delivery Network (CDN) is a con-
federated solution to cost-effective content delivery for
publishers, value-added capacity right-sizing for web-
hosting providers, and a more responsive Internet ex-
perience for end-users.

Key elements of the Aflexi CDN comprise a server-
side software package that webhosting providers can
license to CDN-enable their servers and hosted web-
sites, and a marketplace where a provider can federate
with other providers to expand its CDN footprint. Our
motto is “Unifying Capacity.”

At the heart of the platform is the ability for publish-
ers to transparently combine Aflexi-enabled providers
and migrate among a publisher-selected subset. Com-
petition between providers ensures that publishers get
a market-efficient rate for delivery bandwidth by mak-
ing informed decisions based on platform metrics of
providers’ Quality of Service. By trading excess capac-
ity with other providers, they in turn benefit from the

disruptive innovation in capacity recalibration and ad-
ditional revenue streams afforded by the Aflexi CDN
platform.

Aflexi uses Haskell for critical components of its
back-end infrastructure. Haskell allows us to rapidly
prototype our software efforts via its rich store of
open-source libraries on Hackage. Supported by a set
of composable concurrency abstractions built on fast
lightweight threads, our Haskell code sports more re-
silient fail-safe features and higher performance while
at the same time employing fewer lines of code that
ultimately translate to fewer bugs.

Other Haskell projects in development include a
domain-specific language (DSL) with termination guar-
antees (a la Total Functional Programming). The DSL
furnishes a framework for describing the policies gov-
erning content redirection.

Status and availability

The Aflexi CDN platform pre-launched at the start of
2009.

Further reading

http://aflexi.net/

7.9 Industrial Haskell Group

Report by: lan Lynagh

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
Currently it has three partners, including Galois (—
7.5) and Amgen.

The first activity of the IHG is a collaborative de-
velopment scheme. Our partners are pooling their re-
sources to fund work on the Haskell development plat-
form to their mutual benefit. The scheme is just getting
underway, but has already started producing patches to
improve the state of shared library support in GHC.

This initial scheme will run until the end of August.
During this time we will also be looking at other ways
in which the IHG can help commercial Haskell users,
and how the collaborative development scheme can be
extended in the future.

If you are interested in joining the THG, or if you
just have some comments, please drop us an e-mail at
(info@industry.haskell.org).

Further reading

http://industry.haskell.org/

80

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:102:0001:01:EN:HTML
http://www.ivu.de/uk/products/public-transport/
http://tupil.com
http://blog.tupil.com
http://aflexi.net/
mailto: info at industry.haskell.org
http://industry.haskell.org/

8 Research and User Groups

8.1 Functional Programming Lab at the
University of Nottingham

Report by: Liyang HU

The School of Computer Science at the University of
Nottingham has recently formed the Functional Pro-
gramming Laboratory, a new research group focused on
all theoretical and practical aspects of functional pro-
gramming, together with related topics such as type
theory, category theory, and quantum programming.

The laboratory is led jointly by Thorsten Altenkirch
and Graham Hutton, with Henrik Nilsson and Venanzio
Capretta as academic staff. With 4 more research staff
and some 10 PhD students in our group, we have a
wide spectrum of interests:

Containers

Nottingham has been home to the EPSRC grant on
containers, a semantic model of functional data struc-
tures. Thorsten Altenkirch, Peter Hancock, Peter Mor-
ris, and Rawle Prince are working with containers to
both write and reason about programs. Peter Morris
has recently finished his PhD, which used containers as
a basis for generic programming with dependent types.

Dependently Typed Programming (DTP)

Peter Morris and Nicolas Oury are working on Epi-
gram, while Nils Anders Danielsson is involved in the
development of Agda (— 3.2.2). Our interests lie both
in the pragmatics of using DTP, as witnessed by work
on libraries and tools, and in foundational theory,
including the Observational Type Theory underlying
Epigram 2 and James Chapman’s work on normaliza-
tion. DTP is also used to control and reason about
effects, and a number of us are using Agda as a proof
assistant to verify programs or programming language
theory.

