
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Twenty-Second Edition — May 2012

Janis Voigtländer (ed.)
Andreas Abel Iain Alexander Heinrich Apfelmus
Emil Axelsson Christiaan Baaĳ Doug Beardsley

Jean-Philippe Bernardy Mario Blažević Gwern Branwen
Joachim Breitner Björn Buckwalter Douglas Burke
Carlos Camarão Erik de Castro Lopo Roman Cheplyaka

Olaf Chitil Duncan Coutts Jason Dagit
Nils Anders Danielsson Romain Demeyer James Deng
Dominique Devriese Daniel Díaz Atze Dĳkstra
Facundo Dominguez Adam Drake Andy Georges

Patai Gergely Jürgen Giesl Brett G. Giles
Andy Gill George Giorgidze Torsten Grust

Jurriaan Hage Bastiaan Heeren PÁLI Gábor János
Guillaume Hoffmann Csaba Hruska Oleg Kiselyov

Michal Konečný Eric Kow Ben Lippmeier
Andres Löh Hans-Wolfgang Loidl Rita Loogen
Ian Lynagh Christian Maeder José Pedro Magalhães
Ketil Malde Antonio Mamani Alp Mestanogullari

Simon Michael Arie Middelkoop Dino Morelli
JP Moresmau Ben Moseley Takayuki Muranushi

Jürgen Nicklisch-Franken Rishiyur Nikhil David M. Peixotto
Jens Petersen Simon Peyton Jones Dan Popa
David Sabel Uwe Schmidt Martĳn Schrage

Tom Schrĳvers Andrew G. Seniuk Jeremy Shaw
Christian Höner zu Siederdissen Michael Snoyman Jan Stolarek

Martin Sulzmann Doaitse Swierstra Henning Thielemann
Simon Thompson Sergei Trofimovich Marcos Viera
Janis Voigtländer David Waern Daniel Wagner

Greg Weber Kazu Yamamoto Edward Z. Yang
Brent Yorgey

http://tinyurl.com/haskcar

Preface

This is the 22nd edition of the Haskell Communities and Activities Report. As usual, fresh
entries are formatted using a blue background, while updated entries have a header with a
blue background. Entries for which I received a liveness ping, but which have seen no essential
update for a while, have been replaced with online pointers to previous versions. Other entries
on which no new activity has been reported for a year or longer have been dropped completely.
Please do revive such entries next time if you do have news on them.

A call for new entries and updates to existing ones will be issued on the usual mailing lists in
October. Now enjoy the current report and see what other Haskellers have been up to lately.
Any feedback is very welcome, as always.

Janis Voigtländer, University of Bonn, Germany, 〈hcar@haskell.org〉

2

mailto: hcar at haskell.org

Contents

1 Community 6
1.1 haskell.org . 6
1.2 Haskellers . 6

2 Books, Articles, Tutorials 7
2.1 Haskell: the craft of functional programming, 3rd edition . 7
2.2 In Japanese: Learn You a Haskell for Great Good! . 7
2.3 The Monad.Reader . 7
2.4 Oleg’s Mini Tutorials and Assorted Small Projects . 8
2.5 Yet Another Lambda Blog . 8

3 Implementations 9
3.1 Haskell Platform . 9
3.2 The Glasgow Haskell Compiler . 9
3.3 UHC, Utrecht Haskell Compiler . 12
3.4 Specific Platforms . 12
3.4.1 Haskell on FreeBSD . 12
3.4.2 Debian Haskell Group . 12
3.4.3 Haskell in Gentoo Linux . 13
3.4.4 Fedora Haskell SIG . 13
3.5 Fibon Benchmark Tools & Suite . 14

4 Related Languages 15
4.1 Agda . 15
4.2 MiniAgda . 15
4.3 Disciple . 15

5 Haskell and . . . 17
5.1 Haskell and Parallelism . 17
5.1.1 Eden . 17
5.1.2 GpH — Glasgow Parallel Haskell . 18
5.1.3 Parallel GHC project . 18
5.1.4 Static Verification of Transactions in STM Haskell . 19
5.2 Haskell and the Web . 19
5.2.1 WAI . 19
5.2.2 Warp . 20
5.2.3 Holumbus Search Engine Framework . 20
5.2.4 Happstack . 21
5.2.5 Mighttpd2 — Yet another Web Server . 21
5.2.6 Yesod . 21
5.2.7 Snap Framework . 22
5.2.8 Ivy-web . 23
5.2.9 rss2irc . 23
5.3 Haskell and Compiler Writing . 24
5.3.1 UUAG . 24
5.3.2 AspectAG . 24
5.3.3 LQPL — A Quantum Programming Language Compiler and Emulator 25

6 Development Tools 26
6.1 Environments . 26
6.1.1 EclipseFP . 26
6.1.2 ghc-mod — Happy Haskell Programming . 26

3

6.1.3 HEAT: The Haskell Educational Advancement Tool . 26
6.1.4 HaRe — The Haskell Refactorer . 27
6.2 Documentation . 27
6.2.1 Haddock . 27
6.2.2 lhs2TEX . 27
6.3 Testing and Analysis . 28
6.3.1 shelltestrunner . 28
6.3.2 hp2any . 28
6.4 Optimization . 28
6.4.1 HFusion . 28
6.4.2 Optimizing Generic Functions . 29
6.5 Code Management . 29
6.5.1 Darcs . 29
6.5.2 DarcsWatch . 29
6.5.3 darcsden . 29
6.5.4 darcsum . 30
6.5.5 cab — A Maintenance Command of Haskell Cabal Packages . 30
6.6 Deployment . 30
6.6.1 Cabal and Hackage . 30
6.6.2 Portackage — A Hackage Portal . 31

7 Libraries, Applications, Projects 32
7.1 Language Features . 32
7.1.1 Conduit . 32
7.1.2 Free Sections . 32
7.2 Education . 33
7.2.1 Holmes, Plagiarism Detection for Haskell . 33
7.2.2 Interactive Domain Reasoners . 33
7.3 Parsing and Transforming . 34
7.3.1 The grammar-combinators Parser Library . 34
7.3.2 epub-metadata . 34
7.3.3 Utrecht Parser Combinator Library: uu-parsinglib . 34
7.3.4 Regular Expression Matching with Partial Derivatives . 35
7.3.5 regex-applicative . 35
7.4 Generic and Type-Level Programming . 36
7.4.1 Unbound . 36
7.4.2 FlexiWrap . 36
7.4.3 Generic Programming at Utrecht University . 36
7.4.4 A Generic Deriving Mechanism for Haskell . 36
7.5 Proof Assistants and Reasoning . 36
7.5.1 HERMIT . 37
7.5.2 Automated Termination Analyzer for Haskell . 37
7.5.3 HTab . 37
7.5.4 Free Theorems for Haskell . 37
7.5.5 Streaming Component Combinators . 38
7.5.6 Swish . 38
7.6 Mathematical Objects . 38
7.6.1 normaldistribution: Minimum Fuss Normally Distributed Random Values 38
7.6.2 dimensional: Statically Checked Physical Dimensions . 38
7.6.3 AERN . 39
7.6.4 Paraiso . 40
7.6.5 Bullet . 40
7.7 Data Types and Data Structures . 40
7.7.1 HList — A Library for Typed Heterogeneous Collections . 40
7.7.2 Persistent . 41
7.7.3 DSH — Database Supported Haskell . 41
7.8 User Interfaces . 42
7.8.1 Gtk2Hs . 42

4

7.8.2 xmonad . 42
7.9 Functional Reactive Programming . 43
7.9.1 reactive-banana . 43
7.9.2 Functional Hybrid Modelling . 44
7.9.3 Elerea . 45
7.10 Graphics . 45
7.10.1 LambdaCube . 45
7.10.2 diagrams . 46
7.11 Audio . 46
7.11.1 Audio Signal Processing . 46
7.11.2 Live-Sequencer . 47
7.11.3 Functional Modelling of Musical Harmony . 47
7.12 Text and Markup Languages . 48
7.12.1 HaTeX . 48
7.12.2 Haskell XML Toolbox . 48
7.12.3 epub-tools (Command-line epub Utilities) . 49
7.13 Hardware Design . 49
7.13.1 CλaSH . 49
7.13.2 Kansas Lava . 49
7.14 Natural Language Processing . 50
7.14.1 NLP . 50
7.14.2 GenI . 50
7.15 Others . 51
7.15.1 leapseconds-announced . 51
7.15.2 FunGEn . 51
7.15.3 Feldspar . 51
7.15.4 ADPfusion . 52
7.15.5 Biohaskell . 52
7.15.6 hledger . 53
7.15.7 sshtun (Wrapper daemon to manage an ssh tunnel) . 53
7.15.8 hMollom — Haskell implementation of the Mollom API . 53
7.15.9 Galois Open-Source Projects on GitHub . 54

8 Commercial Users 55
8.1 Well-Typed LLP . 55
8.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators 55
8.3 Industrial Haskell Group . 56
8.4 Barclays Capital . 56
8.5 Oblomov Systems . 57
8.6 madvertise Mobile Advertising . 57

9 Research and User Groups 58
9.1 A French community for Haskell . 58
9.2 Haskell at Eötvös Loránd University (ELTE), Budapest . 58
9.3 Functional Programming at UFMG and UFOP . 59
9.4 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 60
9.5 Functional Programming at the University of Kent . 60
9.6 Formal Methods at DFKI and University Bremen . 61
9.7 Haskell at Universiteit Gent, Belgium . 61
9.8 Haskell in Romania . 62
9.9 fp-syd: Functional Programming in Sydney, Australia . 63
9.10 Functional Programming at Chalmers . 63
9.11 Functional Programming at KU . 65
9.12 San Simón Haskell Community . 65
9.13 Ghent Functional Programming Group . 66

5

1 Community

1.1 haskell.org

Report by: Jason Dagit
Participants: Ganesh Sittampalam, Edward Z. Yang, Vo

Minh Thu, Mark Lentczner, Edward
Kmett, Brent Yorgey

Status: active

The haskell.org committee is in its second year
of operation managing the haskell.org infrastruc-
ture and money. The committee’s “home page”
is at http://www.haskell.org/haskellwiki/Haskell.org_
committee, and occasional publicity is via a blog (http:
//haskellorg.wordpress.com) and twitter account (http:
//twitter.com/#!/haskellorg) as well as the Haskell
mailing list.
Since the last community report, the following has

happened:

haskell.org incorporation

Haskell.org has now joined Software in the Public In-
terest (http://www.spi-inc.org). This allows haskell.org
to accept donations as a US-based non-profit as well as
pay for services with these donations. Currently, most
of the money in the haskell.org account comes from
GSoC participation.
We are currently in the process of establishing guide-

lines for fund raising and appropriate ways to spend
funds. The main expense of haskell.org at this time is
server hosting. The GSoC participant reimbursement
is actually paid by Google and we do not consider this
a normal expense as Google reimburses us for the full
amount.

Assets

At the start of 2011 the haskell.org account had
$7,261.73 USD, and by the end of the year the account
balance was $13,056.32. The haskell.org expenses for
2011 include:

◦ GSoC Participant Reimbursements: $2,816.41

◦ Server Hosting Fees: $705.41

The haskell.org income for 2011 includes:

◦ GSoC Payments: $6,500.00

◦ Google GSoC Participant Reimbursements:
$2,816.41

Note that the participant reimbursement paid
by haskell.org matches the reimbursement given to
haskell.org by Google. The haskell.org credits for 2011
include only GSoC payments of $9,316.41, leaving us
with a balance of $13,056.32 at the end of 2011.
Haskell.org has the following server assets:
◦ abbot, kindly hosted by Galois
◦ sparky, kindly hosted by Chalmers but technically

owned by Oxford Department of Computer Science
◦ lambda, commercially hosted
◦ lun, a VM hosted on lambda
◦ www, a VM hosted on lambda
◦ haskell.org domain name

General

The haskell.org infrastructure is becoming more sta-
ble, but still suffers from occasional hiccups. While
the extreme unreliability we saw for a while has im-
proved with the reorganisation, the level of sysadmin
resource/involvement is still inadequate. The commit-
tee is open to ideas on how to improve the situation.
With the task of incorporation behind us, the

haskell.org committee can now focus on establishing
guidelines around donations, fund raising, and appro-
priate uses of funds.

1.2 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Since the May 2011 HCAR, Haskellers has added

polls, which provides a convenient means of surveying
a large cross-section of the active Haskell community.
There are now over 1300 active accounts, versus 800
one year ago.
Haskellers remains a site intended for all members

of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/

6

http://www.haskell.org/haskellwiki/Haskell.org_committee
http://www.haskell.org/haskellwiki/Haskell.org_committee
http://haskellorg.wordpress.com
http://haskellorg.wordpress.com
http://twitter.com/#!/haskellorg
http://twitter.com/#!/haskellorg
http://www.spi-inc.org
http://www.haskellers.com/

2 Books, Articles, Tutorials

2.1 Haskell: the craft of functional
programming, 3rd edition

Report by: Simon Thompson

The third edition of one of the leading textbooks for
beginning Haskell programmers is thoroughly revised
throughout. New material includes thorough coverage
of property-based testing using QuickCheck and an ad-
ditional chapter on domain-specific languages as well as
a variety of new examples and case studies, including
simple games.
Existing material has been expanded and re-ordered,

so that some concepts — such as simple data types and
input/output — are presented at an earlier stage. The
running example of Pictures is now implemented using
web browser graphics as well as lists of strings.
The book uses GHCi, the interactive version of the

Glasgow Haskell Compiler, as its implementation of
choice. It has also been revised to include material
about the Haskell Platform, and the Hackage online
database of Haskell libraries. In particular, readers are
given detailed guidance about how to find their way
around what is available in these systems.
Publication details:
◦ Published by Addison Wesley, 2011. ISBN
0201882957.

Book website:
◦ http://www.haskellcraft.com
Solutions for bona fide instructors are available
from the Pearson website http://www.pearsoned.co.uk/
HigherEducation/Booksby/Thompson/

2.2 In Japanese: Learn You a Haskell for
Great Good!

Report by: Takayuki Muranushi
Participants: Hideyuki Tanaka
Status: available

An official translation of the book “Learn You a
Haskell for Great Good!” by Miran Lipovača (http:
//learnyouahaskell.com/) to Japanese is now available
in stores.
The original book is an elaborate and popular in-

troduction to the programming language Haskell. The
reader will walk through the playland of Haskell deco-
rated with funky examples and illustrations, and with-
out noticing any difficulties, will become one with the
core concepts of Haskell, say types, type classes, lazy
evaluations, functors, applicatives and monads. The
translators have added a short article on handling
multi-byte strings in Haskell.

We are grateful to all the people’s work that made
this wonderful book available in Japanese, including
the publisher, our kind reviewers, and the original au-
thor Miran. We wish for prosperity of the Haskell com-
munity in Japan and in many countries, and for those
who don’t read Japanese, we’d just like to let you know
that we’re doing fine in Japan!
Publication details:
◦ Published by Ohmsha, 2012. ISBN 4274068854.
◦ Original book published by No Starch Press, 2011.

ISBN 1593272839.
Book website:
◦ http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=

978-4-274-06885-0

Further reading

http://www.amazon.co.jp/dp/4274068854/

2.3 The Monad.Reader

Report by: Edward Z. Yang

There are many academic papers about Haskell and
many informative pages on the HaskellWiki. Unfortu-
nately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a wiki page, but more casual than a journal
article.
There are plenty of interesting ideas that might not

warrant an academic publication—but that does not
mean these ideas are not worth writing about! Com-
municating ideas to a wide audience is much more im-
portant than concealing them in some esoteric journal.
Even if it has all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining
a neat idea about “warm fuzzy things” to the rest of
us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.
Since the last HCAR editorship of The Monad

Reader has passed over from Brent Yorgey to Edward
Z. Yang. A mini-issue is currently in the works.

Further reading

http://themonadreader.wordpress.com/

7

http://www.haskellcraft.com
http://www.pearsoned.co.uk/HigherEducation/Booksby/Thompson/
http://www.pearsoned.co.uk/HigherEducation/Booksby/Thompson/
http://learnyouahaskell.com/
http://learnyouahaskell.com/
http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-06885-0
http://ssl.ohmsha.co.jp/cgi-bin/menu.cgi?ISBN=978-4-274-06885-0
http://www.amazon.co.jp/dp/4274068854/
http://themonadreader.wordpress.com/

2.4 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmĳ.org/ftp/Haskell/)
has received two additions:

Type-level call-by-value lambda-calculator in three
lines

The article describes a type-level interpreter for the
call-by-value lambda-calculus with booleans, natural
numbers, and case discrimination. Its terms are Haskell
types. Using functional dependencies for type-level re-
ductions is well-known. Missing before was the encod-
ing abstractions with named arguments and closures.
The core of the interpreter indeed takes only three

lines

instance E (F x) (F x)
instance (E y y′,A (F x) y′ r)

⇒ E ((F x) :< y) r
instance (E (x :< y) r ′,E (r ′ :< z) r)

⇒ E ((x :< y) :< z) r

The first line says that abstractions evaluate to them-
selves, the second line executes the redex, and the third
recurs to find it. The representation of abstractions
is apparent from the expression for the S combinator,
which again takes three lines

instance A (F CombS) f (F (CombS , f))
instance A (F (CombS , f)) g (F (CombS , f , g))
instance E (f :< x :< (g :< x)) r

⇒ A (F (CombS , f , g)) x r

The instances of the type class A f x r define the re-
sult r of applying f to x. The last line shows the fa-
miliar lambda-expression for S, written with the famil-
iar variable names f, g, and x. The other two lines
build the closure ‘record’. The closure-conversion is in-
deed the trick. The second trick is taking advantage
of the instance selection mechanism. When the type
checker selects a type-class instance, the type checker
instantiates it, substituting for the type variables in the
instance head. The type checker thus does the funda-
mental operation of substitution, which underlies beta-
reduction.
The article shows many examples, of the fixpoint

combinator, Fibonacci function, and S and K combi-
nators.
http://okmĳ.org/ftp/Computation/lambda-calc.html#
haskell-type-level

Applications of computable types

The follow-up article describes several applications of
computable types, to ascribe signatures to terms and
to drive the selection of overloaded functions. One ex-
ample computes a complex XML type and instantiates
the read function to read the trees of only that shape.
A telling example of the power of the approach

is the ability to use not only (a->) but also
(->a) as an unary type function. The former is
just (->) a. The latter was considered impossible.
The type-level lambda-calculus interpreter helps, let-
ting us write (->a) almost literally as (flip (->)
a). For example, we can express the type (((Int
-> Bool) -> Bool) ... -> Bool) -> Bool, with
n nested arrows as E (F Ntimes :< (F Flip :<
(F (ATC2 (->))) :< Bool) :< Int) n where the
higher-order type function NTimes is the right fold on
type-level numerals.
http://okmĳ.org/ftp/Haskell/types.html#
computable-types

2.5 Yet Another Lambda Blog

Report by: Jan Stolarek
Status: ongoing

Yet Another Lambda Blog is a new blog about func-
tional programming aimed at beginners. It focuses on
practical aspects of programming in Haskell, but there
are other topics as well: book reviews, links to interest-
ing internet resources and Scheme programming. New
posts appear once or twice a week.

Further reading

http://ics.p.lodz.pl/~stolarek/blog/

8

http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Computation/lambda-calc.html#haskell-type-level
http://okmij.org/ftp/Computation/lambda-calc.html#haskell-type-level
http://okmij.org/ftp/Haskell/types.html#computable-types
http://okmij.org/ftp/Haskell/types.html#computable-types
http://ics.p.lodz.pl/~stolarek/blog/

3 Implementations

3.1 Haskell Platform

Report by: Duncan Coutts

Background

The Haskell Platform (HP) is the name of the “blessed”
set of libraries and tools on which to build further
Haskell libraries and applications. It takes a core se-
lection of packages from the more than 3500 on Hack-
age (→ 6.6.1). It is intended to provide a comprehen-
sive, stable, and quality tested base for Haskell projects
to work from.
Historically, GHC shipped with a collection of pack-

ages under the name extralibs. Since GHC 6.12 the
task of shipping an entire platform has been transferred
to the Haskell Platform.

Recent progress

There has not been a release in the last 6 months.
While the plan calls for major releases every 6 months
this has not happened for a number of reasons. We took
the decision not to base a major release on GHC-7.2.1
and no new release in the 7.2.x series is expected. We
ran into some problems trying to prepare a release us-
ing GHC-7.0.4, however we may yet do a release using
GHC-7.0.4.

Looking forward

Major releases are supposed to take place on a 6 month
cycle. There will be a major release in Spring 2012
which will be based on the GHC-7.4.x series.
Our systems for coordinating and testing new re-

leases remains too time consuming, involving too much
manual work. Help from the community on this issue
would be very valuable.
The platform steering committee will be propos-

ing some modifications to the community review pro-
cess for accepting new packages into the platform pro-
cess with the aim of reducing the burden for pack-
age authors and keeping the review discussions pro-
ductive. Though we will be making some modifica-
tions, we would still like to invite package authors to
propose new packages. This can be initiated at any
time. We also invite the rest of the community to take
part in the review process on the libraries mailing list
〈libraries@haskell.org〉. The procedure involves writing a
package proposal and discussing it on the mailing list
with the aim of reaching a consensus. Details of the
procedure are on the development wiki.

Further reading

http://haskell.org/haskellwiki/Haskell_Platform
◦ Download: http://hackage.haskell.org/platform/
◦ Wiki: http://trac.haskell.org/haskell-platform/
◦ Adding packages: http://trac.haskell.org/

haskell-platform/wiki/AddingPackages

3.2 The Glasgow Haskell Compiler

Report by: Simon Peyton Jones
Participants: many others

GHC 7.4.1 was released at the beginning of February,
and has been by and large a successful release. Nev-
ertheless the tickets keep pouring in, and a large col-
lection of bug fixes [1] have been made since the 7.4.1
release. We plan to put out a 7.4.2 release candidate
very soon (it may be out by the time you read this),
followed shortly by the release.
We have a new member of the team! Please wel-

come Paolo Capriotti who is assuming some of the GHC
maintenance duties for Well-Typed.
7.4.1 included a few major improvements. For more

details on these, see the previous status report [2].

◦ Support for all declarations at the GHCi prompt

◦ Data type promotion and kind polymorphism [3]

◦ Improvements to Safe Haskell (safety is now inferred)

◦ Constraint Kinds [4]

◦ Profiling improvements: a major internal overhaul,
and support for stack traces with +RTS -xc.

◦ Preliminary support for registerised ARM compila-
tion (with full GHCi support being introduced in
7.4.2)

Here are the projects we’re currently working on:

Kind polymorphism. Simon PJ has been working hard
on completing the implementation of kind polymor-
phism and data type promotion [3]. This will appear
for the first (supported) time in GHC 7.6; please do
stress-test the HEAD.

Deferred type errors. Etienne Laurin suggested [16]
that GHC could compile and run a program even
though it contains type errors. After all, the bit you
want to run might not contain the error, and it’s
sometimes annoying to have to fix every type error
before you can run any code. It turned out that

9

mailto: libraries at haskell.org
http://haskell.org/haskellwiki/Haskell_Platform
http://hackage.haskell.org/platform/
http://trac.haskell.org/haskell-platform/
http://trac.haskell.org/haskell-platform/wiki/AddingPackages
http://trac.haskell.org/haskell-platform/wiki/AddingPackages

there was a beautifully simple way to fit this idea
into GHC’s new constraint-based type inference en-
gine, and we have now done so. It’s all explained in
“Equality proofs and deferred type errors” [17], and
will be in GHC 7.6.

Holes in terms. Thĳs Alkemade and Sean Leather
have been working on another variant of deferred er-
ror messages, that would allow you to write a pro-
gram that contains as-yet-unwritten sub-terms, or
“holes” and have GHC report a fairly precise type
for the hole. The idea is inspired by Agda’s interac-
tive programming environment, which has a facility
of this kind. The more complicated the types get,
the more useful this is! Details on their wiki page
[18].

Type level literals. Iavor Diatchki has added type-
level natural numbers (kind Nat) and strings (kind
Symbol) to GHC. You can find lots of details on
the wiki page [20]. At the moment there is no use-
ful computation over the type-level naturals, but he
is extending GHC’s constraint solver with support
for reasoning about type-expressions involving addi-
tion, multiplication, and exponentiation. This work
is happening on branch type-nats in the repo, and
we expect to have something working fairly soon.

Typechecker performance improvements. Most of
the smarts of type inference are now located in
the type constraint solver, described in our paper
“Modular type inference with local assumptions:
OutsideIn(X)” [19]. It works just fine for regular old
ML-style programs, but was a bit slow for programs
that make heavy use of type-level computation.
Dimitrios has been working hard to improve its
performance; we have carried out at least three
major refactorings, deleted tons of code, and made
it faster and more beautiful.

Windows x64 Support. The Industrial Haskell Group
has funded work to implement 64bit Windows sup-
port in GHC. The port is now self-hosting and mostly
complete, with just a number of bugs in the periph-
ery to fix, and some logistics to work out. We expect
a 64bit Windows installer to be included in the GHC
7.6 releases.

The new code generator. The glorious new code gen-
erator [6] has been an ongoing project for some time
now. The basic idea is to replace the pass of the com-
piler that converts from STG to Cmm (our internal
C– representation) with a more flexible framework
consisting of two main passes: one that generates
C– without explicit stack manipulation, and a sec-
ond pass that makes the stack explicit. This will
enable a host of improvements and optimisations in
due course. The new code generator uses the Hoopl
framework for code analysis and rewriting [7]. Ear-
lier this year Simon M took over this project, and

spent a lot of time optimising the existing framework
and Hoopl itself. He also rewrote the stack allocator,
and made a number of simplifications. The current
state is that the new code generator produces code
that is almost as good as the old one (and occasion-
ally better), and is somewhat slower (roughly 15%
slower compilation with -O). The goal is to further
improve on this, and he’s confident that we can gen-
erate better code in most cases than the old code
generator. He hopes this can make it into 7.6.1, but
no guarantees.

Changing the +RTS -N setting at runtime. Up until
recently, the number of cores (“Capabilities” in
GHC terminology) that GHC uses was fixed by
the +RTS -N flag when you start the program.
For instance, to use 2 cores, we pass the flag
+RTS -N2 to the Haskell program. GHC now has
support for modifying this setting programmati-
cally at runtime, both up and down, via the API
Control.Concurrent.setNumCapabilities. So a paral-
lel Haskell program can now set the number of cores
to run on itself, without the user needing to pass
+RTS -N. Another use for this feature is to drop
back to using a single core during sequential sections
of the program, which is likely to give better perfor-
mance, especially on a loaded system. A threadscope
diagram showing this in action is here: [5]. In the
future we hope to use heuristics to dynamically ad-
just the number of cores in use according to system
load or application demand, for example.

Profiling and stack traces. 7.4.1 has an overhauled
profiling system, and in many cases gives better re-
sults than earlier versions. However, some details
remain to be resolved around the precise semantics
of cost-centre stacks. Also, Simon M hopes that it
might be possible to provide stack traces of a kind
without having to compile for profiling, perhaps in
GHCi only.

Support for SSE primitives with LLVM back end.
The simd git branch of GHC adds support for
primitive 128-bit SIMD vector types and associated
primops when using the LLVM back end, meaning
this branch can now generate SSE instructions on
x86 platforms. We hope this support will make it
into 7.6.1. Experimental versions of the vector li-
brary [8] and DPH [9] provide higher-level interfaces
to the new primitives. Initial benchmarks indicate
that numerical code can benefit substantially.

Data Parallel Haskell. The vectorisation transforma-
tion underlying our implementation of nested data
parallelism in GHC had a fundamental and long
standing asymptotic complexity problem that we
were finally able to resolve. Details are in a recent
draft paper entitled “Work Efficient Higher-Order
Vectorisation” [11]. The implementation described

10

in the paper is available in the DPH packages from
Hackage (which needs to be used with GHC 7.4.1).
The new implementation of the DPH libraries still
needs to be optimised; hence, our next step will be
to optimise constant factors.
In addition, we released Repa 3 [12], which uses type-
indices to control array representations. This leads
to more predictable performance. You can install
Repa 3, which requires GHC 7.4.1, from Hackage.
We are currently writing a paper describing the new
design in detail.
Finally, we are about to release (it may be out by the
time you read this) a stable, end-user ready version
of the Repa-like array library Accelerate for GPU
computing on Hackage. It integrates with Repa, so
you can mix GPU and CPU multicore computing,
and via the new meta-par package you can share
workload between CPUs and GPUs [13]. This new
version 0.12 is already available on GitHub [14]. You
need a CUDA-capable NVIDIA GPU to use it.

Lightweight concurrency substrate. During his in-
ternship at MSR Cambridge, Sivaramakrishnan Kr-
ishnamoorthy Chandrasekaran (aka “KC”) has been
working on replacing the RTS scheduler with some
APIs that enable the scheduler to be implemented in
Haskell. The aim is to not just move the scheduler
into Haskell, but also enable user-defined schedulers
to coexist, which will ultimately enable much greater
control over scheduling behaviour. This follows on
from previous work [15] with Peng Li and Andrew
Tolmach, but this time we are taking a slightly dif-
ferent approach that has a couple of important ben-
efits.
Firstly, KC found a way to enable concurrency ab-
stractions to be defined without depending on a par-
ticular scheduler. This means for example that we
can provide MVars that work with any user-defined
scheduler, rather than needing one MVar implemen-
tation per scheduler. Secondly, we found ways to
coexist with some of the existing RTS machinery for
handling blackholes and asynchronous exceptions in
particular, which means that these facilities will con-
tinue to work as before (with the same performance),
and writers of user-defined schedulers do not need to
worry about them. Furthermore this significantly
lowers the barrier for writing a new scheduler.
This is all still very much experimental, and it is
not clear whether it will ever be in GHC proper.
It depends on whether we can achieve good enough
performance, amongst other things. All we can say
for now is that the approach is promising. You can
find KC’s work on the ghc-lwc branch of the git repo.

