
Haskell Communities and Activities Report
http://tinyurl.com/haskcar

Twenty-Eighth Edition — May 2015

Mihai Maruseac, Alejandro Serrano Mena (eds.)

Andreas Abel Christopher Anand Heinrich Apfelmus
Emil Axelsson Christiaan Baaij Carl Baatz
Doug Beardsley Jean-Philippe Bernardy Alexander Berntsen
Joachim Breitner Björn Buckwalter Erik de Castro Lopo
Lucas DiCioccio Roman Cheplyaka Olaf Chitil

Alberto Gómez Corona Duncan Coutts Atze Dijkstra
Péter Diviánszky Corentin Dupont Richard Eisenberg

Tom Ellis Andrew Farmer Dennis Felsing
Julian Fleischer Phil Freeman PÁLI Gábor János
Michal J. Gajda Andrew Gibiansky Brett G. Giles
Andrew Gill Alexander Granin Daniel Gröber
Jurriaan Hage Greg Hale Bastiaan Heeren
Joey Hess Bob Ippolito Robin KAY

Anton Kholomiov Ian-Woo Kim Oleg Kiselyov
Edward Kmett Eric Kow Nickolay Kudasov
Rob Leslie Ben Lippmeier Andres Löh
Rita Loogen Boris Lykah Ian Lynagh

José Pedro Magalhães Ketil Malde Mantas Markevicius
Dino Morelli JP Moresmau Natalia Muska

Rishiyur Nikhil Kiwamu Okabe Ivan Perez
Jens Petersen Haskell Consultancy Munich Simon Peyton Jones

Matthew Pickering Jeffrey Rosenbluth Ian Ross
David Sabel Martijn Schrage Carter Tazio Schonwald

Tom Schrijvers Austin Seipp Jeremy Shaw
Christian Höner zu Siederdissen Aditya Siram Gideon Sireling

Jim Snow Michael Snoyman Kyle Marek-Spartz
Lennart Spitzner Doaitse Swierstra Henk-Jan van Tuyl
Bernhard Urban Alessio Valentini Adam Vogt
Daniel Wagner Greg Weber Kazu Yamamoto
Edward Z. Yang Brent Yorgey Alan Zimmerman

http://tinyurl.com/haskcar

Preface

This is the 28th edition of the Haskell Communities and Activities Report. There are a number
of completely new entries but a large chunk of the old entries have not been updated. However,
we have two old entries which have resurfaced, so there is hope that other old entries will receive
updates on the next edition.
As usual, fresh entries – either completely new or old entries which have been revived after

a short temporarily disappearance – are formatted using a blue background, while updated
entries have a header with a blue background.
Entries on which no new activity has been reported since 2013 have been dropped completely.

Please do revive such entries next time if you do have news on them.
A call for new HCAR entries and updates to existing ones will be issued on the Haskell mailing

lists in late September/early October.
Now enjoy the current report and see what other Haskellers have been up to lately. Any

feedback is very welcome, as always.

Mihai Maruseac, University of Massachusetts Boston, US
Alejandro Serrano Mena, Utrecht University, Netherlands
〈hcar@haskell.org〉

2

mailto: hcar at haskell.org

Contents

1 Community 4
1.1 Haskellers . 4

2 Books, Articles, Tutorials 5
2.1 The Monad.Reader . 5
2.2 Oleg’s Mini Tutorials and Assorted Small Projects . 5
2.3 School of Haskell . 6
2.4 Agda Tutorial . 6

3 Implementations 7
3.1 The Glasgow Haskell Compiler . 7
3.2 Ajhc Haskell Compiler . 9
3.3 The Helium Compiler . 10
3.4 UHC, Utrecht Haskell Compiler . 11
3.5 Specific Platforms . 11
3.5.1 Haskell on FreeBSD . 11
3.5.2 Debian Haskell Group . 11
3.5.3 Fedora Haskell SIG . 12

4 Related Languages and Language Design 13
4.1 Agda . 13
4.2 MiniAgda . 13
4.3 Disciple . 13
4.4 Ermine . 14

5 Haskell and . . . 15
5.1 Haskell and Parallelism . 15
5.1.1 Eden . 15
5.1.2 speculation . 16
5.1.3 Wakarusa . 16
5.2 Haskell and the Web . 16
5.2.1 WAI . 16
5.2.2 Warp . 17
5.2.3 Happstack . 17
5.2.4 Mighttpd2 — Yet another Web Server . 17
5.2.5 Yesod . 17
5.2.6 Snap Framework . 18
5.2.7 MFlow . 18
5.2.8 Scotty . 19
5.2.9 Sunroof . 20
5.2.10 Blank Canvas . 20
5.2.11 PureScript . 21
5.3 Haskell and Compiler Writing . 21
5.3.1 MateVM . 21
5.3.2 UUAG . 21
5.3.3 LQPL — A Quantum Programming Language Compiler and Emulator 22
5.3.4 free — Free Monads . 23
5.3.5 bound — Making De Bruijn Succ Less . 23

6 Development Tools 24
6.1 Environments . 24
6.1.1 Haskell IDE From FP Complete . 24

3

6.1.2 EclipseFP . 24
6.1.3 ghc-mod — Happy Haskell Programming . 25
6.1.4 HaRe — The Haskell Refactorer . 25
6.1.5 ghc-exactprint . 26
6.1.6 IHaskell: Haskell for Interactive Computing . 27
6.2 Code Management . 27
6.2.1 Darcs . 27
6.2.2 cab — A Maintenance Command of Haskell Cabal Packages . 28
6.3 Interfacing to other Languages . 28
6.3.1 java-bridge . 28
6.3.2 fficxx . 28
6.4 Deployment . 29
6.4.1 Cabal and Hackage . 29
6.4.2 Stackage: the Library Dependency Solution . 29
6.4.3 Haskell Cloud . 30
6.5 Others . 30
6.5.1 ghc-heap-view . 30
6.5.2 ghc-vis . 30
6.5.3 Hat — the Haskell Tracer . 31
6.5.4 Tasty . 31
6.5.5 Automatic type inference from JSON . 32
6.5.6 Exference . 32

7 Libraries, Applications, Projects 34
7.1 Language Features . 34
7.1.1 Conduit . 34
7.1.2 lens . 34
7.1.3 folds . 35
7.1.4 machines . 35
7.1.5 exceptions . 35
7.1.6 Faking even more dependent types! . 35
7.1.7 Type checking units-of-measure . 36
7.1.8 GHC type-checker plugin for kind Nat . 36
7.1.9 Dependent Haskell . 37
7.2 Education . 37
7.2.1 Exercism: crowd-sourced code reviews on daily practice problems 37
7.2.2 Holmes, Plagiarism Detection for Haskell . 38
7.2.3 Interactive Domain Reasoners . 38
7.3 Parsing and Transforming . 39
7.3.1 epub-metadata . 39
7.3.2 Utrecht Parser Combinator Library: uu-parsinglib . 39
7.3.3 HERMIT . 40
7.3.4 Generalized Algebraic Dynamic Programming . 41
7.3.5 parsers . 42
7.3.6 trifecta . 42
7.4 Mathematics . 42
7.4.1 Rlang-QQ . 42
7.4.2 order-statistics . 42
7.4.3 linear . 42
7.4.4 algebra . 43
7.4.5 semigroups and semigroupoids . 43
7.4.6 Arithmetics packages (Edward Kmett) . 43
7.4.7 ad . 43
7.4.8 integration . 44
7.4.9 contravariant . 44
7.4.10 categories . 44
7.4.11 bifunctors . 44
7.4.12 profunctors . 44

4

7.4.13 comonad . 45
7.4.14 recursion-schemes . 45
7.4.15 kan-extensions . 45
7.5 Numerical Packages and High Performance Computing . 46
7.5.1 arb-fft . 46
7.5.2 hblas . 46
7.5.3 HROOT . 46
7.5.4 Numerical . 47
7.6 Data Types and Data Structures . 47
7.6.1 constraints . 47
7.6.2 HList — A Library for Typed Heterogeneous Collections . 47
7.6.3 reflection . 48
7.6.4 tag-bits . 48
7.6.5 hyperloglog . 48
7.6.6 hybrid-vectors . 48
7.6.7 lca . 48
7.6.8 concurrent-supply . 49
7.6.9 heaps . 49
7.6.10 sparse . 49
7.6.11 compressed . 49
7.6.12 charset . 49
7.6.13 Convenience types (Edward Kmett) . 49
7.7 Databases and Related Tools . 50
7.7.1 tables . 50
7.7.2 Persistent . 50
7.7.3 Groundhog . 50
7.7.4 Opaleye . 51
7.7.5 HLINQ - LINQ for Haskell . 51
7.8 User Interfaces . 51
7.8.1 HsQML . 51
7.8.2 Gtk2Hs . 52
7.8.3 LGtk: Lens GUI Toolkit . 52
7.8.4 wxHaskell . 53
7.8.5 threepenny-gui . 53
7.8.6 reactive-banana . 54
7.8.7 fltkhs - GUI bindings to the FLTK library . 54
7.9 Graphics and Audio . 55
7.9.1 diagrams . 55
7.9.2 Chordify . 56
7.9.3 csound-expression . 57
7.9.4 Glome . 58
7.10 Text and Markup Languages . 59
7.10.1 epub-tools (Command-line epub Utilities) . 59
7.10.2 lens-aeson . 59
7.10.3 lhs2TEX . 59
7.10.4 pulp . 59
7.10.5 hyphenation . 60
7.11 Natural Language Processing . 60
7.11.1 NLP . 60
7.11.2 GenI . 61
7.12 Bioinformatics . 61
7.12.1 ADPfusion . 61
7.12.2 Ab-initio electronic structure in Haskell . 62
7.12.3 Semi-Classical Molecular Dynamics in Haskell . 63
7.12.4 Biohaskell . 64
7.12.5 arte-ephys: Real-time electrophysiology . 64
7.13 Embedding DSLs for Low-Level Processing . 64
7.13.1 CλaSH . 64

5

7.13.2 Feldspar . 65
7.13.3 Kansas Lava . 65
7.14 Games . 66
7.14.1 The Amoeba-World game project . 66
7.14.2 EtaMOO . 66
7.14.3 scroll . 67
7.14.4 Nomyx . 67
7.15 Others . 67
7.15.1 General framework for multi-agent systems . 67
7.15.2 ersatz . 67
7.15.3 leapseconds-announced . 68
7.15.4 arbtt . 68
7.15.5 Hoodle . 68
7.15.6 Reffit . 69
7.15.7 Laborantin . 69
7.15.8 tempuhs . 69
7.15.9 tttool . 70
7.15.10 Transient . 70
7.15.11 gipeda . 71
7.15.12 Octohat (Stack Builders) . 71
7.15.13 git-annex . 71
7.15.14 openssh-github-keys (Stack Builders) . 72
7.15.15 propellor . 72
7.15.16 dimensional: Statically Checked Physical Dimensions . 72

8 Commercial Users 74
8.1 Well-Typed LLP . 74
8.2 Bluespec Tools for Design of Complex Chips and Hardware Accelerators 74
8.3 Haskell in the industry in Munich . 75
8.4 Industrial Haskell Group . 76
8.5 Better . 77
8.6 Keera Studios LTD . 77
8.7 plaimi . 78
8.8 Stack Builders . 78
8.9 Optimal Computational Algorithms, Inc. 78

9 Research and User Groups 79
9.1 Haskell at Eötvös Loránd University (ELTE), Budapest . 79
9.2 Artificial Intelligence and Software Technology at Goethe-University Frankfurt 79
9.3 Functional Programming at the University of Kent . 80
9.4 Haskell at KU Leuven, Belgium . 81
9.5 fp-syd: Functional Programming in Sydney, Australia . 81
9.6 Functional Programming at Chalmers . 81
9.7 Functional Programming at KU . 83
9.8 Regensburg Haskell Meetup . 83
9.9 Haskell in the Munich Area . 84
9.10 HaskellMN . 86

6

1 Community

1.1 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.
Haskellers is a web site in maintenance mode. No

new features are being added, though the site remains
active with many new accounts and job postings con-
tinuing. If you have specific feature requests, feel free
to send them in (especially with pull requests!).
Haskellers remains a site intended for all members

of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/

7

http://www.haskellers.com/

2 Books, Articles, Tutorials

2.1 The Monad.Reader

Report by: Edward Z. Yang

There are many academic papers about Haskell and
many informative pages on the HaskellWiki. Unfortu-
nately, there is not much between the two extremes.
That is where The Monad.Reader tries to fit in: more
formal than a wiki page, but more casual than a journal
article.
There are plenty of interesting ideas that might not

warrant an academic publication—but that does not
mean these ideas are not worth writing about! Com-
municating ideas to a wide audience is much more im-
portant than concealing them in some esoteric journal.
Even if it has all been done before in the Journal of
Impossibly Complicated Theoretical Stuff, explaining
a neat idea about “warm fuzzy things” to the rest of
us can still be plain fun.
The Monad.Reader is also a great place to write

about a tool or application that deserves more atten-
tion. Most programmers do not enjoy writing manuals;
writing a tutorial for The Monad.Reader, however, is
an excellent way to put your code in the limelight and
reach hundreds of potential users.

Further reading

http://themonadreader.wordpress.com/

2.2 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmij.org/ftp/Haskell/)
has received two additions:

Combinators for parsing several streams at once

Parsing combinators, from the basic
Text.ParserCombinators.ReadP to iteratees, obtain
their input from an implicit stream. It is this implicit-
ness that makes the combinators easily compose and
convenient to use. It also makes the parsing of two
streams at the same time seemingly impossible. A
characteristic example is merging two sorted streams,
where the streams are read in a complex, statically
unpredictable pattern.
With iteratees at least, the problem is solvable. The

solution maintains all the advantages of iteratees: in-

cremental processing, buffering, precise resource con-
trol and the prevention of resource leaks. It surprising
how trivial the solution is, requiring no changes to the
iteratee implementation nor even the knowledge of it.
The key is observation is that Iteratee is a monad
transformer and hence can be iterated. Laying iteratee
monad transformers upon each other gives an us access
to several streams at once. The solution thus extends
to other parser combinators that are transformers.
Read the tutorial online.

Leibniz equality can, after all, be made injective

The paper “Typing Dynamic Typing” (Baars and
Swierstra, ICFP 2002) demonstrated the first imple-
mentation and application of so-called Leibniz equality
witnesses in Haskell:

newtype EQU a b = EQU {subst :: ∀c.c a → c b}

Given a term eq :: EQU a b, subst eq :: ∀c.c a → c b will
convert a value c a – that is, the value of type a in the
context represented by the type constructor c – into
c b. In other words, in any context c, the type a can
be substituted with the type b, which is how Leibniz
defined equality. The Leibniz equality term EQU is a
poor-man GADT, and that’s why it is useful. Unlike
GADT, it is implementable in any language with the
rank-2 polymorphism.
The Baars and Swierstra paper showed a good exam-

ple of using Leibniz equality, to implement type check-
ers and type inferencers. For this task we also need to
establish the equality of two arrow types: two arrow
types are equal if their components are equal:

eq_arr :: EQU a1 a2 → EQU b1 b2
→ EQU (a1 → b1) (a2 → b2)

Such a function eq_arrow is easily implementable. Yet
sometimes (see for example, “Implementing Cut Elim-
ination: A Case Study of Simulating Dependent Types
in Haskell” by Chen, Zhu and Xi, PADL’04) we need
the reverse direction: if two arrow types are equal, their
argument types are equal as well (ditto for the result
types). This reverse direction, which relies on arrow
being injective, is impossible to obtain without extra
features. It is here were GADTs show more power over
Leibniz equality.
It turns out that with type functions, Leibniz equal-

ity is injective. The key is a realization that type-
constructor polymorphism extends to the polymor-
phism over arbitrary type functions. Leibniz injectivity
is also the example of type functions seemingly more ex-
pressive than type-class functional dependencies. De-
spite a long-standing challenge no one has shown how

8

http://themonadreader.wordpress.com/
http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/Streams.html#1enum2iter

to implement injective Leibniz equality using just func-
tional dependencies.

Read the tutorial online.

2.3 School of Haskell

Report by: Natalia Muska
Participants: Michael Snoyman, Edward Kmett, Simon

Peyton Jones and others
Status: active

The School of Haskell has been available since early
2013. It’s main two functions are to be an education
resource for anyone looking to learn Haskell and as
a sharing resources for anyone who has built a valu-
able tutorial. The School of Haskell contains tutorials,
courses, and articles created by both the Haskell com-
munity and the developers at FP Complete. Courses
are available for all levels of developers.

Two new features were added to the School of
Haskell. First is the addition of Disqus for commenting
on each tutorial and highlighting other potentially in-
teresting tutorials. Second is the inclusion of autorun
tags. This enables users to run a snippet as soon as
they open a tutorial.

Currently 3150 tutorials have been created (a 125%
increase from this time last year) and 441 have been
officially published (a 53% increase from this time last
year). Some of the most visited tutorials are Text Ma-
nipulation Attoparsec, Learning Haskell at the SOH,
Introduction to Haskell - Haskell Basics, and A Little
Lens Starter Tutorial. Over the past year the School
of Haskell has averaged about 16k visitors a month.

All Haskell programmers are encouraged to visit the
School of Haskell and to contribute their ideas and
projects. This is another opportunity to showcase the
virtues of Haskell and the sophistication and high level
thinking of the Haskell community.

Further reading

Visit the School of Haskell here https://www.
fpcomplete.com/school

2.4 Agda Tutorial

Report by: Péter Diviánszky
Participants: Ambrus Kaposi, students at ELTE IK
Status: experimental

Agda may be the next programming language to learn
after Haskell. Learning Agda gives more insight into
the various type system extensions of Haskell, for ex-
ample.
The main goal of the tutorial is to let people ex-

plore programming in Agda without learning theoret-
ical background in advance. Only secondary school
mathematics is required for the tutorial.

Further reading

http://people.inf.elte.hu/divip/AgdaTutorial/Index.html

9

http://okmij.org/ftp/Computation/extra-polymorphism.html#injectivity
https://www.fpcomplete.com/school
https://www.fpcomplete.com/school
http://people.inf.elte.hu/divip/AgdaTutorial/Index.html

3 Implementations

3.1 The Glasgow Haskell Compiler

Report by: Austin Seipp
Participants: many others

GHC 7.10.1 was released in March this year, shipping
several major improvements, and development contin-
ues to steam forward as it always does. However,
things have been relatively quiet for most of 2015 so far,
as people have simply been working away. Currently
our master branch does not heavily diverge much from
GHC 7.10, but that could change soon!

Major changes in GHC 7.10.1

When we shipped GHC 7.10, we incorporated some ma-
jor new features - but not without some major decision
making, it turns out. These included:

Making Applicative a superclass of Monad Yes, fi-
nally!

Generalizing Prelude operators Known in various cir-
cles as “The Burning-Bridges Proposal” (BBP)
or “The Foldable Traversable Proposal” (FTP),
this proposal offered to generalize many Prelude
operations to functions in Data.Traversable and
Data.Foldable. However, this plan stirred up a rel-
atively large amount of debate regarding deviations
from the standard, communicating plans, and the
implications will be. In the end, Simon Peyton Jones
and Simon Marlow sought feedback from the commu-
nity, and ended up making a final decision in Febru-
ary, after hundreds of input votes from the commu-
nity, and decided to move forward with the plan.

Distributed programming, static values, and reflection
Mathieu Boespflug and Facundo Dominguez at
TweagIO completely reimplemented their old pro-
posal for static values, primarily intended to support
Cloud Haskell, and it was merged into GHC 7.10.
The support as it stands should be experimental,
but the new implementation is much simpler and
easier to understand. This is part of a larger
project involving runtime reflection and distributed
programming

Binary literals Herbert Valerio Riedel implemented
the −XBinaryLiterals language extension which fi-
nally closes the syntax gap relative to other lan-
guages which allow to write base-2 literals such as
0 b11001001 .

Partial type signatures Thomas Winant and Do-
minique Devriese implemented partial type signa-
tures for GHC. A partial type signature is a type
signature that can contain wildcards, written as un-
derscores. These wildcards can be types unknown to
the programmer or types he doesn’t care to anno-
tate. The type checker will use the annotated parts
of the partial type signature to type check the pro-
gram, and infer the types for the wildcards. A wild-
card can also occur at the end of the constraints part
of a type signature, which indicates that an arbi-
trary number of extra constraints may be inferred.
Whereas −XTypedHoles allow holes in your terms,
−XPartialTypeSignatures allow holes in your types!

Preliminary backpack support Edward Yang has been
working tirelessly on support for Backpack features
in GHC. GHC 7.10 shipped with some prelimi-
nary code to support it, including signature file
support and some Cabal support, but we have
a new plan for GHC 7.12, with new syntax and
a new implementation strategy. You can find
out more by checking out the algorithm spec-
ification (https://github.com/ghc/ghc/blob/master/
docs/backpack/algorithm.pdf). Work is currently
proceeding on the ghc-backpack branch.