Functional Reactive Programming (FRP)

The FRP team are working on FRP-like and FRP-
inspired declarative, domain-specific languages. Under
Henrik Nilsson’s supervision, Neil Sculthorpe is work-
ing on a new, scalable FRP language based on reactive
components with multiple inputs and outputs, while
George Giorgidze is applying the advantages of FRP
to non-causal modeling with the aim of designing a
new, more expressive and flexible language for non-
causal, hybrid modeling and simulation (— 6.5.3). Tom

81

Nielsen is implementing a declarative language for ex-
periments, simulations, and analysis in neuroscience.
A theme that permeates our work is implementation
through embedding in typed functional languages such
as Haskell or Agda (—3.2.2). The team also main-
tains Yampa, the latest Haskell-based implementation
of FRP.

Quantum Programming

Thorsten Altenkirch and Alexander S Green have been
working on the Quantum IO Monad (QIO), an inter-
face from Haskell to Quantum Programming. Tak-
ing advantage of abstractions available in Haskell we
can provide QIO implementations of many well-known
quantum algorithms, including Shor’s factorization al-
gorithm. The implementation also provides a construc-
tive semantics of quantum programming in the form of
a simulator for such QIO computations.

Reasoning About Effects

Graham Hutton and Andy Gill recently formalized
the worker/wrapper transformation for improving the
performance of functional programs. Wouter Swier-
stra and Thorsten Altenkirch have produced func-
tional specifications of the IO monad, as described in
Wouter’s forthcoming PhD thesis. Mauro Jaskelioff de-
veloped a new monad transformer library for Haskell,
which provides a uniform approach to lifting opera-
tions. Diana Fulger and Graham Hutton are inves-
tigating equational reasoning about various forms of
effectful programs. Liyang HU and Graham Hutton
are working on verifying the correctness of compilers
for concurrent functional languages, including a model
implementation of software transactional memory.

Teaching

Haskell plays an important role in the undergradu-
ate program at Nottingham, as well as our China
and Malaysia campuses. Modules on offer include
Functional Programming, Advanced FP, Mathematics
for CS, Foundations of Programming, Compilers, and
Computer-Aided Formal Verification, among others.

Events

The FP Lab plays a leading role in the Midlands Grad-
uate School in the Foundations of Computing Science,
the British Colloquium for Theoretical Computer Sci-
ence, and the Fun in the Afternoon seminar series on
functional programming.

http://sneezy.cs.nott.ac.uk/joomla/
http://sneezy.cs.nott.ac.uk/joomla/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~nhn/
http://cs.ru.nl/~venanzio/
http://cs.ru.nl/~venanzio/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~pgh/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~pwm/
http://www.cs.nott.ac.uk/~rcp/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~pwm/
http://cs.nott.ac.uk/~npo/
http://cs.nott.ac.uk/~nad/
http://cs.nott.ac.uk/~jmc/
http://cs.nott.ac.uk/~nhn/
http://cs.nott.ac.uk/~nas/
http://cs.nott.ac.uk/~ggg/
http://cs.nott.ac.uk/~tan/
http://cs.nott.ac.uk/~tan/
http://www.cs.nott.ac.uk/~txa/
http://www.cs.nott.ac.uk/~asg/
http://www.cs.nott.ac.uk/~asg/QIO/
http://cs.nott.ac.uk/~gmh/
http://ittc.ku.edu/~andygill/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~wss/
http://cs.nott.ac.uk/~txa/
http://cs.nott.ac.uk/~mjj/
http://cs.nott.ac.uk/~dqf/
http://cs.nott.ac.uk/~gmh/
http://cs.nott.ac.uk/~lyh/
http://cs.nott.ac.uk/~gmh/
http://www.nottingham.ac.uk/computer-science/Study_Here/Study_Here.php
http://www.nottingham.ac.uk/computer-science/Study_Here/Study_Here.php
http://www.nottingham.edu.cn/
http://www.nottingham.edu.my/
http://cs.nott.ac.uk/~nxg/G51FUN0708/fun.html
http://cs.nott.ac.uk/~gmh/afp.html
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/~txa/g52mc2/
http://cs.nott.ac.uk/~nhn/G54FOP/
http://cs.nott.ac.uk/~nhn/G52CMP/
http://e-pig.org/darcs/g53cfr/
http://cs.nott.ac.uk/MGS/
http://cs.nott.ac.uk/MGS/
http://www.bctcs.ac.uk/
http://www.bctcs.ac.uk/
http://sneezy.cs.nott.ac.uk/fun/

FP Lunch

Every Friday, we gather for lunch with helpings of in-
formal, impromptu-style whiteboard discussions on re-
cent developments, problems, or projects. Summaries
of our weekly meetings can be found on the frequently
cited FP Lunch blog, giving a lively picture of ongoing
research at Nottingham.