Full support for GHCi on ARM. Thanks to Ben
Gamari, we now have support for ARM in the GHCi
linker [21]. This will be shipped in 7.4.2 (it wasn’t
in 7.4.1).

Bibliography

◦ [1] Towards Haskell in the Cloud, Jeff Epstein,
Andrew P. Black, and Simon Peyton Jones,
Haskell Symposium 2011, http://research.microsoft.
com/~simonpj/papers/parallel/remote.pdf

◦ [1] http://hackage.haskell.org/trac/ghc/query?
status=closed&order=priority&col=id&col=
summary&col=status&col=owner&col=type&col=
priority&col=component&milestone=7.4.
2&resolution=fixed

◦ [2] http://hackage.haskell.org/trac/ghc/wiki/Status/
Oct11

◦ [3] http://www.haskell.org/ghc/docs/7.4.1/html/
users_guide/kind-polymorphism-and-promotion.
html#kind-polymorphism

◦ [4] http://www.haskell.org/ghc/docs/7.4.1/html/
users_guide/constraint-kind.html

◦ [5] https://plus.google.com/
107890464054636586545/posts/GsfcJfdkEYL

◦ [6] http://hackage.haskell.org/trac/ghc/wiki/
Commentary/Compiler/NewCodeGen

◦ [7] http://www.cs.tufts.edu/~nr/pubs/dfopt-abstract.
html

◦ [8] http://ghc-simd.blogspot.co.uk/2012/03/
simd-support-for-vector-library.html

◦ [9] http://ghc-simd.blogspot.co.uk/2012/04/
adding-simd-support-to-data-parallel.html

◦ [11] http://www.cse.unsw.edu.au/~chak/papers/
LCKLP12.html

◦ [12] http://repa.ouroborus.net/

◦ [13] http://parfunk.blogspot.com.au/2012/05/
how-to-write-hybrid-cpugpu-programs.html

◦ [14] https://github.com/AccelerateHS/accelerate

◦ [15] http://community.haskell.org/~simonmar/papers/
conc-substrate.pdf

◦ [16] Deferring type errors to runtime.
http://hackage.haskell.org/trac/ghc/wiki/
DeferErrorsToRuntime

◦ [17] Equality proofs and deferred type errors.
http://research.microsoft.com/en-us/um/people/
simonpj/papers/ext-f/

◦ [18] Holes in GHC. http://hackage.haskell.org/trac/
ghc/wiki/Holes

◦ [19] Modular type inference with local assumptions:
OutsideIn(X). http://www.haskell.org/haskellwiki/
Simonpj/Talk:OutsideIn

11

http://research.microsoft.com/~simonpj/papers/parallel/remote.pdf
http://research.microsoft.com/~simonpj/papers/parallel/remote.pdf
http://hackage.haskell.org/trac/ghc/query?status=closed&order=priority&col=id&col=summary&col=status&col=owner&col=type&col=priority&col=component&milestone=7.4.2&resolution=fixed
http://hackage.haskell.org/trac/ghc/query?status=closed&order=priority&col=id&col=summary&col=status&col=owner&col=type&col=priority&col=component&milestone=7.4.2&resolution=fixed
http://hackage.haskell.org/trac/ghc/query?status=closed&order=priority&col=id&col=summary&col=status&col=owner&col=type&col=priority&col=component&milestone=7.4.2&resolution=fixed
http://hackage.haskell.org/trac/ghc/query?status=closed&order=priority&col=id&col=summary&col=status&col=owner&col=type&col=priority&col=component&milestone=7.4.2&resolution=fixed
http://hackage.haskell.org/trac/ghc/query?status=closed&order=priority&col=id&col=summary&col=status&col=owner&col=type&col=priority&col=component&milestone=7.4.2&resolution=fixed
http://hackage.haskell.org/trac/ghc/wiki/Status/Oct11
http://hackage.haskell.org/trac/ghc/wiki/Status/Oct11
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/kind-polymorphism-and-promotion.html#kind-polymorphism
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/kind-polymorphism-and-promotion.html#kind-polymorphism
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/kind-polymorphism-and-promotion.html#kind-polymorphism
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/constraint-kind.html
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/constraint-kind.html
https://plus.google.com/107890464054636586545/posts/GsfcJfdkEYL
https://plus.google.com/107890464054636586545/posts/GsfcJfdkEYL
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/NewCodeGen
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/NewCodeGen
http://www.cs.tufts.edu/~nr/pubs/dfopt-abstract.html
http://www.cs.tufts.edu/~nr/pubs/dfopt-abstract.html
http://ghc-simd.blogspot.co.uk/2012/03/simd-support-for-vector-library.html
http://ghc-simd.blogspot.co.uk/2012/03/simd-support-for-vector-library.html
http://ghc-simd.blogspot.co.uk/2012/04/adding-simd-support-to-data-parallel.html
http://ghc-simd.blogspot.co.uk/2012/04/adding-simd-support-to-data-parallel.html
http://www.cse.unsw.edu.au/~chak/papers/LCKLP12.html
http://www.cse.unsw.edu.au/~chak/papers/LCKLP12.html
http://repa.ouroborus.net/
http://parfunk.blogspot.com.au/2012/05/how-to-write-hybrid-cpugpu-programs.html
http://parfunk.blogspot.com.au/2012/05/how-to-write-hybrid-cpugpu-programs.html
https://github.com/AccelerateHS/accelerate
http://community.haskell.org/~simonmar/papers/conc-substrate.pdf
http://community.haskell.org/~simonmar/papers/conc-substrate.pdf
http://hackage.haskell.org/trac/ghc/wiki/DeferErrorsToRuntime
http://hackage.haskell.org/trac/ghc/wiki/DeferErrorsToRuntime
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/
http://hackage.haskell.org/trac/ghc/wiki/Holes
http://hackage.haskell.org/trac/ghc/wiki/Holes
http://www.haskell.org/haskellwiki/Simonpj/Talk:OutsideIn
http://www.haskell.org/haskellwiki/Simonpj/Talk:OutsideIn

◦ [20] Type level literals. http://hackage.haskell.org/
trac/ghc/wiki/TypeNats/Basics

◦ [21] ARM linker support. http://
hackage.haskell.org/trac/ghc/changeset/
27302c9094909e04eb73f200d52d5e9370c34a8a

3.3 UHC, Utrecht Haskell Compiler

Report by: Atze Dĳkstra
Participants: many others
Status: active development

What is new? UHC is the Utrecht Haskell Compiler,
supporting almost all Haskell98 features and most of
Haskell2010, plus experimental extensions. The cur-
rent focus is on the Javascript backend.

What do we currently do and/or has recently been
completed? As part of the UHC project, the follow-
ing (student) projects and other activities are underway
(in arbitrary order):

◦ (completed) Jurriën Stutterheim and others: build-
ing web applications with the Javascript backend.
See the below UHC Javascript url for more info.

◦ (ongoing) Jeroen Bransen (PhD): “Incremental
Global Analysis”.

◦ (ongoing) Jan Rochel (PhD): “Realising Optimal
Sharing”, based on work by Vincent van Oostrum
and Clemens Grabmayer.

◦ (ongoing) Atze Dĳkstra: overall architecture, type
system, bytecode interpreter + java + javascript
backend, garbage collector.

Background UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 5.3.1).

Further reading

◦ UHC Homepage: http://www.cs.uu.nl/wiki/UHC/
WebHome

◦ UHC Github repository: https://github.com/
UU-ComputerScience/uhc

◦ UHC Javascript backend: http://
uu-computerscience.github.com/uhc-js/

◦ Attribute grammar system: http://www.cs.uu.nl/
wiki/HUT/AttributeGrammarSystem

3.4 Specific Platforms

3.4.1 Haskell on FreeBSD

Report by: PÁLI Gábor János
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of contrib-
utors who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the ports tree. FreeBSD is a Tier-
1 platform for GHC (on both i386 and amd64) start-
ing from GHC 6.12.1, hence one can always download
vanilla binary distributions for each recent release.
We have a developer repository for Haskell ports that

features around 350 ports of many popular Cabal pack-
ages. The updates committed to this repository are
continuously integrated to the official ports tree on a
regular basis. Though the FreeBSD Ports Collection
already has many popular and important Haskell soft-
ware: GHC 7.0.4, Haskell Platform 2011.4.0.0, Gtk2Hs,
wxHaskell, XMonad, Pandoc, Gitit, Yesod, Happstack,
and Snap — that have been incorporated into the re-
cently published FreeBSD 8.3-RELEASE.
If you find yourself interested in helping us or simply

want to use the latest versions of Haskell programs on
FreeBSD, check out our page at the FreeBSD wiki (see
below) where you can find all important pointers and
information required for use, contact, or contribution.

Further reading

http://wiki.FreeBSD.org/Haskell

3.4.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 500 source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most

12

http://hackage.haskell.org/trac/ghc/wiki/TypeNats/Basics
http://hackage.haskell.org/trac/ghc/wiki/TypeNats/Basics
http://hackage.haskell.org/trac/ghc/changeset/27302c9094909e04eb73f200d52d5e9370c34a8a
http://hackage.haskell.org/trac/ghc/changeset/27302c9094909e04eb73f200d52d5e9370c34a8a
http://hackage.haskell.org/trac/ghc/changeset/27302c9094909e04eb73f200d52d5e9370c34a8a
http://www.cs.uu.nl/wiki/UHC/WebHome
http://www.cs.uu.nl/wiki/UHC/WebHome
https://github.com/UU-ComputerScience/uhc
https://github.com/UU-ComputerScience/uhc
http://uu-computerscience.github.com/uhc-js/
http://uu-computerscience.github.com/uhc-js/
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://wiki.FreeBSD.org/Haskell

libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.
The stable Debian release (“squeeze”) provides

the Haskell Platform 2010.1.0.0 and GHC 6.12, De-
bian testing (“wheezy”) contains the Platform version
2011.4.0.0 with GHC 7.0.4 and in unstable we are cur-
rently ahead of the Platform and ship GHC 7.4.1.
We plan to get GHC 7.4.2 and the Platform version
2012.2.0.0 into wheezy in time before the stable release,
expected this year.
Debian users benefit from the Haskell ecosystem

on 13 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

Further reading

http://wiki.debian.org/Haskell

3.4.3 Haskell in Gentoo Linux

Report by: Sergei Trofimovich

Gentoo Linux currently officially supports GHC 7.4.1,
GHC 7.0.4 and GHC 6.12.3 on x86, amd64, sparc, al-
pha, ppc, ppc64 and some arm platforms.
The full list of packages available through the offi-

cial repository can be viewed at http://packages.gentoo.
org/category/dev-haskell?full_cat.
The GHC architecture/version matrix is available at

http://packages.gentoo.org/package/dev-lang/ghc.
Please report problems in the normal Gentoo bug

tracker at bugs.gentoo.org.
There is also an overlay which contains almost 800

extra unofficial and testing packages. Thanks to the
Haskell developers using Cabal and Hackage (→ 6.6.1),
we have been able to write a tool called “hackport” (ini-
tiated by Henning Günther) to generate Gentoo pack-
ages with minimal user intervention. Notable packages
in the overlay include the latest version of the Haskell
Platform (→ 3.1) as well as the latest 7.4.1 release of
GHC, as well as popular Haskell packages such as pan-
doc, gitit, yesod (→ 5.2.6) and others.
As usual GHC 7.4 branch required some packages to

be patched. For a 6 months period we have got about
150 patches waiting for upstream inclusion.
Over the time more and more people get involved

in gentoo-haskell project which reflects positively on
haskell ecosystem health status.
More information about the Gentoo Haskell Overlay

can be found at http://haskell.org/haskellwiki/Gentoo.
It is available via the Gentoo overlay manager “lay-
man”. If you choose to use the overlay, then any prob-
lems should be reported on IRC (#gentoo-haskell
on freenode), where we coordinate development, or
via email 〈haskell@gentoo.org〉 (as we have more peo-
ple with the ability to fix the overlay packages that

are contactable in the IRC channel than via the bug
tracker).
As always we are more than happy for (and in fact

encourage) Gentoo users to get involved and help us
maintain our tools and packages, even if it is as simple
as reporting packages that do not always work or need
updating: with such a wide range of GHC and package
versions to co-ordinate, it is hard to keep up! Please
contact us on IRC or email if you are interested!
For concrete tasks see our perpetual TODO

list: https://github.com/gentoo-haskell/gentoo-haskell/
blob/master/projects/doc/TODO.rst

3.4.4 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Lakshmi Narasimhan, Ben Boeckel, Michel

Salim, Shakthi Kannan, and others
Status: ongoing

The Fedora Haskell SIG works on providing good
Haskell support in the Fedora Project Linux distribu-
tion.
Fedora 17 is shipping in May with ghc-7.0.4 and

haskell-platform-2011.4.0.0, and version updates to
many of the packages. This also includes Fedora 17
Secondary architectures: ppc, ppc64, and the exciting
new armv5tel and armv7hp builds (ghc has also been
built for Fedora 17 s390 and s390x for the first time).
30 new packages have been added since the release of
Fedora 16, including aeson, conduit, hakyll, lifted-base,
snap-core, warp, etc.
On the packaging side, for Fedora 16 profiling sub-

packages were merged into the development subpack-
ages to reduce installation overhead. For Fedora 17 the
packaging macros have been simplified and made closer
to generic Fedora packaging.
At the time of writing there are now 165 Haskell

source packages in Fedora. The Fedora package version
numbers listed on the Hackage website now refer to the
latest branched version of Fedora (currently 17).
Fedora 18 development work has already started and

we have already updated to ghc-7.4.1 and continue
work on packaging including web frameworks.
Feedback from users and packaging contributions to

Fedora Haskell are always welcome: please join us on
#fedora-haskell on Freenode IRC and our new low-
traffic mailing-list.

Further reading

◦ Homepage: http://fedoraproject.org/wiki/SIGs/
Haskell

◦ New mailing-list: https://admin.fedoraproject.org/
mailman/listinfo/haskell

◦ Package list: https://admin.fedoraproject.org/pkgdb/
users/packages/haskell-sig

13

http://wiki.debian.org/Haskell
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/category/dev-haskell?full_cat
http://packages.gentoo.org/package/dev-lang/ghc
bugs.gentoo.org
http://haskell.org/haskellwiki/Gentoo
mailto: haskell at gentoo.org
https://github.com/gentoo-haskell/gentoo-haskell/blob/master/projects/doc/TODO.rst
https://github.com/gentoo-haskell/gentoo-haskell/blob/master/projects/doc/TODO.rst
http://fedoraproject.org/wiki/SIGs/Haskell
http://fedoraproject.org/wiki/SIGs/Haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig

◦ Package changes: http://git.fedorahosted.org/git/
?p=haskell-sig.git;a=blob;f=packages/diffs/f16-f17.
diff

3.5 Fibon Benchmark Tools & Suite

Report by: David M. Peixotto
Status: stable

Fibon is a set of tools for running and analyzing bench-
mark programs in Haskell. It contains an optional set
of benchmarks from various sources including several
programs from the Hackage repository.
The Fibon benchmark tools draw inspiration from

both the venerable nofib Haskell benchmark suite and
the industry standard SPEC benchmark suite. The
tools automate the tedious parts of benchmarking:
building the benchmark in a sand-boxed directory, run-
ning the benchmark multiple times, verifying correct-
ness, collecting statistics, and summarizing results.
Benchmarks are built using the standard cabal

tool. Any program that has been cabalized can be
added as benchmark simply by specifying some meta-
information about the program inputs and expected
outputs. Fibon will automatically collect execution
times for benchmarks and can optionally read the
statistics output by the GHC runtime. The program
outputs are checked to ensure correct results making
Fibon a good option for testing the safety and perfor-
mance of program optimizations. The Fibon tools are
not tied to any one benchmark suite. As long as the
correct meta-information has been supplied, the tools
will work with any set of programs.
As a real life example of a complete benchmark

suite, Fibon comes with its own set of benchmarks
for testing the effectiveness of compiler optimizations
in GHC. The benchmark programs come from Hack-
age, the Computer Language Shootout, Data Parallel
Haskell, and Repa. The benchmarks were selected to
have minimal external dependencies so they could be
easily used with a version of GHC compiled from the
latest sources. The following figure shows the perfor-
mance improvement of GHC’s optimizations on the Fi-
bon benchmark suite.

This year, the Fibon benchmark suite has been up-
dated to include a Train problem size that can be used
for feedback directed optimization work. The Ref prob-
lem size has been increased so that the running time
of a benchmark program is comparable to the running
time when using the ref size of the SPEC benchmarks.
With this update a single benchmark will typically take
10 − 30 minutes to run depending on the power of
the computer hardware. See the README file for
more information on benchmark size and configuring
the benchmarks to finish in an acceptable amount of
time.
The Fibon tools and benchmark suite are ready for

public consumption. They can be found on github
at the url indicated below. People are invited to use
the included benchmark suite or just use the tools and
build a suite of their own creation. Any improvements
to the tools or additional benchmarks are most wel-
come. Benchmarks have been used to tell lies about
performance for many years, so join in the fun and
keep on fibbing with Fibon.

Further reading

◦ https://github.com/dmpots/fibon
◦ https://github.com/dmpots/fibon-benchmarks
◦ https://github.com/dmpots/fibon-config

14

http://git.fedorahosted.org/git/?p=haskell-sig.git;a=blob;f=packages/diffs/f16-f17.diff
http://git.fedorahosted.org/git/?p=haskell-sig.git;a=blob;f=packages/diffs/f16-f17.diff
http://git.fedorahosted.org/git/?p=haskell-sig.git;a=blob;f=packages/diffs/f16-f17.diff
http://hackage.haskell.org/packages/hackage.html
http://hackage.haskell.org/packages/hackage.html
http://shootout.alioth.debian.org
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://www.haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
http://hackage.haskell.org/package/repa
https://github.com/dmpots/fibon
https://github.com/dmpots/fibon-benchmarks
https://github.com/dmpots/fibon-config

4 Related Languages

4.1 Agda

Report by: Nils Anders Danielsson
Participants: Ulf Norell, Andreas Abel, and many others
Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e. GADTs which can be
indexed by values and not just types. The language
also supports coinductive types, parameterized mod-
ules, and mixfix operators, and comes with an interac-
tive interface—the type checker can assist you in the
development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
The next version of Agda is under development. The

most interesting changes to the language may be the
addition of pattern synonyms, contributed by Stevan
Andjelkovic and Adam Gundry, and modifications of
the constraint solver, implemented by Andreas Abel.
Other work has targeted the Emacs mode. Peter Di-
vianszky has removed the prior dependency on GHCi
and haskell-mode, and Guilhem Moulin and myself
have made the Emacs mode more interactive: type-
checking no longer blocks Emacs, and the expression
that is currently being type-checked is highlighted.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 MiniAgda

Report by: Andreas Abel
Status: experimental

MiniAgda is a tiny dependently-typed programming
language in the style of Agda (→ 4.1). It serves as a lab-
oratory to test potential additions to the language and
type system of Agda. MiniAgda’s termination checker
is a fusion of sized types and size-change termination
and supports coinduction. Bounded size quantification
and destructor patterns for a more general handling
of coinduction. Equality incorporates eta-expansion at
record and singleton types. Function arguments can be
declared as static; such arguments are discarded during
equality checking and compilation.

Recently, I have added more comfortable syntax for
data type declarations and let-definitions. Data and
codata types can now also be defined recursively. In
the long run, I plan to evolve MiniAgda into a core
language for Agda with termination certificates.
MiniAgda is available as Haskell source code and

compiles with GHC 6.12.x – 7.4.1.

Further reading

http://www2.tcs.ifi.lmu.de/~abel/miniagda/

4.3 Disciple

Report by: Ben Lippmeier
Participants: Erik de Castro Lopo
Status: experimental, active development

Disciple is a dialect of Haskell that uses strict evalua-
tion as the default and supports destructive update of
arbitrary data. Many Haskell programs are also Dis-
ciple programs, or will run with minor changes. In
addition, Disciple includes region, effect, and closure
typing, and this extra information provides a handle
on the operational behaviour of code that is not avail-
able in other languages. Our target applications are the
ones that you always find yourself writing C programs
for, because existing functional languages are too slow,
use too much memory, or do not let you update the
data that you need to.
Our compiler (DDC) is still in the “research pro-

totype” stage, meaning that it will compile programs
if you are nice to it, but expect compiler panics and
missing features. You will get panics due to ungraceful
handling of errors in the source code, but valid pro-
grams should compile ok. The test suite includes a few
thousand-line graphical demos, like a ray-tracer and an
n-body collision simulation, so it is definitely hackable.
Over the last six months we continued working to-

wards mechanising the metatheory of the DDC core
language in Coq. We’ve finished Progress and Preser-
vation for System-F2 with mutable algebraic data, and
are now looking into proving contextual equivalence of
rewrites in the presence of effects. Based on this experi-
ence, we’ve also started on an interpreter for a cleaned
up version of the DDC core language. We’ve taken the
advice of previous paper reviewers and removed depen-
dent kinds, moving witness expressions down to level
0 next to value expressions. In the resulting language,
types classify both witness and value expressions, and
kinds classify types. We’re also removing more-than
constraints on effect and closure variables, along with
dangerous type variables (which never really worked).

15

http://wiki.portal.chalmers.se/agda/
http://www2.tcs.ifi.lmu.de/~abel/miniagda/

All over, it’s being pruned back to the parts we under-
stand properly, and the removal of dependent kinds will
make mechanising the metatheory easier. Writing an
interpreter for the core language also gets us a parser
for it, which we will need for performing cross module
inlining in the compiler proper.

Further reading

http://disciple.ouroborus.net

16

http://disciple.ouroborus.net

5 Haskell and . . .

5.1 Haskell and Parallelism

5.1.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Oleg Lobachev,

Rita Loogen,
in Copenhagen: Jost Berthold

Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s primitive constructs are process abstractions

and process instantiations. The Eden logo

consists of four λ turned in such a way that they form
the Eden instantiation operator #05. Higher-level co-
ordination is achieved by defining skeletons, ranging
from a simple parallel map to sophisticated master-
worker schemes. They have been used to parallelize a
set of non-trivial programs.
Eden’s interface supports a simple definition of arbi-

trary communication topologies using Remote Data. A
PA-monad enables the eager execution of user defined
sequences of Parallel Actions in Eden.

Survey and standard reference

Rita Loogen, Yolanda Ortega-Mallén, and Ri-
cardo Peña: Parallel Functional Programming in Eden,
Journal of Functional Programming 15(3), 2005, pages
431–475.

Tutorial

Rita Loogen: Eden - Parallel Functional Programming
in Haskell, Lecture Notes, CEFP Summer School, Bu-
dapest, Hungary, June 2011, Springer LNCS 2741, 2012
(to appear).
(see also: http://www.mathematik.uni-marburg.de/
~eden/?content=cefp)

Implementation

A new release of the Eden compiler based on GHC 7.4
will soon be available on our web pages, see http://
www.mathematik.uni-marburg.de/~eden, and via Hack-
age. It will include a shared memory mode which
does not depend on a middleware like MPI but which
nevertheless uses multiple independent heaps (in con-
trast to GHC’s threaded runtime system) connected
by Eden’s parallel runtime system. An Eden variant
of GHC-7.4 and the Eden libraries are already avail-
able via git repositories at http://james.mathematik.
uni-marburg.de:8080.

Tools and libraries

The Eden trace viewer tool EdenTV provides a visual-
isation of Eden program runs on various levels. Activ-
ity profiles are produced for processing elements (ma-
chines), Eden processes and threads. In addition mes-
sage transfer can be shown between processes and ma-
chines. EdenTV has been written in Haskell and is
freely available on the Eden web pages.
The Eden skeleton library is under constant develop-

ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.

Recent and Forthcoming Publications

◦ Oleg Lobachev: Implementation and Evaluation
of Algorithmic Skeletons: Parallelisation of Com-
puter Algebra Algorithms, Ph.D. thesis, Philipps-
Universität Marburg, Germany, October 2011.

◦ Rita Loogen: Eden - Parallel Functional Program-
ming in Haskell, Lecture Notes, CEFP Summer
School, Budapest, Hungary, June 2011, Springer
LNCS 7241, 65 pages, 2012 (to appear).

◦ Jost Berthold, Andrzej Filinski, Fritz Henglein, Ken
Friis Larsen, Mogens Steffensen, and Brian Vinter:
Functional High Performance Financial IT — The
HIPERFIT Research Center in Copenhagen, Trends
in Functional Programming (TFP’11) — Revised Se-
lected Papers, Springer LNCS (to appear).

Further reading

http://www.mathematik.uni-marburg.de/~eden

17

http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden
http://www.mathematik.uni-marburg.de/~eden
http://james.mathematik.uni-marburg.de:8080
http://james.mathematik.uni-marburg.de:8080
http://www.mathematik.uni-marburg.de/~eden

5.1.2 GpH — Glasgow Parallel Haskell

Report by: Hans-Wolfgang Loidl
Participants: Phil Trinder, Patrick Maier, Mustafa

Aswad, Malak Aljabri, Evgenĳ Belikov,
Pantazis Deligianis, Robert Stewart,

Prabhat Totoo (Heriot-Watt University);
Kevin Hammond, Vladimir Janjic, Chris

Brown (St Andrews University)
Status: ongoing

Status

A distributed-memory, GHC-based implementation of
the parallel Haskell extension GpH and of a fundamen-
tally revised version of the evaluation strategies ab-
straction is available in a prototype version. In cur-
rent research an extended set of primitives, support-
ing hierarchical architectures of parallel machines, and
extensions of the runtime-system for supporting these
architectures are being developed.

Main activities

We have been extending the set of primitives for par-
allelism in GpH, to provide enhanced control of data
locality in GpH applications. Results from applica-
tions running on up to 256 cores of our Beowulf cluster
demonstrate significant improvements in performance
when using these extensions.
In the context of the SICSA MultiCore Challenge,

we are comparing the performance of several paral-
lel Haskell implementations (in GpH and Eden) with
other functional implementations (F#, Scala and SAC)
and with implementations produced by colleagues in
a wide range of other parallel languages. The latest
challenge application was the n-body problem. A sum-
mary of this effort is available on the following web
page, and sources of several parallel versions will be up-
loaded shortly: http://www.macs.hw.ac.uk/sicsawiki/
index.php/MultiCoreChallenge.
New work has been launched into the direction of

inherently parallel data structures for Haskell and us-
ing such data structures in symbolic applications. This
work aims to develop foundational building blocks in
composing parallel Haskell applications, taking a data-
centric point of view. Current work focuses on data
structures such as append-trees to represent lists and
quad-trees in an implementation of the n-body prob-
lem.
Another strand of development is the improvement

of the GUM runtime-system to better deal with hier-
archical and heterogeneous architectures, that are be-
coming increasingly important. We are revisiting basic
resource policies, such as those for load distribution,
and are exploring modifications that provide enhanced,
adaptive behaviour for these target platforms.

GpH Applications

As part of the SCIEnce EU FP6 I3 project (026133)
(April 2006 – December 2011) and the HPC-GAP
project (October 2009 – September 2013) we use Eden,
GpH and HdpH as middleware to provide access to
computational Grids from Computer Algebra (CA) sys-
tems, in particular GAP. We have developed and re-
leased SymGrid-Par, a Haskell-side infrastructure for
orchestrating heterogeneous computations across high-
performance computational Grids. Based on this in-
frastructure we have developed a range of domain-
specific parallel skeletons for parallelising representa-
tive symbolic computation applications. A Haskell-side
interface to this infrastructures is available in the form
of the Computer Algebra Shell CASH, which is down-
loadable from Hackage. We are currently extending
SymGrid-Par with support for fault-tolerance, target-
ing massively parallel high-performance architectures.

Implementations

The latest GUM implementation of GpH is built on
GHC 6.12, using either PVM or MPI as communica-
tions library. It implements a virtual shared memory
abstraction over a collection of physically distributed
machines. At the moment our main hardware plat-
forms are Intel-based Beowulf clusters of multicores.
We plan to connect several of these clusters into a wide-
area, hierarchical, heterogenous parallel architecture.

Further reading

http://www.macs.hw.ac.uk/~dsg/gph/

Contact

〈gph@macs.hw.ac.uk〉

5.1.3 Parallel GHC project

Report by: Eric Kow
Participants: Duncan Coutts, Andres Löh, Nicolas Wu,

Mikolaj Konarski, Edsko de Vries
Status: active

Microsoft Research is funding a 2-year project to pro-
mote the real-world use of parallel Haskell. The project
started in November 2010, with four industrial part-
ners, and consulting and engineering support from
Well-Typed (→ 8.1). Each organisation is working
on its own particular project making use of parallel
Haskell. The overall goal is to demonstrate successful
serious use of parallel Haskell, and along the way to
apply engineering effort to any problems with the tools
that the organisations might run into.
The participating organisations are working on a di-

verse set of complex real world problems:

18

http://www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge
http://www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge
http://www.macs.hw.ac.uk/~dsg/gph/
mailto: gph at macs.hw.ac.uk

◦ Dragonfly (New Zealand): Hierarchical Bayesian
Modeling

◦ Los Alamos National Laboratory (USA): high per-
formance Monte Carlo algorithms to model the flow
of radiation and other physical phenomena

◦ IĲ Innovation Institute Inc. (Japan): network
servers handling a massive number of concurrent con-
nections

◦ Telefonica I+D: processing large graphs representing
social networks

The two main areas of focus in the project recently
have been ThreadScope and Cloud Haskell.