Reimplemented GMP-based Integer backend
Herbert Valerio Riedel completely reimplemented
the integer − gmp backend, and is now shipping it
on all Tier 1 platforms. This should make inter-
operation with GMP (and C libraries that depend
on GMP) radically simpler, while being easier to
maintain.

DWARF support for debugging symbols Peter Wort-
mann has gotten the first piece of his long-term work
in place: support for GHC to emit DWARF sym-
bols to object files, so debuggers can utilize it. The
preliminary support works for simple cases, but is
very experimental! (Case in point: it was broken in
7.10.1 due to #10236 – https://ghc.haskell.org/trac/
ghc/ticket/10236)

API Annotations and other GHC API changes Alan
Zimmerman has added API Annotations to the
AST, so that the precise layout of the original source
code can be regenerated. An initial library making
use of these to fully round trip Haskell source code
is at https://github.com/alanz/ghc-exactprint. This
will be updated shortly after 7.10.2 comes out,
and then used by HaRe to handle the low level
AST manipulation. Also, the landmines have been
removed from the AST, so that traversals over it

10

https://github.com/ghc/ghc/blob/master/docs/backpack/algorithm.pdf
https://github.com/ghc/ghc/blob/master/docs/backpack/algorithm.pdf
https://ghc.haskell.org/trac/ghc/ticket/10236
https://ghc.haskell.org/trac/ghc/ticket/10236
https://github.com/alanz/ghc-exactprint

no longer need to tiptoe around embedded panic
values. Andrew Gibiansky has added more parser
entry points, so that tools can now parse fragments
of source code.

Typechecker plugins Iavor Diatchki, Eric Seidel and
Adam Gundry implemented preliminary support for
extending the typechecker using plugins, making it
easier to experiment with custom constraint solvers.

Upcoming plans for the next release

The current plan is to steam forward to the end of the
year, and begin to get ready for a new release, proba-
bly in February of 2016. We have some tentative plans
marked below - and some of them are huge! In partic-
ular - we may ship GHC 8.0 next year, if we’re going
to change the entire Core language!

Libraries, source language, type system

Signature sections Lennart Augustsson is implement-
ing (::ty) to work the same as (λx → x :: ty)

ApplicativeDo Now that Applicative is a superclass
of Monad, Simon Marlow has implemented a new
extension for GHC, which will allow do notation
to be used in the context of Applicative, not just
Monad. The patch for review is available at https:
//phabricator.haskell.org/D729, and Simon Marlow
believes it’s ready for review and merge.

Overloaded record fields After countless more discus-
sions and several revisions, Adam Gundry imple-
mented the new −XOverloadedRecordFields extension
for GHC – again! – but this time with a newer de-
sign – and the first piece of the implementation is
up for review at https://phabricator.haskell.org/D761
– we’re hoping to review it and integrate it soon.

Using an SMT Solver as a type-checker plugin
Iavor Diatchki is working on implementing support
for using SMT solvers in the typechecker, via the
plugins mechanism. Currently, the main focus
for this is improved support for reasoning with
type-level natural numbers, but it opens the doors
to other interesting functionality, such as supported
for lifted (i.e., type-level) (∧), and (|), type-level
bit-vectors (perhaps this could be used to implement
type-level sets of fixed size), and others.

Kind equality, kind coercions, and dependently
typed Core Richard Eisenberg (with support from
Simon PJ and Stephanie Weirich, among others)
is implementing a change to the Core language,
as described in “System FC with explicit kind
equality”. When this work is complete, all types will
be promotable to kinds, and all data constructors
will be promotable to types. This will include
promoting type synonyms and type families. As the

details come together, there may be other source
language effects, such as the ability to make kind
variables explicit. It is not expected for this to be a
breaking change – the change should allow strictly
more programs to be accepted. This can also go
down as one of the larger changes in recent memory
– https://phabricator.haskell.org/D808 is the biggest
Phabricator review we’ve done to date, changing
over 10,000 lines of code in the compiler!

Injective type families Jan Stolarek (with support
from Richard Eisenberg and Simon PJ) is working
on adding injective type families to GHC. With this
feature it will be possible to annotate declaration of
a type family - closed, open or associated with class
- with injectivity annotation and GHC will be able
to use that information during type checking.

Safe Haskell & Overlapping Instances David Terei
has overhauled how overlapping instances work un-
der Safe Haskell. This greatly expands the number
of regular Haskell programs that work under Safe
Haskell and makes use of the new per-instance over-
lapping instances added in GHC 7.10. It also unifies
how overlapping instances work when inferring a
modules safety, vs. explicit use of −XSafe.

Safe Haskell, GND & Roles David Terei and Richard
Eisenberg are currently discussing possible changes
to how Roles should work to allow them to be in-
cluded in the safe-language of Safe Haskell. These
are early discussions with no changes yet planned,
but they’d love any feedback. The wiki page con-
tains a wealth of information. Both the background
and possible paths forward.

Back end and runtime system

CPU-specific optimizations Austin Seipp is currently
investigating the implementation of CPU-specific op-
timisations for GHC, including new -march and
-mcpu flags to adjust tuning for a particular pro-
cessor. Right now, there is some preliminary work
towards optimizing copies on later Intel machines.
There’s interest in expanding this further as well.

Changes to static closures for faster garbage
collection Edward Yang is working on an overhaul
of how static closures represented at runtime to
eliminate some expensive memory dereferences in
the GC hotpath. The initial results are encouraging:
these changes can result in an up to 8% in the
runtime of some GC heavy benchmarks. See ticket
#8199.

DWARF-based stack tracing Peter Wortmann and
Arash Rouhani (with support from the Simons) are
working on enabling GHC to now use the DWARF
debugging information it generates. This should al-
low us to obtain stack traces and do profiling without

11

https://phabricator.haskell.org/D729
https://phabricator.haskell.org/D729
https://phabricator.haskell.org/D761
https://phabricator.haskell.org/D808
https://ghc.haskell.org/trac/ghc/ticket/8199
https://ghc.haskell.org/trac/ghc/ticket/8199

the need for instrumentation, directly from Haskell
executables.

An Improved LLVM Backend that ships with every
major Tier 1 platform.

Native code generator for PowerPC 64-bit Peter
Trommler has been working on an extension of the
PowerPC native code backend to support 64-bit
Linux systems. There are two 64-bit ELF ABI
versions. The implementation of ABI version 1,
which is mostly used by big endian systems, is fairly
stable and support for ABI version 2, which is used
by systems with POWER8 processors running in
little endian mode, is currently under testing. See
ticket #9863.

Frontend, build-system, and miscellaneous changes

Shaking up GHC [Shake]. Andrey Mokhov (with sup-
port from Neil Mitchell, Simon Marlow and Simon PJ)
is working on a new Shake-based build system for GHC.
The goal is to make it much more understandable,
maintainable and convenient to use than the current
make-based one. It is also expected that the new build
system will be faster, because Shake allows to express
build dependencies more accurately.

Development updates, joining in and a big Thank
You!

In the past several months, GHC has seen a surge of
community involvement, and a great deal of new con-
tributors.
As ever, there is a ton of stuff in the future for us to

do. If you want something done — don’t wait, it might
take a while. You should join us instead!

Links:

◦ https://ghc.haskell.org/trac/ghc/wiki/Prelude710
◦ https://mail.haskell.org/pipermail/libraries/

2015-February/024925.html
◦ https://mail.haskell.org/pipermail/libraries/

2015-February/025009.html
◦ https://ghc.haskell.org/trac/ghc/wiki/StaticPointers
◦ https://ghc.haskell.org/trac/ghc/wiki/Typeable
◦ https://ghc.haskell.org/trac/ghc/wiki/

DistributedHaskell
◦ https://ghc.haskell.org/trac/ghc/wiki/

PartialTypeSignatures
◦ https://github.com/ezyang/ghc/tree/ghc-backpack
◦ https://ghc.haskell.org/trac/ghc/wiki/DWARF
◦ https://ghc.haskell.org/trac/ghc/wiki/GhcApi
◦ https://ghc.haskell.org/trac/ghc/wiki/ApiAnnotations
◦ https://ghc.haskell.org/trac/ghc/wiki/Plugins/

TypeChecker
◦ https://ghc.haskell.org/trac/ghc/wiki/ApplicativeDo

◦ https://ghc.haskell.org/trac/ghc/wiki/Records/
OverloadedRecordFields

◦ https://github.com/yav/type-nat-solver
◦ https://github.com/yav/type-nat-solver/raw/master/

docs/paper.pdf
◦ http://www.seas.upenn.edu/~eir/papers/2013/

fckinds/fckinds-extended.pdf
◦ https://ghc.haskell.org/trac/ghc/wiki/

InjectiveTypeFamilies
◦ https://ghc.haskell.org/trac/ghc/wiki/SafeHaskell/

NewOverlappingInstances
◦ https://ghc.haskell.org/trac/ghc/wiki/SafeRoles
◦ https://ghc.haskell.org/trac/ghc/wiki/DWARF
◦ https://ghc.haskell.org/trac/ghc/wiki/

ImprovedLLVMBackend
◦ https://phabricator.haskell.org/D629
◦ https://ghc.haskell.org/trac/ghc/wiki/Building/Shake
◦ https://ghc.haskell.org/trac/ghc/wiki/Phabricator

3.2 Ajhc Haskell Compiler

Report by: Kiwamu Okabe
Participants: John Meacham, Hiroki Mizuno, Hidekazu

Segawa, Takayuki Muranushi
Status: experimental

What is it?

Ajhc is a Haskell compiler, and acronym for “A fork of
jhc”.
Jhc (http://repetae.net/computer/jhc/) converts

Haskell code into pure C language code running with
jhc’s runtime. And the runtime is written with 3000
lines (include comments) pure C code. It’s a magic!
Ajhc’s mission is to keep contribution to jhc in

the repository. Because the upstream author of jhc,
John Meacham, can’t pull the contribution speedily.
(I think he is too busy to do it.) We should feed-
back jhc any changes. Also Ajhc aims to provide the
Metasepi project with a method to rewrite NetBSD
kernel using Haskell. The method is called Snatch-
driven development http://www.slideshare.net/master_
q/20131020-osc-tokyoajhc.
Ajhc is, so to speak, an accelerator to develop jhc.

Demonstrations

https://www.youtube.com/watch?v=XEYcR5RG5cA
NetBSD kernel’s HD Audio sound driver has inter-

rupt handler. The interrupt handler of the demo is
re-written by Haskell language using Ajhc.
At the demo, run following operations. First, set

breakpoint at the interrupt of finding headphone, and
see Haskell function names on backtrace. Second, set
breakpoint s_alloc() function, that allocate area in
Haskell heap. Make sure of calling the function while
anytime running kernel. Nevertheless, playing wav file
does not break up.

12

https://ghc.haskell.org/trac/ghc/wiki/ImprovedLLVMBacken://ghc.haskell.org/trac/ghc/ticket/9863
https://ghc.haskell.org/trac/ghc/wiki/Prelude710
https://mail.haskell.org/pipermail/libraries/2015-February/024925.html
https://mail.haskell.org/pipermail/libraries/2015-February/024925.html
https://mail.haskell.org/pipermail/libraries/2015-February/025009.html
https://mail.haskell.org/pipermail/libraries/2015-February/025009.html
https://ghc.haskell.org/trac/ghc/wiki/StaticPointers
https://ghc.haskell.org/trac/ghc/wiki/Typeable
https://ghc.haskell.org/trac/ghc/wiki/DistributedHaskell
https://ghc.haskell.org/trac/ghc/wiki/DistributedHaskell
https://ghc.haskell.org/trac/ghc/wiki/PartialTypeSignatures
https://ghc.haskell.org/trac/ghc/wiki/PartialTypeSignatures
https://github.com/ezyang/ghc/tree/ghc-backpack
https://ghc.haskell.org/trac/ghc/wiki/DWARF
https://ghc.haskell.org/trac/ghc/wiki/GhcApi
https://ghc.haskell.org/trac/ghc/wiki/ApiAnnotations
https://ghc.haskell.org/trac/ghc/wiki/Plugins/TypeChecker
https://ghc.haskell.org/trac/ghc/wiki/Plugins/TypeChecker
https://ghc.haskell.org/trac/ghc/wiki/ApplicativeDo
https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields
https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields
https://github.com/yav/type-nat-solver
https://github.com/yav/type-nat-solver/raw/master/docs/paper.pdf
https://github.com/yav/type-nat-solver/raw/master/docs/paper.pdf
http://www.seas.upenn.edu/~eir/papers/2013/fckinds/fckinds-extended.pdf
http://www.seas.upenn.edu/~eir/papers/2013/fckinds/fckinds-extended.pdf
https://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies
https://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies
https://ghc.haskell.org/trac/ghc/wiki/SafeHaskell/NewOverlappingInstances
https://ghc.haskell.org/trac/ghc/wiki/SafeHaskell/NewOverlappingInstances
https://ghc.haskell.org/trac/ghc/wiki/SafeRoles
https://ghc.haskell.org/trac/ghc/wiki/DWARF
https://ghc.haskell.org/trac/ghc/wiki/ImprovedLLVMBackend
https://ghc.haskell.org/trac/ghc/wiki/ImprovedLLVMBackend
https://phabricator.haskell.org/D629
https://ghc.haskell.org/trac/ghc/wiki/Building/Shake
https://ghc.haskell.org/trac/ghc/wiki/Phabricator
http://repetae.net/computer/jhc/
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
https://www.youtube.com/watch?v=XEYcR5RG5cA

The source code is found at https:
//github.com/metasepi/netbsd-arafura-s1 The
interrupt handler source code at https:
//github.com/metasepi/netbsd-arafura-s1/blob/
fabd5d64f15058c198ba722058c3fb89f84d08a5/
metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15.
Discussion on mailing list: http://www.haskell.org/

pipermail/haskell-cafe/2014-February/112802.html
http://www.youtube.com/watch?v=n6cepTfnFoo
The touchable cube application is written with

Haskell and compiled by Ajhc. In the demo, the ap-
plication is breaked by ndk-gdb debugger when run-
ning GC. You could watch the demo source code at
https://github.com/ajhc/demo-android-ndk.

http://www.youtube.com/watch?v=C9JsJXWyajQ
The demo is running code that compiled with Ajhc

on Cortex-M3 board, mbed. It’s a simple RSS reader
for reddit.com, showing the RSS titles on Text LCD
panel. You could watch the demo detail and source
code at https://github.com/ajhc/demo-cortex-m3.

http://www.youtube.com/watch?v=zkSy0ZroRIs
The demo is running Haskell code without any

OS. Also the clock exception handler is written with
Haskell.

Usage

You can install Ajhc from Hackage.

$ cabal install ajhc
$ ajhc --version
ajhc 0.8.0.9 (9c264872105597700e2ba403851cf3b
236cb1646)
compiled by ghc-7.6 on a x86_64 running linux
$ echo ’main = print "hoge"’ > Hoge.hs
$ ajhc Hoge.hs
$./hs.out
"hoge"

Please read “Ajhc User’s Manual” to know more de-
tail. (http://ajhc.metasepi.org/manual.html)

Future plans

Maintain Ajhc as compilable with latast GHC.

License

◦ Runtime: MIT License https://github.com/ajhc/
ajhc/blob/master/rts/LICENSE

◦ Haskell libraries: MIT License https://github.com/
ajhc/ajhc/blob/master/lib/LICENSE

◦ The others: GPLv2 or Later https://github.com/
ajhc/ajhc/blob/arafura/COPYING

Contact

◦ Mailing list:
http://groups.google.com/group/metasepi

◦ Bug tracker: https://github.com/ajhc/ajhc/issues
◦ Metasepi team:

https://github.com/ajhc?tab=members

Further reading

◦ Ajhc – Haskell everywhere:
http://ajhc.metasepi.org/

◦ jhc: http://repetae.net/computer/jhc/
◦ Metasepi: Project http://metasepi.org/
◦ Snatch-driven-development: http://www.slideshare.

net/master_q/20131020-osc-tokyoajhc

3.3 The Helium Compiler

Report by: Jurriaan Hage
Participants: Bastiaan Heeren

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back, including domain specific type error diagnosis by
means of specialized type rules. Helium and its asso-
ciated packages are available from Hackage. Install it
by running cabal install helium. You should also
cabal install lvmrun on which it dynamically de-
pends for running the compiled code.

Currently Helium is at version 1.8.1. The major
change with respect to 1.8 is that Helium is again
well-integrated with the Hint programming environ-
ment that Arie Middelkoop wrote in Java. The jar-file
for Hint can be found on the Helium website, which is
located at http://www.cs.uu.nl/wiki/Helium. This web-
site also explains in detail what Helium is about, what
it offers, and what we plan to do in the near and far
future.

A student has added parsing and static checking for
type class and instance definitions to the language, but
type inferencing and code generating still need to be
added. Completing support for type classes is the sec-
ond thing on our agenda, the first thing being making
updates to the documentation of the workings of He-
lium on the website.

13

https://github.com/metasepi/netbsd-arafura-s1
https://github.com/metasepi/netbsd-arafura-s1
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
http://www.haskell.org/pipermail/haskell-cafe/2014-February/112802.html
http://www.haskell.org/pipermail/haskell-cafe/2014-February/112802.html
http://www.youtube.com/watch?v=n6cepTfnFoo
https://github.com/ajhc/demo-android-ndk
http://www.youtube.com/watch?v=C9JsJXWyajQ
https://github.com/ajhc/demo-cortex-m3
http://www.youtube.com/watch?v=zkSy0ZroRIs
http://ajhc.metasepi.org/manual.html
https://github.com/ajhc/ajhc/blob/master/rts/LICENSE
https://github.com/ajhc/ajhc/blob/master/rts/LICENSE
https://github.com/ajhc/ajhc/blob/master/lib/LICENSE
https://github.com/ajhc/ajhc/blob/master/lib/LICENSE
https://github.com/ajhc/ajhc/blob/arafura/COPYING
https://github.com/ajhc/ajhc/blob/arafura/COPYING
http://groups.google.com/group/metasepi
https://github.com/ajhc/ajhc/issues
https://github.com/ajhc?tab=members
http://ajhc.metasepi.org/
http://repetae.net/computer/jhc/
http://metasepi.org/
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.cs.uu.nl/wiki/Helium

3.4 UHC, Utrecht Haskell Compiler

Report by: Atze Dijkstra
Participants: many others
Status: active development

UHC is the Utrecht Haskell Compiler, supporting al-
most all Haskell98 features and most of Haskell2010,
plus experimental extensions.

Status Current active development directly on UHC:
◦ Making intermediate Core language available as a
compilable language on its own (Atze Dijkstra) to
be used for experimenting with alternate Agda back-
ends (Philipp Hausmann, released, talk at upcoming
TFP).

◦ The platform independent part of UHC has been
made available via Hackage, as package “uhc-light”
together with a small interpreter for Core files (Atze
Dijkstra, interpreter still under development).

◦ Implementing static analyses (various students, Jur-
riaan Hage).
Current work indirectly on or related to UHC:
◦ Incrementality of analysis via the Attribute Gram-
mar system used to construct UHC (Jeroen Bransen,
PhD thesis finished (soon to be defended), see also
UUAGC).

◦ Rewriting the type system combining ideas from the
constrained-based approach in GHC and type error
improvements found in Helium (Alejandro Serrano).

Background. UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (→ 5.3.2).

Further reading

◦ UHC Homepage:
http://www.cs.uu.nl/wiki/UHC/WebHome

◦ UHC Github repository:
https://github.com/UU-ComputerScience/uhc

◦ Attribute grammar system: http:
//www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

3.5 Specific Platforms

3.5.1 Haskell on FreeBSD

Report by: PÁLI Gábor János
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of contrib-
utors who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the ports tree. FreeBSD is a Tier-
1 platform for GHC (on both i386 and amd64) start-
ing from GHC 6.12.1, hence one can always download
vanilla binary distributions for each recent release.
We have a developer repository for Haskell ports

that features around 560 ports of many popular Ca-
bal packages. The updates committed to this repos-
itory are continuously integrated to the official ports
tree on a regular basis. However, the FreeBSD Ports
Collection already includes many popular and impor-
tant Haskell software: GHC 7.8.3, Haskell Platform
2014.2.0.0, Gtk2Hs, wxHaskell, XMonad, Pandoc, Gi-
tit, Yesod, Happstack, Snap, Agda, git-annex, and so
on – all of them have been incorporated into the up-
coming 10.1-RELEASE.
If you find yourself interested in helping us or sim-

ply want to use the latest versions of Haskell programs
on FreeBSD, check out our development repository on
GitHub (see below) where you can find the latest ver-
sions of the ports together with all the important point-
ers and information required for contacting or con-
tributing.

Further reading

https://github.com/freebsd-haskell/ports

3.5.2 Debian Haskell Group

Report by: Joachim Breitner
Status: working

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 812 source packages.
A system of virtual package names and dependen-

cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.