Later in the afternoon, there is usually a formal hour-
long seminar. We are always keen on speakers in any
related areas: do get in touch with Thorsten Altenkirch
(txa@cs.nott.ac.uk) if you would like to visit. See you
there!

8.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

David Sabel
Manfred Schmidt-SchauB3

Report by:
Participants:

Deterministic calculi. We proved correctness of
strictness analysis using abstract reduction, which was
implemented by Nocker for Clean (— 3.2.3), and by
Schiitz for Haskell. Our proof is based on the oper-
ational semantics of an extended call-by-need lambda
calculus which models a core language of Haskell. Fur-
thermore, we proved equivalence of the call-by-name
and call-by-need semantics of an extended lambda cal-
culus with letrec, case, and constructors. Most re-
cently, we investigated and developed proof techniques
for showing contextual equivalence in a polymorphi-
cally typed letrec-calculus.

Nondeterministic calculi. We explored several
nondeterministic extensions of call-by-need lambda cal-
culi and their applications. We analyzed a model for a
lazy functional language with direct-call I/O providing
a semantics for unsafePerformI0-calls in Haskell. We
investigated a call-by-need lambda-calculus extended
by parallel-or and its applications as a hardware de-
scription language. We analyzed a call-by-need lambda
calculus extended with McCarthy’s amb and an abstract
machine for lazy evaluation of concurrent computa-
tions. For all these investigations an emphasis of our
research lies in proving program equivalences based on
contextual equivalence for showing correctness of pro-
gram transformations.

Simulation-based proof techniques. We have
shown that the soundness proof (w.r.t. contextual
equivalence) for mutual similarity of Matthias Mann
scales up to a class of untyped higher-order non-
deterministic call-by-need lambda calculi. For non-
deterministic call-by-need calculi with letrec, known
approaches to prove such a result are inapplicable. In
collaboration with Flena Machkasova we obtained cor-
rectness of a variation of simulation for checking con-

82

textual equivalence in an extended non-deterministic
call-by-need lambda-calculus with letrec. Ongoing
research is to adapt and extend the methods to an ap-
propriately defined simulation, and to investigate an
extension of the methods to a combination of may- and
must-convergence.

Concurrency primitives. Recently, we analyzed
the expressivity of concurrency primitives in vari-
ous functional languages. In collaboration with Jan
Schwinghammer and Joachim Niehren, we showed how
to encode Haskell’s MVars into a lambda calculus with
storage and futures which is an idealized core language
of Alice ML. We proved correctness of the encoding us-
ing operational semantics and the notions of adequacy
and full-abstractness of translations. In her final year
thesis Martina Willig analyzed the encoding of other
concurrency abstractions and implemented them in the
caf library using Concurrent Haskell.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

8.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

We are a group of staff and students with shared inter-
ests in functional programming. While our work is not
limited to Haskell — in particular our interest in Erlang
has been growing — Haskell provides a major focus
and common language for teaching and research. For
autumn 2009 we are seeking PhD students for funded
research projects.

Our members pursue a variety of Haskell-related
projects, some of which are reported in other sections
of this report. Two PhD students recently had their
vivas, two new student joined us in the last 6 months.
Recently Olaf Chitil updated Heat and released it out-
side the department. Heat is a deliberately simple IDE
for teaching Haskell that has been used at Kent for
over three years. Keith Hanna is continuing work on
Vital, a document-centered programming environment
for Haskell, and on Pivotal, a GHC-based implemen-
tation of a similar environment. The Kent Systems
Research Group is developing an occam compiler in
Haskell (Tock). Neil Brown has created a Haskell li-
brary (“Communicating Haskell Processes”) based on
the Communicating Sequential Processes calculus.