ThreadScope The latest release of ThreadScope (ver-
sion 0.2.1) provides new visualisations that allow the
user to observe the creation and conversion of sparks
into actual work. These visualisations are aimed at
giving users of ThreadScope more insight into the per-
formance of their programs, not just what programs
are doing performance-wise, but why.
Much of the ThreadScope work leading up to this

release consists in backend investments, improvements
to the ghc-events package (a new state machine repre-
sentation of the meaning of events) and the GHC run-
time system (adding a new startup wall-clock time and
Haskell thread labels to the event log). These changes
will enable more useful improvements to ThreadScope
in the future.
The release is also accompanied by a new tuto-

rial on the Haskell wiki, the ThreadScope Tour. The
tours provides a series of self-contained miniature walk-
throughs focusing on various aspects of ThreadScope
usage, for example, observing the need to consolidate
sequential evaluation in order to make ThreadScope
output easier to interpret.

Cloud Haskell We have been working on Cloud
Haskell for distributed parallelism. In particular, we
are developing a new implementation that is intended
to be robust, flexible and have good performance. The
resulting “distributed-process” package will build off
an internal design which includes a swappable network
transport layer. As we flesh out this implementation,
we are also working on further developing and validat-
ing the new design. These ongoing efforts are visible
from the GitHub page listed below.

Summary

◦ ThreadScope (0.2.1), with further improvements to
spark profiling

◦ ghc-events (0.4.0.0) with state machine representa-
tion of events

◦ distributed-process, ongoing work towards a new
implementation of Cloud Haskell with a swappable
transport layer,
https://github.com/haskell-distributed/
distributed-process

◦ ThreadScope Tour, a guided tour of ThreadScope,
http://www.haskell.org/haskellwiki/ThreadScope_
Tour

5.1.4 Static Verification of Transactions in STM
Haskell

Report by: Romain Demeyer
Participants: Wim Vanhoof
Status: ongoing work

This PhD project targets the detection of concurrency
bugs in STM Haskell. We focus on static analysis, i.e.,
we try to find errors by analyzing the source code of
the program without executing it. Specifically, we tar-
get what we call application-level bugs, i.e., when the
shared memory becomes inconsistent with respect to
the design of the application because of an unexpected
interleaving of the threads that access the memory. Our
approach is to check that each transaction of the pro-
gram preserves a given user-defined consistency prop-
erty.
We have already defined, formalized and developed a

framework of verification and, now, we try to evaluate
which range of concurrency bugs we are able to detect.
The ongoing work also includes the implementation of
a prototype and the research in order to reduce the
number of annotations the programmer has to provide
for running the analysis.

Contact

Please feel free to contact me at rde@info.fundp.ac.be
for further information.

5.2 Haskell and the Web

5.2.1 WAI

Report by: Greg Weber
Status: stable

The Web Application Interface (WAI) is an inter-
face between Haskell web applications and Haskell web
servers. By targeting the WAI, a web framework or web
application gets access to multiple deployment plat-
forms. Platforms in use include CGI, the Warp web
server, and desktop webkit.
Since the last HCAR, WAI has switched to con-

duits (→ 7.1.1). WAI also added a vault parameter to
the request type to allow middleware to store arbitrary
data.

19

https://github.com/haskell-distributed/distributed-process
https://github.com/haskell-distributed/distributed-process
http://www.haskell.org/haskellwiki/ThreadScope_Tour
http://www.haskell.org/haskellwiki/ThreadScope_Tour
rde@info.fundp.ac.be

WAI is also a platform for re-using code between web
applications and web frameworks through WAI mid-
dleware and WAI applications. WAI middleware can
inspect and transform a request, for example by auto-
matically gzipping a response or logging a request.
By targeting WAI, every web framework can share

WAI code instead of wasting effort re-implementing
the same functionality. There are also some new web
frameworks that take a completely different approach
to web development that use WAI, such as webwire
(FRP) and dingo (GUI). Since the last HCAR, another
web framework called Scotty was released. WAI appli-
cations can send a response themselves. For example,
wai-app-static is used by Yesod to serve static files.
However, one does not need to use a web framework,
but can simply build a web application using the WAI
interface alone. The Hoogle web service targets WAI
directly.
The WAI standard has proven itself capable for dif-

ferent users and there are no outstanding plans for
changes or improvements.

Further reading

http://www.yesodweb.com/book/wai

5.2.2 Warp

Report by: Greg Weber

Warp is a high performance, easy to deploy HTTP
server backend for WAI (→ 5.2.1). Since the last
HCAR, Warp has switched from enumerators to con-
duits (→ 7.1.1), added SSL support, and websockets
integration.
Due to the combined use of ByteStrings, blaze-

builder, conduit, and GHC’s improved I/O manager,
WAI+Warp has consistently proven to be Haskell’s
most performant web deployment option.
Warp is actively used to serve up most of the users

of WAI (and Yesod).
“Warp: A Haskell Web Server” by Michael Snoyman

was published in the May/June 2011 issue of IEEE In-
ternet Computing:
◦ Issue page: http://www.computer.org/portal/web/

csdl/abs/mags/ic/2011/03/mic201103toc.htm
◦ PDF: http://steve.vinoski.net/pdf/IC-Warp_a_

Haskell_Web_Server.pdf

5.2.3 Holumbus Search Engine Framework

Report by: Uwe Schmidt
Participants: Timo B. Kranz, Sebastian Gauck, Stefan

Schmidt
Status: first release

Description

The Holumbus framework consists of a set of modules
and tools for creating fast, flexible, and highly cus-
tomizable search engines with Haskell. The framework
consists of two main parts. The first part is the indexer
for extracting the data of a given type of documents,
e.g., documents of a web site, and store it in an appro-
priate index. The second part is the search engine for
querying the index.
An instance of the Holumbus framework is the

Haskell API search engine Hayoo! (http://holumbus.
fh-wedel.de/hayoo/).
The framework supports distributed computations

for building indexes and searching indexes. This is done
with a MapReduce like framework. The MapReduce
framework is independent of the index- and search-
components, so it can be used to develop distributed
systems with Haskell.
The framework is now separated into four packages,

all available on Hackage.
◦ The Holumbus Search Engine
◦ The Holumbus Distribution Library
◦ The Holumbus Storage System
◦ The Holumbus MapReduce Framework
The search engine package includes the indexer and

search modules, the MapReduce package bundles the
distributed MapReduce system. This is based on two
other packages, which may be useful for their on: The
Distributed Library with a message passing communi-
cation layer and a distributed storage system.

Features

◦ Highly configurable crawler module for flexible in-
dexing of structured data

◦ Customizable index structure for an effective search
◦ find as you type search
◦ Suggestions
◦ Fuzzy queries
◦ Customizable result ranking
◦ Index structure designed for distributed search
◦ Git repository containing the current development

version of all packages under https://github.com/
fortytools/holumbus

◦ Distributed building of search indexes

Current Work

Currently there are activities to optimize the index
structures of the framework. In the past there have
been problems with the space requirements during in-
dexing. The data structures and evaluation strategies
have been optimized to prevent space leaks. A sec-
ond index structure working with cryptographic keys
for document identifiers is under construction. This
will further simplify partial indexing and merging of
indexes.

20

http://www.yesodweb.com/book/wai
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://holumbus.fh-wedel.de/hayoo/
http://holumbus.fh-wedel.de/hayoo/
https://github.com/fortytools/holumbus
https://github.com/fortytools/holumbus

The second project, a specialized search engine for
the FH-Wedel web site, has been finished http://w3w.
fh-wedel.de/. The new aspect in this application is a
specialized free text search for appointments, deadlines,
announcements, meetings and other dates.
The Hayoo! and the FH-Wedel search engine have

been adopted to run on top of the Snap framework (→
5.2.7).

Further reading

The Holumbus web page (http://holumbus.fh-wedel.
de/) includes downloads, Git web interface, cur-
rent status, requirements, and documentation. Timo
Kranz’s master thesis describing the Holumbus in-
dex structure and the search engine is avail-
able at http://holumbus.fh-wedel.de/branches/develop/
doc/thesis-searching.pdf. Sebastian Gauck’s thesis
dealing with the crawler component is available
at http://holumbus.fh-wedel.de/src/doc/thesis-indexing.
pdf The thesis of Stefan Schmidt describing the
Holumbus MapReduce is available via http://holumbus.
fh-wedel.de/src/doc/thesis-mapreduce.pdf.

5.2.4 Happstack

Report by: Jeremy Shaw

The Happstack project is focused on bringing the re-
lentless, uncompromised power and beauty of Haskell
to a web framework. We aim to leverage the unique
characteristics of Haskell to create a highly-scalable,
robust, and expressive web framework.
While Happstack is over 7 years old, it is still un-

dergoing active development and new innovation. It is
used in a number of commercial projects as well as the
new Hackage 2 server.
At the core of Happstack is the happstack-server

package which provides a fast, powerful, and easy to
use HTTP server with built-in support for templating
(via blaze-html), request routing, form-decoding, cook-
ies, file-uploads, etc. happstack-server is all you need
to create a simple website.
Happstack can also be extended using a wide range of

libraries which include support for alternative HTML
templating systems, javascript templating and gener-
ation, type-safe URLs, type-safe form generation and
validation, RAM-cloud database persistence, OpenId
authentication, and more.

Future plans

Upcoming innovations we will be exploring in Happ-
stack include:

◦ more powerful and flexible routing combinators

◦ a new system for processing form data which allows
fine grained enforcement of RAM and disk quotas
and avoids the use of temporary files

◦ better support for reusable web components (such as
components for authentication, threaded comments,
etc)

◦ fundamental architecture changes to the HTTP
backend which will allow for greater scalability and
greater assurances of correctness

For more information check out the happstack.com
website — especially the “Happstack Philosophy” and
“Happstack 8 Roadmap”.

Further reading

◦ http://www.happstack.com/
◦ http://www.happstack.com/docs/crashcourse/index.

html
◦ http://happstack.blogspot.com/

5.2.5 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 2 is a simple but
practical Web server in Haskell. It is now working on
Mew.org providing basic web features and CGI (mail-
man and contents search).
Mighttpd version 1 was implemented with two li-

braries c10k and webserver. Since GHC 6 uses select(),
more than 1,024 connections cannot be handled at the
same time. The c10k library gets over this barrier with
the pre-fork technique. The webserver library provides
HTTP transfer and file/CGI handling.
Mighttpd 2 stops using the c10k library be-

cause GHC 7 starts using epoll()/kqueue(). The
file/CGI handling part of the webserver library is re-
implemented as a web application on the wai library
(→ 5.2.1). For HTTP transfer, Mighttpd 2 links the
warp library (→ 5.2.2) which can send a file in zero
copy manner thank to sendfile().
The performance of Mighttpd 2 is now comparable

to highly tuned web servers written in C Please read
“The Monad.Reader” Issue 19 for more information.
Mighttpd 2 is now based on Conduit version 0.4 and

provides the functionality of reverse proxy. You can
install Mighttpd 2 (mighttpd2) from HackageDB.

Further reading

http://www.mew.org/~kazu/proj/mighttpd/en/

5.2.6 Yesod

Report by: Greg Weber
Participants: Michael Snoyman, Luite Stegeman, Felipe

Lessa
Status: stable

21

http://w3w.fh-wedel.de/
http://w3w.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/branches/develop/doc/thesis-searching.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-indexing.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://holumbus.fh-wedel.de/src/doc/thesis-mapreduce.pdf
http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html
http://happstack.blogspot.com/
http://www.mew.org/~kazu/proj/mighttpd/en/

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, we have
created a web framework that helps users create highly
scalable web applications.
Performance scalablity comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous IO.
But Yesod is even more focused on scalable develop-

ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.
Of course type-safety guarantees against typos or the

wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.

◦ declarative routing with type-safe urls — say good-
bye to broken links

◦ no XSS attacks — form submissions are automati-
cally sanitized

◦ database safety through the Persistent library (→
7.7.2) — no SQL injection and queries are always
valid

◦ valid template variables with proper template inser-
tion — variables are known at compile time and
treated differently according to their type using the
shakesperean templating system.

When type safety conflicts with programmer produc-
tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide Easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 7.7.2). View
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing.
Their return type shows which response types are al-
lowed for the request.
Yesod is broken up into many smaller projects

and leverages Wai (→ 5.2.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks.
Yesod finally reached its 1.0 version. The last HCAR

entry was for the 0.8 version. Some of the major
changes since then are:

◦ Luite Stegemen contributed a faster and improved
development environment that used the GHC API

◦ Nubis Bruno contributed yesod-test, a convenient
testing framework.

◦ Flexible session interface

◦ Flexible placement of Javascript on the HTML page

◦ Switch from enumerators to conduits

We are excited to have achieved a 1.0 release. This
signifies maturity and API stability and a web frame-
work that gives developers all the tools they need for
productive web development. Future directions for
Yesod are now largely driven by community input and
patches. Easier client-side interaction is definitely one
concern that Yesod is working on going forward. The
1.0 release features better coffeescript support and even
roy.js support
The Yesod site (http://www.yesodweb.com/) is a

great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.
To see an example site with source code available,

you can view Haskellers (→ 1.2) source code: (https:
//github.com/snoyberg/haskellers).

Further reading

http://www.yesodweb.com/

5.2.7 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith, Jurrien

Stutterheim, and others
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, and ease
of use. The project’s goal is to be a cohesive high-level
platform for web development that leverages the power
and expressiveness of Haskell to make building websites
quick and easy.
The Snap Framework has seen two major releases

(0.7 and 0.8) since the last HCAR. Some of the major
features added are better awareness of proxy servers
and address translation, more powerful timeout han-
dling, more control over buffering semantics, improve-
ments to the test infrastructure, and a number of other
bug fixes and minor improvements.
We are starting to see more high level functional-

ity developed by third parties being made available as
snaplets. A complete list of the third-party snaplets
we are aware of can be found in the snaplet directory
page on our website. So far this includes seven different
snaplets providing support for various data stores, sup-
port for different build environments, ReCAPTCHA
support, and a snaplet providing functionality similar
to “rake tasks” from Ruby on Rails.

22

http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/

Further reading

◦ Snaplet Directory: http://snapframework.com/
snaplets

◦ http://snapframework.com

5.2.8 Ivy-web

Report by: James Deng
Status: experimental

Ivy-web is a lightweight web framework, with type safe
routes, based on invertible-syntax, and i18n support,
influenced by Django, Snap, and Yesod.
The features of this web framework:

◦ Type safe routes, specify url-handler mapping in one
place. For example, we want a url mapping for blog
as "/blog/year-month-day" to Handler Int Int Int,
where year, month and day are integers. We can
declare as follows:

data Blog = Blog Int Int Int
deriving (Show,Eq,Typeable)

$ (defineIsomorphisms ’’ Blog)
instance Handler Blog where

get b@(Blog y m d) = do
t ← liftIO getClockTime
return $ responseHtml $ trans′ "blog"

++ show b ++ show t
rBlog = blog < $ > text "/blog/" ∗ >

int < − > int < − > int

We can reverse this mapping from handler value au-
tomatically, thus do not need to construct url string
manually in code, avoiding url errors.

ghci> url (Blog 2011 9 19) ‚
== "/blog/2009-9-19"‚

◦ Simple yet elegant handler via type class.

class Handler a where
get, post, put, delete, handle :: a → Application
handle a req = case requestMethod req of

m | m ≡ methodGet → get a req
| m ≡ methodPost → post a req
| m ≡ methodPut → put a req
| m ≡ methodDelete → delete a req

otherwise → unimplemented req

◦ Flexible template system, utilize exsisting libraries
such as Blaze-Html and Hastache.

◦ Easy i18n — Wraps around i18n library.

◦ TODO: Auth system — Port from snap-auth.

◦ TODO: Modular app system like Django — The
current route system support modular routes very
well. Need works in modular config and data files
like static template files.

◦ TODO: Persistent library — Improving the DSH li-
brary is my current preference.

The principle of this library is KISS, and “don’t rein-
vent the wheel” by reusing existing state-of-the-art li-
braries.
For the example code listed above, please refer to

https://github.com/lilac/ivy-example/

Recent developments

I have ported ivy-web from wai to snap-server back-
end, and also wrote a sample project correspond to the
starter project of snap. When everything is fine and I
am free, I will upload the code and bump the version
to 0.2.

Further reading

◦ https://github.com/lilac/ivy-web/
◦ http://hackage.haskell.org/package/ivy-web

5.2.9 rss2irc

Report by: Simon Michael
Status: beta

rss2irc is an IRC bot that polls a single RSS or Atom
feed and announces new items to an IRC channel, with
options for customizing output and behavior. It aims
to be an easy to use, dependable bot that does its job
and creates no problems.
rss2irc was published in 2008 by Don Stewart. Simon

Michael took over maintainership in 2009, with the goal
of making a robust low-maintenance bot to stimulate
development in various free/open-source software com-
munities. It is currently used for several full-time bots
including:
◦ hackagebot — announces new hackage releases in

#haskell
◦ hledgerbot — announces hledger commits in #ledger
◦ zwikicommitbot — announces Zwiki commits in

#zwiki
◦ squeaksobot — announces Squeak and Smalltalk-

related Stack Overflow questions in #squeak
◦ squeakquorabot — announces Squeak/Smalltalk-

related Quora questions in #squeak
◦ etoystrackerbot — announces new Etoys bugs in

#etoys
◦ etoysupdatesbot — announces Etoys commits in

#etoys
◦ planetzopebot — announces new planet.zope.org

posts in #zope
The project is available under BSD license from

its home page at http://hackage.haskell.org/package/
rss2irc.
Since last report there has been a great deal of

cleanup and enhancement, but no new release on hack-
age yet due to an xml-related memory leak.

23

http://snapframework.com/snaplets
http://snapframework.com/snaplets
http://snapframework.com
https://github.com/lilac/ivy-example/
https://github.com/lilac/ivy-web/
http://hackage.haskell.org/package/ivy-web
http://hackage.haskell.org/package/rss2irc
http://hackage.haskell.org/package/rss2irc

Further reading

http://hackage.haskell.org/package/rss2irc

5.3 Haskell and Compiler Writing

5.3.1 UUAG

Report by: Arie Middelkoop
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell that makes it
easy to write catamorphisms, i.e., functions that do to
any data type what foldr does to lists. Tree walks are
defined using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 3.3), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009/html/
report.html#sect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects. The
current version is 0.9.39 (October 2011), is extensively
tested, and is available on Hackage. Recently, we
improved the Cabal support and ensured compatibility
with GHC 7.
We are working on the following enhancements of the

UUAG system:

First-class AGs We provide a translation from UUAG
to AspectAG (→ 5.3.2). AspectAG is a library of
strongly typed Attribute Grammars implemented us-
ing type-level programming. With this extension, we
can write the main part of an AG conveniently with
UUAG, and use AspectAG for (dynamic) extensions.
Our goal is to have an extensible version of the UHC.

Ordered evaluation We have implemented a variant of
Kennedy and Warren (1976) for ordered AGs. For
any absolutely non-circular AGs, this algorithm finds

a static evaluation order, which solves some of the
problems we had with an earlier approach for ordered
AGs. A static evaluation order allows the generated
code to be strict, which is important to reduce the
memory usage when dealing with large ASTs. The
generated code is purely functional, does not require
type annotations for local attributes, and the Haskell
compiler proves that the static evaluation order is
correct.

Multi-core evaluation Our algorithm for ordered AGs
identifies statically which subcomputations of chil-
dren of a production are independent and suitable
for parallel evaluation. Together with the strict eval-
uation as mentioned above, which is important when
evaluating in parallel, the generated code can auto-
matically exploit multi-core CPUs. We are currently
evaluating the effectiveness of this approach.

Stepwise evaluation In the recent past we worked on
a stepwise evaluation scheme for AGs. Using this
scheme, the evaluation of a node may yield user-
defined progress reports, and the evaluation to the
next report is considered to be an evaluation step.
By asking nodes to yield reports, we can encode the
parallel exploration of trees and encode breadth-first
search strategies.

We are currently also running a Ph.D. project that in-
vestigates incremental evaluation.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

5.3.2 AspectAG

Report by: Marcos Viera
Participants: Doaitse Swierstra, Wouter Swierstra
Status: experimental

AspectAG is a library of strongly typed Attribute
Grammars implemented using type-level programming.

Introduction

Attribute Grammars (AGs), a general-purpose formal-
ism for describing recursive computations over data
types, avoid the trade-off which arises when building
software incrementally: should it be easy to add new
data types and data type alternatives or to add new
operations on existing data types? However, AGs are
usually implemented as a pre-processor, leaving e.g.
type checking to later processing phases and making
interactive development, proper error reporting and
debugging difficult. Embedding AG into Haskell as
a combinator library solves these problems. Previ-
ous attempts at embedding AGs as a domain-specific

24

http://hackage.haskell.org/package/rss2irc
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc

language were based on extensible records and thus
exploiting Haskell’s type system to check the well-
formedness of the AG, but fell short in compactness
and the possibility to abstract over oft occurring AG
patterns. Other attempts used a very generic map-
ping for which the AG well-formedness could not be
statically checked. We present a typed embedding of
AG in Haskell satisfying all these requirements. The
key lies in using HList-like typed heterogeneous collec-
tions (extensible polymorphic records) and expressing
AG well-formedness conditions as type-level predicates
(i.e., typeclass constraints). By further type-level pro-
gramming we can also express common programming
patterns, corresponding to the typical use cases of mon-
ads such as Reader, Writer, and State. The paper
presents a realistic example of type-class-based type-
level programming in Haskell.
We have included support for local and higher-order

attributes. Furthermore, a translation from UUAG to
AspectAG is added to UUAGC as an experimental fea-
ture.

Current Status

We have recently added a combinator agMacro to pro-
vide support for “attribute grammars macros”; a mech-
anism that makes it easy to define attribute computa-
tion in terms of already existing attribute computation.

Background

The approach taken in AspectAG was proposed by
Marcos Viera, Doaitse Swierstra, and Wouter Swier-
stra in the ICFP 2009 paper “Attribute Grammars Fly
First-Class: How to do aspect oriented programming
in Haskell”.
The Attribute Grammar Macros combinator is de-

scribed in a technical report: UU-CS-2011-028.

Further reading

http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG

5.3.3 LQPL — A Quantum Programming
Language Compiler and Emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: v 0.9.0 experimental releasing in May 2012

LQPL (Linear Quantum Programming Language) is a
functional quantum programming language inspired by
Peter Selinger’s paper “Towards a Quantum Program-
ming Language”.
The LQPL system consists of a compiler, a GUI

based front end and an emulator. Compiled programs
are loaded to the emulator by the front end. LQPL
incorporates a simple module / include system (more

like C’s include than Haskell’s import), predefined uni-
tary transforms, quantum control and classical control,
algebraic data types, and operations on purely classical
data.
The largest difference since the previous release of

the package is that LQPL is now split into separate
modules. These consist of:

◦ The compiler — available at the command line and
via a TCP/IP interface.

◦ The emulator — available as a server via a TCP/IP
interface.

◦ The front end — with version 0.9, the front end is
written as a Java/Swing application, which connects
to both the compiler and the emulator via TCP/IP.
Further front ends are being contemplated.

During the modification to create these separate
modules, Hspec was used to verify the interfaces worked
as designed.
Quantum programming allows us to provide a fair

coin toss, as shown in the code example below.

qdata Coin = {Heads | Tails}‚
toss ::(; c:Coin) =‚
{ q = |0>; Had q;‚

measure q of ‚
|0> => {c = Heads}‚
|1> => {c = Tails}‚

}‚

This allows programming of probabilistic algorithms,
such as leader election.
Separation into modules is a preparatory step for im-

proving the performance of the emulator and adding
optimization features to the language.

Further reading

http://pll.cpsc.ucalgary.ca/lqpl/index.html

25

http://www.cs.nott.ac.uk/~gmh/icfp09.html
http://www.cs.uu.nl/research/techreps/UU-CS-2011-028.html
http://www.cs.uu.nl/wiki/bin/view/Center/AspectAG
http://pll.cpsc.ucalgary.ca/lqpl/index.html

6 Development Tools

6.1 Environments

6.1.1 EclipseFP

Report by: JP Moresmau
Participants: building on code from B. Scott Michel,

Alejandro Serrano, Thiago Arrais, Leif
Frenzel, Thomas ten Cate, and others

Status: stable, maintained, and actively developed

EclipseFP is a set of Eclipse plugins to allow working
on Haskell code projects. It features Cabal integra-
tion (.cabal file editor, uses Cabal settings for compi-
lation, allows the user to install Cabal packages from
within the IDE), and GHC integration. Compilation is
done via the GHC API, syntax coloring uses the GHC
Lexer. Other standard Eclipse features like code out-
line, folding, and quick fixes for common errors are
also provided. HLint suggestions can be applied in
one click. EclipseFP also allows launching GHCi ses-
sions on any module including extensive debugging fa-
cilities. It uses BuildWrapper to bridge between the
Java code for Eclipse and the Haskell APIs. It also pro-
vides a full package and module browser to navigate the
Haskell packages installed on your system, integrated
with Hackage. The source code is fully open source
(Eclipse License) on github and anyone can contribute.
Current version is 2.2.4, released in March 2012 and
supporting GHC 7.0 and above, and more versions with
additional features are planned and actively worked on.
Feedback on what is needed is welcome! The website
has information on downloading binary releases and
getting a copy of the source code. Support and bug
tracking is handled through Sourceforge forums.

Further reading

http://eclipsefp.github.com/

6.1.2 ghc-mod — Happy Haskell Programming

Report by: Kazu Yamamoto
Status: open source, actively developed

ghc-mod is a backend command to enrich Haskell pro-
gramming on editors including Emacs and Vim. The
ghc-mod package on Hackage includes the ghc-mod
command and Emacs front-end.
Emacs front-end provides the following features:

Completion You can complete a name of keyword,
module, class, function, types, language extensions,
etc.

Code template You can insert a code template ac-
cording to the position of the cursor. For instance,
“module Foo where” is inserted in the beginning of
a buffer.

Syntax check Code lines with error messages are au-
tomatically highlighted thanks to flymake. You can
display the error message of the current line in an-
other window. hlint can be used instead of GHC to
check Haskell syntax.

Document browsing You can browse the module doc-
ument of the current line either locally or on Hack-
age.

Expression type You can display the type/information
of the expression on the cursor. (new)

There are two Vim plugins:

◦ ghcmod-vim

◦ syntastic

Further reading

http://www.mew.org/~kazu/proj/ghc-mod/en/

6.1.3 HEAT: The Haskell Educational
Advancement Tool

Report by: Olaf Chitil
Status: active

A new major version of Heat has appeared, which

◦ works on top of GHCi instead of Hugs,

◦ supports automatic QuickCheck property testing,

◦ uses a simple model of updating Haskell files in place,

26

http://eclipsefp.github.com/
http://www.mew.org/~kazu/proj/ghc-mod/en/

◦ is distributed as a single jar file.

Heat is an interactive development environment
(IDE) for learning and teaching Haskell. Heat was de-
signed for novice students learning the functional pro-
gramming language Haskell. Heat provides a small
number of supporting features and is easy to use. Heat
is portable, small and works on top of a Haskell inter-
preter.
Heat provides the following features:

◦ Editor for a single module with syntax-highlighting
and matching brackets.

◦ Shows the status of compilation: non-compiled; com-
piled with or without error.

◦ Interpreter console that highlights the prompt and
error messages.

◦ If compilation yields an error, then the relevant
source line is highlighted and no further expression
can be evaluated in the console until the source has
been changed and successfully recompiled.

◦ A tree structure provides a program summary, giving
definitions of types and types of functions.

◦ Automatic checking of either Boolean or QuickCheck
properties of a program; results shown in summary.

Further reading

http://www.cs.kent.ac.uk/projects/heat/

6.1.4 HaRe — The Haskell Refactorer

Report by: Simon Thompson
Participants: Huiqing Li, Chris Brown, Claus Reinke

See: http://www.haskell.org/communities/05-2011/
html/report.html#sect5.1.5.

6.2 Documentation

6.2.1 Haddock

Report by: David Waern
Status: experimental, maintained

Haddock is a widely used documentation-generation
tool for Haskell library code. Haddock generates docu-
mentation by parsing and typechecking Haskell source
code directly and including documentation supplied
by the programmer in the form of specially-formatted
comments in the source code itself. Haddock has direct
support in Cabal (→ 6.6.1), and is used to generate the
documentation for the hierarchical libraries that come
with GHC, Hugs, and nhc98 (http://www.haskell.org/
ghc/docs/latest/html/libraries) as well as the documen-
tation on Hackage.
The latest release is version 2.9.4, released October

3 2011.

Recent changes:

◦ Support for GHC 7.2 and Alex 3.x

◦ New –qual flag for qualification of names

◦ Print doc coverage information to stdout

◦ Speed up generation of index

◦ Various bug fixes

Future plans

◦ Although Haddock understands many GHC lan-
guage extensions, we would like it to understand all
of them. Currently there are some constructs you
cannot comment, like GADTs and associated type
synonyms.

◦ Error messages is an area with room for improve-
ment. We would like Haddock to include accurate
line numbers in markup syntax errors.

◦ On the HTML rendering side we want to make more
use of Javascript in order to make the viewing expe-
rience better. The frames-mode could be improved
this way, for example.

◦ Finally, the long term plan is to split Haddock into
one program that creates data from sources, and sep-
arate backend programs that use that data via the
Haddock API. This will scale better, not requiring
adding new backends to Haddock for every tool that
needs its own format.

Further reading

◦ Haddock’s homepage: http://www.haskell.org/
haddock/

◦ Haddock’s developer Wiki and Trac: http://trac.
haskell.org/haddock

◦ Haddock’s mailing list: haddock@projects.haskell.org

6.2.2 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.