14

http://www.cs.uu.nl/wiki/UHC/WebHome
https://github.com/UU-ComputerScience/uhc
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
https://github.com/freebsd-haskell/ports

The just released stable Debian release (“jessie”) pro-
vides the Haskell Platform 2013.2.0.0 and GHC 7.6.3,
while in Debian unstable, we ship GHC 7.8.4. We plan
to upload GHC 7.10.1 to Debian experimental shortly.
Debian users benefit from the Haskell ecosystem

on 14 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

Further reading

http://wiki.debian.org/Haskell

3.5.3 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Ricky Elrod, Ben Boeckel, and others
Status: active

The Fedora Haskell SIG works to provide good Haskell
support in the Fedora Project Linux distribution.
Fedora 22 is about to be released. Updating to ghc-

7.8.4 turned out to be a lot of work. Some packages now
have static subpackages for portability: alex, cabal-
install, pandoc, and darcs. Lots of Haskell packages
were updated to their latest versions (see “Package
changes” below).
Fedora 23 development is starting: we are consider-

ing if we can update to ghc-7.10 if there is a bugfix
release in time, and to refresh packages to their lat-
est versions tracking Stackage where possible. In the
meantime there is a ghc-7.10.1 Fedora Copr repo avail-
able for Fedora 20+ and EPEL 7.
At the time of writing we have 314 Haskell source

packages in Fedora. The cabal-rpm packaging tool has
improved further with a new update command, dnf
support, and various bugfixes and improvements.
If you are interested in Fedora Haskell packaging,

please join our mailing-list and the Freenode #fedora-
haskell channel. You can also follow @fedorahaskell for
occasional updates.

Further reading

◦ Homepage:
http://fedoraproject.org/wiki/Haskell_SIG

◦ Mailing-list: https:
//admin.fedoraproject.org/mailman/listinfo/haskell

◦ Package list: https://admin.fedoraproject.org/pkgdb/
users/packages/haskell-sig

◦ Package changes: http://git.fedorahosted.org/cgit/
haskell-sig.git/tree/packages/diffs/f21-f22.compare

15

http://wiki.debian.org/Haskell
http://fedoraproject.org/wiki/Haskell_SIG
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/f21-f22.compare
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/f21-f22.compare

4 Related Languages and Language Design

4.1 Agda

Report by: Andreas Abel
Participants: Nils Anders Danielsson, Ulf Norell,

Makoto Takeyama, Stevan Andjelkovic,
Jean-Philippe Bernardy, James Chapman,

Dominique Devriese, Péter Diviánszky
Fredrik Nordvall Forsberg,

Olle Fredriksson, Daniel Gustafsson,
Alan Jeffrey, Fredrik Lindblad,

Guilhem Moulin, Nicolas Pouillard,
Andrés Sicard-Ramírez and many more

Status: actively developed

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e., GADTs which can
be indexed by values and not just types. The lan-
guage also supports coinductive types, parameterized
modules, and mixfix operators, and comes with an in-
teractive interface—the type checker can assist you in
the development of your code.
A lot of work remains in order for Agda to become a

full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.
Since the release of Agda 2.3.2 in November 2012

the following has happened in the Agda project and
community:
◦ Ulf Norell gave a keynote speech at ICFP 2013 on
dependently typed programming in Agda.

◦ Agda has attracted new users, the traffic on the mail-
ing list (and bug tracker) is increasing.

◦ Agda has seen several enhancements in its type
checker, termination checker, interactive editor, and
LaTeX-backend.

◦ Copatterns are being added to Agda as a new way
to define record and coinductive values.

◦ Agda’s pattern matching can be restricted to not use
Streicher’s Axiom K; which makes it more compati-
ble with Homotopy Type Theory.

Release of Agda 2.3.4 is planned to happen in the sec-
ond quartal of 2014.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 MiniAgda

Report by: Andreas Abel
Status: experimental

MiniAgda is a tiny dependently-typed programming
language in the style of Agda (→ 4.1). It serves as a lab-
oratory to test potential additions to the language and
type system of Agda. MiniAgda’s termination checker
is a fusion of sized types and size-change termination
and supports coinduction. Bounded size quantification
and destructor patterns for a more general handling
of coinduction. Equality incorporates eta-expansion at
record and singleton types. Function arguments can be
declared as static; such arguments are discarded during
equality checking and compilation.
MiniAgda is now hosted on http://hub.darcs.net/

abel/miniagda.
MiniAgda is available as Haskell source code on hack-

age and compiles with GHC 6.12.x – 7.8.2.

Further reading

http://www.cse.chalmers.se/~abela/miniagda/

4.3 Disciple

Report by: Ben Lippmeier
Participants: Ben Lippmeier, Amos Robinson, Erik de

Castro Lopo, Kyle van Berendonck
Status: experimental, active development

The Disciplined Disciple Compiler (DDC) is a research
compiler used to investigate program transformation
in the presence of computational effects. It compiles a
family of strict functional core languages and supports
region, effect and closure typing. This extra informa-
tion provides a handle on the operational behaviour of
code that isn’t available in other languages. Programs
can be written in either a pure/functional or effect-
ful/imperative style, and one of our goals is to provide
both styles coherently in the same language.

What is new?

DDC is in an experimental, pre-alpha state, though
parts of it do work. In March this year we released
DDC 0.4.1, with the following new features:
◦ Added a bi-directional type inferencer based on

Joshua DunïňĄeld and Neelakantan Krishnaswami’s
recent ICFP paper.

◦ Added a region extension language construct, and
coeffect system.

◦ Added the Disciple Tetra language which includes
infix operators and desugars into Disciple Core Tetra.

16

http://wiki.portal.chalmers.se/agda/
http://hub.darcs.net/abel/miniagda
http://hub.darcs.net/abel/miniagda
http://www.cse.chalmers.se/~abela/miniagda/

◦ Compilation of Tetra and Core Tetra programs to C
and LLVM.

◦ Early support for rate inference in Core Flow.
◦ Flow fusion now generates vector primops for maps

and folds.
◦ Support for user-defined algebraic data types.
◦ Civilized error messages for unsupported or incom-

plete features.
◦ Most type error messages now give source locations.
◦ Building on Windows platforms.
◦ Better support for foreign imported types and values.
◦ Changed to Git for version control.

Further reading

http://disciple.ouroborus.net

4.4 Ermine

Report by: Edward Kmett
Participants: Dan Doel, Josh Cough, Elliot Stern,

Stephen Compall, Runar Oli Bjarnason,
Paul Chiusano

Status: actively developed, experimental

Ermine is a Haskell-like programming language, ex-
tended with rank-N types, kind and row polymorphism
that runs on the JVM designed at McGraw Hill Finan-
cial.
The language currently has two implementations, a

legacy implementation that was written in Scala, and a
newer, more extensible, implementation that is actively
being developed in Haskell.
The Scala implementation is designed more or less

as a straight interpreter, while the Haskell version is
designed to be able to compile down to a smaller, rel-
atively portable core. Neither backend generates Java
bytecode directly to avoid leaking “Permgen” space.
In July, we were able to obtain corporate approval

to open source the existing Scala-based compiler and
the nascent Haskell implementation. The Scala version
of the language is being actively used to generate a
number of financial reports within the S&P Capital IQ
web platform.
An introduction to Ermine has been given at Boston

Haskell and at CUFP 2013. Stephen Compall has been
putting together a documentation project.

Further reading

◦ Ermine Github: http://github.com/ermine-language
◦ Boston Haskell Presentation:
http://www.youtube.com/watch?v=QCvXlOCBe5A

◦ A Taste of Ermine:
https://launchpad.net/ermine-user-guide

◦ CUFP Slides: http://tinyurl.com/qem8phk

17

http://disciple.ouroborus.net
http://github.com/ermine-language
http://www.youtube.com/watch?v=QCvXlOCBe5A
https://launchpad.net/ermine-user-guide
http://tinyurl.com/qem8phk

5 Haskell and . . .

5.1 Haskell and Parallelism

5.1.1 Eden

Report by: Rita Loogen
Participants: in Madrid: Yolanda Ortega-Mallén,

Mercedes Hidalgo, Lidia Sánchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Rita Loogen,

in Copenhagen: Jost Berthold
Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.
Eden’s primitive constructs are process abstractions

and process instantiations. The Eden logo

consists of four λ turned in such a way that they
form the Eden instantiation operator (#). Higher-level
coordination is achieved by defining skeletons, ranging
from a simple parallel map to sophisticated master-
worker schemes. They have been used to parallelize a
set of non-trivial programs.
Eden’s interface supports a simple definition of ar-

bitrary communication topologies using Remote Data.
The remote data concept can also be used to compose
skeletons in an elegant and effective way, especially in
distributed settings. A PA-monad enables the eager
execution of user defined sequences of Parallel Actions
in Eden.

Survey and standard reference: Rita Loogen,
Yolanda Ortega-Mallén, and Ricardo Peña: Parallel
Functional Programming in Eden, Journal of Func-
tional Programming 15(3), 2005, pages 431–475.

Tutorial: Rita Loogen: Eden - Parallel Functional
Programming in Haskell, in: V. Zsók, Z. Horváth,
and R. Plasmeijer (Eds.): CEFP 2011, Springer LNCS
7241, 2012, pp. 142-206.
(see also: http://www.mathematik.uni-marburg.de/
~eden/?content=cefp)

Implementation

Eden is implemented by modifications to the Glasgow-
Haskell Compiler (extending its runtime system to use
multiple communicating instances). Apart from MPI
or PVM in cluster environments, Eden supports a
shared memory mode on multicore platforms, which
uses multiple independent heaps but does not depend
on any middleware. Building on this runtime support,
the Haskell package edenmodules defines the language,
and edenskels provides a library of parallel skeletons.
A new version based on GHC-7.8.2 (including binary

packages and prepared source bundles) has been re-
leased in April 2014. The new version fixes a number
of issues related to error shut-down and recovery, and
features extended support for serialising Haskell data
structures. The release of a version based on GHC-
7.10.2 is in preparation. Previous stable releases with
binary packages and bundles are still available on the
Eden web pages.
The source code repository for Eden releases is

http://james.mathematik.uni-marburg.de:8080/gitweb,
the Eden libraries (Haskell-level) are also available via
Hackage. Please contact us if you need any support.

Tools and libraries

The Eden trace viewer tool EdenTV provides a visual-
isation of Eden program runs on various levels. Activ-
ity profiles are produced for processing elements (ma-
chines), Eden processes and threads. In addition mes-
sage transfer can be shown between processes and ma-
chines. EdenTV is written in Haskell and is freely avail-
able on the Eden web pages and on hackage. Eden’s
thread view can also be used to visualise ghc eventlogs.
The Eden skeleton library is under constant develop-

ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.

Recent and Forthcoming Publications

◦ M. KH. Aswad, P. W. Trinder, A. D. Al-Zain, G.
J. Michaelson, J. Berthold: Comparing Low-Pain
and No-Pain Multicore Haskells, revised and ex-
tended version of TFP 2009 paper, in Special Issue
of Higher-Order Symbol Computation (HOSC) 2016.

18

http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://james.mathematik.uni-marburg.de:8080/gitweb

◦ M. Dieterle, Th. Horstmeyer, R. Loogen, J.
Berthold: Skeleton Composition in Eden, submitted
for publication

◦ J. Berthold, H.-W. Loidl, K. Hammond: PAEAN:
Portable Runtime Support for Physically-Shared-
Nothing Architectures in Parallel Haskell Dialects,
submitted for publication

Further reading

http://www.mathematik.uni-marburg.de/~eden

5.1.2 speculation

Report by: Edward Kmett
Participants: Jake McArthur
Status: stable

This package provides speculative function application
and speculative folds based on
◦ Prakash Prabhu, G. Ramalingam, and Kapil
Vaswani, “Safe Programmable Speculative Paral-
lelism”, In the proceedings of Programming Lan-
guage Design and Implementation (PLDI) Vol 45,
Issue 6 (June 2010) pp 50-61.

Unlike the original paper, we can take advantage of im-
mutability and the spark queue in Haskell to ensure we
never worsen the asymptotics of a single-threaded algo-
rithm. Speculative STM transactions take the place of
the transactional rollback machinery from the paper.

Further reading

◦ http://hackage.haskell.org/package/speculation
◦ http://research.microsoft.com/pubs/118795/

pldi026-vaswani.pdf

5.1.3 Wakarusa

Report by: Andrew Gill
Participants: Mark Grebe, Ryan Scott, James Stanton,

David Young
Status: active

The Wakarusa project is a domain-specific language
toolkit, that makes domain-specific languages easier to
deploy in high-performance scenarios. The technology
is going to be initially applied to two types of high-
performance platforms, GPGPUs and FPGAs. How-
ever, the toolkit will be general purpose, and we ex-
pect the result will also make it easier to deploy DSLs
in situations where resource usage needs to be well-
understand, such as cloud resources and embedded sys-
tems. The project is funded by the NSF.
Wakarusa is a river just south of Lawrence, KS,

where the main campus of the University of Kansas
is located. Wakarusa is approximately translated as
“deep river”, and we use deep embeddings a key tech-
nology in our DSL toolkit. Hence the project name
Wakarusa.

A key technical challenge with syntactic alternatives
to deep embeddings is knowing when to stop unfold-
ing. We are using a new design pattern, called the re-
mote monad, which allows a monad to be virtualized,
and run remotely, to bound our unfolding. We have
already used remote monads for graphics (Blank Can-
vas), hardware bus protocols (λ-bridge), and a driver
for MineCraft. Using the remote monad design pat-
tern, and HERMIT, we are developing a translation
framework that translates monadic Haskell to GPG-
PUs (building on accelerate), and monadic Haskell to
Hardware (building on Kansas Lava), and monadic im-
perative Haskell to Arduino C.

Further reading

◦ https://github.com/ku-fpg/wakarusa
◦ http://ku-fpg.github.io/research/wakarusa/

5.2 Haskell and the Web

5.2.1 WAI

Report by: Michael Snoyman
Participants: Greg Weber
Status: stable

The Web Application Interface (WAI) is an inter-
face between Haskell web applications and Haskell web
servers. By targeting the WAI, a web framework or web
application gets access to multiple deployment plat-
forms. Platforms in use include CGI, the Warp web
server, and desktop webkit.
WAI is also a platform for re-using code between web

applications and web frameworks through WAI mid-
dleware and WAI applications. WAI middleware can
inspect and transform a request, for example by auto-
matically gzipping a response or logging a request. The
Yesod (→ 5.2.5) web framework provides the ability to
embed arbitrary WAI applications as subsites, making
them a part of a larger web application.
By targeting WAI, every web framework can share

WAI code instead of wasting effort re-implementing
the same functionality. There are also some new web
frameworks that take a completely different approach
to web development that use WAI, such as webwire
(FRP), MFlow (continuation-based) and dingo (GUI).
The Scotty (→ 5.2.11) web framework also continues
to be developed, and provides a lighter-weight alterna-
tive to Yesod. Other frameworks- whether existing or
newcomers- are welcome to take advantage of the exist-
ing WAI architecture to focus on the more innovative
features of web development.
WAI applications can send a response themselves.

For example, wai-app-static is used by Yesod to serve
static files. However, one does not need to use a web

19

http://www.mathematik.uni-marburg.de/~eden
http://hackage.haskell.org/package/speculation
http://research.microsoft.com/pubs/118795/pldi026-vaswani.pdf
http://research.microsoft.com/pubs/118795/pldi026-vaswani.pdf
https://github.com/ku-fpg/wakarusa
http://ku-fpg.github.io/research/wakarusa/

framework, but can simply build a web application us-
ing the WAI interface alone. The Hoogle web service
targets WAI directly.
Since the last HCAR, WAI has successfully released

version 3.0, which removes dependency on any specific
streaming data framework. A separate wai-conduit
package provides conduit bindings, and such bindings
can easily be provided for other streaming data frame-
works.
The WAI community continues to grow, with new

applications and web frameworks continuing to be
added. We’ve recently started a new mailing list to dis-
cuss WAI related topics. Interested parties are strongly
encouraged to join in!

Further reading

http://www.yesodweb.com/book/wai https://groups.
google.com/d/forum/haskell-wai

5.2.2 Warp

Report by: Michael Snoyman

Warp is a high performance, easy to deploy HTTP
server backend for WAI (→ 5.2.1). Since the last
HCAR, Warp has followed WAI in its move from con-
duit to a lower level streaming data abstraction. We’ve
additionally continued work on more optimizations,
and improved support for power efficiency by using the
auto-update package.
Due to the combined use of ByteStrings, blaze-

builder, conduit, and GHC’s improved I/O manager,
WAI+Warp has consistently proven to be Haskell’s
most performant web deployment option.
Warp is actively used to serve up most of the users

of WAI (and Yesod).
“Warp: A Haskell Web Server” by Michael Snoyman

was published in the May/June 2011 issue of IEEE In-
ternet Computing:
◦ Issue page: http://www.computer.org/portal/web/
csdl/abs/mags/ic/2011/03/mic201103toc.htm

◦ PDF: http://steve.vinoski.net/pdf/IC-Warp_a_
Haskell_Web_Server.pdf

5.2.3 Happstack

Report by: Jeremy Shaw

Happstack is a very fine collection of libraries for cre-
ating web applications in Haskell. We aim to leverage
the unique characteristics of Haskell to create a highly-
scalable, robust, and expressive web framework.
Over the past year, much development has been fo-

cused on the higher-level components such as a rewrite
of the happstack-authentication library and work

on unifying the various stripe bindings into a single
authoritative binding.
Over the next year we hope to get back to the core

and focus on hyperdrive, a new low-level, trustworthy
HTTP backend, as well as focusing on developing and
deploying applications using nixops.

Further reading

◦ http://www.happstack.com/
◦ http:

//www.happstack.com/docs/crashcourse/index.html

5.2.4 Mighttpd2 — Yet another Web Server

Report by: Kazu Yamamoto
Status: open source, actively developed

Mighttpd (called mighty) version 3 is a simple but prac-
tical Web server in Haskell. It provides features to han-
dle static files, redirection, CGI, reverse proxy, reload-
ing configuration files and graceful shutdown. Also
TLS is experimentally supported.
Mighttpd 3 is now based on WAI 3.0. It also adopts

the auto-update library to reduce CPU power con-
sumption at no connection.
You can install Mighttpd 3 (mighttpd2) from Hack-

ageDB. Note that the package name is mighttpd2, not
mighttpd3, for historical reasons.
Mighttpd 3 now supports GHC 7.10.

Further reading

◦ http://www.mew.org/~kazu/proj/mighttpd/en/
◦ http:

//www.yesodweb.com/blog/2014/01/new-fast-logger
◦ http://www.yesodweb.com/blog/2014/02/new-warp

5.2.5 Yesod

Report by: Michael Snoyman
Participants: Greg Weber, Luite Stegeman, Felipe Lessa
Status: stable

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, Yesod
helps users create highly scalable web applications.
Performance scalablity comes from the amazing

GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous IO.
But Yesod is even more focused on scalable develop-

ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.
Of course type-safety guarantees against typos or the

wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.

20

http://www.yesodweb.com/book/wai
https://groups.google.com/d/forum/haskell-wai
https://groups.google.com/d/forum/haskell-wai
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://www.happstack.com/docs/crashcourse/index.html
http://www.mew.org/~kazu/proj/mighttpd/en/
http://www.yesodweb.com/blog/2014/01/new-fast-logger
http://www.yesodweb.com/blog/2014/01/new-fast-logger
http://www.yesodweb.com/blog/2014/02/new-warp

◦ declarative routing with type-safe urls — say good-
bye to broken links

◦ no XSS attacks — form submissions are automati-
cally sanitized

◦ database safety through the Persistent library (→
7.7.2) — no SQL injection and queries are always
valid

◦ valid template variables with proper template inser-
tion — variables are known at compile time and
treated differently according to their type using the
shakesperean templating system.
When type safety conflicts with programmer produc-

tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.
MVC stands for model-view-controller. The pre-

ferred library for models is Persistent (→ 7.7.2). Views
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing and
can return different representations of a resource (html,
json, etc).
Yesod is broken up into many smaller projects

and leverages Wai (→ 5.2.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks that use WAI such as Scotty (→ 5.2.11).
The new 1.4 release of Yesod is almost a completely

backwards-compatible change. The version bump was
mostly performed to break compatibility with older
versions of dependencies, which allowed us to remove
approximately 500 lines of conditionally compiled code.
Notable changes in 1.4 include:
◦ New routing system with more overlap checking con-
trol.

◦ yesod-auth works with your database and your
JSON.

◦ yesod-test sends HTTP/1.1 as the version.
◦ Type-based caching with keys.
The Yesod team is quite happy with the current level

of stability in Yesod. Since the 1.0 release, Yesod has
maintained a high level of API stability, and we in-
tend to continue this tradition. Future directions for
Yesod are now largely driven by community input and
patches. We’ve been making progress on the goal of
easier client-side interaction, and have high-level inter-
action with languages like Fay, TypeScript, and Coffe-
Script. GHCJS support is in the works.
The Yesod site (http://www.yesodweb.com/) is a

great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.
To see an example site with source code available,

you can view Haskellers (→ 1.1) source code: (https:

//github.com/snoyberg/haskellers).