Further reading

o FP group:
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

http://sneezy.cs.nott.ac.uk/fplunch/weblog/
http://cs.nott.ac.uk/~txa/
mailto: txa at cs.nott.ac.uk
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/research/groups/tcs/fp/

o Refactoring Functional Programs:
http://www.cs.kent.ac.uk/projects/refactor-fp/

o Tracing and debugging with Hat: http://www.

haskell.org/hat

Heat: http://www.cs.kent.ac.uk/projects/heat/

Vital: http://www.cs.kent.ac.uk/projects/vital/

Pivotal: http://www.cs.kent.ac.uk/projects/pivotal /

Tock: https://www.cs.kent.ac.uk/research/groups/

sys/wiki/Tock

o CHP http://www.cs.kent.ac.uk/projects/ofa/chp/

O O O O

8.4 Foundations and Methods Group at
Trinity College Dublin

Andrew Butterfield
Glenn Strong, Hugh Gibbons, Edsko de
Vries

Report by:
Participants:

The Foundations and Methods Group focuses on formal
methods, category theory, and functional programming
as the obvious implementation method. A sub-group
focuses on the use, semantics, and development of func-
tional languages, covering such areas as:

o Supporting OO-Design technique for functional pro-
grammers

o Using functional programs as invariants in impera-
tive programming

o Developing a GUI-based 2nd-order equational theo-
rem prover (— 6.7.3)

o New approaches to uniqueness typing, applicable to
Hindley-Milner style type-inferencing

o Equational reasoning for Concurrent Haskell (new)

We have also managed to introduce a new elective
course in functional programming at TCD which will
be based on the “Real World Haskell” textbook.

Further reading

https://www.cs.tcd.ie/research__groups/fmg/

8.5 Formal Methods at DFKI Bremen and
University of Bremen

Christian Maeder

Mihai Codescu, Dominik Liicke, Christoph
Lith, Christian Maeder, Till Mossakowski,
Lutz Schréder

Report by:
Participants:

The activities of our group center on formal meth-
ods and the Common Algebraic Specification Language

(CASL).

We are using the Glasgow Haskell Compiler and
many of its extensions to develop the Heterogeneous
tool set (Hets). Hets consists of parsers, static ana-
lyzers, and proof tools for languages from the CASL
family, such as CASL itself, HasCASL, CoCASL, Csp-
CASL, and ModalCASL, and additionally OMDoc and
Haskell (via Programatica). The Hets implementation
is also based on some old Haskell sources such as bind-
ings to uDrawGraph (formerly Davinci) and Tcl/TK
that we maintain.

HasCASL is a general-purpose higher order language
which is in particular suited for the specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL and HOLCF.

The Coalgebraic Logic Satisfiability Solver CoLoSS
is being implemented jointly at DFKI Bremen and at
the Department of Computing, Imperial College Lon-
don. The tool is generic over representations of the syn-
tax and semantics of certain modal logics; it uses the
Haskell class mechanism, including multi-parameter
type classes with functional dependencies, extensively
to handle the generic aspects.

Further reading

o Group activities overview: http://www.informatik.
uni-bremen.de/agbkb/forschung/formal_methods/

o CASL specification language: http://www.cofi.info

o Heterogeneous tool set: http://www.dfki.de/sks/
hets http://www.informatik.uni-bremen.de/htk/ http:
//www.informatik.uni-bremen.de/uDrawGraph/

o The Coalgebraic Logic Satisfiability Solver CoLoSS:
http://www.informatik.uni-bremen.de/~Ischrode/
projects/GenMod, http://www.doc.ic.ac.uk/~dirk/
COLOSS/

8.6 SClence project

Kevin Hammond
ongoing 5-year project, started in 2006

Report by:
Status:

SCIEnce is a 3.2M euros project that brings together
major developers of symbolic computing systems, in-
cluding GAP, KANT, Maple, and MuPAD, and with the
world-leading Centre for Research in Symbolic Compu-
tation at RISC-Linz (Austria), OpenMath experts from
the Technical University of Eindhoven (Netherlands),
and functional programming experts in the Heriot-
Watt University (Edinburgh, Scotland) and the Uni-
versity of St Andrews (Scotland).