27

http://www.cs.kent.ac.uk/projects/heat/
http://www.haskell.org/communities/05-2011/html/report.html#sect5.1.5
http://www.haskell.org/communities/05-2011/html/report.html#sect5.1.5
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/ghc/docs/latest/html/libraries
http://www.haskell.org/haddock/
http://www.haskell.org/haddock/
http://trac.haskell.org/haddock
http://trac.haskell.org/haddock
haddock@projects.haskell.org

The current version is 1.17, so there has not been a
new release since the last report. Development repos-
itory and bug tracker are on GitHub. There are still
plans for a rewrite of lhs2TEX with the goal of clean-
ing up the internals and making the functionality of
lhs2TEX available as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

6.3 Testing and Analysis

6.3.1 shelltestrunner

Report by: Simon Michael
Status: stable

shelltestrunner was first released in 2009, inspired by
the test suite in John Wiegley’s ledger project. It is a
command-line tool for doing repeatable functional test-
ing of command-line programs or shell commands. It
reads simple declarative tests specifying a command,
some input, and the expected output, error output and
exit status. Tests can be run selectively, in parallel,
with a timeout, in color, and/or with differences high-
lighted.
In the last six months, shelltestrunner has had

three releases (1.0, 1.1, 1.2) and acquired a home
page. Projects using it include hledger, yesod, berp,
and eddie. shelltestrunner is free software released
under GPLv3+ from Hackage or http://joyful.com/
shelltestrunner.

Further reading

http://joyful.com/repos/shelltestrunner

6.3.2 hp2any

Report by: Patai Gergely
Status: experimental

This project was born during the 2009 Google Summer
of Code under the name “Improving space profiling ex-
perience”. The name hp2any covers a set of tools and
libraries to deal with heap profiles of Haskell programs.
At the present moment, the project consists of three
packages:

◦ hp2any-core: a library offering functions to read
heap profiles during and after run, and to perform
queries on them.

◦ hp2any-graph: an OpenGL-based live grapher that
can show the memory usage of local and remote pro-
cesses (the latter using a relay server included in the
package), and a library exposing the graphing func-
tionality to other applications.

◦ hp2any-manager: a GTK application that can dis-
play graphs of several heap profiles from earlier runs.

The project also aims at replacing hp2ps by reimple-
menting it in Haskell and possibly adding new output
formats. The manager application shall be extended
to display and compare the graphs in more ways, to
export them in other formats and also to support live
profiling right away instead of delegating that task to
hp2any-graph.
Recently, the hp2any project joined forces with

hp2pretty, which resulted in increased performance in
the core library.

Further reading

◦ http://www.haskell.org/haskellwiki/Hp2any
◦ http://code.google.com/p/hp2any/
◦ http://gitorious.org/hp2pretty

6.4 Optimization

6.4.1 HFusion

Report by: Facundo Dominguez
Participants: Alberto Pardo
Status: experimental

HFusion is an experimental tool for optimizing Haskell
programs. The tool performs source to source trans-
formations by the application of a program transfor-
mation technique called fusion. The aim of fusion is to
reduce memory management effort by eliminating the
intermediate data structures produced in function com-
positions. It is based on an algebraic approach where
functions are internally represented in terms of a recur-
sive program scheme known as hylomorphism.
We offer a web interface to test the technique on

user-supplied recursive definitions and HFusion is also
available as a library on Hackage. The last improve-
ment to HFusion has been to accept as input an expres-
sion containing any number of compositions, returning
the expression which results from applying fusion to
all of them. Compositions which cannot be handled by
HFusion are left unmodified.

In its current state, HFusion is able to fuse composi-
tions of general recursive functions, including primitive
recursive functions (like dropWhile or insertions in bi-
nary search trees), functions that make recursion over

28

http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex
http://joyful.com/shelltestrunner
http://joyful.com/shelltestrunner
http://joyful.com/repos/shelltestrunner
http://www.haskell.org/haskellwiki/Hp2any
http://code.google.com/p/hp2any/
http://gitorious.org/hp2pretty

multiple arguments like zip, zipWith or equality pred-
icates, mutually recursive functions, and (with some
limitations) functions with accumulators like foldl. In
general, HFusion is able to eliminate intermediate data
structures of regular data types (sum-of-product types
plus different forms of generalized trees).

Further reading

◦ HFusion publications: http://www.fing.edu.uy/inco/
proyectos/fusion

◦ HFusion web interface: http://www.fing.edu.uy/inco/
proyectos/fusion/tool

◦ HFusion on Hackage: http://hackage.haskell.org/
package/hfusion

6.4.2 Optimizing Generic Functions

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Andres Löh
Status: actively developed

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect8.5.4.

6.5 Code Management

6.5.1 Darcs

Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
Our most recent release, Darcs 2.5.2, was in March

2011. We are very close to releasing Darcs 2.8 (the
second release candidate is out). Some key changes
include support for GHC 7, a faster and more readable
darcs annotate, a darcs obliterate -O which can
be used to conveniently “stash” patches, hunk editing
for the darcs revert command.
Over the longer term, Darcs will emphasise three de-

velopment priorities

1. Improving code quality: this ranges from surface-
level improvements such as switching to a uninform
coding style, to deeper refactors and a move towards
a more principled separation of Darcs subsystems.

2. Supporting Darcs hosting and GUIs: we aim to pro-
vide library code that makes it easier to write hosting
sites such as Darcsden and Patch-Tag, or graphical
interfaces to Darcs. This work may potentially in-
volve writing prototype hosting code to test our li-
brary.

3. Developing the Darcs 3 theory of patches: we aim
specifically to address the conflict-resolution issues
that Darcs suffers from.

Darcs is free software licensed under the GNU GPL
(version 2 or greater). Darcs is a proud member of
the Software Freedom Conservancy, a US tax-exempt
501(c)(3) organization. We accept donations at http:
//darcs.net/donations.html.

Further reading

◦ http://darcs.net

◦ http://wiki.darcs.net/Development/Priorities

6.5.2 DarcsWatch

Report by: Joachim Breitner
Status: working

DarcsWatch is a tool to track the state of Darcs (→
6.5.1) patches that have been submitted to some
project, usually by using the darcs send command.
It allows both submitters and project maintainers to
get an overview of patches that have been submitted
but not yet applied.
DarcsWatch continues to be used by the xmonad

project (→ 7.8.2), the Darcs project itself, and a few
developers. At the time of writing, it was tracking 39
repositories and 4288 patches submitted by 234 users.

Further reading

◦ http://darcswatch.nomeata.de/
◦ http://darcs.nomeata.de/darcswatch/documentation.

html

6.5.3 darcsden

Report by: Simon Michael
Participants: Alex Suraci, Simon Michael, Scott

Lawrence, Daniel Patterson, Daniel Goran
Status: beta, low activity

http://darcsden.com is a free Darcs (→ 6.5.1) reposi-
tory hosting service, similar to patch-tag.com or (in
essence) github. The darcsden software is also avail-
able (on darcsden) so that anyone can set up a similar
service. darcsden is available under BSD license and
was created by Alex Suraci.
Alex keeps the service running and fixes bugs, but

is mostly focussed on other projects. darcsden has a

29

http://www.fing.edu.uy/inco/proyectos/fusion
http://www.fing.edu.uy/inco/proyectos/fusion
http://www.fing.edu.uy/inco/proyectos/fusion/tool
http://www.fing.edu.uy/inco/proyectos/fusion/tool
http://hackage.haskell.org/package/hfusion
http://hackage.haskell.org/package/hfusion
http://www.haskell.org/communities/11-2010/html/report.html#sect8.5.4
http://www.haskell.org/communities/11-2010/html/report.html#sect8.5.4
http://darcs.net/donations.html
http://darcs.net/donations.html
http://darcs.net
http://wiki.darcs.net/Development/Priorities
http://darcswatch.nomeata.de/
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcs.nomeata.de/darcswatch/documentation.html
http://darcsden.com

clean UI and codebase and is a viable hosting option
for smaller projects despite occasional glitches.
The last Hackage release was in 2010. Other commit-

ters have been submitting patches, and the darcsden
software is close to becoming a just-works installable
darcs web ui for general use.

Further reading

http://darcsden.com

6.5.4 darcsum

Report by: Simon Michael
Status: occasional development; suitable for daily

use

darcsum is an emacs add-on providing an efficient, pcl-
cvs-like interface for the Darcs revision control sys-
tem (→ 6.5.1). It is especially useful for reviewing and
recording pending changes.
Simon Michael took over maintainership in 2010, and

tried to make it more robust with current Darcs. The
tool remains slightly fragile, as it depends on Darcs’
exact command-line output, and needs updating when
that changes. Dave Love has contributed a large num-
ber of cleanups. darcsum is available under the GPL
version 2 or later from http://joyful.com/darcsum.
In the last six months darcsum acquired a home page,

but there has been little other activity. We are looking
for a new maintainer for this useful tool.

Further reading

http://joyful.com/darcsum/

6.5.5 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg, cabal, and cabal-dev.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.
cab now provides the “test”, “up”, “genpaths”, and

“doc” subcommands.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

6.6 Deployment

6.6.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
Hackage is a distribution point for Cabal packages.

It is an online archive of Cabal packages which can
be used via the website and client-side software such
as cabal-install. Hackage enables users to find, browse
and download Cabal packages, plus view their API doc-
umentation.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Recent progress

We have had two successful Google Summer of Code
projects on Cabal this year. Sam Anklesaria worked
on a “cabal repl” feature to launch an interactive GHCi
session with all the appropriate pre-processing and con-
text from the project’s .cabal file. Mikhail Glushenkov
worked on a feature so that “cabal install” can build
independent packages in parallel (not to be confused
with building modules within a package in parallel).
The code from both projects is available and they are
awaiting integration into the main Cabal repository,
which we expect to happen over the course of the next
few months.
The “cabal test” feature which was developed as a

GSoC project last summer has matured significantly
in the last 6 months, thanks to continuing effort from
Thomas Tuegel and Johan Tibell. The basic test inter-
face will be ready to use in the next release, and there
has been some progress on the “detailed” test interface.
The IHG is currently sponsoring some work on cabal-

install. The first fruits of this work is a new dependency
solver for cabal-install which is now included in the de-
velopment version. The new solver can find solutions in
more cases and produces more detailed error messages
when it cannot find a solution. In addition, it is better
about avoiding and warning about breaking existing in-
stalled packages. We also expect it to be a better basis
for other features in future. For more details see the
presentation by Andres Löh.
http://haskell.org/haskellwiki/

HaskellImplementorsWorkshop/2011/Loeh
The last 6 months has seen significant progress on the

new hackage-server implementation with help from
many new volunteers, in particular Max Bolingbroke,

30

http://darcsden.com
http://joyful.com/darcsum
http://joyful.com/darcsum/
http://www.mew.org/~kazu/proj/cab/en/
http://haskell.org/haskellwiki/HaskellImplementorsWorkshop/2011/Loeh
http://haskell.org/haskellwiki/HaskellImplementorsWorkshop/2011/Loeh

but also several other people who helped at hackathons
and subsequently. The IHG funded Well-Typed to im-
prove package mirroring so that continuous nearly-live
mirroring is now possible. We are also grateful to fac-
tis research GmbH who have kindly donated a VM to
help the hackage developers test the new server code.
We expect to do live mirroring and public beta testing
using this server during the next few months.

Looking forward

Users are increasingly relying on hackage and cabal-
install and are increasingly frustrated by dependency
problems. Solutions to the variety of problems do ex-
ist. It will however take sustained effort to solve them.
The good news is that there is the realistic prospect of
the new hackage-server being ready in the not too dis-
tant future with features to help monitor and encourage
package quality, and the recent work on cabal-install
should reduce the frustration level somewhat.
The last 6 months has seen a good upswing in the

number of volunteers spending their time on cabal and
hackage, so much so that a clear bottleneck is patch
review and integration bandwidth. A similar issue is
that many of the long standing bugs and feature re-
quests require significant refactoring work which many
volunteers feel reluctant or unable to do. Assistance in
these areas would be very valuable indeed.
We would like to encourage people considering con-

tributing to join the cabal-devel mailing list so that
we can increase development discussion and improve
collaboration. The bug tracker is reasonably well main-
tained and it should be relatively clear to new contrib-
utors what is in need of attention and which tasks are
considered relatively easy.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection: http://hackage.haskell.
org/

◦ Bug tracker: http://hackage.haskell.org/trac/
hackage/

6.6.2 Portackage — A Hackage Portal

Report by: Andrew G. Seniuk

Portackage (fremissant.net/portackage) is a web inter-
face to all of hackage.haskell.org, which at the time
of writing includes some 4000 packages exposing over
17000 modules. There are package and module views,
as seen in the screenshots.

The package view includes links to the package, home-
page, and bug tracker when available. Each name in
the module tree view links to the Haddock API page.
Control-hovering will show the fully-qualified name in
a tooltip.
Portackage is only a few days old; imminent further

work includes
◦ Tree branches will be collapsed by default.
◦ Cookies (as well as server DB) will maintain persis-

tent state of which nodes you have open, since this
information carries value, both in terms of cost to re-
construct manually, and of personal mnemonics — if
nodes were collapsed, you would forget where things
were, instead of having them right there filtered out.

◦ A flat list of modules with the filtering text input
field would be good, but the full list of modules is
too large for the present naïve JavaScript.

The code itself is mostly Haskell, but is still too green
to expose on Hackage.

31

http://www.haskell.org/cabal
http://hackage.haskell.org/
http://hackage.haskell.org/
http://hackage.haskell.org/trac/hackage/
http://hackage.haskell.org/trac/hackage/
fremissant.net/portackage
hackage.haskell.org

7 Libraries, Applications, Projects

7.1 Language Features

7.1.1 Conduit

Report by: Michael Snoyman
Status: experimental

While lazy I/O has served the Haskell community well
for many purposes in the past, it is not a panacea.
The inherent non-determinism with regard to resource
management can cause problems in such situations as
file serving from a high traffic web server, where the
bottleneck is the number of file descriptors available to
a process.
Left fold enumerators have been the most common

approach to dealing with streaming data with using
lazy I/O. While it is certainly a workable solution, it
requires a certain inversion of control to be applied to
code. Additionally, many people have found the con-
cept daunting. Most importantly for our purposes,
certain kinds of operations, such as interleaving data
sources and sinks, are prohibitively difficult under that
model.
The conduit package was designed as an alternate

approach to the same problem. It is based around the
concept of a cursor. In particular, we have sources
that can be pulled from and sinks that can be pushed
to. There’s nothing revolutionary there: this is the
same concept powering such low-level approaches as
file descriptor I/O. However, we have a few higher-level
facilities that make for a simpler usage:

◦ Monadic composition allows us to combine simpler
components into more complicated actions.

◦ We also have conduits (the namesake of the package),
which allow transformations of data. For example,
it’s trivial to combine a source which reads from a
file and a conduit that decompresses data.

◦ Combined with the resourcet package, we have fully
deterministic and exception safe resource handling.

The design space is still not fully resolved. The enu-
merator approach continues to be used and thrive, and
alternatives like pipes are in development as well. The
community is currently having a very healthy and lively
debate about the merits of each approach. It is likely
that we will continue to see improvements and refine-
ments.
Meanwhile, the team behind conduit feels it is ready

to be used today. The Web Application Interface
(WAI) and Yesod have both moved over to conduit,
and have experienced drastic simplification of the code

bases. Conduit has also allowed a much simplified
HTTP API in the form of http-conduit. In other words,
while the package is relatively young, it has already
proven vital for our daily workflow, and we believe that
many in the community can benefit from it already.

Further reading

◦ http://www.yesodweb.com/book/conduits
◦ https://github.com/mezzohaskell/mezzohaskell/blob/

master/chapters/libraries/conduit.md

7.1.2 Free Sections

Report by: Andrew G. Seniuk

Free sections (package freesect) extend Haskell (or
other languages) to better support partial function ap-
plication. The package can be installed from Hackage
and runs as a preprocessor. Free sections can be explic-
itly bracketed, or usually the groupings can be inferred
automatically.

zipWith (f _ $ g _ z) xs ys‚
-- context inferred‚

= zipWith _[f _ $ g _ z]_ xs ys‚
-- explicit bracketing‚

= zipWith (\ x y -> f x $ g y z) xs ys‚
-- after the rewrite‚

Free sections can be understood by their place in
a tower of generalisations, ranging from simple func-
tion application, through usual partial application, to
free sections, and to named free sections. The latter
(where _ wildcards include identifier suffixes) have the
same expressivity as a lambda function wrapper, but
the syntax is more compact and semiotic.
Although the rewrite provided by the extension is

simple, there are advantages of free sections relative to
explicitly written lambdas:
◦ lambda forces the programmer to invent fresh names

for the wildcards
◦ lambda forces the programmer to repeat those

names, and place them correctly
◦ freesect wildcards stand out vividly, indicating where

the awaited expressions will go
◦ reading the lambda requires visual pattern-matching

between left and right sides
◦ lambda is longer overall, and prefaces the expression

of interest with boilerplate
On the other hand, the lambda (or named free section)
is more powerful than the anonymous free section:

32

http://www.yesodweb.com/book/conduits
https://github.com/mezzohaskell/mezzohaskell/blob/master/chapters/libraries/conduit.md
https://github.com/mezzohaskell/mezzohaskell/blob/master/chapters/libraries/conduit.md

◦ it can achieve arbitrary permutations without further
ado; but anonymous wildcards preserve their lexical
order

◦ it is more expressive when nesting is involved, be-
cause the variables are not anonymous
Free sections (like function wrappers generally) are

especially useful in refactoring and retrofitting exisitng
code, although once familiar they can also be useful
from the ground up. Philosophically, use of this sort
of syntax promotes “higher-order programming”, since
any expression can so easily be made into a function,
in numerous ways, simply by replacing parts of it with
freesect wildcards. That this is worthwhile is demon-
strated by the frequent usefulness of sections.
The notion of free sections emanated from an en-

compassing research agenda around vagaries of lexical
syntax. Immediate plans specific to free sections in-
clude:
◦ possibly something could be prepared for academic
publication

◦ implementing the named free sections extension-
extension for completeness

◦ attempting to get it accepted into some project
(maybe some Haskell compiler) which handles pars-
ing (my code uses a fork of HSE, and divergence is
accruing)
Otherwise, pretty much a one-off which will be

deemed stable in a few months. Maybe I’ll try extend-
ing some language which lacks lambdas (or where its
lambda syntax is especially unpleasant).

Further reading

fremissant.net/freesect

7.2 Education

7.2.1 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).
In November 2010, Gerben Verburg started to

reimplement Holmes keeping only the heuristics we
figured were useful, basing that implementation on

haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, but is currently unpublished.
The tool will not be made available through Hackage,

but will be available free of use to lecturers on request.
Please contact J.Hage@uu.nl for more information.
We also have a implemented graph based that com-

putes near graph-isomorphism that seems to work re-
ally well in comparing control-flow graphs in an inex-
act fashion. However, it does not scale well enough in
terms of computations to be included in the compari-
son, and is not mature enough to deal with certain easy
refactorings.
Future work includes a Hare-against-Holmes bash in

which Hare users will do their utmost to fool Holmes.

7.2.2 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Alex Gerdes, Johan Jeuring, Josje Lodder,

Bram Schuur
Status: experimental, active development

The Ideas project (at Open Universiteit Nederland
and Utrecht University) aims at developing interac-
tive domain reasoners on various topics. These rea-
soners assist students in solving exercises incrementally
by checking intermediate steps, providing feedback on
how to continue, and detecting common mistakes. The
reasoners are based on a strategy language, from which
feedback is derived automatically. The calculation of
feedback is offered as a set of web services, enabling
external (mathematical) learning environments to use
our work. We currently have a binding with the Digital
Mathematics Environment of the Freudenthal Institute
(first/left screenshot), the ActiveMath learning system
of the DFKI and Saarland University (second/right
screenshot), and our own online exercise assistant that
supports rewriting logical expressions into disjunctive
normal form.

We are adding support for more exercise types,
mainly at the level of high school mathematics. For
example, our domain reasoner now covers simplifying
expressions with exponents, rational equations, and
derivatives. We have investigated how users can in-
terleave solving different parts of exercises. We have

33

fremissant.net/freesect

extended our strategy language with different combi-
nators for interleaving, and have shown how the in-
terleaving combinators are implemented in the parsing
framework we use for recognizing student behavior and
providing hints.
Recently, we have focused on designing the Ask-Elle

functional programming tutor. This tool lets you prac-
tice introductory functional programming exercises in
Haskell. The tutor can both guide a student towards
developing a correct program, as well as analyse in-
termediate, incomplete, programs to check whether
or not certain properties are satisfied. We are plan-
ning to include checking of program properties using
QuickCheck, for instance for the generation of coun-
terexamples. We have to guide the test-generation pro-
cess to generate test-cases that do not use the part of
the program that has yet to be developed. We also
want to make it as easy as possible for teachers to add
programming exercises to the tutor, and to adapt the
behavior of the tutor by disallowing or enforcing partic-
ular solutions, and by changing the feedback. Teachers
can adapt feedback by annotating the model solutions
of an exercise. The tutor has an improved web-interface
and is used in an introductory FP course at Utrecht
University.

The feedback services are available as a Cabal source
package. The latest release is version 1.0 from Septem-
ber 1, 2011.

Further reading

◦ Online exercise assistant (for logic), accessible from
our project page.

◦ Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive Exer-
cises. Mathematics in Computer Science, 3(3):349–
370, 2010.

◦ Bastiaan Heeren and Johan Jeuring. Interleav-
ing Strategies. Conference on Intelligent Com-
puter Mathematics, Mathematical Knowledge Man-
agement (MKM 2011).

◦ Johan Jeuring, Alex Gerdes, and Bastiaan Heeren.
A Programming Tutor for Haskell. To appear in
Lecture Notes Central European School on Func-

tional Programming, (CEFP 2011). Try our tutor
at http://ideas.cs.uu.nl/ProgTutor/.

7.3 Parsing and Transforming

7.3.1 The grammar-combinators Parser Library

Report by: Dominique Devriese
Status: partly functional

The grammar-combinators library is an experimental
parser library written in Haskell (LGPL license). The
library features much of the power of a parser generator
like Happy or ANTLR, but with the library approach
and most of the benefits of a parser combinator library.
The project’s initial release was in September 2010.

A paper about the main idea has been presented at
the PADL’11 conference and an accompanying techni-
cal report with more implementation details is available
online. The library is published on Hackage under the
name grammar-combinators.
The library works with an explicit, typed represen-

tation of non-terminals, allowing fundamentally more
powerful grammar algorithms, including various gram-
mar analysis, transformation and pretty-printing li-
braries etc. A disadvantage is that higher-order com-
binators modelling recursive concepts like many and
some require more work to write. The library is cur-
rently not yet suited for mainstream use. Performance
is not ideal and many real-world features are missing.
People interested to work on these topics are very wel-
come to contact us!

Further reading

http://projects.haskell.org/grammar-combinators/

7.3.2 epub-metadata

Report by: Dino Morelli
Status: stable, actively developed

See: http://www.haskell.org/communities/05-2011/
html/report.html#sect6.2.4.

7.3.3 Utrecht Parser Combinator Library:
uu-parsinglib

Report by: Doaitse Swierstra
Status: actively developed

The previous extension for recognizing merging parsers
was generalized so now any kind of applicative and
monadic parsers can be merged in an interleaved way.
As an example take the situation where many different
programs write log entries into a log file, and where
each log entry is uniquely identified by a transaction

34

http://ideas.cs.uu.nl/ProgTutor/
http://ideas.cs.uu.nl/ProgTutor/
http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/www
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/InterleavingStrategies.html
http://www.open.ou.nl/bhr/InterleavingStrategies.html
http://www.staff.science.uu.nl/~jeuri101/homepage/Publications/CEFP/
http://ideas.cs.uu.nl/ProgTutor/
http://projects.haskell.org/grammar-combinators/
http://www.haskell.org/communities/05-2011/html/report.html#sect6.2.4
http://www.haskell.org/communities/05-2011/html/report.html#sect6.2.4

number (or process number) which can be used to dis-
tinguish them. E.g., assume that each transaction con-
sists of an a, a b and a c action, and that a digit is
used to identify the individual actions belonging to the
same transaction; the individual transactions can now
be recognized by the parser:

pABC = do d ← mkGram (pa ∗> pDigit)
mkGram (pb ∗> pSym d)
∗>mkGram (pc ∗> pSym d)

Now running many merged instances of this parser on
the input returns the list of numbers, each identifying
an occurrence of an "abc" subsequence:

run (pmMany(pABC)) "a2a1b1b2c2a3b3c1c3"‚
Result: "213"‚

Furthermore the library was provided with many
more examples in two modules in the Demo directory.

Features

◦ Much simpler internals than the old li-
brary (http://haskell.org/communities/05-2009/
html/report.html#sect5.5.8).

◦ Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the in-
put and provide excellent error messages. As such
they are “surprise free” when used by people not fully
aware of their internal workings.

◦ Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

◦ The library basically provides the to be preferred ap-
plicative interface and a monadic interface where this
is really needed (which is hardly ever).

◦ No need for try-like constructs which makes writing
Parsec based parsers tricky.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Parsers can be run in an interleaved way, thus gen-
eralizing the merging and permuting parsers into a
single applicative interface. This makes it e.g. pos-
sible to deal with white space or comments in the
input in a completely separate way, without having
to think about this in the parser for the language
at hand (provided of course that white space is not
syntactically relevant).

Future plans

Since the part dealing with merging is relatively inde-
pendent of the underlying parsing machinery we may
split this off into a separate package. This will enable
us also to make use of a different parsing engines when

combining parsers in a much more dynamic way. In
such cases we want to avoid too many static analyses.
Future versions will contain a check for grammars

being not left-recursive, thus taking away the only re-
maining source of surprises when using parser combi-
nator libraries. This makes the library even greater
for use teaching environments. Future versions of the
library, using even more abstract interpretation, will
make use of computed look-ahead information to speed
up the parsing process further.
Students are working on a package for processing

options which makes use of the merging parsers, so that
the various options can be set in a flexible but typeful
way.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉. There is a
low volume, moderated mailing list which was moved
to 〈parsing@lists.science.uu.nl〉 (see also http://www.cs.
uu.nl/wiki/bin/view/HUT/ParserCombinators).

7.3.4 Regular Expression Matching with Partial
Derivatives

Report by: Martin Sulzmann
Participants: Kenny Zhuo Ming Lu
Status: stable

We are still improving the performance of our matching
algorithms. The latest implementation can be down-
loaded via hackage.

Further reading

◦ http://hackage.haskell.org/package/regex-pderiv
◦ http://sulzmann.blogspot.com/2010/04/

regular-expression-matching-using.html

7.3.5 regex-applicative

Report by: Roman Cheplyaka
Status: active development

regex-applicative is aimed to be an efficient and easy
to use parsing combinator library for Haskell based on
regular expressions.
There are several ways in which one can specify what

part of the string should be matched: the whole string,
a prefix or an arbitrary part (“leftmost infix”) of the
string.
Additionally, for prefix and infix modes, one can de-

mand either the longest part, the shortest part or the
first (in the left-biased ordering) part.
Finally, other things being equal, submatches are

chosen using left bias.

35

http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
http://haskell.org/communities/05-2009/html/report.html#sect5.5.8
mailto: doaitse at swierstra.net
mailto: parsing at lists.science.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://hackage.haskell.org/package/regex-pderiv
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html
http://sulzmann.blogspot.com/2010/04/regular-expression-matching-using.html

Recently the performance has been improved by us-
ing more efficient algorithm for the parts of the regular
expression whose result is not used.
Example code can be found on the wiki.

Further reading

◦ http://hackage.haskell.org/package/regex-applicative
◦ http://github.com/feuerbach/regex-applicative

7.4 Generic and Type-Level Programming

7.4.1 Unbound

Report by: Brent Yorgey
Participants: Stephanie Weirich, Tim Sheard
Status: actively maintained

Unbound is a domain-specific language and library for
working with binding structure. Implemented on top
of the RepLib generic programming framework, it au-
tomatically provides operations such as alpha equiv-
alence, capture-avoiding substitution, and free vari-
able calculation for user-defined data types (including
GADTs), requiring only a tiny bit of boilerplate on the
part of the user. It features a simple yet rich combina-
tor language for binding specifications, including sup-
port for pattern binding, type annotations, recursive
binding, nested binding, set-like (unordered) binders,
and multiple atom types.

Further reading

◦ http://byorgey.wordpress.com/2011/08/24/
unbound-now-supports-set-binders-and-gadts/

◦ http://byorgey.wordpress.com/2011/03/28/
binders-unbound/

◦ http://hackage.haskell.org/package/unbound
◦ http://code.google.com/p/replib/

7.4.2 FlexiWrap

Report by: Iain Alexander
Status: experimental

A library of flexible newtype wrappers which simplify
the process of selecting appropriate typeclass instances,
which is particularly useful for composed types.
Version 0.1.0 has been released on Hackage, provid-

ing support for a more comprehensive range of type-
classes when wrapping simple values, and some docu-
mentation. Work is still ongoing to flesh out the type-
class instances available and improve the documenta-
tion.

7.4.3 Generic Programming at Utrecht University

Report by: José Pedro Magalhães
Participants: Johan Jeuring, Sean Leather
Status: actively developed

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect8.5.3.