Further reading

http://www.yesodweb.com/

5.2.6 Snap Framework

Report by: Doug Beardsley
Participants: Gregory Collins, Shu-yu Guo, James

Sanders, Carl Howells, Shane O’Brien,
Ozgun Ataman, Chris Smith, Jurrien

Stutterheim, Gabriel Gonzalez, and others
Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, stability,
and ease of use. The project’s goal is to be a cohesive
high-level platform for web development that leverages
the power and expressiveness of Haskell to make build-
ing websites quick and easy.
Since the last HCAR, the Snap Team released a new

major version of the Heist template system. This re-
lease allows you to require a namespace on all your
splices and enable better error reporting when you have
tags without a bound splice. Along with this we ex-
posed a mechanism for generalized error reporting from
splices. Now if your splices detect an error condition at
application load time they can throw an error to better
communicate the problem.
If you would like to contribute, get a question an-

swered, or just keep up with the latest activity, stop by
the #snapframework IRC channel on Freenode.

Further reading

◦ Heist 0.14 release announcement:
http://snapframework.com/blog/2014/09/24/heist-0.
14-released

◦ Snaplet Directory:
http://snapframework.com/snaplets

◦ http://snapframework.com

5.2.7 MFlow

Report by: Alberto Gómez Corona
Status: active development

MFlow is a Web framework of the kind of other func-
tional, stateful frameworks like WASH, Seaside, Ocsi-
gen or Racket. MFlow does not use continuation pass-
ing properly, but a backtracking monad that permits
the synchronization of browser and server and error
tracing. This monad is on top of another “Workflow”
monad that adds effects for logging and recovery of
process/session state. In addition, MFlow is REST-
ful. Any GET page in the flow can be pointed to with
a REST URL. The navigation as well as the page re-
sults are type safe. It also implements monadic form-
lets: They can have their own flow within a page. If

21

http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/
http://snapframework.com/blog/2014/09/24/heist-0.14-released
http://snapframework.com/blog/2014/09/24/heist-0.14-released
http://snapframework.com/snaplets
http://snapframework.com

JavaScript is enabled, the widget refreshes itself within
the page. If not, the whole page is refreshed to reflect
the change of the widget.
MFlow hides the heterogeneous elements of a web ap-

plication and expose a clear, modular, type safe DSL
of applicative and monadic combinators to create from
multipage to single page applications. These combina-
tors, called widgets or enhanced formlets, pack together
javascript, HTML, CSS and the server code. [1].
A paper describing the MFlow internals has been

published in The Monad Reader issue 23 [2]
The use of backtracking to solve ”the integration

problem”. It happens when the loose coupling produce
exceptional conditions that may trigger the rollback of
actions in the context of failures, shutdowns and restart
of the systems (long running processes). That has been
demonstrated using MFlow in [3].
A web application can be considered as an special

case of integration. MFlow pack the elements of a web
aplication within composable widgets. This ”deep inte-
gration” is the path followed by the software industry
to create from higher level framewors to operating sys-
tems [4]
perch and hplayground are two new packages that

make run the page logic of MFlow in the Web Browser
using Haste, the Haskell-to-JavaScript compiler. perch
has the syntax of blaze-html and hplayground uses the
syntax and primitives of the View Monad. Both per-
mit the page logic of MFlow to run fully in the Web
Browser. Under the same syntax, they are completely
different.
Perch[5] are the composable combinators of blaze-

html running in the browser. They generate trees by
calling DOM primitives directly instead of creating in-
termediary, lineal descriptions. While string builders
are unary tree constructors, perch uses a generalized
builder for n-trees. It also has combinators for the
modification of elements and it can assign perch event
handlers to elements and it has also JQuery like opera-
tions. It can be used alone for the creation of client-side
applications.
hplayground is a monadic functional reactive[6]

framework with MFlow syntax that permits the cre-
ation of seamless client-side applications. hplayground
sequence the perch events in his monad instance, it add
monadic and applicative formlets with validations, so
the code is modular and seamless. There is a site with
example Haste-perch-hplayground (made with MFlow)
online[6] . There is also a tutorial for the creation of
Client-side applications, that describe the structure of
a small accounting application for haskell beginners[7].
Since the event are keep in his scope and the DOM
modifications are local but there are no event handlers,
Monadic Reactive may be a better alternative to func-
tional Reactive in the creation of seamless Web Browser
applications whenever there are many dynamic DOM
updates[8].
Future work: The integration of MFlow and perch-

hplayground: since both share the same syntax, the
aim is to allow the application to decide either to run
the page logic in the server or in the client. The
first step is to let the programmer decide it. To em-
bed hplayground code inside MFlow some hacks in the
Haste generated code are necessary.
Perch is being ported to purescript, hplayground will

be ported too. The next target is GHCJS.

Further reading

◦ MFlow as a DSL for web applications https://www.
fpcomplete.com/school/to-infinity-and-beyond/
older-but-still-interesting/MFlowDSL1

◦ MFlow, a continuation-based web framework
without continuations http://themonadreader.
wordpress.com/2014/04/23/issue-23

◦ How Haskell can solve the integration problem
https://www.fpcomplete.com/school/
to-infinity-and-beyond/pick-of-the-week/
how-haskell-can-solve-the-integration-problem

◦ Towards a deeper integration: A Web language:
http://haskell-web.blogspot.com.es/2014/04/
towards-deeper-integration-web-language.html

◦ Perch https://github.com/agocorona/haste-perch
◦ hplayground demos http://tryplayg.herokuapp.com
◦ haste-perch-hplaygroun tutorial

http://www.airpair.com/haskell/posts/
haskell-tutorial-introduction-to-web-apps

◦ react.js a solution for a problem that Haskell can
solve in better ways
http://haskell-web.blogspot.com.es/2014/11/
browser-programming-reactjs-as-solution.html

◦ MFlow demo site: http://mflowdemo.herokuapp.com

5.2.8 Scotty

Report by: Andrew Farmer
Participants: Andrew Farmer
Status: active

Scotty is a Haskell web framework inspired by Ruby’s
Sinatra, using WAI (→ 5.2.1) and Warp (→ 5.2.2), and
is designed to be a cheap and cheerful way to write
RESTful, declarative web applications.
◦ A page is as simple as defining the verb, url pattern,

and Text content.
◦ It is template-language agnostic. Anything that re-

turns a Text value will do.
◦ Conforms to WAI Application interface.
◦ Uses very fast Warp webserver by default.
The goal of Scotty is to enable the development of

simple HTTP/JSON interfaces to Haskell applications.
Implemented as a monad transformer stack, Scotty ap-
plications can be embedded in arbitrary MonadIOs.
The Scotty API is minimal, and fully documented via
haddock. The API has recently remained stable, with

22

https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
http://themonadreader.wordpress.com/2014/04/23/issue-23
http://themonadreader.wordpress.com/2014/04/23/issue-23
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
https://github.com/agocorona/haste-perch
http://tryplayg.herokuapp.com
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://mflowdemo.herokuapp.com

a steady stream of improvements contributed by the
community.

Further reading

◦ Hackage: http://hackage.haskell.org/package/scotty
◦ Github: https://github.com/scotty-web/scotty

5.2.9 Sunroof

Report by: Andrew Gill
Participants: Jan Bracker
Status: active

Sunroof is a Domain Specific Language (DSL) for gen-
erating JavaScript. It is built on top of the JS-monad,
which, like the Haskell IO-monad, allows read and write
access to external resources, but specifically JavaScript
resources. As such, Sunroof is primarily a feature-
rich foreign function API to the browser’s JavaScript
engine, and all the browser-specific functionality, like
HTML-based rendering, event handling, and drawing
to the HTML5 canvas.
Furthermore, Sunroof offers two threading models

for building on top of JavaScript, atomic and block-
ing threads. This allows full access to JavaScript APIs,
but using Haskell concurrency abstractions, like MVars
and Channels. In combination with the push mecha-
nism Kansas-Comet, Sunroof offers a great platform
to build interactive web applications, giving the ability
to interleave Haskell and JavaScript computations with
each other as needed.

It has successfully been used to write smaller appli-
cations. These applications range from 2D rendering
using the HTML5 canvas element, over small GUIs, up
to executing the QuickCheck tests of Sunroof and dis-
playing the results in a neat fashion. The development
has been active over the past 6 months and there is a
drafted paper submitted to TFP 2013.

Further reading

◦ Homepage: http:
//www.ittc.ku.edu/csdl/fpg/software/sunroof.html

◦ Tutorial: https:
//github.com/ku-fpg/sunroof-compiler/wiki/Tutorial

◦ Main Repository:
https://github.com/ku-fpg/sunroof-compiler

5.2.10 Blank Canvas

Report by: Andrew Gill
Participants: Justin Dawson, Mark Grebe, Ryan Scott,

James Stanton, Jeffrey Rosenbluth, and
Neil Sculthorpe

Status: active

Blank Canvas is a Haskell binding to the complete
HTML5 Canvas API. Blank Canvas allows Haskell
users to write, in Haskell, interactive images onto their
web browsers. Blank Canvas gives the user a single full-
window canvas, and provides many well-documented
functions for rendering images. Out of the box, Blank
Canvas is pac-man complete – it is a platform for sim-
ple graphics, classic video games, and building more
powerful abstractions that use graphics.
Blank Canvas was written in Spring 2012, as part

of the preparation for a graduate-level functional pro-
gramming class. In Fall 2012 and Fall 2013, we used
Blank Canvas to teach Functional Reactive Program-
ming. This was our first hint that the Blank Canvas
library was faster than we expected, as we had hun-
dreds of balls bouncing smoothly on the screen, much
to the students’ delight.
Blank Canvas has now been used by the students in

four separate instances of our functional programming
class. Students find it easy to understand, given the
analog between the IO monad, and the remote Can-
vas monad, with student often choosing to use Blank
Canvas for their end-of-semester project. To give two
examples, one end-of-semester project was Omar Bari
and Dain Vermaak’s Isometric Tile Game, that can be
rotated in 3D in real-time; another project was Blan-
keroids, a playable asteroids clone, written by Mark
Grebe, on top of Yampa and yampa-canvas.

For more details, read the blank-canvas wiki.

Further reading

◦ https://hackage.haskell.org/package/blank-canvas
◦ https://github.com/ku-fpg/blank-canvas
◦ https://github.com/ku-fpg/blank-canvas/wiki

23

http://hackage.haskell.org/package/scotty
https://github.com/scotty-web/scotty
http://www.ittc.ku.edu/csdl/fpg/software/sunroof.html
http://www.ittc.ku.edu/csdl/fpg/software/sunroof.html
https://github.com/ku-fpg/sunroof-compiler/wiki/Tutorial
https://github.com/ku-fpg/sunroof-compiler/wiki/Tutorial
https://github.com/ku-fpg/sunroof-compiler
https://hackage.haskell.org/package/blank-canvas
https://github.com/ku-fpg/blank-canvas
https://github.com/ku-fpg/blank-canvas/wiki

5.2.11 PureScript

Report by: Phil Freeman
Status: active, looking for contributors

PureScript is a small strongly typed programming lan-
guage that compiles to efficient, readable JavaScript.
The PureScript compiler is written in Haskell.
The PureScript language features Haskell-like syn-

tax, type classes, rank-n types, extensible records and
extensible effects.
PureScript features a comprehensive standard li-

brary, and a large number of other libraries and tools
under development, covering data structures, algo-
rithms, Javascript integration, web services, game de-
velopment, testing, asynchronous programming, FRP,
graphics, audio, UI implementation, and many other
areas. It is easy to wrap existing Javascript function-
ality for use in PureScript, making PureScript a great
way to get started with strongly-typed pure functional
programming on the web. PureScript is currently used
successfully in production in commercial code.
PureScript development is currently focussed on the

following areas:
◦ The development of a searchable online database of
PureScript code with type search and rendered doc-
umentation

◦ Enabling new forms of optimization by allowing de-
velopers to specify rewrite rules in PureScript code

◦ Enabling new backends (C++, Lua, Python, etc.) by
extracting intermediate core languages which exist
during the compilation process

◦ The development of new PureScript libraries
The PureScript compiler can be downloaded from

purescript.org, or compiled from source from Hackage.

Further reading

https://github.com/purescript/purescript/

5.3 Haskell and Compiler Writing

5.3.1 MateVM

Report by: Bernhard Urban
Participants: Harald Steinlechner
Status: looking for new contributors

MateVM is a method-based Java Just-In-Time Com-
piler. That is, it compiles a method to native code on
demand (i.e. on the first invocation of a method). We
use existing libraries:

hs-java for processing Java Classfiles according to The
Java Virtual Machine Specification.

harpy enables runtime code generation for i686 ma-
chines in Haskell, in a domain specific language style.

We believe that Haskell is suitable to implement com-
piler technologies. However, we have to jump between
“Haskell world” and “native code world”, due to the
low-level nature of Just-In-Time compiler in a virtual
machine. This poses some challenges when it comes to
signal handling and other interesting rather low level
operations. Not immediately visible, the task turns out
to be well suited for Haskell although we experienced
some tensions with signal handling and GHCi. We are
looking forward to sharing our experience on this.
In the current state we are able to execute simple

Java programs. The compiler eliminates the JavaVM
stack via abstract interpretation, does a liveness anal-
ysis, linear scan register allocation and finally machine
code emission. The software architecture enables easy
addition of further optimization passes based on an in-
termediate representation.
Future plans are, to add an interpreter to gather pro-

file information for the compiler and also do more ag-
gressive optimizations (e.g. method inlining or stack
allocation). An interpreter can also be used to enable
speculation during compilation and, if such a specula-
tion fails, compiled code can deoptimize to the inter-
preter.
Apart from that, features are still missing to com-

ply as a JavaVM, most noteable are proper support for
classloaders, floating point operations or threads. We
would like to see a real base library such as GNU Class-
path or the JDK running with MateVM some day.
Other hot topics are Hoopl and Garbage Collection.
We are looking for new contributors! If you are

interested in this project, do not hesitate to join us on
IRC (#MateVM @ OFTC) or contact us on Github.

Further reading

◦ https://github.com/MateVM
◦ http://docs.oracle.com/javase/specs/jvms/se7/html/
◦ http://hackage.haskell.org/package/hs-java
◦ http://hackage.haskell.org/package/harpy
◦ http://www.gnu.org/software/classpath/
◦ http://hackage.haskell.org/package/hoopl-3.8.7.4
◦ http://en.wikipedia.org/wiki/Club-Mate

5.3.2 UUAG

Report by: Atze Dijkstra
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell that makes it
easy to write catamorphisms, i.e., functions that do to
any data type what foldr does to lists. Tree walks are

24

purescript.org
https://github.com/purescript/purescript/
https://github.com/MateVM
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://hackage.haskell.org/package/hs-java
http://hackage.haskell.org/package/harpy
http://www.gnu.org/software/classpath/
http://hackage.haskell.org/package/hoopl-3.8.7.4
http://en.wikipedia.org/wiki/Club-Mate

defined using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.
An AG program is a collection of rules, which are

pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.
Nonterminals (data types), productions (data con-

structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.
The system is in use by a variety of large and

small projects, such as the Utrecht Haskell Compiler
UHC (→ 3.4), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009/html/
report.html#sect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects.
The current version is 0.9.52.1 (January 2015), is
extensively tested, and is available on Hackage. There
is also a Cabal plugin for easy use of AG files in
Haskell projects.
We recently implemented the following enhance-

ments:
Evaluation scheduling. We have done a project to im-

prove the scheduling algorithms for AGs. The pre-
viously implemented algorithms for scheduling AG
computations did not fully satisfy our needs; the code
we write goes beyond the class of OAGs, but the al-
gorithm by Kennedy and Warren (1976) results in
an undesired increase of generated code due to non-
linear evaluation orders. However, because we know
that our code belongs to the class of linear orderable
AGs, we wanted to find and algorithm that can find
this linear order, and thus lies in between the two ex-
isting approaches. We have created a backtracking
algorithm for this which is currently implemented in
the UUAG (–aoag flag).
Another approach to this scheduling problem that we
implemented is the use of SAT-solvers. The schedul-
ing problem can be reduced to a SAT-formula and
efficiently solved by existing solvers. The advantage
is that this opens up possibilities for the user to influ-
ence the resulting schedule, for example by providing
a cost-function that should be minimized. We have
also implemented this approach in the UUAG which
uses Minisat as external SAT-solver (–loag flag).
We have recently worked on the following enhance-

ments:

Incremental evaluation. We have just finished a Ph.D.
project that investigated incremental evaluation of
AGs. The target of this work was to improve the
UUAG compiler by adding support for incremental
evaluation, for example by statically generating dif-
ferent evaluation orders based on changes in the in-
put. The project has lead to several publications,
but the result has not yet been implemented into the
UUAG compiler.

Further reading

◦ http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem

◦ http://hackage.haskell.org/package/uuagc

5.3.3 LQPL — A Quantum Programming
Language Compiler and Emulator

Report by: Brett G. Giles
Participants: Dr. J.R.B. Cockett
Status: v 0.9.1 experimental released in November

2013

LQPL (Linear Quantum Programming Language) is a
functional quantum programming language inspired by
Peter Selinger’s paper “Towards a Quantum Program-
ming Language”.

The LQPL system consists of a compiler, a GUI
based front end and an emulator. LQPL incorporates a
simple module / include system (more like C’s include
than Haskell’s import), predefined unitary transforms,
quantum control and classical control, algebraic data
types, and operations on purely classical data.

Starting with the 0.9 series, LQPL is now split into
separate components:

◦ The compiler (Haskell) — available at the command
line and via a TCP/IP interface;

◦ The emulator (which emulates a virtual quantum
machine) (Haskell) — available as a server via a
TCP/IP interface;

◦ The front end (JRuby/Swing) — which connects to
both the compiler and the emulator via TCP/IP.

Version 0.9.1 was a bugfix release.

A screenshot of the interface (showing a probabilistic
list) is included below.

25

http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc

Quantum programming allows us to provide a fair
coin toss:

qdata Coin = {Heads | Tails}
toss ::(; c:Coin) =
{ q = |0>; Had q;

measure q of |0> => {c = Heads}
|1> => {c = Tails}

}

This allows programming of probabilistic algorithms,
such as leader election.
The next major items on the road map are:
◦ Change the TCP/IP data format to something less
verbose;

◦ Implementing a translation of the virtual machine
code into quantum circuits.

Further reading

Documentation and executable downloads may be
found at http://pll.cpsc.ucalgary.ca/lqpl/index.html.
The source code, along with a wiki and bug tracker, is
available at https://bitbucket.org/BrettGilesUofC/lqpl.

5.3.4 free — Free Monads

Report by: Edward Kmett
Participants: Gabriel Gonzalez, Aristid Breitkreuz,

Nickolay Kudasov, Ben Gamari, Matvey
Aksenov, Mihaly Barasz, Twan van

Laarhoven
Status: actively developed

This package provides common definitions for working
with free monads and free applicatives. These are very
useful when it comes to defining EDSLs.
This package also supports cofree comonads, which

are useful for tracking attributes through a syntax tree.
Recently support was added for the free completely-

iterative monad of a monad as well. This can be used
as part of a scheme to deamortize calculations in the
ST s monad.

Further reading

◦ http://hackage.haskell.org/package/free
◦ http://www.haskellforall.com/2012/06/

you-could-have-invented-free-monads.html
◦ http://www.iai.uni-bonn.de/~jv/mpc08.pdf
◦ http:

//comonad.com/reader/2011/free-monads-for-less/
◦ http:

//comonad.com/reader/2011/free-monads-for-less-2/
◦ http:

//comonad.com/reader/2011/free-monads-for-less-3/
◦ http://paolocapriotti.com/assets/applicative.pdf
◦ http:

//skillsmatter.com/podcast/scala/monads-for-free
◦ http://comonad.com/reader/2009/incremental-folds/
◦ http://www.ioc.ee/~tarmo/tday-veskisilla/

uustalu-slides.pdf
◦ https://www.fpcomplete.com/user/edwardk/

oblivious/deamortized-st

5.3.5 bound — Making De Bruijn Succ Less

Report by: Edward Kmett
Participants: Nicolas Pouillard, Jean-Philippe Bernardy,

Andrea Vezzosi, Gabor Greif, Matvey B.
Aksenov

Status: actively developed

This library provides convenient combinators for work-
ing with “locally-nameless” terms. These can be use-
ful when writing a type checker, evaluator, parser, or
pretty printer for terms that contain binders like forall
or lambda, as they ease the task of avoiding variable
capture and testing for alpha-equivalence.
Notably, it uses a representation based on type-safe

generalized De Bruijn indices that lets you naturally
make your expression type into a Monad that permits
capture-avoiding substitution, and the use of Foldable’s
toList and Traversable’s traverse to find free variables.
This makes it much easier to manipulate your syntax
tree with tools you already know how to use, while still
safely avoiding issues with name capture.
The generalized De Bruijn encoding permits asymp-

totic improvement in the running time of many cal-
culations, enabling simultaneous substitution of every-
thing within a complex binder, O(1) lifting, and avoid-
ing paying for the traversal of lifted trees, but the com-
plexity of the encoding is hidden behind a monad trans-
former that provides you with variable capture.