Our research activity — “Symbolic computing on the
Grid” — makes essential use of functional program-
ming technology in the form of the GRID-GUM func-
tional programming system for the Grid, which is built
on the Glasgow Haskell Compiler. The objective is

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.haskell.org/hat
http://www.haskell.org/hat
http://www.cs.kent.ac.uk/projects/heat/
http://www.cs.kent.ac.uk/projects/vital/
http://www.cs.kent.ac.uk/projects/pivotal/
https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock
https://www.cs.kent.ac.uk/research/groups/sys/wiki/Tock
http://www.cs.kent.ac.uk/projects/ofa/chp/
https://www.cs.tcd.ie/research_groups/fmg/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/
http://www.informatik.uni-bremen.de/uDrawGraph/
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.informatik.uni-bremen.de/~lschrode/projects/GenMod
http://www.doc.ic.ac.uk/~dirk/COLOSS/
http://www.doc.ic.ac.uk/~dirk/COLOSS/

not the technically infeasible goal of rewriting all these
(and more) complex systems in Haskell. Rather, we
use GRID-GUM to link components built from each of
the symbolic systems to form a coherent heterogeneous
whole. In this way, we hope to achieve what is cur-
rently a pious dream for conventional Grid technology,
and obtain a significant user base both for GRID-GUM
and for Haskell. We are, of course, taking full advan-
tage of Haskell’s abilities to compose and link software
components at a very high level of abstraction.

Our results in this direction are reflected in more
than 30 publications and a number of research talks
and presentations, listed on the project’s website. The
public downloads are now under revision and the up-
dated version should appear soon.

Further reading

http://www.symbolic-computation.org/

8.7 Haskell at K.U.Leuven, Belgium

Tom Schrijvers
Pieter Wuille

Report by:
Participants:

We are a two-man unit of functional programming re-
search within the Declarative Languages and Artificial
Intelligence group at the Katholieke Universiteit Leu-
ven, Belgium.

Our main project centers around the Monadic Con-
straint Programming (MCP) framework. An initial ar-
ticle on the MCP framework by Tom Schrijvers, Pe-
ter Stuckey and Phil Wadler is available. It explains
how the framework captures the generic aspects of Con-
straint Programming in Haskell. Of particular interest
is the solver-independent framework for compositional
search strategies.

Currently we are extending the framework to act as
a modeling language for both the problem description
and the search component. The model in Haskell serves
as a high-level front-end for a state-of-the-art Con-
straint Programming system such as Gecode (C++)
or Prolog (BProlog, ECL'PS¢). At the same time, the
model is also executable using our native Haskell con-
straint solver.

Our other Haskell-related projects are:

o Type Checking: Recent results are on type inference
for GADTS, type invariants, and type checking for
type families. Ongoing work concerns the simplifica-
tion of type checking for Haskell extensive type sys-
tem, and adding new extensions. This is joint work
with Martin Sulzmann, Simon Peyton Jones, Manuel
Chakravarty, Dimitrios Vytiniotis, Stefan Monnier
and Louis-Julien Guillemette.

84

o Test Generation: Together with master student
Timmy Weytjens I am looking at constraint-based
generation of test cases. The constraint-based ap-
proach should be a more effective than related
random (QuickCheck), exhaustive (SmallCheck)
or semi/pseudo-constraint-based (LazySmallCheck
/ narrowing-based) approaches for certain applica-
tions.

Further reading

o http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/monadiccp

o http://www.cs.kuleuven.be/~toms/Haskell /

o https://www.cs.kuleuven.be/~pieterw /site/Research/
Papers/

8.8 Haskell in Romania

Report by: Dan Popa

This is to report some activities of the Ro/Haskell
group. The Ro/Haskell page becomes more and more
known. We hope to pass the barrier of the 20000th
click on the main page this mounth. The numbers of
students and teachers interested in Haskell is increas-
ing. Students begin to have projects using Haskell in
order to pass the License Exams. But it is just a begin-
ning. Interests in Data Base Programing with Haskell
are growing. (A surprise!).

A book previously published by Mihai Gontineac was
released as a free resource. A new book, “The Prac-
tice Of Monadic Interpretation” by Dan Popa has been
published in November 2008.

@

A

Daa POPA

. Bpractica
h Tl’l JU”WT:I

W
B .

The book has a nice foreword written by Simon P.J. and
is sharing the experience of a year of interpreter build-
ing (2006). It is intended as a student’s and teacher’s
guide to the practical approach of monadic interpre-
tation. The book will probably be used during this
academic year in 2-4 universities across Romania (in
Tasi, Bacau, Cluj-Napoca).

http://www.symbolic-computation.org/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/monadiccp
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/monadiccp
http://www.cs.kuleuven.be/~toms/Haskell/
https://www.cs.kuleuven.be/~pieterw/site/Research/Papers/
https://www.cs.kuleuven.be/~pieterw/site/Research/Papers/

Haskell products like Rodin (a small DSL a bit like
C but written in Romanian) begin to spread, proving
the power of the Haskell language. The Pseudocode
Language Rodin is used as a tool for teaching basics
of computer science in some high-schools from various
cities. Some teachers from a high school have requested
training concerning Rodin. Rodin was asked to become
a FOSS (Free & Open Source Software).