7.4.4 A Generic Deriving Mechanism for Haskell

Report by: José Pedro Magalhães
Participants: Atze Dĳkstra, Johan Jeuring, Andres Löh,

Simon Peyton Jones
Status: actively developed

Haskell’s deriving mechanism supports the automatic
generation of instances for a number of functions. The
Haskell 98 Report only specifies how to generate in-
stances for the Eq, Ord, Enum, Bounded, Show, and
Read classes. The description of how to generate in-
stances is largely informal. As a consequence, the
portability of instances across different compilers is not
guaranteed. Additionally, the generation of instances
imposes restrictions on the shape of datatypes, depend-
ing on the particular class to derive.
We have developed a new approach to Haskell’s

deriving mechanism, which allows users to specify
how to derive arbitrary class instances using standard
datatype-generic programming techniques. Generic
functions, including the methods from six standard
Haskell 98 derivable classes, can be specified entirely
within Haskell, making them more lightweight and
portable.
We have implemented our deriving mechanism to-

gether with many new derivable classes in UHC (→ 3.3)
and GHC. The implementation in GHC has a more con-
venient syntax; consider enumeration:

class GEnum a where
genum :: [a]
default genum :: (Representable a,

Enum′ (Rep a))
⇒ [a]

genum = map to enum′

The Enum′ and GEnum classes are defined by the
generic library writer. The end user can then give in-
stances for his/her datatypes without defining an im-
plementation:

instance (GEnum a)⇒ GEnum (Maybe a)
instance (GEnum a)⇒ GEnum [a]

These instances are empty, and therefore use the
(generic) default implementation. This is as convenient
as writing deriving clauses, but allows defining more
generic classes. This implementation relies on the new
functionality of default signatures, like in genum above,
which are like standard default methods but allow for
a different type signature.

36

https://github.com/feuerbach/regex-applicative/wiki/Examples
http://hackage.haskell.org/package/regex-applicative
http://github.com/feuerbach/regex-applicative
http://byorgey.wordpress.com/2011/08/24/unbound-now-supports-set-binders-and-gadts/
http://byorgey.wordpress.com/2011/08/24/unbound-now-supports-set-binders-and-gadts/
http://byorgey.wordpress.com/2011/03/28/binders-unbound/
http://byorgey.wordpress.com/2011/03/28/binders-unbound/
http://hackage.haskell.org/package/unbound
http://code.google.com/p/replib/
http://www.haskell.org/communities/11-2010/html/report.html#sect8.5.3
http://www.haskell.org/communities/11-2010/html/report.html#sect8.5.3
http://www.haskell.org/ghc/docs/latest/html/users_guide/generic-programming.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/type-class-extensions.html#class-default-signatures

Further reading

http://www.haskell.org/haskellwiki/Generics

7.5 Proof Assistants and Reasoning

7.5.1 HERMIT

Report by: Andy Gill
Participants: Andy Gill, Andrew Farmer, Ed Komp, Neil

Sculthorpe
Status: active

The Haskell Equational Reasoning Model-to-
Implementation Tunnel (HERMIT) is an NSF-funded
project being run at KU (→ 9.11), which aims to
improve the applicability of Haskell-hosted Semi-
Formal Models to High Assurance Development.
Specifically, HERMIT will use: a Haskell-hosted DSL;
the Worker/Wrapper Transformation; and a new
refinement user interface to perform rewrites directly
on Haskell Core, the GHC internal representation.
This project is a substantial case study of the ap-

plication of Worker/Wrapper on larger examples. In
particular, we want to demonstrate the equivalences
between efficient Haskell programs, and their clear
specification-style Haskell counterparts. In doing so
there are several open problems, including refinement
scripting and management scaling issues, data repre-
sentation and presentation challenges, and understand-
ing the theoretical boundaries of the worker/wrapper
transformation.
The project started in Spring 2012, and is ex-

pected to run for two years. Neil Sculthorpe,
who got his PhD from the University of Notting-
ham in 2011, has joined as a senior member of
the project, and Andrew Farmer and Ed Komp
round out the team. We have already reworked
the KURE DSL (http://www.haskell.org/communities/
11-2008/html/report.html#sect5.5.7) as the basis of our
rewrite capabilities, and constructed the rewrite kernel.
The entire system uses the GHC plugin architecture,
and we have small examples successfully being trans-
formed through a simple REPL. A web-based API is
being constructed, and an Android version is planned.
We aim to write up a detailed introduction of our ar-
chitecture and implementation for the Haskell Sympo-
sium.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT

7.5.2 Automated Termination Analyzer for Haskell

Report by: Jürgen Giesl
Participants: Matthias Raffelsieper, Peter

Schneider-Kamp, Stephan Swiderski, René
Thiemann

Status: actively developed

See: http://www.haskell.org/communities/05-2011/
html/report.html#sect7.6.1.

7.5.3 HTab

Report by: Guillaume Hoffmann
Status: active development

HTab is an automated theorem prover for hybrid log-
ics based on a tableau calculus. It handles hybrid logic
with nominals, satisfaction operators, converse modal-
ities, universal modalities, the down-arrow binder, and
role inclusion.
Main changes of version 1.6.0 are the switch to a bet-

ter blocking mechanism called pattern-based blocking,
and general effort to reduce and clean up the source
code (removing some features in the process) to facili-
tate further experiments.
It is available on Hackage and comes with sample

formulas to illustrate its input format.

Further reading

http://code.google.com/p/intohylo/

7.5.4 Free Theorems for Haskell

Report by: Janis Voigtländer
Participants: Daniel Seidel

Free theorems are statements about program behav-
ior derived from (polymorphic) types. Their origin is
the polymorphic lambda-calculus, but they have also
been applied to programs in more realistic languages
like Haskell. Since there is a semantic gap between the
original calculus and modern functional languages, the
underlying theory (of relational parametricity) needs to
be refined and extended. We aim to provide such new
theoretical foundations, as well as to apply the theoret-
ical results to practical problems. The research grant
that sponsored Daniel’s position has been extended for
another round of funding. However, currently we are
both consumed by teaching the (by local definition, im-
perative) programming intro course here at U Bonn, in
C (yes, in C), plus an advanced functional program-
ming course, in Haskell.
On the practical side, we maintain a library and tools

for generating free theorems from Haskell types, orig-
inally implemented by Sascha Böhme and with con-
tributions from Joachim Breitner and now Matthias
Bartsch. Both the library and a shell-based tool are
available from Hackage (as free-theorems and ftshell,

37

http://www.haskell.org/haskellwiki/Generics
http://www.haskell.org/communities/11-2008/html/report.html#sect5.5.7
http://www.haskell.org/communities/11-2008/html/report.html#sect5.5.7
http://www.ittc.ku.edu/csdl/fpg/Tools/HERMIT
http://www.haskell.org/communities/05-2011/html/report.html#sect7.6.1
http://www.haskell.org/communities/05-2011/html/report.html#sect7.6.1
http://code.google.com/p/intohylo/

respectively). There is also a web-based tool at http:
//www-ps.iai.uni-bonn.de/ft/. Features include:
◦ three different language subsets to choose from
◦ equational as well as inequational free theorems
◦ relational free theorems as well as specializations

down to function level
◦ support for algebraic data types, type synonyms and

renamings, type classes
◦ plain text, LATEX source, PDF, and inline graphics

output with nicely typeset theorems

Further reading

http://www.iai.uni-bonn.de/~jv/ft-project/

7.5.5 Streaming Component Combinators

Report by: Mario Blažević
Status: experimental, actively developed

See: http://www.haskell.org/communities/11-2010/
html/report.html#sect9.6.5.

7.5.6 Swish

Report by: Douglas Burke
Participants: Graham Klyne, Vasili I Galchin
Status: experimental

Swish is a framework for performing deductions in
RDF data using a variety of techniques. Swish is con-
ceived as a toolkit for experimenting with RDF infer-
ence, and for implementing stand-alone RDF file pro-
cessors (usable in similar style to CWM, but with a
view to being extensible in declarative style through
added Haskell function and data value declarations).
It explores Haskell as “a scripting language for the Se-
mantic Web”, is a work-in-progress, and currently in-
corporates:
◦ Support for Turtle, Notation3, and NTriples formats.
◦ RDF graph isomorphism testing and merging.
◦ Display of differences between RDF graphs.
◦ Inference operations in forward chaining, backward

chaining and proof-checking modes.
◦ Simple Horn-style rule implementations, extendable

through variable binding modifiers and filters.
◦ Class restriction rule implementation, primarily for

datatype inferences.
◦ RDF formal semantics entailment rule implementa-

tion.
◦ Complete, ready-to-run, command-line and script-

driven programs.

Current Work

A number of incremental changes have been made to
the code base, including support for version 7.2 of GHC
and some minor optimisations. A parser and formatter
for the Turtle format were added, the API changed
to use the Text datatype where appropriate, and the

vocabulary module was extended to include terms from
the Dublin Core, FOAF, Geo and SIOC vocabularies.

Future plans

Continue the clean up and replacement of code with
packages from Hacakge. Look for commonalities with
the other existing RDF Haskell package, rdf4h. Com-
munity input — whether it be patches, new code or
just feature requests — are more than welcome.

Further reading

◦ https://bitbucket.org/doug_burke/swish/
◦ http://www.ninebynine.org/RDFNotes/Swish/Intro.

html
◦ http://protempore.net/rdf4h/

7.6 Mathematical Objects

7.6.1 normaldistribution: Minimum Fuss Normally
Distributed Random Values

Report by: Björn Buckwalter
Status: stable

Normaldistribution is a new package that lets you pro-
duce normally distributed random values with a mini-
mum of fuss. The API builds upon, and is largely anal-
ogous to, that of the Haskell 98 Random module (more
recently System.Random). Usage can be as simple as:

sample ← normalIO

For more information and examples see the package
description on Hackage.

Further reading

http://hackage.haskell.org/package/normaldistribution

7.6.2 dimensional: Statically Checked Physical
Dimensions

Report by: Björn Buckwalter
Status: active, stable core with experimental extras

Dimensional is a library providing data types for per-
forming arithmetics with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage within
the frame of the SI. Example:

d :: Fractional a ⇒ Time a → Length a
d t = a /_2 ∗ t ˆ pos2

where a = 9.82 ∗˜ (meter / second ˆ pos2)

38

http://www-ps.iai.uni-bonn.de/ft/
http://www-ps.iai.uni-bonn.de/ft/
http://www.iai.uni-bonn.de/~jv/ft-project/
http://www.haskell.org/communities/11-2010/html/report.html#sect9.6.5
http://www.haskell.org/communities/11-2010/html/report.html#sect9.6.5
https://bitbucket.org/doug_burke/swish/
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://www.ninebynine.org/RDFNotes/Swish/Intro.html
http://protempore.net/rdf4h/
http://hackage.haskell.org/package/normaldistribution

The dimensional library is stable with units being
added on an as-needed basis. The primary documen-
tation is the literate Haskell source code. The wiki on
the project web site has several usage examples to help
with getting started.
Ongoing experimental work includes:

◦ Support for user-defined dimensions and a proof-of-
concept implementation of the CGS system of units.

◦ dimensional-vectors — a rudimentary linear algebra
library which statically tracks the sizes of vectors
and matrices as well as the physical dimensions of
their elements on a per element basis, disallowing
non-sensical operations. This library makes it very
difficult to accidentally implement, e.g., a Kalman
filter incorrectly. My work on dimensional-vectors is
need-driven and tends to occur in spurts.

◦ dimensional-experimental — a library in heavy flux
of which the most interesting feature is probably au-
tomatic differentiation of functions involving physi-
cal quantities. Example:

v :: Fractional a ⇒ Time a → Velocity a
v t = diff d t

◦ dimensional-tf — dimensional was originally imple-
mented using functional dependencies but in January
2012 a port using type families was released. For the
time being dimensional-tf is considered experimental
but if it eventually proves itself to be a better dimen-
sional it will be merged into the latter with a major
version bump.

The core library, dimensional, as well as dimensional-
tf, can be installed off Hackage using cabal. The other
experimental packages can be cloned off of Github.
Dimensional relies on numtype for type-level integers

(e.g., pos2 in the above example), ad for automatic dif-
ferentiation, and HList (→ 7.7.1) for type-level vector
and matrix representations.

Further reading

◦ http://dimensional.googlecode.com
◦ https://github.com/bjornbm/dimensional-vectors
◦ https://github.com/bjornbm/

dimensional-experimental
◦ http://flygdynamikern.blogspot.com/2012/02/

announce-dimensional-tf-010-statically.html

7.6.3 AERN

Report by: Michal Konečný
Participants: Jan Duracz
Status: experimental, actively developed

AERN stands for Approximating Exact Real Numbers.
We are developing a family of libraries that will provide:

◦ a reliable and fast arbitrary precision correctly
rounded interval arithmetic, including both stan-
dard and inverted intervals with Kaucher arithmetic

◦ arbitrary precision arithmetic of polynomial inter-
vals (similar to but more general than Taylor Mod-
els) to
– automatically reduce overestimations in inter-

val computations
– efficiently support validated numerical integra-

tion, specifically in the simulation of ordinary
differential equation (ODE) and hybrid system
initial value problems (IVPs)

– automatically decide many inequalities and in-
terval inclusions with non-linear and elementary
functions that occur in numerical theorem prov-
ing and, specifically, in the verification of nu-
merical programs

◦ a type class hierarchy for validated and exact com-
putation, featuring
– standard mathematical structures such as

posets and lattices extended to take account of
rounding errors and partially decided relations
such as equality

– both numerical order and interval refinement
order

– ability to increase computational effort to re-
duce the effect of rounding and partiality, con-
verging to exact operations and total relations
as effort approaches infinity

– extensive set of QuickCheck properties for each
type class, enabling automatic checking of, e.g.,
algebraic properties such as associativity, ex-
tended to take account of rounding

◦ tools for interactive plotting of univariate function
enclosures (see figure below for a screenshot of an
early prototype)

◦ a framework for distributed query-driven lazy
dataflow validated numerical computation with de-
notational exact semantics based on Domain Theory

39

http://dimensional.googlecode.com
https://github.com/bjornbm/dimensional-vectors
https://github.com/bjornbm/dimensional-experimental
https://github.com/bjornbm/dimensional-experimental
http://flygdynamikern.blogspot.com/2012/02/announce-dimensional-tf-010-statically.html
http://flygdynamikern.blogspot.com/2012/02/announce-dimensional-tf-010-statically.html

There are stable older versions of the libraries on
Hackage but these lack the type classes described
above.
We are still in the process of redesigning and rewrit-

ing the libraries. Out of the newly designed code, we
have so far released libraries featuring

◦ the type classes for approximate real number opera-
tions

◦ correctly rounded real interval arithmetic with Dou-
ble endpoints

A release of interval arithmetic with MPFR end-
points is planned in Summer 2012 despite the fact that
currently one has to recompile GHC to use MPFR
safely.
We have made progress on implementing polynomial

intervals and plan to release a Haskell-only implemen-
tation in Summer 2012. The development files include
demos that solve selected ODE and hybrid system IVPs
using polynomial intervals.
All AERN development is open and we welcome con-

tributions and new developers.

Further reading

http://code.google.com/p/aern/

7.6.4 Paraiso

Report by: Takayuki Muranushi
Status: active development

Paraiso is a domain-specific language (DSL) embed-
ded in Haskell, aimed at generating explicit type of
partial differential equations solving programs, for ac-
celerated and/or distributed computers. Equations for
fluids, plasma, general relativity, and many more falls
into this category. This is still a tiny domain for a com-
puter scientist, but large enough that an astrophysicist
(I am) might spend even his entire life in it.
In Paraiso we can describe equation-solving algo-

rithms in mathematical, simple notation using builder
monads. At the moment it can generate programs for
multicore CPUs as well as single GPU, and tune their
performance via automated benchmarking and genetic
algorithms. The first set of experiment have been per-
formed and published as a paper (http://arxiv.org/abs/
1204.4779), accepted to Computational Science & Dis-
covery.
Anyone can get Paraiso from hackage (http://

hackage.haskell.org/package/Paraiso) or github (https:
//github.com/nushio3/Paraiso).

Further reading

http://paraiso-lang.org/wiki/

7.6.5 Bullet

Report by: Csaba Hruska
Status: experimental, active development

Bullet is a professional open source multi-threaded 3D
Collision Detection and Rigid Body Dynamics Library
written in C++. It is free for commercial use under
the zlib license. The Haskell bindings ship their own
(auto-generated) C compatibility layer, so the library
can be used without modifications. The Haskell bind-
ing provides a low level API to access Bullet C++ class
methods. Some bullet classes (Vector, Quaternion, Ma-
trix, Transform) have their own Haskell representation,
others are binded as class pointers. The Haskell API
provides access to some advanced features, like con-
straints, vehicle and more.
At the current state of the project most common

services are accessible from Haskell, i.e., you can load
collision shapes and step the simulation, define con-
straints, create raycast vehicle, etc. More advanced
Bullet features (soft body simulation, Multithread and
GPU constaint solver, etc.) will be added later.
Currently we are developing a new high level FRP

based API, which is built top of Bullet.Raw module
using the Elerea library.

Further reading

http://www.haskell.org/haskellwiki/Bullet

7.7 Data Types and Data Structures

7.7.1 HList — A Library for Typed Heterogeneous
Collections

Report by: Oleg Kiselyov
Participants: Ralf Lämmel, Keean Schupke, Gwern

Branwen

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host
of various construction, look-up, filtering, and iteration

40

http://code.google.com/p/aern/
http://arxiv.org/abs/1204.4779
http://arxiv.org/abs/1204.4779
http://hackage.haskell.org/package/Paraiso
http://hackage.haskell.org/package/Paraiso
https://github.com/nushio3/Paraiso
https://github.com/nushio3/Paraiso
http://paraiso-lang.org/wiki/
http://www.haskell.org/haskellwiki/Bullet

primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).
An immediate application of HLists is the imple-

mentation of open, extensible records with first-class,
reusable, and compile-time only labels. The dual
application is extensible polymorphic variants (open
unions). HList contains several implementations of
open records, including records as sequences of field
values, where the type of each field is annotated with
its phantom label. We and others have also used HList
for type-safe database access in Haskell. HList-based
Records form the basis of OOHaskell. The HList li-
brary relies on common extensions of Haskell 2010.
HList is being used in AspectAG (→ 5.3.2), typed
EDSL of attribute grammars, and in HaskellDB.
The October 2011 version of HList library has many

changes, mainly related to deprecating TypeCast (in fa-
vor of ~) and getting rid of overlapping instances. The
only use of OverlappingInstances is in the implementa-
tion of the generic type equality predicate TypeEq. We
plan to remove even that remaining single occurrence.
The code works with GHC 7.0.4.
Future plans include the implementation of TypeEq

without resorting to overlapping instances (so, HList
will be overlapping-free), and moving towards type
functions and expressive kinds.

Further reading

◦ HList: http://okmĳ.org/ftp/Haskell/types.html#
HList

◦ OOHaskell: http://homepages.cwi.nl/~ralf/
OOHaskell/

7.7.2 Persistent

Report by: Greg Weber
Participants: Michael Snoyman, Felipe Lessa
Status: stable

Persistent is a type-safe data store interface for Haskell.
Haskell has many different database bindings avail-
able. However, most of these have little knowledge
of a schema and therefore do not provide useful static
guarantees. Persistent is designed to work across differ-
ent databases, and works on Sqlite, PostgreSQL, Mon-
goDB, and MySQL. MySQL is a new edition since the
last HCAR, thanks to Felipe Lessa.
Since the last report, Persistent has been struc-

tured into separate type-classes. There is one for
storage/serialization, and one for querying. This
means that anyone wanting to create database ab-
stractions can re-use the battle-testsed persistent stor-

age/serialization layer. Persistent’s query layer is uni-
versal across different backends and uses combinators:

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones"] []

There are some drawbacks to the query layer: it
doesn’t cover every use case. Since the last HCAR
report, Persistent has gained some very good support
for raw SQL. One can run arbitrary SQL queries and
get back Haskell records or types for single columns.
Persistent also gained the ability to store embedded

objects. One can store a list or a Map inside a col-
umn/field. The current implementation is most useful
for MongoDB. In SQL an embedded object is stored as
JSON.

Future plans

Future directions for Persistent:
◦ Full CouchDB support
◦ A MongoDB specific query layer
◦ Adding key-value databases like Redis without a

query layer.
Most of Persistent development occurs within the

Yesod (→ 5.2.6) community. However, there is nothing
specific to Yesod about it. You can have a type-safe,
productive way to store data, even on a project that
has nothing to do with web development.

Further reading

http://yesodweb.com/book/persistent

7.7.3 DSH — Database Supported Haskell

Report by: Torsten Grust
Participants: George Giorgidze, Tom Schreiber,

Alexander Ulrich, Jeroen Weĳers
Status: active development

Database-Supported Haskell, DSH for short, is a
Haskell library for database-supported program execu-
tion. Using the DSH library, a relational database man-
agement system (RDBMS) can be used as a coprocessor
for the Haskell programming language, especially for
those program fragments that carry out data-intensive
and data-parallel computations. Rather than embed-
ding a relational language into Haskell, DSH turns id-
iomatic Haskell programs into SQL queries. The DSH
library and the FerryCore package it uses are available
on Hackage (http://hackage.haskell.org/package/DSH).
DSH in the Real World. We have used DSH for
large scale data analysis. Specifically, in collaboration

41

http://okmij.org/ftp/Haskell/types.html#HList
http://okmij.org/ftp/Haskell/types.html#HList
http://homepages.cwi.nl/~ralf/OOHaskell/
http://homepages.cwi.nl/~ralf/OOHaskell/
http://yesodweb.com/book/persistent

with researchers working in social and economic sci-
ences, we used DSH to analyse the entire history of
Wikipedia (terabytes of data) and a number of online
forum discussions (gigabytes of data).
Because of the scale of the data, it would be unthink-

able to conduct the data analysis in Haskell without
using the database-supported program execution tech-
nology featured in DSH. We have formulated several
DSH queries directly in SQL as well and found that
the equivalent DSH queries were much more concise,
easier to write and maintain (mostly due to DSH’s sup-
port for nesting, Haskell’s abstraction facilities and the
monad comprehension notation, see below).
One long-term goal is to allow researchers who are

not necessarily expert programmers or database engi-
neers to conduct large scale data analysis themselves.
Support for arbitrary data types. In Haskell, the
creation of new data types using data provides the
means to model user-defined objects. We are currently
working on support for arbitrary data types in DSH
such that these user-defined types may be queried just
like the supported built-in Haskell types. This work
rests on GHC’s new generic deriving mechanism.
Towards a New Compilation Strategy. As of to-
day, DSH relies on a query compilation strategy coined
loop-lifting. Loop-lifting comes with important and de-
sirable properties (e.g., the number of SQL queries is-
sued for a given DSH program only depends on the
static type of the program’s result). The strategy, how-
ever, relies on a rather complex and monolithic map-
ping of programs to the relational algebra. To remedy
this, we are currently exploring a new strategy based
on the flattening transformation as conceived by Guy
Blelloch. Originally designed to implement the data-
parallel declarative language NESL, we revisit flatten-
ing in the context of query compilation (which targets
database kernels, one particular kind of data-parallel
execution environment). Initial results are promising
and DSH might switch over in the not too far future.
We hope to further improve query quality and also
address the formal correctness of DSH’s program-to-
queries mapping.
Related Work. Motivated by DSH we reintroduced
the monad comprehension notation into GHC and also
extended it for parallel and SQL-like comprehensions.
The extension is available in GHC 7.2.

Further reading

http://db.inf.uni-tuebingen.de/research/dsh

7.8 User Interfaces

7.8.1 Gtk2Hs

Report by: Daniel Wagner
Participants: Axel Simon, Duncan Coutts, Andy

Stewart, and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.
Gtk2Hs features:

◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support

◦ High quality vector graphics using Cairo

◦ Extensive reference documentation

◦ An implementation of the “Haskell School of Expres-
sion” graphics API

◦ Bindings to many other libraries that build on Gtk:
gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit

The most recent 0.12.3 release widens the variety of
ecosystems that can build Gtk2Hs by supporting GHC
7.4 and improving the Windows support, includes bind-
ings to a few overlooked Gtk behaviors for restoring
widget properties to their defaults, and sports various
additional bugfixes and documentation improvements.

Further reading

◦ News and downloads: http://haskell.org/gtk2hs/
◦ Development version: darcs get http://code.

haskell.org/gtk2hs/

7.8.2 xmonad

Report by: Gwern Branwen
Status: active development

XMonad is a tiling window manager for X. Windows
are arranged automatically to tile the screen without
gaps or overlap, maximizing screen use. Window man-
ager features are accessible from the keyboard; a mouse

42

http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/

is optional. XMonad is written, configured, and exten-
sible in Haskell. Custom layout algorithms, key bind-
ings, and other extensions may be written by the user
in config files. Layouts are applied dynamically, and
different layouts may be used on each workspace. Xin-
erama is fully supported, allowing windows to be tiled
on several physical screens.
Development since the last report has continued;

XMonad founder Don Stewart has stepped down and
Adam Vogt is the new maintainer. After gestating for
2 years, version 0.10 has been released, with simulta-
neous releases of the XMonadContrib library of cus-
tomizations (which has now grown to no less than 216
modules encompassing a dizzying array of features) and
the xmonad-extras package of extensions,
Details of changes between releases can be found in

the release notes:
◦ http://haskell.org/haskellwiki/Xmonad/Notable_
changes_since_0.8

◦ http://haskell.org/haskellwiki/Xmonad/Notable_
changes_since_0.9

◦ the Darcs repositories have been upgraded to the
hashed format

◦ XMonad.Config.PlainConfig allows writing configs in
a more ’normal’ style, and not raw Haskell

◦ Supports using local modules in xmonad.hs;
for example: to use definitions from
/̃.xmonad/lib/XMonad/Stack/MyAdditions.hs

◦ xmonad –restart CLI option
◦ xmonad –replace CLI option
◦ XMonad.Prompt now has customizable keymaps
◦ Actions.GridSelect - a GUI menu for selecting win-

dows or workspaces & substring search on window
names

◦ Actions.OnScreen
◦ Extensions now can have state
◦ Actions.SpawnOn - uses state to spawn applications

on the workspace the user was originally on, and not
where the user happens to be

◦ Markdown manpages and not man/troff
◦ XMonad.Layout.ImageButtonDecoration &

XMonad.Util.Image
◦ XMonad.Layout.Groups
◦ XMonad.Layout.ZoomRow
◦ XMonad.Layout.Renamed
◦ XMonad.Layout.Drawer
◦ XMonad.Layout.FullScreen
◦ XMonad.Hooks.ScreenCorners
◦ XMonad.Actions.DynamicWorkspaceOrder
◦ XMonad.Actions.WorkspaceNames
◦ XMonad.Actions.DynamicWorkspaceGroups
Binary packages of XMonad and XMonadContrib

are available for all major Linux distributions.

Further reading

◦ Homepage: http://xmonad.org/
◦ Darcs source:

darcs get http://code.haskell.org/xmonad
◦ IRC channel: #xmonad @@ irc.freenode.org
◦ Mailing list: 〈xmonad@haskell.org〉

7.9 Functional Reactive Programming

7.9.1 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a practical library for functional
reactive programming (FRP).
FRP offers an elegant and concise way to express

interactive programs such as graphical user interfaces,
animations, computer music or robot controllers. It
promises to avoid the spaghetti code that is all too com-
mon in traditional approaches to GUI programming.
The goal of the library is to provide a solid founda-

tion.

◦ Users can finally use FRP to program graphical user
interfaces as the library can be hooked into any
existing event-based framework like wxHaskell or
Gtk2Hs. A plethora of example code helps with get-
ting started. You can mix FRP and imperative style.
If you don’t know how to express functionality in
terms of FRP, just temporarily switch back to the
imperative style.

◦ Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

◦ It features an efficient implementation. No more
spooky time leaks, predicting space & time usage
should be straightforward.

Status. Version 0.6.0.0 of the reactive-banana library
will shortly be released on Hackage. It provides a solid
push-based implementation.
Compared to the previous report, the API has been

refined, making the library ever more pleasant to use.
The internals have been rewritten completely to pre-
pare for the introduction of dynamic event switching
in a future version.
Also, I have been approached by Mathĳs Kwik who

desired to use functional reactive programming in con-
junction with the JavaScript backend of the Utrecht

43

http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.8
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://haskell.org/haskellwiki/Xmonad/Notable_changes_since_0.9
http://xmonad.org/
http://code.haskell.org/xmonad
mailto: xmonad at haskell.org

Haskell Compiler (UHC). Consequently, I have modi-
fied the library and the latest version can now be com-
piled with UHC. In other words, it has now become
possible to use FRP with Haskell in the web browser.
Current development focuses on the implementation

of dynamic event switching. Examples from computer
music are planned.
Notable examples. In his reactive-balsa library, Hen-

ning Thielemann uses reactive-banana to control digital
musical instruments with MIDI in real-time.