Further reading

◦ http://fpcomplete.com/user/edwardk/bound
◦ http://hackage.haskell.org/package/bound
◦ http://www.slideshare.net/ekmett/

bound-making-de-bruijn-succ-less

26

http://pll.cpsc.ucalgary.ca/lqpl/index.html
https://bitbucket.org/BrettGilesUofC/lqpl
http://hackage.haskell.org/package/free
http://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
http://www.haskellforall.com/2012/06/you-could-have-invented-free-monads.html
http://www.iai.uni-bonn.de/~jv/mpc08.pdf
http://comonad.com/reader/2011/free-monads-for-less/
http://comonad.com/reader/2011/free-monads-for-less/
http://comonad.com/reader/2011/free-monads-for-less-2/
http://comonad.com/reader/2011/free-monads-for-less-2/
http://comonad.com/reader/2011/free-monads-for-less-3/
http://comonad.com/reader/2011/free-monads-for-less-3/
http://paolocapriotti.com/assets/applicative.pdf
http://skillsmatter.com/podcast/scala/monads-for-free
http://skillsmatter.com/podcast/scala/monads-for-free
http://comonad.com/reader/2009/incremental-folds/
http://www.ioc.ee/~tarmo/tday-veskisilla/uustalu-slides.pdf
http://www.ioc.ee/~tarmo/tday-veskisilla/uustalu-slides.pdf
https://www.fpcomplete.com/user/edwardk/oblivious/deamortized-st
https://www.fpcomplete.com/user/edwardk/oblivious/deamortized-st
http://fpcomplete.com/user/edwardk/bound
http://hackage.haskell.org/package/bound
http://www.slideshare.net/ekmett/bound-making-de-bruijn-succ-less
http://www.slideshare.net/ekmett/bound-making-de-bruijn-succ-less

6 Development Tools

6.1 Environments

6.1.1 Haskell IDE From FP Complete

Report by: Natalia Muska
Status: available, stable

Since FP CompleteTM announced the launch of FP
Haskell CenterTM (FPHC) in early September 2013, a
lot of additions to the original IDE have been added
and the pricing structure has changed dramatically.
The new features and the pricing modifications are a
direct result of community feedback. The changes were
gradually rolled out over the past year.
As of October 1, 2014, all users of FPHC who are

using it for non-commercial projects have free access
under the new Open Publish model. This means that
Open Publish accounts will automatically publish all
projects on the FPHC site with each commit, similar
to Github. This move is meant to make FPHC more
valuable, and increase support for users sharing their
work with the community. There are still paid sub-
scriptions available for Commercial projects.
This is a current list of features included with the

free version of FPHC:
◦ Create and Edit Haskell Projects,
◦ Open Projects from Git, FPHC, or Web
◦ Continuous Error and Type Information
◦ Hoogle and Haddock Integration
◦ Easy to use build system
◦ Vetted Stable Libraries
◦ Easy to Understand Error Messages
◦ No setup or install
◦ Free Community Support
◦ Push Projects to Git and GitHub
◦ Emacs Integration
◦ Shared Team Accounts
◦ Support for Sub Projects
◦ Multiple Repository Projects
◦ Deploy to FP Application Servers
◦ Large Project and Megarepos Support (new)
◦ Subscriptions include continuous refresh releases on

new features, updates, bug fixes and free community
support
Over the past year the feedback and activity on

FPHC has been very positive. To ensure FPHC is
meeting the demands of the Haskell community, FP
complete is constantly seeking feedback and sugges-
tions from users and the Haskell community.

Further reading

Visit www.fpcomplete.com for more information.

6.1.2 EclipseFP

Report by: JP Moresmau
Participants: building on code from Alejandro Serrano

Mena, Thomas ten Cate, B. Scott Michel,
Thiago Arrais, Leif Frenzel, Martijn
Schrage, Adam Foltzer and others

Status: unmaintained, looking for a maintainer to
take over

EclipseFP is a set of Eclipse plugins to allow working
on Haskell code projects. Its goal is to offer a fully
featured Haskell IDE in a platform developers coming
from other languages may already be familiar with. It
provides the following features, among others:

Cabal Integration
Provides a .cabal file editor, uses Cabal settings for
compilation, allows the user to install Cabal pack-
ages from within the IDE. Supports cabal sandboxes
(or cabal-dev) to provide install isolation and project
dependencies inside an Eclipse workspace.

GHC Integration
Compilation is done via the GHC API, syntax color-
ing uses the GHC Lexer.

Productive Coding
Quick fixes for common errors, warnings, and HLint
suggestions. Automatic organization of imports. Au-
tocompletion. Find and rename across modules and
projects. Stylish-haskell integration for consistent
code formatting.

Live Programming
A Haskell worksheet allows the developer to see val-
ues of expressions, including images and HTML con-
tent, as the code changes.

27

www.fpcomplete.com

Debugging
Easy to launch GHCi sessions on any module with
proper parameters. Manages breakpoints, the eval-
uation of variables and expressions, uses the Eclipse
debugging framework, and requires no knowledge of
GHCi syntax. Also it integrates with Yesod (launch
the web application from EclipseFP). Running a pro-
gram with profiling options results in profiling graphs
being displayed in the UI for easy analysis.

Browsing
The Haskell Browser perspective allows the user to
navigate the list of packages and their documenta-
tion. It integrates seamlessly with Hackage. The
Haskell module editor provides code folding, outline
view of the module, popup of types and documenta-
tion mouse hovers, etc.

Testing
EclipseFP integrates with Haskell test frameworks,
most notably HTF, to provide UI feedback on test
failures.

The source code is fully open source (Eclipse License)
on github and anyone can contribute. Current version
is 2.6.4, released in January 2015. There are currently
no plan for another release unless a new maintainer
steps in.

Further reading

◦ http://eclipsefp.github.com/
◦ http://jpmoresmau.blogspot.com/

6.1.3 ghc-mod — Happy Haskell Programming

Report by: Daniel Gröber
Status: open source, actively developed

ghc-mod is both a backend program for enhancing edi-
tors and other kinds of development environments with
support for Haskell, and an Emacs package providing
the user facing functionality, internally called ghc for
historical reasons. Other people have also developed
numerous front ends for Vim and there also exist some
for Atom and a few other proprietary editors.
After a period of declining activity, development

has been picking up pace again since Daniel Gröber
took over as maintainer. Most changes during versions
5.0.0–5.2.1.2 consisted only of fixes and internal cleanup
work, but for the past four months, vastly improved Ca-
bal support has been in the works and is now starting
to stabilize.
This work is a major step forward in terms of how

well ghc-mod’s suggestions reflect what cabal build
would report, and should also allow ghc-mod’s other
features to work even in more complicated Cabal se-
tups.

Daniel Gröber has been accepted for a summer in-
ternship at IIJ Innovation Institute’s Research Labo-
ratory working on ghc-mod for two months (August–
September). He will be working on:
◦ adding GHCi-like interactive code execution, to

bring ghc-mod up to feature parity with GHCi and
beyond,

◦ investigating how to best cooperate with
ide-backend,

◦ adding a network interface to make using ghc-mod
in other projects easier, and

◦ if time allows, cleaning up the Emacs frontend to be
more user-friendly and in line with Emacs’ conven-
tions.
The goal of this work is to make ghc-mod the obvi-

ous choice for anyone implementing Haskell support for
a development environment and improving ghc-mod’s
overall feature set and reliability in order to give new as
well as experienced Haskell developers the best possible
experience.
Right now ghc-mod has only one core developer and

only a handful of occasional drive-by contributors. If
you want to help make Haskell development even more
fun come and join us!

Further reading

https://github.com/kazu-yamamoto/ghc-mod

6.1.4 HaRe — The Haskell Refactorer

Report by: Alan Zimmerman
Participants: Francisco Soares, Chris Brown, Stephen

Adams, Huiqing Li,Matthew Pickering

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.
Our project, Refactoring Functional Programs, has

as its major goal to build a tool to support refactor-
ings in Haskell. The HaRe tool is now in its seventh
major release. HaRe supports full Haskell 2010, and
is integrated with (X)Emacs. All the refactorings that
HaRe supports, including renaming, scope change, gen-
eralization and a number of others, are module-aware,
so that a change will be reflected in all the modules
in a project, rather than just in the module where the
change is initiated.
Snapshots of HaRe are available from our GitHub

repository (see below) and Hackage. There are re-
lated presentations and publications from the group
(including LDTA’05, TFP’05, SCAM’06, PEPM’08,
PEPM’10, TFP’10, Huiqing’s PhD thesis and Chris’s

28

http://eclipsefp.github.com/
http://jpmoresmau.blogspot.com/
https://github.com/kazu-yamamoto/ghc-mod

PhD thesis). The final report for the project appears
on the University of Kent Refactoring Functional Pro-
grams page (see below).
There is also a Google+ community called HaRe, a

Google Group called https://groups.google.com/forum/
#!forum/hare and an IRC channel on freenode called
#haskell-refactorer. IRC is the preferred contact
method.
Currently HaRe only supports GHC 7.4.x and 7.6.x.

The changes for GHC 7.8.3 showed up the brittleness
of the token management process.
As a result, the focus over the last year has been on

improving the support in the GHC API for this. This
work is summarized here https://ghc.haskell.org/trac/
ghc/wiki/GhcApi, but the lightning summary is
◦ More parser entry points, to allow parsing fragments.
◦ Removal of landmines from the AST, allowing traver-

sals with freedom.
◦ The parser can now produce annotations, which can

be used to reproduce the original source from the
AST and the annotations only.
An initial version landed in GHC 7.10.1. This has

formed the basis for the ghc-exactprint library aimed
at providing a tool to roundtrip a GHC AST, after
modification.
Development of this library has shown up some

shortcomings in the 7.10.1 support, which should hope-
fully be resolved in 7.10.2.
The engine for reproducing the source is here https:

//github.com/alanz/ghc-exactprint.

Recent developments

◦ The last GHC version supported by HaRe is 7.6.3.
The next one will be GHC 7.10.2, once ghc-
exactprint is stable, and fully integrated into HaRe.
This is only likely to be towards the end of 2015.

◦ Matthew Pickering has been deeply involved in the
ghc-exactprint development, and is continuing this
in his Google Summer of Code project, which will
help tremendously for HaRe.

◦ HaRe 0.7, which is a major change from 0.6 as it
makes use of the GHC library for analysis, has been
released; HaRe 0.7 is available on Hackage, and also
downloadable from our GitHub page

◦ HaRe 0.7 is alpha software, and comes with a limited
number of refactorings, as the work so far has con-
centrated on getting the new architecture in place
to make use of the GHC AST. The new architecture
has stabilised and the token management while ma-
nipulating the AST is able to preserve layout, thus
maintaining the original layout as well as syntacti-
cally correct alignment as new elements are added or
have their size changed.

◦ There is plenty to do, so anyone who has an interest
is welcome to fork the repo and get stuck in.

◦ Stephen Adams is continuing his PhD at the Univer-
sity of Kent and will be working on data refactoring

in Haskell.

Further reading

◦ http://www.cs.kent.ac.uk/projects/refactor-fp/
◦ https://github.com/alanz/HaRe
◦ https://github.com/alanz/ghc-exactprint
◦ http://mpickering.github.io/gsoc2015.html

6.1.5 ghc-exactprint

Report by: Matthew Pickering
Participants: Alan Zimmerman
Status: Active, Experimental

ghc-exactprint aims to be a low-level foundation for
refactoring tools. Unlike most refactoring tools, it
works directly with the GHC API which means that
it can understand any legal Haskell source file.
The program works in two phases. The first phase

takes the output from the parser and converts all ab-
solute source positions into relative source positions.
This means that it is much easier to manipulate the
AST as you do not have to worry about updating ir-
relevant parts of your program. The second phase per-
forms the reverse process, it converts relative source
positions back into absolute positions before printing
the source file. The entire library is based around a free
monad which keeps track of which annotations should
be where. Each process is then a different interpreta-
tion of this structure.
In theory these two processes should be entirely sepa-

rate but at the moment they are not entirely decoupled
due to shortcomings we hope to fix in GHC 7.12.
In order to verify our foundations, the program has

been run on every source file on Hackage. This testing
highlighted a number of bugs which have been fixed
for GHC 7.10.2. Apart from a few outstanding issues
with very rare cases, we can now confidently say that
ghc-exactprint is capable of processing any Haskell
source file.
The goal for the next few months is to put this

tool into action. Alan Zimmerman will be working to
integrate ghc-exactprint into HaRe(→ 6.1.4) whilst
Matthew Pickering will be participating in Google
Summer of Code to provide integration with HLint. In
order to facilitate both these processes, we anticipate
that an intermediate user-level library may be useful
to abstract away from the (quite gory) implementa-
tion. We hope that this library would also be useful
for other tool writers.

Further reading

https://github.com/alanz/ghc-exactprint

29

https://groups.google.com/forum/#!forum/hare
https://groups.google.com/forum/#!forum/hare
https://ghc.haskell.org/trac/ghc/wiki/GhcApi
https://ghc.haskell.org/trac/ghc/wiki/GhcApi
https://github.com/alanz/ghc-exactprint
https://github.com/alanz/ghc-exactprint
http://www.cs.kent.ac.uk/projects/refactor-fp/
https://github.com/alanz/HaRe
https://github.com/alanz/ghc-exactprint
 http://mpickering.github.io/gsoc2015.html
https://github.com/alanz/ghc-exactprint

6.1.6 IHaskell: Haskell for Interactive Computing

Report by: Andrew Gibiansky
Status: stable

IHaskell is an interactive interface for Haskell develop-
ment. It provides a notebook interface (in the style of
Mathematica or Maple). The notebook interface runs
in a browser and provides the user with editable cells
in which they can create and execute code. The output
of this code is displayed in a rich format right below,
and if it’s not quite right, the user can go back, edit the
cell, and re-execute. This rich format defaults to the
same boring plain-text output as GHCi would give you;
however, library authors will be able to define their own
formats for displaying their data structures in a useful
way, with the only limit being that the display output
must be viewable in a browser (images, HTML, CSS,
Javascript). For instance, integration with graphing li-
braries yields in-browser data visualizations, while inte-
gration with Aeson’s JSON yields a syntax-highlighted
JSON output for complex data structures.

Implementation-wise, IHaskell is a language kernel
backend for the Jupyter project, a language-agnostic
protocol and set of frontends by which interactive code
environments such as REPLs and notebooks can com-
municate with a language evaluator backend. IHaskell
also provides a generic library for writing Jupyter ker-
nels, which has been used successfully in the ICryptol
project.

Integration with popular Haskell libraries can give
us beautiful and potentially interactive visualizations
of Haskell data structures. On one hand, this could
range from simple things such as foldable record struc-
tures — imagine being able to explore complex nested
records by folding and unfolding bits and pieces at a
time, instead of trying to mentally parse them from the
GHCi output. On the other end, we have interactive
outputs, such as Parsec parsers which generate small
input boxes that run the parser on any input they’re
given. And these things are just the beginning — tight
integration with IPython may eventually be able to
provide things such as code-folding in your REPL or
an integrated debugger interface.

Further reading

https://github.com/gibiansky/IHaskell

6.2 Code Management

6.2.1 Darcs

Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all

30

https://github.com/gibiansky/IHaskell

its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.
After three years of development, we have released

Darcs 2.10 (April 2015). This new major release in-
cludes the new darcs rebase command (for merging
and amending patches that would be hard to do with
patch theory alone), numerous optimisations and per-
formance improvements, a darcs convert command
for switching to and from Git, as well as general im-
provements to the user interface.

SFC and donations Darcs is free software licensed un-
der the GNU GPL (version 2 or greater). Darcs is a
proud member of the Software Freedom Conservancy,
a US tax-exempt 501(c)(3) organization. We accept
donations at http://darcs.net/donations.html.

Further reading

◦ http://darcs.net
◦ http://darcs.net/Releases/2.10

6.2.2 cab — A Maintenance Command of Haskell
Cabal Packages

Report by: Kazu Yamamoto
Status: open source, actively developed

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg and cabal.
If you are always confused due to inconsistency of

ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.
cab now supports GHC 7.10.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

6.3 Interfacing to other Languages

6.3.1 java-bridge

Report by: Julian Fleischer
Status: active development

The Java Bridge is a library for interfacing the Java
Virtual Machine with Haskell code and vice versa. It
comes with a rich DSL for discovering and invoking
Java methods and allows to set up callbacks into the
Haskell runtime. If exported via the FFI it is also pos-
sible to use Haskell libraries from within the JVM na-
tively.

The package also offers a bindings generator which
translates the API of a Java class or package into a
Haskell API. Using the bindings generator it is possible
to generate a Haskell module with a clean Haskell API
that invokes Java behind the scenes. Typical conver-
sions, for example byte arrays to lists or Java maps to
lists of key value pairs, are taken care of. The generated
bindings and predefined conversions are extensible by
defining appropriate type class instances accordingly.
While the documentation for the bindings generator

still needs improvement, the overall library is in a quite
usable state.
The java bridge is published under the MIT license

and available via hackage as java-bridge.

Further reading

If you want to know more about the inner
workings: The Java Bridge has been cre-
ated as part of a bachelor thesis which you
can access at http://page.mi.fu-berlin.de/scravy/
bridging-the-gap-between-haskell-and-java.pdf.

6.3.2 fficxx

Report by: Ian-Woo Kim
Participants: Ryan Feng
Status: Actively Developing

fficxx (“eff fix”) is an automatic haskell Foreign Func-
tion Interface (FFI) generator to C++. While haskell
has a well-specified standard for C FFI, interfacing
C++ library to haskell is notoriously hard. The goal
of fficxx is to ease making haskell-C++ binding and
to provide relatively nice mapping between two com-
pletely different programming paradigms.
To make a C++ binding, one write a haskell model

of the C++ public interfaces, and then fficxx auto-
matically generates necessary boilerplate codes in sev-
eral levels: C++-C shims, C-haskell FFI, low level
haskell type representation for C++ class/object and
high level haskell type and typeclass representation and
some casting functions. The generated codes are orga-
nized into proper haskell modules to minimize name
space collision and packaged up as cabal packages.
The tool is designed to adapt different configurations

and unique needs, such as splitting bindings into multi-
ple cabal packages and renaming classes and functions
to resolve some obstacles that are originated from nam-
ing collision, which is quite inevitable in making an FFI
library.
The information of a C++ library can be written

in terms of simple haskell expressions, aiming at good
usability for ordinary haskell users. For example, if we
have a C++ library which has the following interface:

class A {
public:
A();

31

http://darcs.net/donations.html
http://darcs.net
http://darcs.net/Releases/2.10
http://www.mew.org/~kazu/proj/cab/en/
http://page.mi.fu-berlin.de/scravy/bridging-the-gap-between-haskell-and-java.pdf
http://page.mi.fu-berlin.de/scravy/bridging-the-gap-between-haskell-and-java.pdf

virtual void Foo();
};
class B : public A {
public:
B();
virtual void Bar();

};

one provide the model in terms of haskell data type
defined in fficxx library:

a = myclass "A" [] mempty Nothing
[Constructor [] Nothing
, Virtual void_ "Foo" [] Nothing]

b = myclass "B" [a] mempty Nothing
[Constructor [] Nothing
, Virtual void_ "Bar" [] Nothing]

One of the projects that successfully uses fficxx is
HROOT which is a haskell binding to the ROOT li-
brary. ROOT is a big C++ histogramming and statis-
tical analysis framework. Due to fficxx, the HROOT
package faithfully reflects the ROOT C++ class hier-
archy, and the user from C++ can use the package
relatively easily.
fficxx is available on hackage and being developed

on the author’s github (http://github.com/wavewave/
fficxx). In 2013, with Ryan Feng, we tried to make
fficxx more modernized with more transparent sup-
port of various C/C++ data types, including consis-
tent multiple pointer/reference operations and function
pointers. fficxx is still being in progress in incorporat-
ing the new pointer operations. C++ template support
is now planned.

Further reading

◦ http://ianwookim.org/fficxx

6.4 Deployment

6.4.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.
Hackage is a distribution point for Cabal packages.

It is an online archive of Cabal packages which can
be used via the website and client-side software such
as cabal-install. Hackage enables users to find, browse
and download Cabal packages, plus view their API doc-
umentation.
cabal-install is the command line interface for the

Cabal and Hackage system. It provides a command line

program cabal which has sub-commands for installing
and managing Haskell packages.

Looking forward

We would like to encourage people considering con-
tributing to take a look at the bug tracker on github,
take part in discussions on tickets and pull requests, or
submit their own. The bug tracker is reasonably well
maintained and it should be relatively clear to new con-
tributors what is in need of attention and which tasks
are considered relatively easy. For more in-depth dis-
cussion there is also the cabal-devel mailing list.