A group of researchers from the field of linguis-
tics located at the State Univ. from Bacau (The LO-
GOS Group) is declaring the intention of bridging the
gap between semiotics, high level linguistics, struc-
turalism, nonverbal communication, dance semiotics
(and some other intercultural subjects) AND Compu-
tational Linguistics (meaning Pragmatics, Semantics,
Syntax, Lexicology, etc.) using Haskell as a tool for
real projects. Probably the situation from Romania
is not well known: Romania is probably one of those
countries where computational linguistics is studied by
computer scientists less than linguists.

At Bacau State University, we have teaching Haskell
on both Faculties: Sciences (The Computers Science
being included) and we hope we will work with Haskell
with the TI students from the Fac. Of Engineering,
where a course on Formal Languages was requested.
“An Introduction to Haskell by Examples” had traveled
to The Transilvania Univ. (Brasov) and we are expect-
ing Haskell to be used there, too, during this academic
year. Other libraries had received manuals and even
donations (in books, of course). Editors seem to be
interested by the Ro/Haskell movement, and some of
them have already declared the intention of helping us
by investing capital in the Haskell books production.
A well known Publishing House (MatrixRom) asked us
to be the Official Publishing House of the Ro/haskell
Group.

Dan Popa is reporting a new technology in order to
build the Modular Abstract Syntax Tree of a language
processor without Maybe, without Catamorphisms and
without Haskell extensions. A paper is available.

There are some unsolved problems, too: PhD. Ad-
visors (specialized in monads, languages engineering,
and Haskell) are almost impossible to find. This fact
seems to block somehow the hiring of good specialists
in Haskell. There was even a funny case when some-
body hired to teach Haskell was tested and interviewed
by a LISP teacher. Of course, the exam was more or
less about lists.

Further reading

o Ro/Haskell: http://www.haskell.org/haskellwiki/Ro/
Haskell
o Rodin: http://www.haskell.org/haskellwiki/Rodin

85

8.9 Assorted Small Portland State
University Haskell Bits

Report by: Bart Massey
Participants: Julian Kongslie, Jamey Sharp
Status: mostly under development

Portland State University is a center of development of
things like GHC, the House Haskell operating system,
etc. Some really amazing work has been done by that
group. That group is not us.

Over the past 1.5 years my students and I have par-
ticipated in a number of Haskell related coding and
community activities. Our goals include:

o Better learning and understanding the Haskell pro-
gramming language.

o Supporting the project work of myself and my group.
o Contributing back to the Haskell community.

o Fun.

Specifically, we have:

o Taken over hosting for the Haskell Sequence / Haskell
Weekly News. After some serious initial hiccups,
that all seems to be going smoothly.

o Constructed several interesting standalone Haskell
applications.

— Jamey Sharp several years ago constructed a
Haskell 802.11 implementation for the Ettus
USRP as a Google Summer of Code project.

— Julian Kongslie has recently completed the first
revision of a novel Haskell embedded DSL for
Hardware Description, Chortl.

— Julian Kongslie has recently completed the first
revision of a Seaside-style Haskell CGI session
framework for web hosting, Riviera.

— T have mostly completed a Haskell spelling-word
suggestion program, thimk, utilizing phonetic
codes and edit distance.

o Designed Haskell-supporting hardware. Julian
Kongslie has written Verilog implementations of the
Haskell G-machine. These are not currently avail-
able, as he continues to develop them.

o Constructed library code, and contributed some of it
to Hackage and to the Haskell libraries.

— I have written a command-line argument pars-
ing library, ParseArgs, that I have used in a
number of programs. This is in Hackage. How-
ever, plans are in the works to convert one of
my students’ alternate designs currently imple-
mented in C to Haskell, and contribute that in-
stead.

http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Rodin

I have written a WAVE audio file processing li-
brary, and some simple command-line programs
for audio processing. These are mostly in Hack-
age, although I need to package a new release.