Further reading

◦ Project homepage: http://haskell.org/haskellwiki/
Reactive-banana

◦ Example code: http://haskell.org/haskellwiki/
Reactive-banana/Examples

◦ Cabal package: http://hackage.haskell.org/package/
reactive-banana

◦ Developer blog: http://apfelmus.nfshost.com/blog.
html

◦ reactive-balsa: http://www.haskell.org/haskellwiki/
Reactive-balsa

7.9.2 Functional Hybrid Modelling

Report by: George Giorgidze
Participants: Joey Capper, Henrik Nilsson
Status: active research and development

The goal of the FHM project is to gain a better foun-
dational understanding of noncausal, hybrid modelling
and simulation languages for physical systems and ul-
timately to improve on their capabilities. At present,
our central research vehicle to this end is the design and
implementation of a new such language centred around
a small set of core notions that capture the essence of
the domain.
Causal modelling languages are closely related to

synchronous data-flow languages. They model system
behaviour using ordinary differential equations (ODEs)
in explicit form. That is, cause-effect relationship be-
tween variables must be explicitly specified by the mod-
eller. In contrast, noncausal languages model system
behaviour using differential algebraic equations (DAEs)
in implicit form, without specifying their causality. In-
ferring causality from usage context for simulation pur-
poses is left to the compiler. The fact that the causality
can be left implicit makes modelling in a noncausal lan-
guage declarative (the focus is on expressing the equa-
tions in a natural way, not on how to express them
to enable simulation) and also makes the models more
reusable.
FHM is an approach to modelling which combines

purely functional programming and noncausal mod-
elling. In particular, the FHM approach proposes mod-
elling with first class models (defined by continuous
DAEs) using combinators for their composition and

discrete switching. The discrete switching combina-
tors enable modelling of hybrid systems (i.e., systems
that exhibit both continuous and discrete dynamic be-
haviour). The key concepts of FHM originate from
work on Functional Reactive Programming (FRP).
We are implementing Hydra, an FHM language, as

a domain-specific language embedded in Haskell. The
method of embedding employs quasiquoting and en-
ables modellers to use the domain specific syntax in
their models. The present prototype implementation
of Hydra enables modelling with first class models and
supports combinators for their composition and dis-
crete switching.
We implemented support for dynamic switching

among models that are computed at the point when
they are being “switched in”. Models that are com-
puted at run-time are just-in-time (JIT) compiled to
efficient machine code. This allows efficient simulation
of structurally dynamic systems where the number of
structural configurations is large, unbounded or impos-
sible to determine in advance. This goes beyond to
what current state-of-the-art noncausal modelling lan-
guages can model. The implementation techniques that
we developed should benefit other modelling and sim-
ulation languages as well.
We are also exploring ways of utilising the type sys-

tem to provide stronger correctness guarantees and to
provide more compile time reassurances that our sys-
tem of equations is not unsolvable. Properties such as
equational balance (ensuring that the number of equa-
tions and unknowns are balance) and ensuring the solv-
ability of locally scoped variables are among our goals.
Furthermore, a minimal core language for FHM is be-

ing developed and formalised in the dependently-typed
language Agda. The goals of the core language are to
capture the essence of Hydra such that we can demon-
strate its correctness and prove the existance of a num-
ber of desirable properties. Of particular interest is the
soundness of the implementation with respect to the
formal semantics, and properties such as termination
and productivity for the structural dynamics.
Recently, George Giorgidze completed his PhD the-

sis featuring an in-depth description of the design and
implementation of the Hydra language. In addition,
the thesis features a range of example physical systems
modelled in Hydra. The examples are carefully chosen
to showcase those language features of Hydra that are
lacking in other noncausal modelling languages.

Further reading

The implementation of Hydra and related papers (in-
cluding George’s PhD thesis) are available from http:
//db.inf.uni-tuebingen.de/team/giorgidze.
Implementation and articles relating to the formal-

isation of an FHM core language can be found at
http://cs.nott.ac.uk/~jjc.

44

http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://haskell.org/haskellwiki/Reactive-banana/Examples
http://hackage.haskell.org/package/reactive-banana
http://hackage.haskell.org/package/reactive-banana
http://apfelmus.nfshost.com/blog.html
http://apfelmus.nfshost.com/blog.html
http://www.haskell.org/haskellwiki/Reactive-balsa
http://www.haskell.org/haskellwiki/Reactive-balsa
http://db.inf.uni-tuebingen.de/team/giorgidze
http://db.inf.uni-tuebingen.de/team/giorgidze
http://cs.nott.ac.uk/~jjc

7.9.3 Elerea

Report by: Patai Gergely
Status: experimental, active

Elerea (Eventless reactivity) is a tiny discrete time
FRP implementation without the notion of event-based
switching and sampling, with first-class signals (time-
varying values). Reactivity is provided through various
higher-order constructs that also allow the user to work
with arbitrary time-varying structures containing live
signals.
Stateful signals can be safely generated at any time

through a specialised monad, while stateless combina-
tors can be used in a purely applicative style. Elerea
signals can be defined recursively, and external input
is trivial to attach. The library comes in three major
variants, which all have precise denotational semantics:
◦ Simple: signals are plain discrete streams isomorphic
to functions over natural numbers;

◦ Param: adds a globally accessible input signal for
convenience;

◦ Clocked: adds the ability to freeze whole subnet-
works at will.
The code is readily available via cabal-install

in the elerea package. You are advised to in-
stall elerea-examples as well to get an idea how
to build non-trivial systems with it. The exam-
ples are separated in order to minimize the de-
pendencies of the core library. The experimental
branch is showcased by Dungeons of Wor, found in
the dow package (http://www.haskell.org/communities/
05-2010/html/report.html#sect6.11.2). Additionally,
the basic idea behind the experimental branch is laid
out in the WFLP 2010 article Efficient and Composi-
tional Higher-Order Streams.
Since the last report, the API was extended with

effectful combinators that allow IO computations to be
used in the definitions of the signals. The primary use
for this functionality is to provide FRP-style bindings
on top of imperative libraries. At the moment, a high-
level Elerea based API for the Bullet physics library is
under development.

Further reading

◦ http://hackage.haskell.org/package/elerea
◦ http://hackage.haskell.org/package/elerea-examples
◦ http://hackage.haskell.org/package/dow
◦ http://sgate.emt.bme.hu/documents/patai/

publications/PataiWFLP2010.pdf
◦ http://babel.ls.fi.upm.es/events/wflp2010/video/

video-08.html (WFLP talk)

7.10 Graphics

7.10.1 LambdaCube

Report by: Csaba Hruska
Status: experimental, active development

LambdaCube is a 3D graphics library entirely written
in Haskell.
The main goal of this project is to provide a modern

and feature rich graphical backend for various Haskell
projects, and in the long run it is intended to be a prac-
tical solution even for serious purposes. With Lamb-
daCube we can program the GPU in a purely func-
tional manner, just like with GPipe, but LambdaCube
provides much better runtime performance.
Over the last few months, the library has been com-

pletely rewritten. The current API is a rudimentary
EDSL that is not intended for direct use in the long
run. It is essentially the internal phase of a compiler
backend exposed for testing purposes. To exercise the
library, we have created two small proof of concept ex-
amples: a port of the old LambdaCube Stunts example,
and a Quake III level viewer.
Our mid term plan is to define a standalone DSL,

so the graphics pipeline could be dynamically repro-
grammed during runtime. Using our graphics language,
we can implement arbitrary rendering techniques in a
hardware independent and compositional way. All re-
source handling and performance optimizations will be
done by the graphics backend. Currently we are tar-
geting OpenGL 3.3, but OpenGL ES support is also
planned.
Everyone is invited to contribute! You can help

the project by playing around with the code, thinking
about API design, finding bugs (well, there are a lot of
them anyway), creating more content to display, and
generally stress testing the library as much as possible
by using it in your own projects.

Further reading

◦ https://github.com/csabahruska/lc-dsl

45

http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://www.haskell.org/communities/05-2010/html/report.html#sect6.11.2
http://hackage.haskell.org/package/elerea
http://hackage.haskell.org/package/elerea-examples
http://hackage.haskell.org/package/dow
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://sgate.emt.bme.hu/documents/patai/publications/PataiWFLP2010.pdf
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
http://babel.ls.fi.upm.es/events/wflp2010/video/video-08.html
https://github.com/csabahruska/lc-dsl

◦ http://www.haskell.org/haskellwiki/
LambdaCubeEngine

◦ http://hackage.haskell.org/package/stunts
◦ http://www.youtube.com/watch?v=kDu5aCGc8l4

7.10.2 diagrams

Report by: Brent Yorgey
Participants: Peter Hall, Andy Gill, Deepak Jois, Ian

Ross, Michael Sloan, Ryan Yates
Status: active development

The diagrams framework provides an embedded
domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is still much more to
be done, but diagrams is already quite fully-featured,
with a comprehensive user manual, a large collection of
primitive shapes and attributes, many different modes
of composition, paths, cubic splines, images, text, arbi-
trary monoidal annotations, named subdiagrams, and
more.

Since the previous HCAR, a new version of the
framework has been released, featuring experimen-
tal support for animations; a new package of user-
contributed modules, so far including tree drawing,
Apollonian gaskets, planar tilings, “wrapped” layout,
and turtle graphics; better performance; many other
small additions and improvements; and a redesigned
website.
There is also a growing diagrams “ecosystem”; re-

lated projects under development include TikZ and
HTML5 canvas backends, a Logo interpreter, a graph-
ing application, and a framework for creating interac-
tive GTK/cairo applications.
There is plenty more work to be done; new contrib-

utors are welcome!

Future plans

A native SVG backend is under active development and
targeted for the next release of the framework. The
cairo backend will still be supported, but SVG will
replace cairo as the default “out-of-the-box” backend,
vastly simplifying installation for new useres. Other
plans for the near future include support for drawing
arrows and improvements to the handling of named
subdiagrams. Longer-term plans include support for
interactive diagrams, a custom Gtk application for edit-
ing diagrams, and any other awesome stuff we think of.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://projects.haskell.org/diagrams/gallery.html
◦ http://code.google.com/p/diagrams/issues/list

7.11 Audio

7.11.1 Audio Signal Processing

Report by: Henning Thielemann
Status: experimental, active development

This project covers many aspects of audio signal
processing in Haskell. It is based on the Numeric
Prelude framework (http://haskell.org/communities/
05-2009/html/report.html#sect5.6.2). Over the time
the project has grown to a set of several packages:
◦ synthesizer-core: Raw implementations of oscilla-

tors, noise generation, frequency filters, resampling,
pitch and time manipulation, Fourier transforma-
tion. Support for several data structures like lists,
signal generators, storable vectors and causal signal
processing arrows that allow you to balance between
efficiency and flexibility.

◦ synthesizer-dimensional: Type-safe physical
units in signal processing and abstraction from sam-
ple rate.

◦ synthesizer-midi: Render audio streams from se-
quences of MIDI events.

◦ synthesizer-alsa: Everything that is needed for a
real-time software synthesizer within the Advanced
Linux Sound Architecture ALSA.

◦ synthesizer-llvm: Highly efficient signal process-
ing by Just-In-Time compilation and vectorization
through the Low-Level Virtual Machine (http://llvm.
org/), including a real-time software synthesizer.

◦ sample-frame, sample-frame-np: Type classes
shared between the packages for various sample for-
mats (integer, float, logarithmic encoding, stereo).

◦ alsa-core, alsa-pcm, alsa-seq, jack: Bindings to
audio input and output via ALSA and JACK.

◦ sox, soxlib: Reading and writing many audio file
formats and play sounds via sox shell command or
libsox binary interface.

46

http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://www.haskell.org/haskellwiki/LambdaCubeEngine
http://hackage.haskell.org/package/stunts
http://www.youtube.com/watch?v=kDu5aCGc8l4
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://code.google.com/p/diagrams/issues/list
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://haskell.org/communities/05-2009/html/report.html#sect5.6.2
http://llvm.org/
http://llvm.org/

Recent advances are:
◦ Extended and safer bindings to ALSA PCM and
ALSA MIDI sequencer.

◦ MIDI, ALSA and LLVM code is now cleanly sepa-
rated.

◦ Example program split-record that divides an au-
dio file according to pauses.

Further reading

http://www.haskell.org/haskellwiki/Synthesizer

7.11.2 Live-Sequencer

Report by: Henning Thielemann
Participants: Johannes Waldmann
Status: experimental, active

The Live-Sequencer allows to program music in the
style of Haskore, but it is inherently interactive. You
cannot only listen to changes to the music quickly, but
you can alter the music while it is played. Changes to
the music may not have an immediate effect but are
respected when their time has come.
Additionally users can alter parts of the modules of a

musical work via a WWW interface. This way multiple
people including the auditory can take part in a live
composition. This mode can also be used in education,
when students shall solve small problems in an exercise.
Technical background: The music is represented as

lazy list of MIDI events. (MIDI is the Musical Instru-
ment Digital Interface). The MIDI events are sent via
ALSA and thus can control any kind of MIDI applica-
tion, be it software synthesizers on the same computer
or external hardware synthesizers. The application can
also receive MIDI events that are turned into program
code. We need certain ALSA functionality for precise
timing of events. Thus the sequencer is currently bound
to Linux.
The Live-Sequencer can be run either as command-

line program without editing functions or as an inter-
active program based on wxwidgets.
The used language is a much simplified kind of

Haskell. It provides no sharing, misses many syntac-
tic constructs and is untyped. However the intersec-
tion between Haskell and the Live-Sequencer language
is large enough for algorithmic music patterns and we
provide several examples that are contained in this in-
tersection.

Future plans

◦ Define proper semantics for live changes to a program
◦ Use of Helium’s parser, module system and type

checker
◦ Refined reduction steps for educational purposes
◦ Highlighting of active terms that better fits to the

music

Further reading

http://www.haskell.org/haskellwiki/Live-Sequencer

7.11.3 Functional Modelling of Musical Harmony

Report by: José Pedro Magalhães
Participants: W. Bas de Haas
Status: actively developed

Music theory has been essential in composing and per-
forming music for centuries. Within Western tonal mu-
sic, from the early Baroque on to modern-day jazz and
pop music, the function of chords within a chord se-
quence can be explained by harmony theory. Although
Western tonal harmony theory is a thoroughly studied
area, formalising this theory is a hard problem.
We have developed a system, named HarmTrace,

that formalises the rules of tonal harmony as a Haskell
(generalized) algebraic datatype. Given a sequence of
chord labels, the harmonic function of a chord in its
tonal context is automatically derived. For this, we use
several advanced functional programming techniques,
such as type-level computations, datatype-generic pro-
gramming, and error-correcting parsers. We have an
experience report at ICFP’11 detailing this project.
As an example, we show a tree representation of the

harmony analysis of a short music fragment:
Piece

T
T
I

I:maj

D
D

D
V7
V:7

V /V
II7
II:7

S
IV

IV:maj

V / IV
I7
I:7

V / I
Vmin
V:min

S
IV
ins

V / IV
I7
I:7

V / I
Vmin
V:min

This tree is a visual representation of a value of a
Haskell datatype encoding musical harmony, with com-
mon notions such as tonic, dominant, etc. Such trees
are generated from input sequences of chord labels such
as C:maj F:maj G:7 C:Maj.
A functional model of harmony offers various ben-

efits: for instance, it can help musicologists in batch-
analysing large corpora of digitised scores, but it has
proven to be especially useful for solving Music Infor-
mation Retrieval (MIR) problems. MIR is the research
field that aims to provide methods that keep large col-
lections of digital music accessible and maintainable.
Hence, besides generating musically meaningful har-
monic analyses, HarmTrace explores ways of exploit-
ing these generated analyses to improve the similar-
ity assessment of chord sequences and the automatic
extraction for chord labels from musical audio. Some
empirical evidence showing that the harmonic analyses

47

http://www.haskell.org/haskellwiki/Synthesizer
http://www.haskell.org/haskellwiki/Live-Sequencer
http://dreixel.net/research/pdf/fmmh.pdf

of HarmTrace improve harmonic similarity estimation
has been published at the International Society for Mu-
sic Information Retrieval conference 2011.
The code is also available on Hackage.

Further reading

http://www.cs.uu.nl/wiki/GenericProgramming/
HarmTrace

7.12 Text and Markup Languages

7.12.1 HaTeX

Report by: Daniel Díaz
Status: Stabilizing and improving
Current release: Version 3.3

Description

HaTeX is a Haskell implementation of LATEX, with the
aim to be a helpful tool to generate or parse LATEX code.

From a global sight, it’s composed of:

1. The LaTeX datatype, as an AST for LATEX.

2. A set of combinators of LATEX blocks.

3. A renderer of LATEX code.

4. A parser of LATEX code.

5. Methods to analyze the LATEX AST.

6. A monadic implementation of combinators.

7. Methods for a subset of LATEX packages.

What is new?

Since the release of the version 3 to the current 3.3, the
most notable changes have been:

3.1 New module Warnings. Here we added methods to
analyze a LATEX AST.

3.2 Implemented the parser. Also support for greek
letters and implementation of the graphicx package.

3.3 Tree rendering from a Haskell tree. A typeclass
(LaTeXC) puts together monoid and monad inter-
faces.

Furthermore, now is available an open source user’s
guide.

Future plans

The next mission of HaTeX is to enhance what cur-
rently is. Fixing bugs, extend documentation, improve
the guide, add useful functions.

Contact

If you are someway interested in this project, please,
feel free to give any kind of opinion or idea, or to ask
any question you have. A good place to take contact
and stay tuned is the HaTeX mailing list:

hatex <at> projects.haskell.org

Of course, you always can mail to the maintainer.

Further reading

◦ HaTeX project page: http://dhelta.net/hprojects/
HaTeX

7.12.2 Haskell XML Toolbox

Report by: Uwe Schmidt
Status: seventh major release (current release: 9.2)

Description

The Haskell XML Toolbox (HXT) is a collection of
tools for processing XML with Haskell. It is itself
purely written in Haskell 98. The core component of
the Haskell XML Toolbox is a validating XML-Parser
that supports almost fully the Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). There is a valida-
tor based on DTDs and a new more powerful one for
Relax NG schemas.
The Haskell XML Toolbox is based on the ideas of

HaXml and HXML, but introduces a more general ap-
proach for processing XML with Haskell. The process-
ing model is based on arrows. The arrow interface is
more flexible than the filter approach taken in the ear-
lier HXT versions and in HaXml. It is also safer; type
checking of combinators becomes possible with the ar-
row approach.
HXT is partitioned into a collection of smaller pack-

ages: The core package is hxt. It contains a validating
XML parser, an HTML parser, filters for manipulating
XML/HTML and so called XML pickler for converting
XML to and from native Haskell data.
Basic functionality for character handling

and decoding is separated into the packages
hxt-charproperties and hxt-unicode. These
packages may be generally useful even for non XML
projects.
HTTP access can be done with the help of the pack-

ages hxt-http for native Haskell HTTP access and
hxt-curl via a libcurl binding. An alternative lazy non
validating parser for XML and HTML can be found in
hxt-tagsoup.
The XPath interpreter is in package hxt-xpath, the

XSLT part in hxt-xslt and the Relax NG valida-
tor in hxt-relaxng. For checking the XML Schema
Datatype definitions, also used with Relax NG, there

48

http://ismir2011.ismir.net/papers/PS1-5.pdf
http://ismir2011.ismir.net/papers/PS1-5.pdf
http://hackage.haskell.org/package/HarmTrace
http://www.cs.uu.nl/wiki/GenericProgramming/HarmTrace
http://www.cs.uu.nl/wiki/GenericProgramming/HarmTrace
http://dhelta.net/hprojects/HaTeX
http://dhelta.net/hprojects/HaTeX

is a separate and generally useful regex package
hxt-regex-xmlschema.
The old HXT approach working with filter

hxt-filter is still available, but currently only with
hxt-8. It has not (yet) been updated to the hxt-9 mayor
version.

Features

◦ Validating XML parser
◦ Very liberal HTML parser
◦ Lightweight lazy parser for XML/HTML based

on Tagsoup (http://www.haskell.org/communities/
05-2010/html/report.html#sect5.11.3)

◦ Binding to the expat parser via hexpat package
◦ Easy de-/serialization between native Haskell data

and XML by pickler and pickler combinators
◦ XPath support
◦ Full Unicode support
◦ Support for XML namespaces
◦ Cabal package support for GHC
◦ HTTP access via Haskell bindings to libcurl and via

Haskell HTTP package
◦ Tested with W3C XML validation suite
◦ Example programs
◦ Relax NG schema validator
◦ XML Schema validator (next release)
◦ Lightweight regex library with full support of Uni-

code and XML Schema Datatype regular expression
syntax

◦ An HXT Cookbook for using the toolbox and the
arrow interface

◦ Basic XSLT support
◦ GitHub repository with current development ver-

sions of all packages http://github.com/UweSchmidt/
hxt

Current Work

The master thesis and project implementing an XML
Schema validator started in October 2011 has been fin-
ished. The validator will be released in a separate mod-
ule hxt-xmlschema. Integration with hxt has still to be
done, so the first release will be in May or June this
year. The implementation will be rather complete, ex-
cept the datatype library for XML Schema. Some of
the time and date types are not yet included. With the
next HXT release the master thesis will be published
on the HXT homepage.

Further reading

The Haskell XML Toolbox Web page (http:
//www.fh-wedel.de/~si/HXmlToolbox/index.html)
includes links to downloads, documentation, and
further information.
A getting started tutorial about HXT is avail-

able in the Haskell Wiki (http://www.haskell.org/

haskellwiki/HXT). The conversion between XML
and native Haskell data types is described in an-
other Wiki page (http://www.haskell.org/haskellwiki/
HXT/Conversion_of_Haskell_data_from/to_XML).

7.12.3 epub-tools (Command-line epub Utilities)

Report by: Dino Morelli
Status: stable, actively developed

A suite of command-line utilities for creating and ma-
nipulating epub book files. Included are: epubmeta,
epubname, epubzip.
epub-tools is available from Hackage and the Darcs

repository below.

Further reading

◦ Project page: http://ui3.info/d/proj/epub-tools.html
◦ Source repository: darcs get http://ui3.info/darcs/

epub-tools

7.13 Hardware Design

7.13.1 CλaSH

Report by: Christiaan Baaĳ
Participants: Arjan Boeĳink, Jan Kuper, Anja

Niedermeier, Matthĳs Kooĳman, Marco
Gerards

Status: experimental

See: http://www.haskell.org/communities/05-2011/
html/report.html#sect7.5.1.

7.13.2 Kansas Lava

Report by: Andy Gill
Participants: Andy Gill, Andrew Farmer, Ed Komp,

Bowe Neuenschwander, Garrin Kimmell
(University of Iowa)

Status: ongoing

Kansas Lava is a Domain Specific Language (DSL) for
expressing hardware descriptions of computations, and
is hosted inside the language Haskell. Kansas Lava pro-
grams are descriptions of specific hardware entities, the
connections between them, and other computational
abstractions that can compile down to these entities.
Large circuits have been successfully expressed using
Kansas Lava, and Haskell’s powerful abstraction
mechanisms, as well as generic generative techniques,
can be applied to good effect to provide descriptions
of highly efficient circuits. Kansas Lava draws con-
siderably from Xilinx Lava (http://www.haskell.org/
communities/11-2010/html/report.html#sect3.7) and
Chalmers Lava (→ 9.10).
The release of Kansas Lava, version 0.2.4, happened

in early November. Based round this release, there
are a number of resources for users, including a (draft)

49

http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3
http://www.haskell.org/communities/05-2010/html/report.html#sect5.11.3
http://github.com/UweSchmidt/hxt
http://github.com/UweSchmidt/hxt
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.fh-wedel.de/~si/HXmlToolbox/index.html
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://www.haskell.org/haskellwiki/HXT/Conversion_of_Haskell_data_from/to_XML
http://ui3.info/d/proj/epub-tools.html
http://ui3.info/darcs/epub-tools
http://ui3.info/darcs/epub-tools
http://www.haskell.org/communities/05-2011/html/report.html#sect7.5.1
http://www.haskell.org/communities/05-2011/html/report.html#sect7.5.1
http://www.haskell.org/communities/11-2010/html/report.html#sect3.7
http://www.haskell.org/communities/11-2010/html/report.html#sect3.7

tutorial, and a youtube channel with walkthroughs of
our Lava in use.
On top of Kansas Lava, we are developing Kansas

Lava Cores, which was released on hackage at the same
time as Kansas Lava. In hardware, a core is a com-
ponent that can be realized as a circuit, typically on
an FPGA. Kansas Lava Cores contains about a dozen
cores, and basic board support for Spartan3e, as well
as an emulator for the Spartan3e.
Using various components provided as Kansas

Lava Cores, we are developing the λ-bridge
(http://www.haskell.org/communities/11-2011/html/
report.html#sect8.8.2), with implementations in
Haskell and Kansas Lava of a simple protocol stack
for communicating with FPGAs. We have early
prototypes working, and implementation in Kansas
Lava continues.
Finally, we are working on a Lava idiom called a

Patch, which is a Kansas Lava component interface
that uses types to declare protocols and handshakes
needed and used. Most of components in the Kansas
Lava Cores are instances of our Patch idiom. There
is a PADL 2012 paper describing Patch, including
the design and implementation of a controller for an
ST7066U-powered LCD display.

Further reading

◦ http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

◦ http://www.youtube.com/playlist?list=
PL211F8711E3B3DF9C

7.14 Natural Language Processing

7.14.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.
The Haskell NLP community was founded in March

2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell.

Recently released packages and projects

◦ approx-rand-test Approximate randomization test,
eg. for testing whether differences in performance
of parse disambiguation/fluency ranking models is
significant or not. (https://github.com/danieldk/
approx-rand-test)

◦ GenI 0.22: (a long overdue update), surface realiser
for Natural Language Generation (https://projects.
haskell.org/GenI) (Eric Kow)

◦ Latent Dirichlet Allocation, a hierarchical Bayesian
admixture model commonly used for topic modeling
and many other NLP applications (Grzegorz Chru-
pala)
– lda an experimental implementation

of Latent Dirichlet Allocation (http:
//hackage.haskell.org/package/lda)

– swift-lda Gibbs sampler for Latent Dirichlet Al-
location. The sampler can be used in an online
as well as batch mode (http://hackage.haskell.
org/package/swift-lda/).

– colada Colada implements incremental word
class class induction using Latent Dirichlet Al-
location (LDA) with a Gibbs sampler (http:
//hackage.haskell.org/package/colada):

New packages and projects in development

◦ NubFinder : Research project to develop technology
to search and analyze user opinions on the Web.
(https://sites.google.com/site/nubfinder)

◦ alpinocorpus-server : Server for the Alpino
treebank library (https://github.com/danieldk/
alpinocorpus-server) (Daniel de Kok)

◦ alpinocorpus-haskell: Haskell bindings for the Alpino
treebank library. (https://github.com/danieldk/
alpinocorpus-haskell) (Daniel de Kok)

At the present, the mailing list is mainly used to
make announcements to the Haskell NLP community.
At the time of this writing, there is an ongoing Cours-
era online NLP class, for which some of list members
have expressed an interest in doing the assingments in
Haskell. We hope that we will continue to expand the
list and expand our ways of making it useful to people
potentially using Haskell in the NLP world.

Further reading

http://projects.haskell.org/nlp

7.14.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
GenI in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set

50

http://www.haskell.org/communities/11-2011/html/report.html#sect8.8.2
http://www.haskell.org/communities/11-2011/html/report.html#sect8.8.2
http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava
http://www.youtube.com/playlist?list=PL211F8711E3B3DF9C
http://www.youtube.com/playlist?list=PL211F8711E3B3DF9C
https://github.com/danieldk/approx-rand-test
https://github.com/danieldk/approx-rand-test
https://projects.haskell.org/GenI
https://projects.haskell.org/GenI
http://hackage.haskell.org/package/lda
http://hackage.haskell.org/package/lda
http://hackage.haskell.org/package/swift-lda/
http://hackage.haskell.org/package/swift-lda/
http://hackage.haskell.org/package/colada
http://hackage.haskell.org/package/colada
https://sites.google.com/site/nubfinder
https://github.com/danieldk/alpinocorpus-server
https://github.com/danieldk/alpinocorpus-server
https://github.com/danieldk/alpinocorpus-haskell
https://github.com/danieldk/alpinocorpus-haskell
http://projects.haskell.org/nlp

of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.
Since May 2011, Eric is working with Computational

Linguistics Ltd and SRI international to develop new
features for GenI and improve its scalability and per-
formance for use in an interactive tutoring application.
Most recently, we have released an long overdue update
to GenI, featuring GHC 7 support, simpler installation,
library cleanups, bugfixes, and a handful of new UI fea-
tures.

GenI is available on Hackage, and can be installed
via cabal-install. Our most recent release of GenI was
version 0.22 (2012-04-22). For more information, please
contact us on the geni-users mailing list.

Further reading

◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

7.15 Others

7.15.1 leapseconds-announced

Report by: Björn Buckwalter
Status: stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondTable with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.
up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.
Version 2012 of leapseconds-announced contains all

leap seconds up to 2012-07-01. A new version will be
uploaded if/when the IERS announces a new leap sec-
ond.

Further reading

◦ http://hackage.haskell.org/cgi-bin/hackage-scripts/
package/leapseconds-announced

◦ http://github.com/bjornbm/leapseconds-announced

7.15.2 FunGEn

Report by: Simon Michael
Status: usable; ready for contributors and users

FunGEn (Functional Game Engine) is a BSD-licensed
cross-platform 2D game engine implemented in and for
Haskell, using OpenGL and GLUT. It was created in
2002 by Andre Furtado, updated in 2008 by Simon
Michael and Miloslav Raus, and revived again in 2011,
with a GHC 6.12-tested 0.3 release on Hackage, pre-
liminary haddockification and a new home repo.
FunGEn remains the quickest path to building cross-

platform graphical games in Haskell, due to its conve-
nient game framework and widely-available dependen-
cies. It comes with several working examples that are
quite easy to read and build (pong, worms). In the
last six months there has been little activity and a new
maintainer would be welcome.
FunGEn-related discussions most often appear in the

#haskell-game channel on irc.freenode.net.

Further reading

http://darcsden.com/simon/fungen

7.15.3 Feldspar

Report by: Emil Axelsson
Status: active development

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and developed in co-operation by Ericsson,

51

http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/leapseconds-announced
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/leapseconds-announced
http://github.com/bjornbm/leapseconds-announced
http://darcsden.com/simon/fungen

Chalmers University of Technology (Göteborg, Swe-
den) and Eötvös Loránd (ELTE) University (Budapest,
Hungary).
The motivating application of Feldspar is telecoms

processing, but the language is intended to be useful
for DSP in general. The aim is to allow DSP functions
to be written in functional style in order to raise the
abstraction level of the code and to enable more high-
level optimizations. The current version consists of an
extensive library of numeric and array processing op-
erations as well as a code generator producing C code
for running on embedded targets.
The current version deals with the data-intensive nu-

meric algorithms which are at the core of any DSP ap-
plication. More recently, we have started to work on
extending the language to deal with more system-level
aspects such as memory layout and concurrency.
The implementation is available from Hackage.