Further reading

◦ Cabal homepage: http://www.haskell.org/cabal
◦ Hackage package collection:

http://hackage.haskell.org/
◦ Bug tracker: https://github.com/haskell/cabal/

6.4.2 Stackage: the Library Dependency Solution

Report by: Natalia Muska
Status: new

Stackage began in November 2012 with the mission
of making it possible to build stable, vetted sets of
packages. The overall goal was to make the Cabal
experience better. Two years into the project, a lot
of progress has been made and now it includes both
Stackage and the Stackage Server. To date, there are
over 700 packages available in Stackage. The official
site is www.stackage.org.
Stackage Update: Stackage is an infrastructure to

create stable builds of complete package sets referred
to as "snapshots." Stackage provides users with the as-
surance that their packages will always build, will ac-
tually compile, all tests suites pass, and all will work
across three GHC versions (7.8, 7.6, and 7.4). Users of
a snapshot verified by Stackage can expect all packages
to install the first time.
Each snapshot is given a unique hash which is a di-

gest of that snapshot’s package set. Snapshots don’t
change. Once a hash is provided, it refers only to that
snapshot. So if a user writes a project using snapshot
aba1b51af, and in two months switches to another ma-
chine and builds their project with aba1b51af, it will
succeed.
For package authors, Stackage gives them the valu-

able knowledge that their package builds and tests suc-
cessfully across the current, stable and old GHC ver-
sions. Library authors have guarantees that users of
Stackage can easily use their library and can do so on
a reasonable number of GHCs. Authors are also in-
formed when a newly uploaded package breaks theirs,
meaning it’s time to update the package for it to be
included in the latest snapshot.

32

http://github.com/wavewave/fficxx
http://github.com/wavewave/fficxx
http://ianwookim.org/fficxx
http://www.haskell.org/cabal
http://hackage.haskell.org/
https://github.com/haskell/cabal/

Recently Stackage added some additional features in-
cluding Haddock documentation and cabal.config files.
By including Haddock documentation in Stackage all
new exclusive snapshots have Haddock links allowing
users to view documentation of all packages included
in the snapshot. This means users can generally view
everything in one place, on one high-availability ser-
vice. By creating a cabal.config link on snapshot pages,
Stackage users don’t have to change their remote-repo
field.
Stackage Server: Before Stackage Server, use of

Stackage was limited to either manually downloading
a project and building it all locally, or by using FP
Haskell Center. With Stackage Server, users are able
to go to the server web site and pick a snapshot. On
the build is a simple copy/paste line to use as a Cabal
repo, to replace the users existing remote-repo line.
When a new package is released and has been prop-

erly updated, users can go to the Stackage home page
and get the latest snapshot and update their repo. The
Stackage server also supports the uploading of custom
snapshots, this allows a company, a Linux distribution,
an organization, a university, or just as a general hacker
who wants to keep all their projects under one package
set, to maintain their own custom series of snapshots,
and also make it available to other people. Then the
burden will be on those users to make sure it builds,
rather than the recommended and Stackage maintained
snapshots.
If you’ve written some code that you’re actively

maintaining, don’t hesitate to get it in Stackage. You’ll
be widening the potential audience of users for your
code by getting your package into Stackage, and you’ll
get some helpful feedback from the automated builds
so that users can more reliably build your code.

6.4.3 Haskell Cloud

Report by: Gideon Sireling

Haskell Cloud is an OpenShift cartridge for deploying
Haskell on Red Hat’s open source PaaS cloud. It in-
cludes GHC 7.8, cabal-install, Gold linker, and a choice
of pre-installed frameworks - a full list can be viewed
on the Wiki.
Using a Haskell Cloud cartridge, existing Haskell

projects can be uploaded, build, and run from the
cloud with minimal changes. Ongoing development is
focused on OpenShift’s upcoming Docker release and
GHC 7.10.

Further reading

◦ https://bitbucket.org/accursoft/haskell-cloud
◦ http://www.haskell.org/haskellwiki/Web/Cloud#

OpenShift
◦ https://blog.openshift.com/

functional-programming-in-the-cloud-how-to-run-haskell-on-openshift/

6.5 Others

6.5.1 ghc-heap-view

Report by: Joachim Breitner
Participants: Dennis Felsing
Status: active development

The library ghc-heap-view provides means to inspect
the GHC’s heap and analyze the actual layout of
Haskell objects in memory. This allows you to inves-
tigate memory consumption, sharing and lazy evalua-
tion.
This means that the actual layout of Haskell objects

in memory can be analyzed. You can investigate shar-
ing as well as lazy evaluation using ghc-heap-view.
The package also provides the GHCi command

:printHeap, which is similar to the debuggers’ :print
command but is able to show more closures and their
sharing behaviour:

> let x = cycle [True, False]
> :printHeap x
_bco
> head x
True
> :printHeap x
let x1 = True : _thunk x1 [False]
in x1
> take 3 x
[True,False,True]
> :printHeap x
let x1 = True : False : x1
in x1

The graphical tool ghc-vis (→ 6.5.2) builds on ghc-
heap-view.
Since version 0.5.3, ghc-heap-view also supports

GHC 7.8.

Further reading

◦ http://www.joachim-breitner.de/blog/archives/
548-ghc-heap-view-Complete-referential-opacity.html

◦ http://www.joachim-breitner.de/blog/archives/
580-GHCi-integration-for-GHC.HeapView.html

◦ http://www.joachim-breitner.de/blog/archives/
590-Evaluation-State-Assertions-in-Haskell.html

6.5.2 ghc-vis

Report by: Dennis Felsing
Participants: Joachim Breitner
Status: active development

The tool ghc-vis visualizes live Haskell data structures
in GHCi. Since it does not force the evaluation of the
values under inspection it is possible to see Haskell’s
lazy evaluation and sharing in action while you interact
with the data.

33

https://bitbucket.org/accursoft/haskell-cloud
http://www.haskell.org/haskellwiki/Web/Cloud#OpenShift
http://www.haskell.org/haskellwiki/Web/Cloud#OpenShift
https://blog.openshift.com/functional-programming-in-the-cloud-how-to-run-haskell-on-openshift/
https://blog.openshift.com/functional-programming-in-the-cloud-how-to-run-haskell-on-openshift/
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html

Ghc-vis supports two styles: A linear rendering sim-
ilar to GHCi’s :print, and a graph-based view where
closures in memory are nodes and pointers between
them are edges. In the following GHCi session a par-
tially evaluated list of fibonacci numbers is visualized:

> let f = 0 : 1 : zipWith (+) f (tail f)
> f !! 2
> :view f

At this point the visualization can be used interac-
tively: To evaluate a thunk, simply click on it and im-
mediately see the effects. You can even evaluate thunks
which are normally not reachable by regular Haskell
code.
Ghc-vis can also be used as a library and in combi-

nation with GHCi’s debugger.

Further reading

http://felsin9.de/nnis/ghc-vis

6.5.3 Hat — the Haskell Tracer

Report by: Olaf Chitil

Hat is a source-level tracer for Haskell. Hat gives ac-
cess to detailed, otherwise invisible information about
a computation.
Hat helps locating errors in programs. Furthermore,

it is useful for understanding how a (correct) program
works, especially for teaching and program mainte-
nance. Hat is not a time or space profiler. Hat can be
used for programs that terminate normally, that ter-
minate with an error message or that terminate when
interrupted by the programmer.
Tracing a program with Hat consists of two phases:

First the program needs to be run such that it addi-
tionally writes a trace to file. To add trace-writing,

hat-trans translates all the source modules Module of
a Haskell program into tracing versions Hat.Module.
These are compiled as normal and when run the pro-
gram does exactly the same as the original program
except for additionally writing a trace to file. Second,
after the program has terminated, you view the trace
with a tool. Hat comes with several tools for selec-
tively viewing fragments of the trace in different ways:
hat-observe for Hood-like observations, hat-trail for ex-
ploring a computation backwards, hat-explore for freely
stepping through a computation, hat-detect for algo-
rithmic debugging, . . .
Hat is distributed as a package on Hackage that

contains all Hat tools and tracing versions of stan-
dard libraries. Currently Hat supports Haskell 98 plus
some language extensions such as multi-parameter type
classes and functional dependencies. For portability all
viewing tools have a textual interface; however, many
tools use some Unix-specific features and thus run on
Unix / Linux / OS X, but not on Windows.
Hat was mostly built around 2000–2004 and then

disappeared because of lack of maintenance. Now it is
back and new developments have started.
The source-to-source transformation of hat-trans has

been completely rewritten to use the haskell-src-exts
parser. Thus small bugs of the old parser disappeared
and in the future it will be easier to cover more Haskell
language extensions. This work was released on Hack-
age as Hat 2.8.
When a traced program uses any libraries besides

the standard Haskell 98 / 2010 ones, these libraries
currently have to be transformed (in trusted mode). So
the plan for the next release of Hat is to enable Hat to
use trusted libraries without having to transform them.
Feedback on Hat is welcome.

Further reading

◦ Initial website: http://projects.haskell.org/hat
◦ Hackage package:

http://hackage.haskell.org/package/hat

6.5.4 Tasty

Report by: Roman Cheplyaka
Participants: Michael LaCorte, Sergey Vinokurov, and

many others
Status: actively maintained

Tasty is a modern testing framework for Haskell. As
of May 2015, 230 hackage packages use Tasty for their
tests. We’ve heard from several companies that use
Tasty to test their Haskell software.

34

http://felsin9.de/nnis/ghc-vis
http://projects.haskell.org/hat
http://hackage.haskell.org/package/hat

What’s new since the last HCAR?

◦ Tasty now sets the number of parallel running tests
equal to the number of available capabilities (i.e. the
number set by -N) by default. As always, that can
be changed with -j.

◦ Printing test results on Windows used to be slow,
but now it’s fast!

◦ Tasty-HUnit now has a new function,
testCaseSteps, which lets you annotate a multi-
step unit test. Here’s an example:
main =
defaultMain $
testCaseSteps "Multi-step test" $
\step -> do

step "Step 1"
-- do something

step "Step 2"
-- do something else

As a reminder from the last HCAR, Tasty-HUnit no
longer uses the original HUnit package; instead it
reimplements the relelvant subset of its API.

◦ The way Tasty-Golden works internally has
changed. There are a few consequences (see the
CHANGELOG for details); an interesting one is
that you can now update golden files in parallel.
Also, if a golden file doesn’t exist, it will be created
automatically. You’ll see a message like
UnboxedTuples: OK (0.04s)
Golden file did not exist; created

This is convenient when adding new tests.

Further reading

◦ For more information about Tasty and how to use
it, please consult the README at
http://bit.ly/tasty-home

◦ Tasty has a mailing list http://bit.ly/tasty-ml and
an IRC channel (#tasty on FreeNode), where you
can get help with Tasty.

6.5.5 Automatic type inference from JSON

Report by: Michal J. Gajda
Status: stable

This rapid software development tool json-autotype
interprets JSON data and converts them into Haskell
module with data type declarations.

$ json-autotype input.json -o JSONTypes.hs

The generated declarations use automatically de-
rived Aeson class instances to read and write data di-
rectly from/to JSON strings, and facilitate interaction
with growing number of large JSON APIs.

Generated parser can be immediately tested on an
input data:

$ runghc JSONTypes.hs input.json

The software can be installed directly from Hackage.
It uses sophisticated union type unification, and ro-

bustly interprets most ambiguities using clever typing.
The tool has reached maturity this year, and thanks

to automated testing procedures it seems to robustly
infer types for all JSON inputs considered valid by Ae-
son.
The author welcomes comments and suggestions at
〈mjgajda@gmail.com〉.

Further reading

http://hackage.haskell.org/packages/json-autotype

6.5.6 Exference

Report by: Lennart Spitzner
Status: experimental, active development

Exference is a tool aimed at supporting developers writ-
ing Haskell code by generating expressions from a type,
e.g.
Input:

(Show b) => (a -> b) -> [a] -> [String]

Output:

\ b -> fmap (\ g -> show (b g))

Input:

(Monad m, Monad n)
=> ([a] -> b -> c) -> m [n a] -> m (n b)
-> m (n c)

Output:

\ b -> liftA2 (\ i j ->
liftA2 (\ o p -> b p o) j (sequenceA i))

There are two primary use-cases for Exference:
◦ In combination with typed holes: The programmer

can insert typed holes into the source code, retrieve
the expected type from ghc and forward this type to
Exference. If a solution, i.e. an expression, is found
and if it has the right semantics, it can be used to
fill the typed hole.

◦ As a type-class-aware search engine. For example,
Exference is able to answer queries such as Int →
Float, where the common search engines like hoogle
or hayoo are not of much use.

35

http://bit.ly/tasty-home
http://bit.ly/tasty-ml
https://github.com/mgajda/json-autotype
mailto: mjgajda at gmail.com
http://hackage.haskell.org/packages/json-autotype

In contrast to Djinn, the well known tool with the
same general purpose, Exference supports a larger sub-
set of the Haskell type system - most prominently
type classes. (Djinn’s environment many contain type
classes, but using them in queries will not really work.)
This comes at a cost, however: Exference makes no
promise regarding termination. In fact, the problem
tackled by Exference is an undecidable one (a draft of
a proof can be found in the pdf below).
Future work includes optimizations (reducing the

memory requirements most importantly) and extend-
ing the dictionary. Contributions are welcome.
Try it out by on IRC(freenode): exferenceBot is in

#exference.

Further reading

◦ https://github.com/lspitzner/exference

◦ https://github.com/lspitzner/exference/raw/master/
exference.pdf

36

https://github.com/lspitzner/exference
https://github.com/lspitzner/exference/raw/master/exference.pdf
https://github.com/lspitzner/exference/raw/master/exference.pdf

7 Libraries, Applications, Projects

7.1 Language Features

7.1.1 Conduit

Report by: Michael Snoyman
Status: stable

While lazy I/O has served the Haskell community well
for many purposes in the past, it is not a panacea.
The inherent non-determinism with regard to resource
management can cause problems in such situations as
file serving from a high traffic web server, where the
bottleneck is the number of file descriptors available to
a process.
The left fold enumerator was one of the first ap-

proaches to dealing with streaming data without us-
ing lazy I/O. While it is certainly a workable solution,
it requires a certain inversion of control to be applied
to code. Additionally, many people have found the
concept daunting. Most importantly for our purposes,
certain kinds of operations, such as interleaving data
sources and sinks, are prohibitively difficult under that
model.
The conduit package was designed as an alternate

approach to the same problem. The root of our simplifi-
cation is removing one of the constraints in the enumer-
ator approach. In order to guarantee proper resource
finalization, the data source must always maintain the
flow of execution in a program. This can lead to con-
fusing code in many cases. In conduit, we separate out
guaranteed resource finalization as its own component,
namely the ResourceT transformer.
Once this transformation is in place, data produc-

ers, consumers, and transformers (known as Sources,
Sinks, and Conduits, respectively) can each maintain
control of their own execution, and pass off control via
coroutines. The user need not deal directly with any
of this low-level plumbing; a simple monadic interface
(inspired greatly by the pipes package) is sufficient for
almost all use cases.
Since its initial release, conduit has been through

many design iterations, all the while keeping to its ini-
tial core principles. Since the last HCAR, we’ve re-
leased version 1.2. This release introduces two changes:
it adds a stream fusion implementation to allow much
more optimized runs for some forms of pipelines, and
uses the codensity transform to provide better behavior
of monadic bind.
Additionally, much work has gone into

conduit-combinators and streaming-commons,
both of which are packages introduced in the last
HCAR.
There is a rich ecosystem of libraries available to

be used with conduit, including cryptography, network

communications, serialization, XML processing, and
more.
The library is available on Hackage. There is an in-

teractive tutorial available on the FP Complete School
of Haskell. You can find many conduit-based packages
in the Conduit category on Hackage as well.

Further reading

◦ http://hackage.haskell.org/package/conduit
◦ https://www.fpcomplete.com/user/snoyberg/

library-documentation/conduit-overview
◦ http://hackage.haskell.org/packages/archive/pkg-list.

html#cat:conduit

7.1.2 lens

Report by: Edward Kmett
Participants: many others
Status: very actively developed

The lens package provides families of lenses, isomor-
phisms, folds, traversals, getters and setters. That is
to say, it provides a rich, compositional vocabulary for
separating “what you want to do” from “what you want
to do it to” built upon rigorous foundations.
Compared to other libraries that provide lenses, key

distinguishing features for lens are that it comes “bat-
teries included” with many useful lenses for the types
commonly used from the Haskell Platform, and with
tools for automatically generating lenses and isomor-
phisms for user-supplied data types.
Also, included in this package is a variant of

Neil Mitchell’s uniplate generic programming library,
modified to provide a Traversal and with its combina-
tors modified to work with arbitrary traversals.
Moreover, you do not need to incur a dependency on

the lens package in order to supply (or consume) lenses
or most of the other lens-like constructions offered by
this package.

Further reading

◦ Simon Peyton Jones:
http://skillsmatter.com/podcast/scala/
lenses-compositional-data-access-and-manipulation

◦ Edward Kmett:
http://www.youtube.com/watch?v=cefnmjtAolY

◦ Lens Development, Visualized:
http://www.youtube.com/watch?v=
ADAprOOgi-A&feature=youtu.be&hd=1

◦ http://hackage.haskell.org/package/lens
◦ http://lens.github.io/
◦ https://github.com/ekmett/lens/wiki

37

http://hackage.haskell.org/package/conduit
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://skillsmatter.com/podcast/scala/lenses-compositional-data-access-and-manipulation
http://skillsmatter.com/podcast/scala/lenses-compositional-data-access-and-manipulation
http://www.youtube.com/watch?v=cefnmjtAolY
http://www.youtube.com/watch?v=ADAprOOgi-A&feature=youtu.be&hd=1
http://www.youtube.com/watch?v=ADAprOOgi-A&feature=youtu.be&hd=1
http://hackage.haskell.org/package/lens
http://lens.github.io/
https://github.com/ekmett/lens/wiki

◦ https://github.com/ekmett/lens/issues
◦ http://statusfailed.com/blog/2013/01/26/

haskells-strength-generalising-with-lenses.html
◦ http://ocharles.org.uk/blog/posts/

2012-12-09-24-days-of-hackage-lens.html
◦ http://www.haskellforall.com/2013/05/

program-imperatively-using-haskell.html
◦ https://www.fpcomplete.com/school/

to-infinity-and-beyond/pick-of-the-week/
a-little-lens-starter-tutorial

◦ http://stackoverflow.com/questions/5767129/
lenses-fclabels-data-accessor-which-library-for-structure-access-and-mutatio/
5769285#5769285

◦ http://comonad.com/reader/2012/mirrored-lenses/
◦ http://r6.ca/blog/20121209T182914Z.html
◦ http://r6.ca/blog/20120623T104901Z.html

7.1.3 folds

Report by: Edward Kmett
Status: actively developed

This package provides a playground full of resumable
comonadic folds and folding homomorphisms between
them.

Further reading

◦ http://hackage.haskell.org/package/folds
◦ https://www.fpcomplete.com/user/edwardk/

cellular-automata/part-2
◦ http://squing.blogspot.com/2008/11/

beautiful-folding.html
◦ http://conal.net/blog/posts/

another-lovely-example-of-type-class-morphisms
◦ http:

//conal.net/blog/posts/more-beautiful-fold-zipping
◦ http://www.haskellforall.com/2013/08/

composable-streaming-folds.html

7.1.4 machines

Report by: Edward Kmett
Participants: Anthony Cowley, Shachaf Ben-Kiki, Paul

Chiusano, Nathan van Doorn
Status: actively developed

Ceci n’est pas une pipe
This package exists to explore the design space of

streaming calculations. Machines are demand-driven
input sources like pipes or conduits, but can support
multiple inputs.
You design a Machine by writing a Plan. You then

construct the machine from the plan.
Simple machines that take one input are called a Pro-

cess. More generally you can attach a Process to the
output of any type of Machine, yielding a new Ma-
chine. More complicated machines provide other ways
of connecting to them.

Typically the use of machines proceeds by using sim-
ple plans into machine Tees and Wyes, capping many
of the inputs to those with possibly monadic sources,
feeding the rest input (possibly repeatedly) and calling
run or runT to get the answers out.
There is a lot of flexibility when building a machine

in choosing between empowering the machine to run its
own monadic effects or delegating that responsibility to
a custom driver.

Further reading

◦ https://vimeo.com/77164337
◦ http://acowley.github.io/NYHUG/

FunctionalRoboticist.pdf
◦ https://github.com/runarorama/scala-machines
◦ https://dl.dropbox.com/u/4588997/Machines.pdf

7.1.5 exceptions

Report by: Edward Kmett
Participants: Gabriel Gonzales, Michael Snoyman, John

Weigley, Mark Lentczner, Alp
Mestanogullari, Fedor Gogolev, Merijn

Verstraaten, Matvey B. Aksenov
Status: actively developed

This package was begun as an effort to define a stan-
dard way to deal with exception handling in monad
transformer stacks that could scale to the needs of real
applications in terms of handling asynchronous excep-
tions, could support GHC now that block and unblock
have been removed from the compiler, and which we
could reason about the resulting behavior, and still sup-
port mocking on monad transformer stacks that are not
built atop IO.