I have written a PBM graphics file processing
library. I am currently working on extending it
to support PNG, at which time I will contribute
it to Hackage.

We have looked at taking over the HaskellDSP
signal processing library, after receiving permis-
sion from the author to do so. However, this
work is currently stalled.

In association with my spelling word suggestion
application thimk mentioned earlier, I am devel-
oping a library of phonetic coding algorithms for
contribution to Hackage.

I have contributed one patch to the Haskell li-
braries, to enforce strictness on some sequence
constructors as required by the Haskell Report.
I also should shortly get my nubOrd function
into the libraries.

o Support Haskell in the classroom.

— Perhaps 20% of my students’ projects over the
last few years have been submitted in Haskell.

— I am currently working on tutorial curriculum
based on Real-World Haskell and the Project
Euler problems. Mehana Bisquera-Chang is pi-
loting this curriculum.

Participated in our local Haskell and open source
community. I have given Haskell tutorials at sev-
eral open source events, such as Portland Bar Camp
2008. Julian and I have both presented our work on
several occasions at meetings of the PDX Functional
Programming Users’ Group.

We would like to thank all of those who have assisted
us in this work, but it is hard to enumerate such a large
list. Josh Triplett has helped with a number of these
projects, and helped me to learn Haskell. Mark Jones
and other Faculty at PSU have occasionally helped us
out. Don Stewart and others in the Haskell community
have provided guidance and support.

What we have been doing is pretty ad hoc and disor-
ganized, but we think we have been making real con-
tributions to the Haskell community. Almost all of our
work is available to the public under open source li-
censes — we welcome its use and help with its devel-
opment.

Further reading

http://wiki.cs.pdx.edu/bartforge

86

8.10 fp-syd: Functional Programming in
Sydney, Australia.

Report by:
Participants:

Ben Lippmeier
Erik de Castro Lopo

We are a seminar and social group for people in Syd-
ney, Australia interested in Functional Programming
and related fields. We meet on the third Thursday of
each month and regularly get 25-30 attendees, with a
70/30 industry/research split. Talks this year have in-
cluded “Intro to PLT Scheme”, “A Haskell library for
chart plotting”, and “Program extraction in a theorem
prover like Coq (or Isabelle)”. We usually have about
90 mins of talks, starting at 6:30pm, then go for drinks
afterwards. All welcome.

Further reading

http://groups.google.com/group/fp-syd

http://wiki.cs.pdx.edu/bartforge
http://groups.google.com/group/fp-syd

	Information Sources
	Book: Programming in Haskell
	The Monad.Reader
	Haskell Wikibook
	Monad Tutorial
	Oleg's Mini tutorials and assorted small projects
	Haskell Cheat Sheet
	The Happstack Tutorial

	Implementations
	The Glasgow Haskell Compiler
	nhc98
	The Helium compiler
	UHC, Utrecht Haskell Compiler (previously: EHC, ``Essential Haskell'' compiler)
	Hugs as Yhc Core Producer
	Haskell frontend for the Clean compiler
	SAPL, Simple Application Programming Language
	The Reduceron
	Platforms
	Haskell in Gentoo Linux
	Fedora Haskell SIG
	GHC on OpenSPARC

	Language
	Extensions of Haskell
	Haskell Server Pages (HSP)
	GpH --- Glasgow Parallel Haskell
	Eden
	XHaskell project
	HaskellActor
	HaskellJoin

	Related Languages
	Curry
	Agda
	Clean
	Timber

	Type System / Program Analysis
	Free Theorems for Haskell
	The Disciplined Disciple Compiler (DDC)

	Tools
	Scanning, Parsing, Transformations
	Alex version 2
	Happy
	UUAG

	Documentation
	Haddock
	lhs2TeX

	Testing, Debugging, and Analysis
	SmallCheck and Lazy SmallCheck
	EasyCheck
	checkers
	Gast
	Concurrent Haskell Debugger
	Hpc
	SourceGraph
	HLint
	hp2any

	Development
	Hoogle --- Haskell API Search
	HEAT: The Haskell Educational Advancement Tool
	Haskell Mode Plugins for Vim
	yi
	HaRe --- The Haskell Refactorer
	DarcsWatch
	cpphs

	Libraries
	Cabal and Hackage
	Haskell Platform
	Auxiliary Libraries
	libmpd
	hmatrix
	The Neon Library
	unamb
	leapseconds-announced