Further reading

◦ http://feldspar.inf.elte.hu
◦ http://hackage.haskell.org/package/feldspar-language
◦ http://hackage.haskell.org/package/feldspar-compiler

7.15.4 ADPfusion

Report by: Christian Höner zu Siederdissen
Status: usable, active development

ADPfusion combines ideas of Algebraic Dynamic Pro-
gramming (ADP), established by Robert Giegerich et
al., and stream-fusion by Coutts et al. into a high-level
framework to optimize the run-time performance of al-
gorithms based on context-free grammars with a special
emphasis on applications in computational biology.
As with ADP, we aim for a separation of concerns.

While an algorithm implementing a, say, context-free
grammar (CFG) typically leads to an intertwining of
several “concerns” (search space, evaluation, tabula-
tion, optimization of code), we want to separate them
as much as possible to achieve clarity of code while
retaining an efficient implementation.
ADP separates the search space which contains all

possible solutions from the evaluation of each candi-
date. This idea allows for a very clear description of
an algorithm, to replace evaluation strategies, or even
combine them.
Deforestation and stream-fusion are well-established

ideas to improve the performance of (low-level) list- and
vector-based algorithms in Haskell.
ADPfusion combines both ideas, allowing for a high-

level description of any CFG, with performance coming
close to that of optimized C. The library can easily be
adapted to handle special data structures, and will be
extended to allow for more general grammars than just
CFG’s, as well as table designs with more than two
dimensions.

A tutorial is in preparation, the library and two ex-
amples are available on hackage.

Further reading

◦ http://www.tbi.univie.ac.at/~choener/adpfusion
◦ http://hackage.haskell.org/package/ADPfusion
◦ http://hackage.haskell.org/package/Nussinov78
◦ http://hackage.haskell.org/package/RNAFold

7.15.5 Biohaskell

Report by: Ketil Malde
Participants: Christian Höner zu Siederdissen, Nick

Ignolia, Felipe Almeida Lessa

Bioinformatics in Haskell is a steadily growing field,
and the Bio section on Hackage now contains 45 li-
braries and applications. The biohaskell web site co-
ordinates this effort, and provides documentation and
related information. Anybody interested in the combi-
nation of Haskell and bioinformatics is encouraged to
sign up to the mailing list, and to register and docu-
ment their contributions on the http://biohaskell.org
wiki.
Bioinformatics is a diverse field, and consequently,

we have different libraries covering mostly separate ar-
eas.
Recently, the biolib library is being split up into

smaller, standalone packages, which along with other
contributions, depend on the small biocore library for
some standard data types and definitions.
Among new contributions are Christian’s ADPfusion

stuff (→ 7.15.4), combining Robert Giegerich’s Alge-
braic Dynamic Programming with stream-fusing com-
binators.

Further reading

◦ http://biohaskell.org
◦ http://blog.malde.org/
◦ http://www.tbi.univie.ac.at/~choener/haskell/

52

http://feldspar.inf.elte.hu
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
http://www.tbi.univie.ac.at/~choener/adpfusion
http://hackage.haskell.org/package/ADPfusion
http://hackage.haskell.org/package/Nussinov78
http://hackage.haskell.org/package/RNAFold
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:bioinformatics
http://biohaskell.org
http://biohaskell.org/cgi-bin/mailman/listinfo/biohaskell
http://biohaskell.org
http://biohaskell.org/Libraries
http://biohaskell.org/Libraries/Bio
http://hackage.haskell.org/packages/biocore
http://hackage.haskell.org/package/ADPfusion
http://hackage.haskell.org/package/ADPfusion
http://biohaskell.org
http://blog.malde.org/
http://www.tbi.univie.ac.at/~choener/haskell/

7.15.6 hledger

Report by: Simon Michael
Status: ongoing development; suitable for daily use

hledger is a library and end-user tool (with command-
line, curses and web interfaces) for converting, record-
ing, and analyzing financial transactions, using a simple
human-editable plain text file format. It is a haskell
port and friendly fork of John Wiegley’s Ledger, li-
censed under GNU GPLv3+.
hledger aims to be a reliable, practical tool for daily

use. It reports charts of accounts or account balances,
filters transactions by type, helps you record new trans-
actions, converts CSV data from your bank, publishes
your text journal with a rich web interface, generates
simple charts, and provides an API for use in your own
financial scripts and apps.
In the last six months there have been two major

releases. 0.15 focussed on features and 0.16 focussed
on quality. Changes include:

◦ new modal command-line interface, extensible with
hledger-* executables in the path

◦ more useful web interface, with real account registers
and basic charts

◦ hledger-web no longer needs to create support files,
and uses latest yesod & warp

◦ more ledger compatibility

◦ misc command enhancements, API improvements,
bug fixes, documentation updates

◦ lines of code increased by 3k to 8k

◦ project committers increased by 6 to 21

Current plans include:

◦ Continue the release rhythm of odd-numbered =
features, even-numbered = quality/stability/polish,
and releasing on the first of a month

◦ In 0.17, clean up the storage layer, allow rcs integra-
tion via filestore, and read (or convert) more formats

◦ Keep working towards wider usefulness, improving
the web interface and providing standard financial
reports

Further reading

http://hledger.org

7.15.7 sshtun (Wrapper daemon to manage an ssh
tunnel)

Report by: Dino Morelli
Status: experimental, actively developed

This is a daemon that executes an ssh command to form
a secure tunnel and then blocks on it. If the tunnel
goes down, sshtun can attempt to reestablish it. It can
also be set up to monitor a file on an http server to
determine if the tunnel should be up or not, so you can
switch it on or off remotely.
sshtun is available from Hackage and the Darcs

repository below.

Further reading

◦ Project page: http://ui3.info/d/proj/sshtun.html
◦ Source repository: darcs get http://ui3.info/darcs/

sshtun

7.15.8 hMollom — Haskell implementation of the
Mollom API

Report by: Andy Georges
Status: active

Mollom (http://mollom.com) is a anti-comment-spam
service, running in the cloud. The service can be used
for free (limited number of requests per day) or paid,
with full support. The service offers a REST based
API (http://mollom.com/api/rest). Several libraries are
offered freely on the Mollom website, for various lan-
guages and web frameworks – PHP, Python, Drupal,
etc.
hMollom is an implementation of this API, commu-

nicating with the Mollom service for each API call that
is made and returning the response as a Haskell data
type, along with some error checking.
hMollom is currently under active development. The

previous stable release targetted the XMLRPC Mollom
API, the new releases will all target the REST API.
The development happens on GitHub, see http:

//github.com/itkovian/hMollom, packages are put on
Hackage.
The next step is to wrap hMollom for use in the

Haskell web frameworks, for example Snap and Yesod,
so people can add it to their websites and have com-
ment spam filtered out.

Further reading

http://github.com/itkovian/hMollom

53

http://hledger.org
http://ui3.info/d/proj/sshtun.html
http://ui3.info/darcs/sshtun
http://ui3.info/darcs/sshtun
http://mollom.com
http://mollom.com/api/rest
http://github.com/itkovian/hMollom
http://github.com/itkovian/hMollom
http://github.com/itkovian/hMollom

7.15.9 Galois Open-Source Projects on GitHub

Report by: Jason Dagit
Status: active

Galois is pleased to announce the movement of our open
source projects to GitHub!
As part of our commitment to giving back to the

open source community, we have decided that we can
best publish our work using GitHub’s public website.
This move should provide the open source community
more direct access to our repositories, as well as more
advanced collaboration tools.
Moved repositories include the widely-used XML and

JSON libraries, our FiveUI extensible UI Analysis tool,
our high-speed Cereal serialization library, our SHA
and RSA crypto packages, the HaLVM, and more. For
a list of our open source packages, please see our main
GitHub page here: https://github.com/galoisinc
We are very excited to interact with the GitHub com-

munity and utilize all the great tools there. On the
other hand, if you’re not a GitHub user, please feel free
to continue to send us any patches or suggestions as
per usual.
For those currently hacking on projects using our old

repositories at code.galois.com, we apologize for the
inconvenience! The trees on GitHub hold the exact
same trees, however, so you should be able to add a re-
mote tree (git remote add) and push without too much
difficulty.

54

https://github.com/galoisinc

8 Commercial Users

8.1 Well-Typed LLP

Report by: Ian Lynagh
Participants: Andres Löh, Duncan Coutts

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
We are continuing to grow, with an additional con-

tractor since the last HCAR. While we aren’t currently
hiring, we have a number of interesting possibilities on
the horizon, so we’re always happy to receive CVs.
We are working for a variety of commercial clients,

but naturally, only some of our projects are publically
visible.
We continue to be involved in the development and

maintenance of GHC (→ 3.2). Most visibly, since the
last HCAR, we have put out the 7.2.2 and 7.4.1 releases,
and are currently working on the 7.4.2 release. We
expect that the next major release, 7.6.1, will be around
the time of the next HCAR, in about 6 months time.
We also continue to coordinate and do work for the

Industrial Haskell Group (IHG) (→ 8.3). Recently, the
work has focussed on making a 64bit Windows port of
GHC. We expect this to be released as part of GHC
7.6.1.
Within the Parallel GHC Project (→ 5.1.3), we

have been helping our partners to implement paral-
lel, concurrent and distributed software in Haskell,
and working to improve the tools and libraries, such
as ThreadScope. We’ve also started development of
Cloud Haskell, an Erlang-like system for Haskell.
In addition, we remain quite involved in the com-

munity, maintaining several packages on Hackage. We
have also continued to evangelise Haskell, including
presenting talks at FP eXchange and a number of
universities. Many of us were also at the Utrecht
hackathon, where we worked on a number of projects,
including Cabal, the pipes libraries, Cloud Haskell and
some GHC extensions.
We expect to continue to be involved over the com-

ing months, and in particular several of us plan to be in
Copenhagen in September for CUFP, the Haskell Sym-
posium and ICFP. Please get in touch if you’d like to
meet up with us there.
We are of course always looking for new clients and

projects, too, so if you are interested in hiring us, just
drop us an e-mail.

Further reading

◦ http://www.well-typed.com/
◦ Blog: http://blog.well-typed.com/

8.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: commercial product

Bluespec, Inc. provides an industrial-strength language
(BSV) and tools for high-level hardware design. Com-
ponents designed with these are shipping in some com-
mercial smartphones and tablets today.
BSV is used for all aspects of ASIC and FPGA de-

sign — specification, synthesis, modeling, and verifica-
tion. All hardware behavior is expressed using rewrite
rules (Guarded Atomic Actions). BSV borrows many
ideas from Haskell — algebraic types, polymorphism,
type classes (overloading), and higher-order functions.
Strong static checking extends into correct expression
of multiple clock domains, and to gated clocks for power
management. BSV is universally applicable, from al-
gorithmic “datapath” blocks to complex control blocks
such as processors, DMAs, interconnects, and caches.
Bluespec’s core tool synthesizes (compiles) BSV into

high-quality Verilog, which can be further synthe-
sized into netlists for ASICs and FPGAs using third-
party tools. Atomic transactions enable design-by-
refinement, where an initial executable approximate
design is systematically transformed into a quality im-
plementation by successively adding functionality and
architectural detail. The synthesis tool is implemented
in Haskell (well over 100K lines).
Bluesim is a fast simulation tool for BSV. There are

extensive libraries and infrastructure to make it easy to
build FPGA-based accelerators for compute-intensive
software, including for the Xilinx XUPv6 board popu-
lar in universities, and the Convey HC-1 high perfor-
mance computer.
BSV is also enabling the next generation of com-

puter architecture education and research. Students
implement and explore architectural models on FP-
GAs, whose speed permits evaluation using whole-
system software.

Status and availability

BSV tools, available since 2004, are in use by several
major semiconductor and electronic equipment compa-
nies, and universities. The tools are free for academic
teaching and research.

55

mailto: info at well-typed.com
http://www.well-typed.com/
http://blog.well-typed.com/

Further reading

◦ Abstraction in Hardware System Design, R.S. Nikhil,
in Communications of the ACM, 54:10, October
2011, pp. 36-44.

◦ Bluespec, a General-Purpose Approach to High-Level
Synthesis Based on Parallel Atomic Transactions,
R.S. Nikhil, in High Level Synthesis: from Algo-
rithm to Digital Circuit, Philippe Coussy and Adam
Morawiec (editors), Springer, 2008, pp. 129-146.

◦ BSV by Example, R.S. Nikhil and K. Czeck, 2010,
book available on Amazon.com.

◦ http://bluespec.com/SmallExamples/index.html:
from BSV by Example.

◦ http://www.cl.cam.ac.uk/~swm11/examples/
bluespec/: Simon Moore’s BSV examples (U.
Cambridge).

◦ http://csg.csail.mit.edu/6.375: Complex Digital Sys-
tems, MIT courseware.

◦ http://www.bluespec.com/products/BluDACu.htm: A
fun example with many functional programming fea-
tures — BluDACu, a parameterized Bluespec hard-
ware implementation of Sudoku.

8.3 Industrial Haskell Group

Report by: Andres Löh
Participants: Duncan Coutts, Ian Lynagh

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
The main activity of the IHG is to fund work on the

Haskell development platform. It currently operates
two schemes:

◦ The collaborative development scheme pools re-
sources from full members in order to fund specific
development projects to their mutual benefit.

◦ Associate and academic members contribute to a
separate fund which is used for maintenance and de-
velopment work that benefits the members and com-
munity in general.

In the past six months, the collaborative develop-
ment scheme funded work on cabal-install, improve-
ments to the Hackage server as well as work on a Win64
port of GHC.
The work on cabal-install has culminated in a new,

modular dependency solver that is now released as a
part of cabal-install-0.14.0. If you are using the new
cabal-install together with a recent GHC, you will get
the new solver component by default.
The work on the new Hackage server is still ongo-

ing. A preview of the new system is now continuously
running at http://hackage.factisresearch.com/ — this is
an automatic mirror of the original Hackage at the mo-
ment; you cannot and should not upload new packages
to this instance yet.

The Win64 port is currently the main focus of IHG
work. At the time of writing this report, registerised
(optimized) builds are already working, and we are try-
ing to get ghci up and running, too.
Details of the tasks undertaken are appearing on

the Well-Typed (→ 8.1) blog, on the IHG status page
and on standard communication channels such as the
Haskell mailing list.
The collaborative development scheme is running

continuously, so if you are interested in joining as a
member, please get in touch. Details of the different
membership options (full, associate, or academic) can
be found on the website.
If you are interested in joining the IHG, or if you

just have any comments, please drop us an e-mail at
〈info@industry.haskell.org〉.

Further reading

◦ http://industry.haskell.org/
◦ http://industry.haskell.org/status/
◦ http://hackage.haskell.org/package/cabal-install-0.

14.0/
◦ http://hackage.factisresearch.com/

8.4 Barclays Capital

Report by: Ben Moseley

Barclays Capital has been using Haskell as the basis
for our FPF (Functional Payout Framework) project
for about six and a half years now. The project de-
velops a DSL and associated tools for describing and
processing exotic equity options. FPF is much more
than just a payoff language — a major objective of the
project is not just pricing but “zero-touch” manage-
ment of the entire trade lifecycle through automated
processing and analytic tools. It is the fact that the
DSL is itself functional which has made developing all
these tools much easier.
For the first half of its life the project focused only on

the most exotic options — those which were too com-
plicated for the legacy systems to handle. Over the past
few years however, FPF has expanded to provide the
trade representation and tooling for the vast majority
of our equity exotics trades and with that the team has
grown significantly in both size and geographical distri-
bution. We now have eight permanent full-time Haskell
developers spread between New York, Hong Kong, Kiev
and London (with the latter being the biggest develop-
ment hub).
Our main front-end language is currently a deeply

embedded DSL which has proved very successful, but
we have recently been working on a new non-embedded
implementation. This will allow us to bypass some
of the traditional DSEL limitations (e.g., error mes-
sages and syntactical restrictions) whilst addressing

56

http://bluespec.com/SmallExamples/index.html
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://csg.csail.mit.edu/6.375
http://www.bluespec.com/products/BluDACu.htm
http://hackage.factisresearch.com/
mailto: info at industry.haskell.org
http://industry.haskell.org/
http://industry.haskell.org/status/
http://hackage.haskell.org/package/cabal-install-0.14.0/
http://hackage.haskell.org/package/cabal-install-0.14.0/
http://hackage.factisresearch.com/

some business areas which have historically been prob-
lematic. Our hope is that, over time, this will grad-
ually replace our embedded DSL as the front end for
all our tools. For the parsing part of this work we
have been very impressed by Doaitse Swierstra’s uu-
parsinglib (→ 7.3.3).
We have been and remain very satisfied GHC users

and feel that it would have been significantly harder to
develop our systems in any other current language.

8.5 Oblomov Systems

Report by: Martĳn Schrage

Oblomov Systems is a one-person software company
based in Utrecht, The Netherlands. Founded in 2009
for the Proxima 2.0 project (http://www.haskell.org/
communities/05-2010/html/report.html#sect6.4.5),
Oblomov has since then been working on a number
of Haskell-related projects. The main focus lies on
web-applications and (web-based) editors. Haskell has
turned out to be extremely useful for implementing
web servers that communicate with JavaScript clients
or iPhone apps.
Awaiting the acceptance of Haskell by the world

at large, Oblomov Systems also offers software solu-
tions in Java, Objective C, and C#, as well as on the
iPhone/iPad. Currently, Oblomov Systems is work-
ing together with Ordina NV on a substantial Haskell
project for the Council for the Judiciary in The Nether-
lands.

Further reading

http://www.oblomov.com

8.6 madvertise Mobile Advertising

Report by: Adam Drake

madvertise Mobile Advertising, GmbH is Europe’s
leading marketplace for mobile app and web advertis-
ing, with traffic frequencies of up to 25.000 requests
per second. madvertise was founded in 2009 and the
recent purchase of Turkish mobile advertising firm Mo-
bilike has raised the number of employees at madvertise
to approximately 95.
Haskell is used in the Research and Data Science

group at madvertise, especially to tackle problems in
large scale data analysis and machine learning. One
example of our use of Haskell is in the initial design for
a real-time bidding system for ad impressions, includ-
ing optimizations for publisher revenue and liquidity

management. Such a system must support a high level
of concurrency as each ad request results in a full-cycle
auction taking place, and Haskell excels in such an en-
vironment. Another example of our usage of Haskell is
in the toolchain for constructing a system to measure
and act upon information theoretic entropy for high-
frequency data in a real-time fashion.
Haskell is used at madvertise as a general purpose

language that is preferred for making full use of mul-
ticore hardware, providing code correctness, and for
providing clarity and stability through the type sys-
tem. We plan to continue to use Haskell where appro-
priate, including the possibility of production systems
in the future, and to open-source as many of our tools
as possible.

Further reading

http://madvertise.com

57

http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.oblomov.com
http://madvertise.com

9 Research and User Groups

9.1 A French community for Haskell

Report by: Alp Mestanogullari
Participants: Valentin Robert, Fabien Georget, and

others
Status: ongoing

During the past few months, we have seen many new
Haskellers in the French-speaking communities. Aside
from this, Valentin Robert has published a translation
of Learn You a Haskell For Great Good in French (see
the further reading section). It seems Haskell is finally
getting more interest from French developers and that
is the reason why we are now trying to create some
activity around this.
We are currently working on the basics:

◦ getting an adequate wiki/website,

◦ figuring out some project ideas, may they be docu-
mentation or software projects,

◦ working on a first French Hackathon event for French
Haskellers to meet and get to know each other.

Among us, we happen to have people interested in
many areas (Haskell for web programming, high per-
formance Haskell, etc.) so on the long-term we may be
able to provide resources about various topics. Another
possible idea would be to have some kind of workgroups
that would work on a given project, or even do bug
hunting for an already existing project. And we have
many other ideas, but it will depend on how the com-
munity’s activity grows. Our priorities are the website
and the first Hackathon, that may happen in June in
Strasbourg. This is yet to be confirmed.
We warmly welcome anyone interested in helping us

create this community! There are all kinds of tasks to
accomplish so you do not need to be a Haskell guru
to contribute. We also welcome any French-speaking
haskellers or even functional programmers to join us
either on the IRC channel #haskell-fr on Freenode
or on the mailing list.

Further reading

◦ Homepage: http://www.haskell.fr/
◦ LYAH in French: http://lyah.haskell.fr/

◦ Haskell-fr mailing list: http://www.haskell.org/
mailman/listinfo/haskell-fr

◦ Original announcement: http://tinyurl.com/3o9tatf

9.2 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

There are many different courses on Haskell and Agda
are run at Eötvös Loránd University, Faculty of Infor-
matics.

◦ Programming for first-year BSc students using
Haskell, it is officially in the curriculum. It is also
taught for foreign language students as part of their
program.

◦ Advanced functional programming using Haskell, it
is an optional course for BSc and MSc students.

◦ Programming in Agda as an optional course for BSc
and MSc students.

◦ Other Haskell-related courses on Lambda Calculus,
Type Theory and Implementation of Functional Lan-
guages.

There is an interactive online evaluation and test-
ing system, called ActiveHs. It contains several hun-
dred systematized exercises and it may be also used
as a teaching aid. There is also some experimenting
going on about supporting SVG graphics, and extend-
ing the embedded interpreter and testing environment
with safe emulation of IO values, providing support for
Agda. ActiveHs is now also avaiable on Hackage.
We have been translating our course materials to En-

glish, some of the materials is already available.

Further reading

◦ Haskell course materials (in English): http://pnyf.
inf.elte.hu/fp/Overview_en.xml

◦ Agda course materials (in English): http://pnyf.inf.
elte.hu/fp/Index_a.xml

◦ ActiveHs: http://hackage.haskell.org/package/
activehs

58

http://www.haskell.fr/
http://lyah.haskell.fr/
http://www.haskell.org/mailman/listinfo/haskell-fr
http://www.haskell.org/mailman/listinfo/haskell-fr
http://tinyurl.com/3o9tatf
http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://pnyf.inf.elte.hu/fp/Overview_en.xml
http://pnyf.inf.elte.hu/fp/Index_a.xml
http://pnyf.inf.elte.hu/fp/Index_a.xml
http://hackage.haskell.org/package/activehs
http://hackage.haskell.org/package/activehs

9.3 Functional Programming at UFMG
and UFOP

Report by: Carlos Camarão
Participants: Marco Gontĳo, Lucília Figueiredo, Rodrigo

Ribeiro, Cristiano Vasconcellos, Elton
Ribeiro

Status: active development

The Functional Programming groups at Universidade
Federal de Minas Gerais and Universidade Federal de
Ouro Preto are working on projects that include the
following ones:

Proposal for a Solution to Haskell’s Multi-parameter
Type Class Dilemma The proposal consists of using
a simple satisfiability trigger condition: check satisfia-
bility if and only if there exists an unreachable variable
in a constraint.
This eliminates the need for functional dependencies

(and any other additional mechanism in the language)
to tackle ambiguity and overloading resolution.
E-mail messages about the proposal exchanged in

Haskell-cafe and Haskell-prime have not been construc-
tive. The discussion in Haskell-cafe deviated to what
we see as an ortogonal issue, of import and export of
instances (see more about this in the next paragraph).
So unfortunately the proposal has not been incor-

porated in Haskell yet. A paper about it has been
published at SBLP’2009 (see below).
We have implemented the proposal in a proptotype

Haskell front-end (https://github.com/rodrigogribeiro/
core), and are currently working on this front-end so
that it can type all existing Haskell libraries (that use
multi-parameter type classes and higher-rank polymor-
phism).

Controlling the scope of instances in Haskell Marco
Gontĳo is about to finish his MSc dissertation on the
subject. This is a simple and natural change that makes
module export and import free of treating instances as
a special case. It also allows alternative instances of a
class for the same type to be defined and used in dif-
ferent module scopes of a program, eliminates not only
problems related to the existence of orphan instances
but also the pollution of the global scope by unused
instances.
An article about this has been published at

SBLP’2011 (see below). Marco Gontĳo is currently im-
plementing the proposal, in our Haskell compiler proto-
type (https://github.com/rodrigogribeiro/core); if time
permits, also in GHC.

Decidable type inference for Haskell overloading
When types have constraints, decidability of type in-
ference is based mainly on decidability of constraint set
satisfiability. We have designed a termination criterion
for Haskell’s type inference algorithm that deals with

all the “complicated cases” (given in e.g. the PPDP’04
and ACM TOPLAS 2005 references below).
A paper about this is being (re)written. An

implementation is available at https://github.com/
rodrigogribeiro/core.

First Class Overloading and Intersection Types A
paper about this has been published at SBLP’2011 (see
below).
The work is currently being implemented in our

compiler front-end, available at https://github.com/
rodrigogribeiro/core.
The Hindley-Milner type system imposes the restric-

tion that function parameters must have monomor-
phic types. Lifting this restriction and providing sys-
tem F “first class” polymorphism is clearly desirable,
but comes with the difficulty that complete type in-
ference for higher-rank type systems is undecidable.
More practical systems supporting higher-rank types
have been proposed, which rely on system F, and re-
quire appropriate type annotations for the definition
of functions with polymorphic type parameters. But
these type annotations do inevitably disallow some pos-
sible uses of defined higher-rank functions. To avoid
this problem, we propose the annotation of intersection
types for specifying the types of function parameters
used polymorphically inside a function body.
Future work involves extending this work to allow

also annotation of union types, supporting then the
use (manipulation) of heterogeneous data structures by
means of overloaded functions.

Further reading

◦ A Solution to Haskell’s Multi-paramemeter
Type Class Dilemma, Carlos Camarão, Rodrigo
Ribeiro, Lucília Figueiredo, Cristiano Vasconcellos,
SBLP’2009 (13th Brazilian Symposium on Pro-
gramming Languages). http://www.dcc.ufmg.br/
~camarao/CT/solution-to-mptc-dilemma.pdf

◦ Controlling the Scope of Instances in Haskell,
Marco Silva, Carlos Camarão, SBLP’2011 (15th
Brazilian Symposium on Programming Lan-
guages). http://www.dcc.ufmg.br/~camarao/
controlling-the-scope-of-instances-in-Haskell-sblp2011.
pdf

◦ Constraint-set satisfiability for Overloading, Carlos
Camarão, Lucília Figueiredo, Cristiano Vasconcellos,
ACM Press Conf. Proceedings of PPDP’04 , 67–77,
2004. http://www.dcc.ufmg.br/~camarao/CT/cs-sat/
cssat.pdf

◦ A theory of overloading, Peter J. Stuckey, Martin
Sulzmann, ACM TOPLAS 2005, 27(6), 1216–1269.
http://portal.acm.org/citation.cfm?id=1108974

◦ First Class Overloading via Intersection Type
Parameters, Elton Máximo Cardoso, Carlos Ca-
marão, Lucília Figueiredo, SBLP’2011 (15th

59

https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
https://github.com/rodrigogribeiro/core
http://www.dcc.ufmg.br/~camarao/CT/solution-to-mptc-dilemma.pdf
http://www.dcc.ufmg.br/~camarao/CT/solution-to-mptc-dilemma.pdf
http://www.dcc.ufmg.br/~camarao/controlling-the-scope-of-instances-in-Haskell-sblp2011.pdf
http://www.dcc.ufmg.br/~camarao/controlling-the-scope-of-instances-in-Haskell-sblp2011.pdf
http://www.dcc.ufmg.br/~camarao/controlling-the-scope-of-instances-in-Haskell-sblp2011.pdf
http://www.dcc.ufmg.br/~camarao/CT/cs-sat/cssat.pdf
http://www.dcc.ufmg.br/~camarao/CT/cs-sat/cssat.pdf
http://portal.acm.org/citation.cfm?id=1108974

Brazilian Symposium on Programming Lan-
guages). http://www.dcc.ufmg.br/~camarao/CT/
intersection-type-parameters.pdf

9.4 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Conrad Rau, Manfred Schmidt-Schauß

Programming language semantics. One of our re-
search topics focuses on programming language seman-
tics, especially on contextual equivalence and bisimi-
larity. Deterministic call-by-need lambda calculi with
letrec provide a semantics for the core language of
Haskell. For such an extended lambda calculus we
proved correctness of strictness analysis using abstract
reduction, and we proved equivalence of the call-by-
name and call-by-need semantics, and we proved that
applicative bisimilarity is complete w.r.t. contextual
equivalence in this calculus.
We also explored several nondeterministic extensions

of call-by-need lambda calculi and their applications. A
recent result is that for calculi with letrec and non-
determinism usual definitions of applicative similarity
are unsound w.r.t. contextual equivalence.
We analyzed a higher-order functional language with

concurrent threads, monadic IO and synchronizing
variables as a core language of Concurrent Haskell. We
extended the language by implicit, monadic, and con-
current futures. Using contextual equivalence based
on may- and should-convergence, we have shown that
several transformations preserve program equivalence,
e.g. the monad laws hold in our calculus. An impor-
tant result is that the language with concurrency con-
servatively extends the pure core language of Haskell,
i.e. all program equivalences for the pure part also hold
in the concurrent language. Recently, we introduced
a Sestoft-like abstract machine for this language and
have shown correctness of the machine.
In a recent research project we try to automate cor-

rectness proofs of program transformations. These
proofs require to analyze the overlappings between re-
ductions of the operational semantics and transforma-
tion steps by computing so-called forking and commut-
ing diagrams. We implemented an algorithm as a com-
bination of several unification algorithms in Haskell
which computes these diagrams. Recently, we pro-
vided a method to automate the corresponding induc-
tion proofs (which use the diagrams) using automated
termination provers for term rewriting systems.
Grammar based compression. Another research

topic of our group focuses on algorithms on grammar
compressed strings and trees. One goal is to recon-
struct known algorithms on strings and terms (unifica-
tion, matching, rewriting etc.) for their use on gram-

mars without prior decompression. We implemented
several of those algorithms in Haskell which are avail-
able as a Cabal package.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

9.5 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell
— in particular our interest in Erlang has been grow-
ing — Haskell provides a major focus and common lan-
guage for teaching and research.
Our members pursue a variety of Haskell-related

projects, some of which are reported in other sections
of this report, such as Simon Thompson’s text book
Haskell: the craft of functional programming. Thomas
Schilling is writing up his PhD thesis on trace-based
dynamic optimisations for Haskell programs. Olaf Chi-
til developed practial lazy contracts for Haskell using
Template Haskell.
We are always looking for PhD students to work

with us. We are particularly keen to recruit stu-
dents interested in programming tools for tracing,
refactoring, type checking and any useful feedback
for a programmer. The school and university
have support for strong candidates: more details at
http://www.cs.kent.ac.uk/pg or contact any of us indi-
vidually by email.