Further reading

http://hackage.haskell.org/package/exceptions

7.1.6 Faking even more dependent types!

Report by: Richard Eisenberg
Participants: Jan Stolarek
Status: released

The singletons package enables users to fake dependent
types in Haskell via the technique of singletons. In
brief, a singleton type is a type with exactly one value;
by knowing the value, you also know the type, and
vice versa. See “Dependently typed programming with
singletons” (Haskell ’12) for more background.
Jan Stolarek and Richard Eisenberg have released

a major update to singletons, which will include pro-
cessing of a much larger subset of Haskell, includ-
ing case and let statements, where clauses, anony-
mous functions, and classes. Since the release (of
version 1.0), more improvements have been made to

38

https://github.com/ekmett/lens/issues
http://statusfailed.com/blog/2013/01/26/haskells-strength-generalising-with-lenses.html
http://statusfailed.com/blog/2013/01/26/haskells-strength-generalising-with-lenses.html
http://ocharles.org.uk/blog/posts/2012-12-09-24-days-of-hackage-lens.html
http://ocharles.org.uk/blog/posts/2012-12-09-24-days-of-hackage-lens.html
http://www.haskellforall.com/2013/05/program-imperatively-using-haskell.html
http://www.haskellforall.com/2013/05/program-imperatively-using-haskell.html
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
http://stackoverflow.com/questions/5767129/lenses-fclabels-data-accessor-which-library-for-structure-access-and-mutatio/5769285#5769285
http://stackoverflow.com/questions/5767129/lenses-fclabels-data-accessor-which-library-for-structure-access-and-mutatio/5769285#5769285
http://stackoverflow.com/questions/5767129/lenses-fclabels-data-accessor-which-library-for-structure-access-and-mutatio/5769285#5769285
http://comonad.com/reader/2012/mirrored-lenses/
http://r6.ca/blog/20121209T182914Z.html
http://r6.ca/blog/20120623T104901Z.html
http://hackage.haskell.org/package/folds
https://www.fpcomplete.com/user/edwardk/cellular-automata/part-2
https://www.fpcomplete.com/user/edwardk/cellular-automata/part-2
http://squing.blogspot.com/2008/11/beautiful-folding.html
http://squing.blogspot.com/2008/11/beautiful-folding.html
http://conal.net/blog/posts/another-lovely-example-of-type-class-morphisms
http://conal.net/blog/posts/another-lovely-example-of-type-class-morphisms
http://conal.net/blog/posts/more-beautiful-fold-zipping
http://conal.net/blog/posts/more-beautiful-fold-zipping
http://www.haskellforall.com/2013/08/composable-streaming-folds.html
http://www.haskellforall.com/2013/08/composable-streaming-folds.html
https://vimeo.com/77164337
http://acowley.github.io/NYHUG/FunctionalRoboticist.pdf
http://acowley.github.io/NYHUG/FunctionalRoboticist.pdf
https://github.com/runarorama/scala-machines
https://dl.dropbox.com/u/4588997/Machines.pdf
http://hackage.haskell.org/package/exceptions

the HEAD version, available at http://github.com/
goldfirere/singletons.
Of particular interest, the library exports a promote

function that will take ordinary term-level function def-
initions and promote them to type family definitions.
After the update, this will allow users to write term-
level code in a familiar style and have that code work
on promoted datatypes at the type level.

Further reading

◦ Dependently typed programming with singletons, by
Richard A. Eisenberg and Stephanie Weirich.
Haskell Symposium ’12. http://www.cis.upenn.edu/
~eir/papers/2012/singletons/paper.pdf

◦ Promoting Functions to Type Families in Haskell,
by Richard A. Eisenberg and Jan Stolarek. Haskell
Symposium ’14. http://www.cis.upenn.edu/~eir/
papers/2014/promotion/promotion.pdf

◦ GitHub repo:
http://github.com/goldfirere/singletons

7.1.7 Type checking units-of-measure

Report by: Richard Eisenberg
Participants: Takayuki Muranushi
Status: released

The units package, available on Hackage, allows you to
type-check your Haskell code with respect to units of
measure. It prevents you from adding, say, meters to
seconds while allowing you to add meters to feet and
dividing meters by seconds. A Double can be converted
into a dimensioned quantity only by specifying its units,
and a dimensioned quantity can be converted to an
ordinary Double only by specifying the desired units of
the output.
The set of units is fully extensible. The package,

in fact, exports units only for dimensionless quantities.
Instead, the companion units-defs package contains def-
initions for SI dimensions and units, as well as the US
customary units. Because of units’s extensibility, the
package is suitable for use outside of physics applica-
tions, such as finance or keeping your apples apart from
your bananas.
The magic under the hood uses lots of type families

and no functional dependencies. One upshot of this
design is that user code can generally be free of con-
straints on types. Here is some sample code:

kinetic_energy :: Mass→ Velocity→ Energy
kinetic_energy m v = redim $ 0.5 ∗|m | ∗ | v | ∗ | v
g_earth :: Acceleration
g_earth = redim $ 9.8 % (Meter : / (Second : ˆ sTwo))

Type annotations are not necessary – all types can
be inferred.

Further reading

◦ GitHub repo: http://github.com/goldfirere/units
◦ Experience Report: Type-checking Polymorphic
Units for Astrophysics Research in Haskell, by
Takayuki Muranushi and Richard A. Eisenberg.
Haskell Symposium ’14. http://www.cis.upenn.edu/
~eir/papers/2014/units/units.pdf

7.1.8 GHC type-checker plugin for kind Nat

Report by: Christiaan Baaij
Status: actively developed

As of GHC version 7.10, GHC’s type checking and in-
ference mechanisms can be enriched by plugins. This
particular plugin enriches GHC’s knowledge of arith-
metic on the type-level. Specifically it allows the
compiler to reason about equalities of types of kind
GHC.TypeLits.Nat.
GHC’s type-checker’s knowledge of arithmetic is vir-

tually non-existent: it doesn’t know addition is associa-
tive and commutative, that multiplication distributes
over addition, etc. In a dependently-typed language,
or in Haskell using singleton types, one can provide
proofs for these properties and use them to type-check
programs that depend on these properties in order to
be (type-)correct. However, most of these properties of
arithmetic over natural number are elementary school
level knowledge, and it is cumbersome and tiresome to
keep on providing and proving them manually. This
type-checker plugin adds the knowledge of these prop-
erties to GHC’s type-checker.
For example, using this plugin, GHC now knows

that:

(x + 2)^(y + 2)

is equal to:

4*x*(2 + x)^y + 4*(2 + x)^y + (2 + x)^y*x^2

The way that the plugin works, is that it nor-
malises arithmetic expressions to a normal form that
very much resembles Cantor normal form for ordi-
nals(http://en.wikipedia.org/wiki/Ordinal_arithmetic#
Cantor_normal_form). Subsequently, it perform a
simple syntactic equality of the two expressions.
Indeed, in the example above, the latter expression is
the normal form of the former expression.
The main test suite for the plugin can

be found at: https://github.com/christiaanb/
ghc-typelits-natnormalise/blob/master/tests/Tests.hs.
It demonstrates what kind of correct code can be
written without type equality annotations, or the use
of unsafeCoerce.
One important aspect of this plugin is that it only

enriches the type checkers knowledge of equalities, but
not inequalities. That is, it does not allow GHC to
solve constraints such as:

39

http://github.com/goldfirere/singletons
http://github.com/goldfirere/singletons
http://www.cis.upenn.edu/~eir/papers/2012/singletons/paper.pdf
http://www.cis.upenn.edu/~eir/papers/2012/singletons/paper.pdf
http://www.cis.upenn.edu/~eir/papers/2014/promotion/promotion.pdf
http://www.cis.upenn.edu/~eir/papers/2014/promotion/promotion.pdf
http://github.com/goldfirere/singletons
http://github.com/goldfirere/units
http://www.cis.upenn.edu/~eir/papers/2014/units/units.pdf
http://www.cis.upenn.edu/~eir/papers/2014/units/units.pdf
http://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form
http://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form
https://github.com/christiaanb/ghc-typelits-natnormalise/blob/master/tests/Tests.hs
https://github.com/christiaanb/ghc-typelits-natnormalise/blob/master/tests/Tests.hs

CmpNat (x + 2) (x + 3) ~ ’LT

The plugin is available on hackage, for GHC version
7.10 and higher:

$ cabal update
$ cabal install ghc-typelits-natnormalise

Development focus for the plugin is on further testing
and improving its testsuite.

Further reading

◦ http://hackage.haskell.org/package/
ghc-typelits-natnormalise

◦ http://hackage.haskell.org/package/base/docs/
GHC-TypeLits.html

7.1.9 Dependent Haskell

Report by: Richard Eisenberg
Status: work in progress

I am working on an ambitious update to GHC that
will bring full dependent types to the language. On
my branch [1] the Core language and type inferenace
have already been updated according to the description
in our ICFP’13 paper [2]. Accordingly, all type-level
constructs are simultaneously kind-level constructs, as
there is no distinction between types and kinds. Specif-
ically, GADTs and type families will be promotable to
kinds. At this point, I conjecture that any construct
writable in those other dependently-typed languages
will be expressible in Haskell through the use of single-
tons.
As of the time of writing, the branch works on many

examples but is still a bit buggy. I hope to merge with
GHC’s master branch over the summer.
After this phase, I will embark on working a proper

Π-binder into the language, much along the lines of
Adam Gundry’s thesis on the topic [3]. Having Π would
give us “proper” dependent types, and there would be
no more need for singletons. A sampling of what I
hope is possible when this work is done is online [4],
excerpted here:

data Vec :: ∗ → Integer→ ∗ where
Nil :: Vec a 0
(:::) :: a → Vec a n → Vec a (1 ’+ n)

replicate :: π n. ∀a. a → Vec a n
replicate @0 = Nil
replicate x = x ::: replicate x

Of course, the design here (especially for the proper de-
pendent types) is preliminary, and input is encouraged.

Further reading

◦ [1]: https://github.com/goldfirere/ghc, the nokinds
branch.

◦ [2]: System FC with Explicit Kind Equality, by
Stephanie Weirich, Justin Hsu, and Richard
A. Eisenberg. ICFP ’13. http://www.cis.upenn.edu/
~eir/papers/2013/fckinds/fckinds.pdf

◦ [3]: Type Inference, Haskell and Dependent Types,
by Adam Gundry. PhD Thesis, 2013.
https://personal.cis.strath.ac.uk/adam.gundry/thesis/

◦ [4]: https://github.com/goldfirere/nyc-hug-oct2014/
blob/master/Tomorrow.hs

◦ Haskell Implementors’ Workshop 2014 presentation
on Dependent Haskell. Slides:
http://www.cis.upenn.edu/~eir/talks/2014/
hiw-dependent-haskell.pdf; Video:
https://www.youtube.com/watch?v=O805YjOsQjI

◦ Repo for presentation on Dependent Haskell at the
NYC Haskell Users’ Group:
https://github.com/goldfirere/nyc-hug-oct2014

◦ Wiki page with elements of the design: https:
//ghc.haskell.org/trac/ghc/wiki/DependentHaskell

7.2 Education

7.2.1 Exercism: crowd-sourced code reviews on
daily practice problems

Report by: Bob Ippolito
Status: available

Exercism.io is an open source (AGPL) site that pro-
vides programming exercises suitable for new program-
mers, or programmers new to a programming language.
The feature that differentiates exercism from self-

study is that once a solution is submitted, others who
have completed that exercise have an opportunity to
provide code review. Anecdotally, this seems to put
programmers on the right track quickly, especially with
regard to the subtler points of Haskell style, non-strict
evaluation, and GHC-specific features.
Exercism fully supports Haskell as of August 2013,

with more than 50 exercises currently available. As of
this writing, 165 people have completed at least one
Haskell exercise.
I intend to continue actively participating in the code

review process and ensure that the Haskell exercise
path is well maintained.

Further reading

http://exercism.io/

40

http://hackage.haskell.org/package/ghc-typelits-natnormalise
http://hackage.haskell.org/package/ghc-typelits-natnormalise
http://hackage.haskell.org/package/base/docs/GHC-TypeLits.html
http://hackage.haskell.org/package/base/docs/GHC-TypeLits.html
https://github.com/goldfirere/ghc
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
https://personal.cis.strath.ac.uk/adam.gundry/thesis/
https://github.com/goldfirere/nyc-hug-oct2014/blob/master/Tomorrow.hs
https://github.com/goldfirere/nyc-hug-oct2014/blob/master/Tomorrow.hs
http://www.cis.upenn.edu/~eir/talks/2014/hiw-dependent-haskell.pdf
http://www.cis.upenn.edu/~eir/talks/2014/hiw-dependent-haskell.pdf
https://www.youtube.com/watch?v=O805YjOsQjI
https://github.com/goldfirere/nyc-hug-oct2014
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell
http://exercism.io/

7.2.2 Holmes, Plagiarism Detection for Haskell

Report by: Jurriaan Hage
Participants: Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).
In November 2010, Gerben Verburg started to

reimplement Holmes keeping only the heuristics we
figured were useful, basing that implementation on
haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, which has been presented at
CSERC’13, and should become available in the ACM
Digital Library.
The tool will be made available through Hackage at

some point, but before that happens it can already be
obtained on request from Jurriaan Hage.

Contact

〈J.Hage@uu.nl〉

7.2.3 Interactive Domain Reasoners

Report by: Bastiaan Heeren
Participants: Johan Jeuring, Alex Gerdes, Josje Lodder,

Hieke Keuning
Status: experimental, active development

The Ideas project at the Open Universiteit and
Utrecht University aims at developing domain reason-
ers for stepwise exercises on various topics. These rea-
soners assist students in solving exercises incrementally
by checking intermediate steps, providing feedback on
how to continue, and detecting common mistakes. The
reasoners are based on a strategy language, and feed-
back is derived automatically from rewriting strategies
that are expressed in this language. The calculation
of feedback is offered as a set of web services, enabling
external (mathematical) learning environments to use
our work. We currently have a binding with the Digital
Mathematics Environment of the Freudenthal Institute
(first/left screenshot), the ActiveMath learning system

of the DFKI and Saarland University (second/right
screenshot), and several exercise assistants of our own.

We have used our domain reasoners to model dia-
logues in Communicate!, which is a serious game for
training communication skills. This game is being de-
veloped by a team of teachers and students at Utrecht
University.
A group of bachelor students from the Open Univer-

siteit has developed a new web interface for our tutor
for logic, to which we have added exercises for proving
equivalences.
We have continued working on the domain reason-

ers that are used by our programming tutors. The
Ask-Elle functional programming tutor lets you prac-
tice introductory functional programming exercises in
Haskell. We have extended this tutor with QuickCheck
properties for testing the correctness of student pro-
grams, and for the generation of counterexamples. We
have analysed the usage of the tutor to find out how
many student submissions are correctly diagnosed as
right or wrong. Tim Olmer has developed a tutor in
which a student can practice with evaluating Haskell
expressions. Finally, Hieke Keuning has developed a
programming tutor for imperative programming.

The library for developing domain reasoners with
feedback services is available as a Cabal source pack-
age. We have written a tutorial on how to make your
own domain reasoner with this library. We have also
released our domain reasoner for mathematics and logic
as a separate package.

Further reading

◦ Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive
Exercises. Mathematics in Computer Science,
3(3):349–370, 2010.

41

mailto: J.Hage at uu.nl
http://ideas.cs.uu.nl/www
http://www.projects.science.uu.nl/communicate/
http://ideas.cs.uu.nl/logex/
http://ideas.cs.uu.nl/logex/
http://ideas.cs.uu.nl/FPTutor/
http://ideas.cs.uu.nl/HEE/
http://ideas.cs.uu.nl/HEE/
http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/tutorial
http://hackage.haskell.org/package/ideas-math
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html

◦ Bastiaan Heeren and Johan Jeuring. Feedback
services for stepwise exercises. Science of Computer
Programming, Special Issue on Software
Development Concerns in the e-Learning Domain,
volume 88, 110–129, 2014.

◦ Tim Olmer, Bastiaan Heeren, Johan Jeuring.
Evaluating Haskell expressions in a tutoring
environment. Trends in Functional Programming in
Education 2014.

◦ Hieke Keuning, Bastiaan Heeren, Johan Jeuring.
Strategy-based feedback in a programming tutor.
Computer Science Education Research Conference
(CSERC 2014).

◦ Johan Jeuring, Thomas van Binsbergen, Alex
Gerdes, Bastiaan Heeren. Model solutions and
properties for diagnosing student programs in
Ask-Elle. Computer Science Education Research
Conference (CSERC 2014).

7.3 Parsing and Transforming

7.3.1 epub-metadata

Report by: Dino Morelli
Status: experimental, actively developed

Library for parsing and manipulating epub OPF pack-
age data. Now with epub3 support.
◦ Added support for epub3 documents. This was done
using a single set of datatypes, not specific to either
epub2 or epub3.

◦ Redesigned the book file querying API to be an edsl.
Actions are to be combined together based on what
the developer needs from the document.

◦ Data structures to contain epub metadata “sections”
were redesigned to no longer be nested. Part of this
change includes a typeclass-based pretty-print API
for displaying this data.

◦ Documentation rewrites and additions, including a
working code example in the API docs.
epub-metadata is available from Hackage and the

Darcs repository below.
See also epub-tools (→ 7.10.1).

Further reading

◦ Project page:
http://ui3.info/d/proj/epub-metadata.html

◦ Source repository: darcs get
http://ui3.info/darcs/epub-metadata

7.3.2 Utrecht Parser Combinator Library:
uu-parsinglib

Report by: Doaitse Swierstra
Status: actively developed

With respect to the previous version the code for build-
ing interleaved parsers was split off into a separate
package uu-interleaved, such that it can be used

by other parsing libraries too. Based on this an-
other small package uu-options was constructed which
can be used to parse command line options and files
with preferences. The internals of these are described
in a technical report: http://www.cs.uu.nl/research/
techreps/UU-CS-2013-005.html.
As an example of its use we show how to fill a record

from the command line. We start out by defining the
record which is to hold the options to be possibly set:

data Prefers = Agda | Haskell deriving Show
data Address = Address {city_ :: String

, street_ :: String}
deriving Show

data Name = Name { name_ :: String
, prefers_ :: Prefers
, ints_ :: [Int]
, address_ :: Address}

deriving Show
$ (deriveLenses ” Name)
$ (deriveLenses ” Address)

The next thing to do is to specify a default record con-
taining the default values:

defaults = Name "Doaitse" Haskell []
(Address "Utrecht"

"Princetonplein")

Next we define the parser for the options, by specifying
each option:

oName =
name ‘option‘ ("name", pString,

"Name")
<> ints ‘options‘ ("ints", pNaturalRaw,

"Some numbers")
<> prefers ‘choose‘ [("agda", Agda,

"Agda preferred")
, ("haskell",Haskell,
"Haskell preferred")

]
<> address ‘field‘

(city ‘option‘ ("city", pString,
"Home city")

<> street ‘option‘ ("street", pString,
"Home Street")

)

Finally when running this parser by the command
run (($defaults) <$> mkP oName) on the string
("–int=7 –city=Tynaarlo -i 5 –agda -i3 " ++
"-street=Zandlust") the result is

Name {name_ = Doaitse
, prefers_ = Agda
, ints_ = [7, 5, 3]
, address_ = Address

{city_ = Tynaarlo
, street_ = Zandlust}

}

42

http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/HEE.html
http://www.open.ou.nl/bhr/HEE.html
http://www.open.ou.nl/bhr/FeedbackIPTutor.html
http://www.open.ou.nl/bhr/AskElleAnalysis.html
http://www.open.ou.nl/bhr/AskElleAnalysis.html
http://www.open.ou.nl/bhr/AskElleAnalysis.html
http://ui3.info/d/proj/epub-metadata.html
http://ui3.info/darcs/epub-metadata
http://www.cs.uu.nl/research/techreps/UU-CS-2013-005.html
http://www.cs.uu.nl/research/techreps/UU-CS-2013-005.html

If you make a mistake in the list of options, auto-
matic error reporting and correction steps in and you
get the following message:

./OptionsDemo --street=Zandlust -nDoaitse
-i3 --city=Tynaarlo
--name [Char] optional Name
--ints Int recurring Some numbers
Choose at least one from(
--agda required Agda preferred
--haskell required Haskell preferred

)
--city [Char] optional Home city
--street [Char] optional Home Street
--
-- Correcting steps:
-- Inserted "-a" at position 70
-- expecting one of

["--agda", "--agda=", "--haskell",
"--haskell=", "--ints=", "--ints",
"-i", "-h", "-a"]

-- Inserted EOT at position 70
-- expecting EOT

Features

◦ Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the in-
put and provide excellent error messages. As such
they are “surprise free” when used by people not fully
aware of their internal workings.