	Processing Haskell
	hint
	mueval
	hscolour

	Parsing and Transforming
	HStringTemplate
	CoreErlang
	parse-dimacs: A DIMACS CNF Parser
	InterpreterLib
	KURE
	Typed Transformations of Typed Abstract Syntax (TTTAS)
	ChristmasTree (previously: GRead)
	Utrecht Parser Combinator Library: Old version
	Utrecht Parser Combinator Library: New version

	Mathematical Objects
	Halculon: units and physical constants database
	Numeric prelude
	vector-space
	Nat
	AERN-Real and friends
	Haskell BLAS Bindings
	logfloat
	fad: Forward Automatic Differentiation

	Data types and data structures
	HList --- a library for typed heterogeneous collections
	Edison
	MemoTrie
	bytestring-trie

	Data processing
	The Haskell Cryptographic Library
	The Haskell ASN.1 Library
	MultiSetRewrite
	Graphalyze
	Takusen

	Generic and Type-Level Programming
	uniplate
	Scrap Your Boilerplate (SYB)
	Extensible and Modular Generics for the Masses (EMGM)
	multirec: Generic programming with systems of recursive datatypes
	Generic rewriting library for regular datatypes
	2LT: Two-Level Transformation
	Data.Label --- ``atoms'' for type-level programming

	User interfaces
	Gtk2Hs
	HQK
	wxHaskell
	Shellac
	Haskeline

	Graphics
	diagrams
	FieldTrip
	LambdaCube

	Music
	Haskore revision
	Euterpea

	Web and XML programming
	Haskell XML Toolbox
	HaXml
	tagsoup

	System
	hinotify
	hlibev

	Applications and Projects
	For the Masses
	Darcs
	xmonad

	Education
	Exercise Assistants
	Holmes, plagiarism detection for Haskell
	Lambda Shell
	INblobs --- Interaction Nets interpreter
	Soccer-Fun

	Web Development
	Holumbus Search Engine Framework
	Top Writer
	Bamboo blog engine (previously: Panda) / Hack Webserver interface
	InputYourData.com
	Hircules
	HCluster
	JavaScript Monadic Writer
	Haskell DOM Bindings

	Data Management and Visualization
	Pandoc
	tiddlyisar
	HaExcel --- From Spreadsheets to Relational Databases and Back
	Between Types and Tables
	SdfMetz
	The Proxima 2.0 generic editor

	Functional Reactive Programming
	Grapefruit
	Reactive
	Functional Hybrid Modeling
	Elerea

	Audio and Graphics
	Audio signal processing
	hsProcMusic
	easyVision
	photoname
	Simplex-Based Spatial Operations
	n-Dimensional Convex Decomposition of Polytops
	DVD2473

	Proof Assistants and Reasoning
	Galculator
	funsat: DPLL-style Satisfiability Solver
	Saoithín: a 2nd-order proof assistant
	Inference Services for Hybrid Logics
	HyLoRes
	HTab
	HGen
	Sparkle
	Haskabelle

	Modeling and Analysis
	Streaming Component Combinators
	Raskell
	iTasks
	CSP-M Tools at University of Düsseldorf

	Hardware Design
	ForSyDe
	Lava
	Wired
	Oread

	Natural Language Processing
	NLP
	GenI
	Grammatical Framework

	Inductive Programming
	Inductive Programming
	IgorII

	Others
	Bioinformatics tools
	Roguestar
	Hpysics
	hledger
	LQPL --- A quantum programming language compiler and emulator
	Yogurt
	Dyna 2

	Commercial Users
	Well-Typed LLP
	SeeReason Partners, LLC
	Credit Suisse Global Modeling and Analytics Group
	Bluespec tools for design of complex chips
	Galois, Inc.
	IVU Traffic Technologies AG Rostering Group
	Tupil
	Aflexi Content Delivery Network (CDN)
	Industrial Haskell Group

	Research and User Groups
	Functional Programming Lab at the University of Nottingham
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Foundations and Methods Group at Trinity College Dublin
	Formal Methods at DFKI Bremen and University of Bremen
	SCIence project
	Haskell at K.U.Leuven, Belgium
	Haskell in Romania
	Assorted Small Portland State University Haskell Bits
	fp-syd: Functional Programming in Sydney, Australia.