Further reading

◦ PLAS group: http://www.cs.kent.ac.uk/research/
groups/plas/

◦ Haskell: the craft of functional programming: http:
//www.haskellcraft.com

◦ Refactoring Functional Programs: http://www.cs.
kent.ac.uk/research/groups/plas/hare.html

◦ Tracing and debugging with Hat: http://www.
haskell.org/hat

◦ Practial Lazy Typed Contracts for Haskell: http://
www.cs.kent.ac.uk/~oc/contracts.html

◦ Heat: http://www.cs.kent.ac.uk/projects/heat/

◦ Scion: http://code.google.com/p/scion-lib/

60

http://www.dcc.ufmg.br/~camarao/CT/intersection-type-parameters.pdf
http://www.dcc.ufmg.br/~camarao/CT/intersection-type-parameters.pdf
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
http://www.haskellcraft.com
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.haskell.org/hat
http://www.haskell.org/hat
http://www.cs.kent.ac.uk/~oc/contracts.html
http://www.cs.kent.ac.uk/~oc/contracts.html
http://www.cs.kent.ac.uk/projects/heat/
http://code.google.com/p/scion-lib/

9.6 Formal Methods at DFKI and
University Bremen

Report by: Christian Maeder
Participants: Mihai Codescu, Dominik Dietrich,

Christoph Lüth, Till Mossakowski
Status: active development

The activities of our group center on formal methods,
covering a variety of formal languages and also trans-
lations and heterogeneous combinations of these.
We are using the Glasgow Haskell Compiler and

many of its extensions to develop the Heterogeneous
tool set (Hets). Hets consists of parsers, static ana-
lyzers, and proof tools for languages from the CASL
family, such as the Common Algebraic Specification
Language (CASL) itself (which provides many-sorted
first-order logic with partiality, subsorting and in-
duction), HasCASL, CoCASL, CspCASL, and Modal-
CASL. Other languages supported include Haskell
(via Programatica), QBF, Maude, VSE, TPTP, THF,
OWL, Common Logic, FPL (logic of functional pro-
grams) and LF type theory. The Hets implementation
is based on some old Haskell sources such as bindings to
uDrawGraph (formerly Davinci) and Tcl/TK that we
maintain, but we are moving to a mere web interface
based on warp (→ 5.2.2).
HasCASL is a general-purpose higher-order language

which is in particular suited for the specification and
development of functional programs; Hets also contains
a translation from an executable HasCASL subset to
Haskell. There is a prototypical translation of a subset
of Haskell to Isabelle/HOL.

Further reading

◦ Group activities overview:
http://www.informatik.uni-bremen.de/agbkb/
forschung/formal_methods/

◦ CASL specification language:
http://www.cofi.info

◦ Heterogeneous tool set:
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

9.7 Haskell at Universiteit Gent, Belgium

Report by: Tom Schrĳvers

Haskell is one of the main research topics of the new
Programming Languages Group at the Department of
Applied Mathematics and Computer Science at the
University of Ghent, Belgium.

Teaching UGent is a great place for Haskell-
aficionados:

◦ As of this academic year, make Haskell part of your
curriculum with our brand new Functional and Logic
Programming Languages course.

◦ Explore Haskell in depth with one of our Haskell mas-
ter thesis topics.

◦ Attend the thriving Ghent Functional Programming
Group (→ 9.13).

Research Haskell-related projects of the group mem-
bers and collaborators are:

◦ Search Combinators: Search heuristics often make all
the difference between effectively solving a combina-
torial problem and utter failure. Hence, the ability to
swiftly design search heuristics that are tailored to-
wards a problem domain is essential to performance
improvement. In other words, this calls for a high-
level domain-specific language (DSL).
The tough technical challenge we face when design-
ing a DSL for search heuristics, is to bridge the gap
between a conceptually simple specification language
(high-level, purely functional and naturally compo-
sitional) and an efficient implementation (typically
low-level, imperative and highly non-modular). We
overcome this challenge with a systematic approach
in Haskell that disentangles different primitive con-
cepts into separate monadic modular mixin compo-
nents, each of which corresponds to a feature in the
high-level DSL. The great advantage of mixin com-
ponents to provide a semantics for our DSL is its
modular extensibility.
This is joint work with Guido Tack, Pieter Wuille,
Horst Samulowitz and Peter Stuckey, following up on
Monadic Constraint Programming, a monadic DSL
for Constraint Programming in Haskell.

◦ Monads, Zippers and Views: Virtualizing the Monad
Stack: We make monadic components more reusable
and robust to changes by employing two new tech-
niques for virtualizing the monad stack: the monad
zipper and monad views. The monad zipper is a
higher-order monad transformer that creates virtual
monad stacks by ignoring particular layers in a con-
crete stack. Monad views provide a general frame-
work for monad stack virtualization: they take the
monad zipper one step further and integrate it with
a wide range of other virtualizations. For instance,
particular views allow restricted access to monads
in the stack. Furthermore, monad views provide
components with a call-by-reference-like mechanism
for accessing particular layers of the monad stack.
With our two new mechanisms, the monadic effects
required by components no longer need to be lit-
erally reflected in the concrete monad stack. This
makes these components more reusable and robust
to changes.

61

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
http://www.cofi.info
http://www.dfki.de/sks/hets
http://www.informatik.uni-bremen.de/htk/
http://www.informatik.uni-bremen.de/uDrawGraph/

This is joint work with Bruno Oliveira, part of
which is available together with Mauro Jaskelioff’s
monad transformer library in the Monatron package
on Hackage.

◦ EffectiveAdvice: EffectiveAdvice is a disciplined
model of (AOP-style) advice, inspired by Aldrich’s
Open Modules, that has full support for effects in
both base components and advice. EffectiveAdvice
is implemented as a Haskell library. Advice is mod-
eled by mixin inheritance and effects are modeled
by monads. Interference patterns previously identi-
fied in the literature are expressed as combinators.
Equivalence of advice, as well as base components,
can be checked by equational reasoning. Parametric-
ity, together with the combinators, is used to prove
two harmless advice theorems. The result is an ef-
fective model of advice that supports effects in both
advice and base components, and allows these effects
to be separated with strong non-interference guaran-
tees, or merged as needed. This is joint work with
Bruno Oliveira and William Cook.

Further reading

◦ http://users.ugent.be/~tschrĳv/haskell.html
◦ http://users.ugent.be/~tschrĳv/SearchCombinators/
◦ http://hackage.haskell.org/package/Monatron
◦ http://hackage.haskell.org/package/monadiccp

9.8 Haskell in Romania

Report by: Dan Popa

This is to report some activities of the Ro/Haskell
Group. The Ro/Haskell page becomes more and more
known as time goes. Actually, the Ro/Haskell Group is
officially a project of the Faculty of Sciences, “V. Alec-
sandri” Univ. of Bacãu, România (http://stiinte.ub.ro)
based by volunteers. During the academic year 2011 –
2012 the "Gentle Introduction to Haskell 98" was trans-
lated in Romanian and was published by MatrixRom
Publishing House (http://www.matrixrom.ro). Roma-
nian title : "O mica introducere in Haskell 98". Prof
Paul Hudak had offered a forward for Romanian users.

Website:

On the 7th of Oct. 2011, the main Ro/Haskell’s web
page counter recorded the total of almost 40 000 times
accessed. Some pages was added, included one dedicate
to the above book and some pages dedicated to the
Leksah IDE. (http://leksah.org)

Books:

The book “The Practice Of Monadic Interpretation”
by Dan Popa had been published in November 2008.
The book had developed into a full PhD. thesis which

was successfully defended in public in September 2010.
No English version is available so far.
Actually the Official Publishing House of the

Ro/Haskell Group is MatrixRom (www.matrixrom.
ro). Speaking of books, the “Gentle introduction
to Haskell” was prepared this year and was on the
market in a Romanian translation. The introduc-
tory chapter (http://www.haskell.org/wikiupload/3/38/
Gentle_1-19-v06-3Aprilie.pdf.zip) can be downloaded
from http://www.haskell.org/haskellwiki/Gentle where
two other versions are available, too: French and of
course English.
“An Introduction to Haskell by Examples” is now

out of print but if you need, a special pack can be pro-
vided based on the agreement of the author 〈popavdan@
yahoo.com〉. Also available on special request from PIM
Publishing House, in Iasi.

Products:

Haskell products like Rodin (a small DSL a bit like
C but written in Romanian) begin to spread, proving
the power of the Haskell language. The Pseudocode
Language Rodin is used as a tool for teaching basics
of Computer Science in some high-schools from various
cities. Rodin was asked to become a FOSS (Free &
Open Source Software) and will be. To have a sort
of C using native keywords was a success in teaching
basics of Computer Science: algorithms and structured
programming.

Linguists:

A group of researchers from the field of linguistics lo-
cated at the State Univ. from Bacãu (The LOGOS
Group) is declaring the intention of bridging the gap
between semiotics, high level linguistics, structural-
ism, nonverbal communication, dance semiotics (and
some other intercultural subjects) and Computational
Linguistics (meaning Pragmatics, Semantics, Syntax,
Lexicology, etc.) using Haskell as a tool for real
projects. Probably the situation from Romania is not
well known: Romania is probably one of those countries
where computational linguistics is studied by computer
scientists less than linguists. We had begun by pub-
lishing an article about The Rodin Project in order to
attract linguists. We are trying to extend the base of
available books in libraries.

At Bacãu “V. Alecsandri” University

We have teaching Haskell at two Faculties: Sciences
(The Computers Science being included) and we hope
we will work with Haskell with the TI students from
the Fac. of Engineering, where a course on Formal Lan-
guages was requested.

62

http://users.ugent.be/~tschrijv/haskell.html
http://users.ugent.be/~tschrijv/SearchCombinators/
http://hackage.haskell.org/package/Monatron
http://hackage.haskell.org/package/monadiccp
http://stiinte.ub.ro
http://www.matrixrom.ro
http://leksah.org
www.matrixrom.ro
www.matrixrom.ro
http://www.haskell.org/wikiupload/3/38/Gentle_1-19-v06-3Aprilie.pdf.zip
http://www.haskell.org/wikiupload/3/38/Gentle_1-19-v06-3Aprilie.pdf.zip
http://www.haskell.org/haskellwiki/Gentle
mailto: popavdan at yahoo.com
mailto: popavdan at yahoo.com

At Brasov “Transilvania” University

The book "An Introduction to Haskell by Examples"
was requested by teachers from the "Transilvania"
Univ. of Brasov., where a master course on functional
programming in Haskell was introduced.

Notions:

We are promoting new notions: pseudoconstructors
over monadic values (which act both as semantic repre-
sentations and syntactic structure), modular trees (ex-
panding trees beyound the fixity of the data declara-
tions) and ADFA — adaptive/adaptable determinist
finite automata. A dictionary of new notions and con-
cepts is not made, making difficult to launch new ideas
and also to track work of the authors.

Unsolved problems:

PhD. advisors (specialized in monads, language engi-
neering, and Haskell) are almost impossible to find.
This fact seems to block somehow the hiring of good
specialists in Haskell. Also it is difficult to track the
Haskell related activity from various universities, like
those from: Sibiu, Baia Mare, Timisoara. Please report
them using the below address.

Contact

〈popavdan@yahoo.com〉

Further reading

◦ Ro/Haskell: http://www.haskell.org/haskellwiki/Ro/
Haskell

◦ Rodin: http://www.haskell.org/haskellwiki/Rodin
◦ Gentle introduction to Haskell (Ro): http://www.
haskell.org/haskellwiki/Gentle

◦ ADFA: http://www.haskell.org/haskellwiki/ADFA
◦ Report from: http://stiinte.ub.ro (the Faculty I be-

long to)

9.9 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Sydney,
Australia, interested in Functional Programming and
related fields. Members of the group include users of
Haskell, Ocaml, LISP, Scala, F#, Scheme and others.
We have 10 meetings per year (Feb–Nov) and meet on
the third Thursday of each month. We regularly get
20–30 attendees, with a 70/30 industry/research split.
Talks this year have included material on compilers,
theorem proving, type systems, Template Haskell and

a couple of different Haskell libraries. We usually have
about 90 mins of talks, starting at 6:30pm, then go for
drinks afterwards. All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/

9.10 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component of
the Department of Computer Science and Engineering
at Chalmers. In particular, Haskell has a very impor-
tant place, as it is used as the vehicle for teaching and
numerous projects. Besides functional programming,
language technology, and in particular domain specific
languages is a common aspect in our projects.

Property-based testing QuickCheck, developed at
Chalmers, is one of the standard tools for test-
ing Haskell programs. We are currently applying
the QuickCheck approach to Erlang software, to-
gether with Ericsson, Quviq, and others. The ven-
erable QuickCheck tool is nowadays complemented
with PULSE, the ProTest User-Level Scheduler for
Erlang, which has been used to find race condi-
tions in industrial software. We have also shown
how to sucessfully apply QuickCheck to polymor-
phic properties: http://publications.lib.chalmers.se/cpl/
record/index.xsql?pubid=99387.

Natural language technology Grammatical Frame-
work (http://www.haskell.org/communities/11-2010/
html/report.html#sect9.7.3) is a declarative language
for describing natural language grammars. It is useful
in various applications ranging from natural language
generation, parsing and translation to software local-
ization. The framework provides a library of large
coverage grammars for currently fifteen languages from
which the developers could derive smaller grammars
specific for the semantics of a particular application.

Parser generator and template-haskell BNFC-meta
is an embedded parser generator, presented at the
Haskell Symposium 2011. Like the BNF Converter, it
generates a compiler front end in Haskell. Two aspects
distinguish BNFC-meta from BNFC and other parser
generators:
◦ BNFC-meta is not a program but a library (the

parser description is embedded in a quasi-quote).
◦ BNFC-meta automatically provides quasi-quotes for

the specified language. This includes a powerful and
flexible facility for anti-quotation.

63

mailto: popavdan at yahoo.com
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Ro/Haskell
http://www.haskell.org/haskellwiki/Rodin
http://www.haskell.org/haskellwiki/Gentle
http://www.haskell.org/haskellwiki/Gentle
http://www.haskell.org/haskellwiki/ADFA
http://stiinte.ub.ro
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://www.haskell.org/communities/11-2010/html/report.html#sect9.7.3
http://www.haskell.org/communities/11-2010/html/report.html#sect9.7.3
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/EmbeddedParserGenerators

More info: http://hackage.haskell.org/package/
BNFC-meta.

Generic Programming Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic pro-
gramming research at Chalmers. Recent developments
include fundamental work on “Proofs for Free” (ex-
tensions of the parametricity & dependent types work
from ICFP 2010, now published in JFP 2012) and a
Haskell Symposium paper on “Embedded Parser Gen-
erators” (see BNFC-meta above). Patrik Jansson leads
a work-package on DSLs within the EU project “Global
Systems Dynamics and Policy” (http://www.gsdp.eu/,
started Oct. 2010). If you want to apply DSLs, Haskell,
and Agda to help modelling Global Systems Science,
please get in touch! Currently Johan Jeuring from
Utrecht is visiting us on sabbatical. Jansson and
Bernardy have also just started a new project called
“Strongly Typed Libraries for Programs and Proofs”.

Language-based security SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 4.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. We encourage
you to experiment with programs and proofs in Agda
as a “dependently typed Haskell”.

Embedded domain-specific languages The func-
tional programming group has developed several dif-
ferent domain-specific languages embedded in Haskell.
The active ones are:

◦ Feldspar (→ 7.15.3) is a domain-specific language
for digital signal processing (DSP), developed in
co-operation by Ericsson, Chalmers FP group and
Eötvös Loránd (ELTE) University in Budapest.

◦ Obsidian is a language for data-parallel program-
ming targeting GPGPUs.

The following languages are not actively developed
at the moment:

◦ Lava is a language for structural hardware descrip-
tion. Circuits are modeled as ordinary Haskell func-
tions, and many of Haskell’s advantages (such as

higher-order functions and polymorphism) are also
available for Lava descriptions. There are several
versions of Lava around. The version developed at
Chalmers aims particularly at supporting formal ver-
ification in a convenient way.

◦ Wired is an extension to Lava, targeting (not exclu-
sively) semi-custom VLSI design. A particular aim
of Wired is to give the designer more control over on-
chip wires’ effects on performance. The most recent
activity was to use Wired to explore the layout of
multipliers (Kasyab P. Subramaniyan, Emil Axels-
son, Mary Sheeran and Per Larsson-Edefors. Layout
Exploration of Geometrically Accurate Arithmetic
Circuits. Proceedings of IEEE International Confer-
ence of Electronics, Circuits and Systems. 2009).
Home page: http://www.cse.chalmers.se/~emax/
wired/.

Automated reasoning We are responsible for a suite
of automated-reasoning tools:

◦ Equinox is an automated theorem prover for pure
first-order logic with equality. Equinox actually im-
plements a hierarchy of logics, realized as a stack
of theorem provers that use abstraction refinement
to talk with each other. In the bottom sits an effi-
cient SAT solver. Paradox is a finite-domain model
finder for pure first-order logic with equality. Para-
dox is a MACE-style model finder, which means that
it translates a first-order problem into a sequence of
SAT problems, which are solved by a SAT solver.

◦ Infinox is an automated tool for analyzing first-
order logic problems, aimed at showing finite un-
satisfiability, i.e., the absence of models with finite
domains. All three tools are developed in Haskell.

◦ QuickSpec generates algebraic specifications for an
API automatically, in the form of equations veri-
fied by random testing. http://www.cse.chalmers.se/
~nicsma/quickspec.pdf

◦ Hip (the Haskell Inductive Prover) is a new tool
to automatically prove properties about Haskell pro-
grams by using induction or co-induction. The ap-
proach taken is to compile Haskell programs to first
order theories. Induction is applied on the meta
level, and proof search is carried out by automated
theorem provers for first order logic with equality.

◦ On top of Hip we built HipSpec, which automat-
ically tries to find appropriate background lemmas
for properties where only doing induction is too
weak. It uses the translation and structural induc-
tion from Hip. The background lemmas are from
the equational theories built by QuickSpec. Both
the user-stated properties and those from QuickSpec
are now tried to be proven with induction. Con-
jectures proved to be theorems are added to the

64

http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ParaDep
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/EmbeddedParserGenerators
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/EmbeddedParserGenerators
http://www.gsdp.eu/
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/StronglyTypedLibrariesForProgramsAndProofs
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~emax/wired/
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf

theory as lemmas, to aid proving later properties
which may require them. For more information,
see the draft paper http://web.student.chalmers.se/
~danr/hipspec-atx.pdf

Teaching Haskell is present in the curriculum as early
as the first year of the Bachelors program. We have
four courses solely dedicated to functional program-
ming (of which three are Masters-level courses), but
we also provide courses which use Haskell for teach-
ing other aspects of computer science, such as pro-
gramming languages, compiler construction, hardware
description and verification, data structures and pro-
gramming paradigms.
We are currently teaching a new MSc level course

on “Parallel Functional Programming”, which already
featured prominent Haskellers as guest lecturers, such
as Andres Löh and Simon Marlow.

9.11 Functional Programming at KU

Report by: Andy Gill
Status: ongoing

Functional Programming is vibrant at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexander)
and the Functional Programming Group (lead by Andy
Gill) together form the core functional programming
initiative at KU. Apart from Kansas Lava (→ 7.13.2)
and HERMIT (→ 7.5.1), there are several other FP and
Haskell related things going on, primarily in the area
of web technologies.
We are interested in providing better support for in-

teractive applications in Haskell by building on top of
existing web technologies, like the fast Chrome browser,
HTML5, and JavaScript. This is motivated partly
by having easy tools to interactively teach program-
ming in Haskell, and partly by the needs of the HER-
MIT (→ 7.5.1) project.
Towards this, we have developed a lightweight web

framework called Scotty. Modeled after Ruby’s popu-
lar Sinatra framework, Scotty is intended to be a cheap
and cheerful way to write RESTful, declarative web
applications. Scotty borrows heavily from the Yesod
(→ 5.2.6) ecosystem, conforming to the WAI (→ 5.2.1)
interface and using the fast Warp (→ 5.2.2) web server

by default. More information can be found at the link
below.
On top of Scotty, we have built a simple in-

terface into the HTML5 Canvas mechanism, called
blank-canvas. This was constructed primarily as a
teaching tool and a proof-of-concept design. Here is an
example of a teaching application which prints squares
to the canvas, based on where the user clicks the mouse.

Simple interactive games can be developed using this
API, and new Haskell programmers found it straight-
forward to use. Unbeknown to us, blank-canvas was
also used in a high-school level functional programming
mentoring effort being lead by Alwyn Goodloe.
We are now working to generalize the ideas in

blank-canvas by creating a framework to handle ar-
bitrary asynchronous Javascript events and DOM ma-
nipulation via a server-side Haskell DSL. This DSL will
make it possible to control a browser-based UI using
well known Haskell patterns, such as Functional Reac-
tive Programming.
All packages are available from hackage, or will be

shortly.

Further reading

◦ The Functional Programming Group: http://www.
ittc.ku.edu/csdl/fpg

◦ CSDL website: https://wiki.ittc.ku.edu/csdl/Main_
Page

◦ http://www.ittc.ku.edu/csdl/fpg/Tools/Scotty
◦ http://www.ittc.ku.edu/csdl/fpg/Tools/BlankCanvas

9.12 San Simón Haskell Community

Report by: Antonio Mamani
Participants: Carlos Gomez

The San Simón Haskell Community from San Simón
University Cochabamba-Bolivia, is an informal Spanish

65

http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg
https://wiki.ittc.ku.edu/csdl/Main_Page
https://wiki.ittc.ku.edu/csdl/Main_Page
http://www.ittc.ku.edu/csdl/fpg/Tools/Scotty
http://www.ittc.ku.edu/csdl/fpg/Tools/BlankCanvas

group that aims to learn, share information, knowledge
and experience related to the functional paradigm.
On October last year, we participated on the XVIII

National Congress of Computer Science of Bolivia
(Congreso Nacional de Ciencias de la Computaciń de
Bolivia), in which we organized two special activities:
a Journal in Functional Programming (We had a very
good introduction to functional paradigm and haskell
[Msc. Vladimir Costas] and many short talks about
the benefits of knowing Haskell and other functional
languages [members of San Simon Haskell Commu-
nity]) and the 2nd Open House Haskell Community
(We showed some of the projects we were working on).
Projects in the 2nd Open House Haskell Community:

1. L-System — Application that renders an L-
System using wxHaskell (http://hackage.haskell.org/
package/lsystem) [Carlos Gomez]

2. Compiler IDL - Java — Generate code from IDL
to Java. [Richard Jaldin]

3. Mini Java — Mini-Java compiler from scratch.
[Antonio Mamani]

4. 3S Functional Web Browser — Bachelor theses
project about experimenting the implementation
of a web browser with Haskell. (http://hsbrowser.
wordpress.com/3s-functional-web-browser/) [Carlos
Gomez]

This year, we are planning to organize the 2nd local
Haskell Hackathon and the 3rd Open House Haskell
Community. That’s all for now, see you on facebook.

9.13 Ghent Functional Programming
Group

Report by: Andy Georges
Participants: Jeroen Janssen, Tom Schrĳvers, Jasper

Van der Jeugt
Status: active

The Ghent Functional Programming Group is a user
group aiming to bring together programmers, aca-
demics, and others interested in functional program-
ming located in the area of Ghent, Belgium. Our goal
is to have regular meetings with talks on functional pro-
gramming, organize functional programming related
events such as hackathons, and to promote functional
programming in Ghent by giving after-hours tutorials.
While we are open to all functional languages, quite
frequently, the focus is on Haskell, since most atten-
dees are familiar with this language. The group has
been active for two years, holding meetings on a regu-
lar basis.
We have reported in previous HCARs on the first

nine meetings. Since November 2011, we had two meet-
ings. The GhentFPG #10 meeting in December 2011

involved a problem solving session, where participants
tackled two problems and solutions were presented and
discussed at the end of the meeting.
In the GhentFPG #11 March 2012 meeting, we had

two talks:

◦ Jasper Van der Jeugt — Digestive Functors

◦ Jeroen Janssen — Presentation on the Typeclasso-
pedia paper

The attendance at the meetings usually varies be-
tween 10 to 15 people, with significantly less attendance
for problem solving activities.
At this point, we have plans for organising another

hackathon, somewhere in the fall of 2012.
If you want more information on GhentFPG you can

follow us on twitter (@ghentfpg), via Google Groups
(http://groups.google.com/group/ghent-fpg), or by vis-
iting us at irc.freenode.net in channel #ghentfpg.

Further reading

◦ http://www.haskell.org/haskellwiki/Ghent_
Functional_Programming_Group

◦ http://groups.google.com/group/ghent-fpg

66

http://hackage.haskell.org/package/lsystem
http://hackage.haskell.org/package/lsystem
http://hsbrowser.wordpress.com/3s-functional-web-browser/
http://hsbrowser.wordpress.com/3s-functional-web-browser/
http://groups.google.com/group/ghent-fpg
http://www.haskell.org/haskellwiki/Ghent_Functional_Programming_Group
http://www.haskell.org/haskellwiki/Ghent_Functional_Programming_Group
http://groups.google.com/group/ghent-fpg

	Community
	haskell.org
	Haskellers

	Books, Articles, Tutorials
	Haskell: the craft of functional programming, 3rd edition
	In Japanese: Learn You a Haskell for Great Good!
	The Monad.Reader
	Oleg's Mini Tutorials and Assorted Small Projects
	Yet Another Lambda Blog

	Implementations
	Haskell Platform
	The Glasgow Haskell Compiler
	UHC, Utrecht Haskell Compiler
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Haskell in Gentoo Linux
	Fedora Haskell SIG

	Fibon Benchmark Tools & Suite

	Related Languages
	Agda
	MiniAgda
	Disciple

	Haskell and …
	Haskell and Parallelism
	Eden
	GpH --- Glasgow Parallel Haskell
	Parallel GHC project
	Static Verification of Transactions in STM Haskell

	Haskell and the Web
	WAI
	Warp
	Holumbus Search Engine Framework
	Happstack
	Mighttpd2 --- Yet another Web Server
	Yesod
	Snap Framework
	Ivy-web
	rss2irc

	Haskell and Compiler Writing
	UUAG
	AspectAG
	LQPL --- A Quantum Programming Language Compiler and Emulator

	Development Tools
	Environments
	EclipseFP
	ghc-mod --- Happy Haskell Programming
	HEAT: The Haskell Educational Advancement Tool
	HaRe --- The Haskell Refactorer

	Documentation
	Haddock
	lhs2TeX

	Testing and Analysis
	shelltestrunner
	hp2any

	Optimization
	HFusion
	Optimizing Generic Functions

	Code Management
	Darcs
	DarcsWatch
	darcsden
	darcsum
	cab --- A Maintenance Command of Haskell Cabal Packages

	Deployment
	Cabal and Hackage
	Portackage --- A Hackage Portal

	Libraries, Applications, Projects
	Language Features
	Conduit
	Free Sections

	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners

	Parsing and Transforming
	The grammar-combinators Parser Library
	epub-metadata
	Utrecht Parser Combinator Library: uu-parsinglib
	Regular Expression Matching with Partial Derivatives
	regex-applicative

	Generic and Type-Level Programming
	Unbound
	FlexiWrap
	Generic Programming at Utrecht University
	A Generic Deriving Mechanism for Haskell

	Proof Assistants and Reasoning
	HERMIT
	Automated Termination Analyzer for Haskell
	HTab
	Free Theorems for Haskell
	Streaming Component Combinators
	Swish

	Mathematical Objects
	normaldistribution: Minimum Fuss Normally Distributed Random Values
	dimensional: Statically Checked Physical Dimensions
	AERN
	Paraiso
	Bullet

	Data Types and Data Structures
	HList --- A Library for Typed Heterogeneous Collections
	Persistent
	DSH --- Database Supported Haskell

	User Interfaces
	Gtk2Hs
	xmonad

	Functional Reactive Programming
	reactive-banana
	Functional Hybrid Modelling
	Elerea

	Graphics
	LambdaCube
	diagrams

	Audio
	Audio Signal Processing
	Live-Sequencer
	Functional Modelling of Musical Harmony

	Text and Markup Languages
	HaTeX
	Haskell XML Toolbox
	epub-tools (Command-line epub Utilities)

	Hardware Design
	CaSH
	Kansas Lava

	Natural Language Processing
	NLP
	GenI

	Others
	leapseconds-announced
	FunGEn
	Feldspar
	ADPfusion
	Biohaskell
	hledger
	sshtun (Wrapper daemon to manage an ssh tunnel)
	hMollom --- Haskell implementation of the Mollom API
	Galois Open-Source Projects on GitHub

	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Industrial Haskell Group
	Barclays Capital
	Oblomov Systems
	madvertise Mobile Advertising

	Research and User Groups
	A French community for Haskell
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Functional Programming at UFMG and UFOP
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Formal Methods at DFKI and University Bremen
	Haskell at Universiteit Gent, Belgium
	Haskell in Romania
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Functional Programming at KU
	San Simón Haskell Community
	Ghent Functional Programming Group