◦ Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

◦ The library basically provides the to be preferred ap-
plicative interface and a monadic interface where this
is really needed (which is hardly ever).

◦ No need for try-like constructs which make writing
Parsec based parsers tricky.

◦ Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

◦ Parsers can be run in an interleaved way, thus gen-
eralizing the merging and permuting parsers into a
single applicative interface. This makes it e.g. pos-
sible to deal with white space or comments in the
input in a completely separate way, without having
to think about this in the parser for the language
at hand (provided of course that white space is not
syntactically relevant).

Future plans

Future versions will contain a check for grammars being
not left-recursive, thus taking away the only remaining
source of surprises when using parser combinator li-
braries. This makes the library even greater for use in
teaching environments. Future versions of the library,
using even more abstract interpretation, will make use

of computed look-ahead information to speed up the
parsing process further.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact 〈doaitse@swierstra.net〉. There is a
low volume, moderated mailing list which was moved
to 〈parsing@lists.science.uu.nl〉 (see also http://www.cs.
uu.nl/wiki/bin/view/HUT/ParserCombinators).

7.3.3 HERMIT

Report by: Andrew Gill
Participants: Andrew Farmer, Neil Sculthorpe, Ryan

Scott
Status: active

The Haskell Equational Reasoning Model-to-
Implementation Tunnel (HERMIT) is an NSF-funded
project being run at KU (→ 9.7), which aims to im-
prove the applicability of Haskell-hosted Semi-Formal
Models to High Assurance Development. Specifically,
HERMIT uses a Haskell-hosted DSL and a new
refinement user interface to perform rewrites directly
on Haskell Core, the GHC internal representation.
In the project we want to demonstrate the equiv-

alences between efficient Haskell programs, and their
clear specification-style Haskell counterparts. In doing
so there are several open problems, including refine-
ment scripting and managing scaling issues, data repre-
sentation and presentation challenges, and understand-
ing the theoretical boundaries of the worker/wrapper
transformation.
We have reworked KURE, a Haskell-hosted DSL for

strategic programming, as the basis of our rewrite capa-
bilities, and constructed the rewrite kernel making use
of the GHC Plugins architecture. A journal writeup
of the KURE internals is available in JFP. As for in-
terfaces to the kernel, we currently have a command-
line REPL, which we are replacing this summer with
a GHCi DSL, called Black Shell. We have used HER-
MIT to successfully mechanize many smaller examples
of program transformations, drawn from the literature
on techniques such as concatenate vanishes, tupling
transformation, and worker/wrapper.

Further reading

https://github.com/ku-fpg/hermit

43

mailto: doaitse at swierstra.net
mailto: parsing at lists.science.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
https://github.com/ku-fpg/hermit

7.3.4 Generalized Algebraic Dynamic Programming

Report by: Christian Höner zu Siederdissen
Status: usable, active development

Generalized Algebraic Dynamic Programming provides
a solution for high-level dynamic programs. We treat
the formal grammars underlying each DP algorithm as
an algebraic object which allows us to calculate with
them. Below, we describe three highlights, our systems
offers:

Grammars Products

We have developed a theory of algebraic operations
over linear and context-free grammars. This theory al-
lows us to combine simple “atomic” grammars to create
more complex ones.
With the compiler that accompanies our theory, we

make it easy to experiment with grammars and their
products. Atomic grammars are user-defined and the
algebraic operations on the atomic grammars are em-
bedded in a rigerous mathematical framework.
Our immediate applications are problems in compu-

tational biology and linguistics. In these domains, al-
gorithms that combine structural features on individ-
ual inputs (or tapes) with an alignment or structure
between tapes are becoming more commonplace. Our
theory will simplify building grammar-based applica-
tions by dealing with the intrinsic complexity of these
algorithms.
We provide multiple types of output. LATEX is avail-

able to those users who prefer to manually write the re-
sulting grammars. Alternatively, Haskell modules can
be created. TemplateHaskell and QuasiQuoting ma-
chinery is also available turning this framework into a
fully usable embedded domain-specific language. The
DSL or Haskell module use ADPfusion (→ 7.12.1) with
multitape extensions, delivering “close-to-C” perfor-
mance.

Set Grammars

Most dynamic programming frameworks we are aware
of deal with problems over sequence data. There
are, however, many dynamic programming solutions to
problems that are inherently non-sequence like. Hamil-
tonian path problems, finding optimal paths through a
graph while visiting each node, are a well-studied ex-
ample.
We have extended our formal grammar library to

deal with problems that can not be encoded via linear
data types. This provides the user of our framework
with two benifits. She can now easily encode problems
based on set-like inputs and obtain dynamic program-
ming solutions. On a more general level, the extension

of ADPfusion and the formal grammars library shows
how to encode new classes of problems that are now
gaining traction and are being studied.
If, say, the user wants to calculate the shortest

Hamiltonian path through all nodes of a graph, then
the grammar for this problem is:

s (f <<< s % n ||| g <<< n ... h)

which states that a path s is either extended by a node
n, or that a path is started by having just a first, single
node n. Functions f and g evaluate the cost of moving
to the new node. gADP has notions of sets with inter-
faces (here: for s) that provide the needed functionality
for stating that all nodes in s have been visited with
a final visited node from which an edge to n is to be
taken.

Automatic Outside Grammars

Our third contribution to high-level and efficient dy-
namic programming is the ability to automatically con-
struct Outside algorithms given an Inside algorithm.
The combination of an Inside algorithm and its cor-
responding Outside algorithm allow the developer to
answer refined questions for the ensemble of all (sub-
optimal) solutions.
The image below depicts one such automatically cre-

ated grammar that parses a string from the Outside in.
T and C are non-terminal symbols of the Outside gram-
mar; the production rules also make use of the S and
B non-terminals of the Inside version.

One can, for example, not only ask for the most effi-
cient path through all cities on a map, but also answer
which path between two cities is the most frequented
one, given all possible travel routes. In networks, this
allows one to determine paths that are chosen with high
likelihood.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gADP/
◦ http://dx.doi.org/10.1109/TCBB.2014.2326155
◦ http://dx.doi.org/10.1007/978-3-319-12418-6_8

44

http://www.bioinf.uni-leipzig.de/Software/gADP/
http://dx.doi.org/10.1109/TCBB.2014.2326155
http://dx.doi.org/10.1007/978-3-319-12418-6_8

7.3.5 parsers

Report by: Edward Kmett
Participants: Nathan Filardo, Dag Odenall, Mario

Blazevic, Tony Morris, Tim Dixon, Greg
Fitzgerald

Status: actively developed

This package provides a common lingua franca for
working with parsec-like parsing combinator libraries,
such that the combinators support being lifted over
monad transformers. Instances are provided for use
with the parsec Parser and base’s ReadP, and it is
used by trifecta (→ 7.3.6) to provide its suite of pars-
ing combinators.
Notably, many of the combinators have been modi-

fied to only require the use of Alternative rather than
MonadPlus, enabling some base Parser instances to op-
erate more efficiently.

Further reading

http://hackage.haskell.org/package/parsers

7.3.6 trifecta

Report by: Edward Kmett
Participants: Austin Seipp, Nathan Filardo, John

Weigley
Status: actively developed

This package is designed to explore the space of “hu-
man scale” parsers for programming languages. That is
to say, it isn’t optimized for parsing protocols or other
huge streaming datasets, but rather to provide nice er-
ror messages for files that are usually written by hand
by human beings.
Trifecta supports clang-style colored diagnostics

with markup denoting locations, spans and fixits for
user code. It builds on top of the parsers (→ 7.3.5)
framework for most of its parsing combinators.
Much of the focus of trifecta is on supporting func-

tionality beyond basic parsing, such as syntax high-
lighting, that arise once you have a programming lan-
guage.
In the long term, we plan to support built-in CPP,

auto-completion and parser transformers to support
Haskell-style layout.

Further reading

http://hackage.haskell.org/package/trifecta

7.4 Mathematics

7.4.1 Rlang-QQ

Report by: Adam Vogt
Status: active development

Rlang-QQ is intended to make it easier to call R from
Haskell programs. This allows access to a large num-

ber of R packages for graphing, statistics or other uses.
Rlang-QQ provides a quasiquoter which runs the R in-
terpreter and tries to translate values between the two
languages.
Haskell expressions can be referenced from R using

syntax like $(take 10 [1.0 ..]). Haskell variables
can also be passed in by prefixing them with hs_: hs_x
refers to x. Values that can be taken out of a Haskell
x :: Chan t are accessible using ch_x. When the
R code has an assignment such as hs_x <- f(), the
quasiquote evaluates to an HList record which contains
the result from f().
Future work may include supporting the serialization

of more data types between the two languages, passing
data between the two runtimes in-memory instead of
through files, and doing inference when possible on the
R-code to restrict the types of the Haskell values that
are serialized or deserialized.

Further reading

◦ http://hackage.haskell.org/package/Rlang-QQ
◦ http://www.r-project.org/
◦ http://www.haskell.org/haskellwiki/Quasiquotation

7.4.2 order-statistics

Report by: Edward Kmett
Status: stable

This package extends Bryan O’Sullivan’s statistics
package with support for order statistics and L-
estimators.
An order statistic is simply a position in the sorted

list of samples given just the size of the sample. L-
estimators are linear combinations of order-statistics.
L-estimators are used in robust statistics to collect

statistics that are robust in the presence of outliers, and
have the benefit that you can jackknife them without
changing their asymptotics.
This package provides a compositional vocabulary

for describing order statistics.

Further reading

◦ http://hackage.haskell.org/package/order-statistics
◦ http://en.wikipedia.org/wiki/Order_statistic
◦ http://en.wikipedia.org/wiki/L-estimator

7.4.3 linear

Report by: Edward Kmett
Participants: Anthony Cowley, Ben Gamari, Jake

McArthur, John Weigley, Elliott Hird, Eric
Mertens, Niklas Haas, Casey McCann

Status: actively developed

This package provides ‘low-dimensional’ linear algebra
primitives that are based explicitly on the notion that
all vector spaces are free vector spaces, and so are iso-
morphic to functions from some basis to an underlying

45

http://hackage.haskell.org/package/parsers
http://hackage.haskell.org/package/trifecta
http://hackage.haskell.org/package/Rlang-QQ
http://www.r-project.org/
http://www.haskell.org/haskellwiki/Quasiquotation
http://hackage.haskell.org/package/order-statistics
http://en.wikipedia.org/wiki/Order_statistic
http://en.wikipedia.org/wiki/L-estimator

field. This lets us use representable functors, which are
represented by such a basis to encode all of our linear
algebra operations, and provides a natural encoding for
dense vector spaces.
A nice lens-based API is provided that permits pun-

ning of basis vector names between different vector
types.

Further reading

http://hackage.haskell.org/package/linear

7.4.4 algebra

Report by: Edward Kmett
Status: experimental

This package provides a large cross section of construc-
tive abstract algebra.
Notable theoretical niceties include the fact that cov-

ectors form a Monad, linear maps form an Arrow, and
this package bundles a rather novel notion of geometric
coalgebra alongside the more traditional algebras and
coalgebras.

Further reading

http://hackage.haskell.org/package/algebra

7.4.5 semigroups and semigroupoids

Report by: Edward Kmett
Participants: Nathan van Doorn, Mark Wright, Adam

Curtis
Status: stable

The semigroups package provides a standard location
to obtain the notion of Semigroup.
The semigroupoids package provides the notion of

a Semigroupoid, which is a Category that does not nec-
essarily provide id. These arise in practice for many
reasons in Haskell.
Notably, we cannot express a product category with

the existing implementation of Data Kinds.
But more simply, there are many types for which

their Kleisli category or Cokleisli category lacks iden-
tity arrows, because they lack return or extract, but
could otherwise pass muster.
With semigroupoids 4.0, this package has now

come to subsume the previous groupoids and
semigroupoid-extras packages.

Further reading

◦ http://hackage.haskell.org/package/semigroups
◦ http://hackage.haskell.org/package/semigroupoids

7.4.6 Arithmetics packages (Edward Kmett)

Report by: Edward Kmett
Participants: Sjoerd Visscher, Austin Seipp, Daniel

Bergey, Chris Schneider, Ben Gamari
Status: actively developed

◦ The compensated package provides compensated
arithmetic for when you need greater precision than
the native floating point representation can provide.
A Compensated Double has over 100 bits worth of
effective significand. Unlike other “double double”
variants in other languages, this construction can
be iterated. A Compensated (Compensated Double)
gives over 200 bits worth of precision.
However, not all RealFloat operations have yet been
upgraded to work in full precision.

◦ The approximate package (with Sjoerd Visscher
and Austin Seipp) provides a notion of approximate
result values and intervals with log-domain lower
bounds on confidence. It also provides fast piecewise-
rational, but monotone increasing approximate ver-
sions of log and exp that execute many times faster
than the native machine instructions that are suit-
able for use in machine learning.

◦ The intervals package (with Daniel Bergey and
Chris Schneider) provides basic interval arithmetic.
An Interval is a closed, convex set of floating point
values.
We do not control the rounding mode of the end
points of the interval when using floating point arith-
metic, so be aware that in order to get precise con-
tainment of the result, you will need to use an un-
derlying type with both lower and upper bounds like
CReal.

◦ The log-domain package (with Ben Gamari) pro-
vides log domain floats, doubles and complex num-
bers with an emphasis on supporting probabilities
biased towards conservative lower bounds.

Further reading

◦ http://hackage.haskell.org/package/compensated
◦ http://hackage.haskell.org/package/approximate
◦ http://hackage.haskell.org/package/intervals
◦ http://hackage.haskell.org/package/log-domain

7.4.7 ad

Report by: Edward Kmett
Participants: Alex Lang, Takayuki Muranushi, Chad

Scherrer, Lennart Augustsson, Ben
Gamari, Christopher White

Status: actively developed

This package provides an intuitive API for Automatic
Differentiation (AD) in Haskell. Automatic differenti-
ation provides a means to calculate the derivatives of
a function while evaluating it. Unlike numerical meth-
ods based on running the program with multiple inputs

46

http://hackage.haskell.org/package/linear
http://hackage.haskell.org/package/algebra
http://hackage.haskell.org/package/semigroups
http://hackage.haskell.org/package/semigroupoids
http://hackage.haskell.org/package/compensated
http://hackage.haskell.org/package/approximate
http://hackage.haskell.org/package/intervals
http://hackage.haskell.org/package/log-domain

or symbolic approaches, automatic differentiation typi-
cally only decreases performance by a small multiplier.
AD employs the fact that any program y = F (x) that

computes one or more values does so by composing mul-
tiple primitive operations. If the (partial) derivatives
of each of those operations is known, then they can be
composed to derive the answer for the derivative of the
entire program at a point.
This library contains at its core a single implementa-

tion that describes how to compute the partial deriva-
tives of a wide array of primitive operations. It then
exposes an API that enables a user to safely combine
them using standard higher-order functions, just as you
would with any other Haskell numerical type.
There are several ways to compose these individual

Jacobian matrices. We hide the choice used by the
API behind an explicit “Mode” type-class and universal
quantification. This prevents the end user from exploit-
ing the properties of an individual mode, and thereby
potentially violating invariants or confusing infinitesi-
mals.
We are actively seeking ways to better support un-

boxed vectors, new modes, new primitives, and better-
optimized forms for gradient descent.
Features:
◦ Provides many variants on forward- and reverse-
mode AD combinators with a common API.

◦ Type-level “branding” is used to both prevent the
end user from confusing infinitesimals and to limit
unsafe access to the implementation details of each
mode.

◦ Each mode has a separate module full of combina-
tors, with a consistent look and feel.

Further reading

◦ http://hackage.haskell.org/package/ad
◦ http:

//en.wikipedia.org/wiki/Automatic_differentiation
◦ http://www.autodiff.org/

7.4.8 integration

Report by: Edward Kmett
Participants: Adrian Keet
Status: actively developed

This package provides robust numeric integration via
tanh-sinh quadrature. “Tanh-Sinh quadrature scheme
is the fastest known high-precision quadrature scheme,
especially when the time for computing abscissas and
weights is considered. It has been successfully em-
ployed for quadrature calculations of up to 20,000-digit
precision. It works well for functions with blow-up sin-
gularities or infinite derivatives at endpoints.”

Further reading

◦ http://hackage.haskell.org/package/integration

◦ http://en.wikipedia.org/wiki/Tanh-sinh_quadrature
◦ http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/

dhb-tanh-sinh.pdf

7.4.9 contravariant

Report by: Edward Kmett
Participants: Dag Odenhall, Merijn Verstraaten
Status: stable

This package provides the notion of a contravariant
functor, along with various forms of composition for
contravariant functors and Day convolution.

Further reading

◦ http://hackage.haskell.org/package/contravariant
◦ http://ncatlab.org/nlab/show/Day+convolution

7.4.10 categories

Report by: Edward Kmett
Participants: Gwern Branwen
Status: stable

This package provides a number of classes for working
with Category instances with more structure in Haskell.
In many ways this package can be viewed as an alter-
native to working with Arrows, as working with a CCC
can provide you with much more fuel for optimization.

Further reading

http://hackage.haskell.org/package/categories

7.4.11 bifunctors

Report by: Edward Kmett
Status: stable

This package provides a standard location to retrieve
the notion of a Bifunctor, Bifoldable or Bitraversable
data type.

Further reading

◦ http://hackage.haskell.org/package/bifunctors
◦ http://ncatlab.org/nlab/show/bifunctor

7.4.12 profunctors

Report by: Edward Kmett
Participants: Shachaf Ben-Kiki, Elliott Hird
Status: stable

This package provides profunctors, which act like an
Arrow you don’t necessarily know how to put together.
These form the bedrock upon which lens (→ 7.1.2)

is built.
With profunctors 4.0 we’ve merged together the con-

tents of the older profunctors, profunctor-extras
and representable-profunctors packages.

47

http://hackage.haskell.org/package/ad
http://en.wikipedia.org/wiki/Automatic_differentiation
http://en.wikipedia.org/wiki/Automatic_differentiation
http://www.autodiff.org/
http://hackage.haskell.org/package/integration
http://en.wikipedia.org/wiki/Tanh-sinh_quadrature
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf
http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf
http://hackage.haskell.org/package/contravariant
http://ncatlab.org/nlab/show/Day+convolution
http://hackage.haskell.org/package/categories
http://hackage.haskell.org/package/bifunctors
http://ncatlab.org/nlab/show/bifunctor

In addition to the basic notion of a profunctor, we
also provide the category of collages for a profunctor,
notions of representable and corepresentable profunc-
tors, along with weaker notions of Strong and Choice
that correspond to various Arrow classes, profunctor
composition.

Further reading

◦ http://hackage.haskell.org/package/profunctors
◦ http://blog.sigfpe.com/2011/07/

profunctors-in-haskell.html
◦ https://www.fpcomplete.com/school/

to-infinity-and-beyond/pick-of-the-week/profunctors
◦ http://ncatlab.org/nlab/show/profunctor

7.4.13 comonad

Report by: Edward Kmett
Participants: Dave Menendez, Gabor Greif, David

Luposchainsky, Sjoerd Visscher, Luke
Palmer, Nathan van Doorn

Status: stable

This package provides the comonads, the categorical
dual of monads, along with comonad transformers, and
the comonadic equivalent of the mtl.
With comonad 4.0 we’ve merged together the con-

tents of the older comonad, comonad-transformers,
and comonads-fd packages.
You can work with this package using Dominic Or-

chard’s codo-notation, or use them directly.
The kan-extensions (→ 7.4.15) package also pro-

vides a transformer that can turn a comonad into a
monad.

Further reading

◦ http://hackage.haskell.org/package/comonad
◦ http://comonad.com/haskell/Comonads_1.pdf
◦ http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/

Comonad.pdf
◦ http://www.cl.cam.ac.uk/~dao29/publ/

codo-notation-orchard-ifl12.pdf
◦ http://www.ioc.ee/~tarmo/papers/cmcs08.pdf
◦ http://cs.ioc.ee/~tarmo/papers/essence.pdf

7.4.14 recursion-schemes

Report by: Edward Kmett
Status: stable

This package provides generalized bananas, lenses and
barbed wire based on the recursion schemes that came
out of the constructive algorithmics community over
the years.
In addition to the standard recursion schemes, all of

their distributive laws can be made compositional, en-
abling the creation of such interesting and impractical
beasts as the zygohistomorphic prepromorphism.

Further reading

◦ http:
//hackage.haskell.org/package/recursion-schemes

◦ http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.174.8068&rep=rep1&type=pdf

◦ http:
//math.ut.ee/~eugene/kabanov-vene-mpc-06.pdf

◦ http://www.ioc.ee/~tarmo/tday-viinistu/
kabanov-slides.pdf

◦ http://www.ioc.ee/~tarmo/papers/msfp08.pdf
◦ http://www.cs.uu.nl/wiki/pub/GP/Schedule/

JoaoAlpuim.pdf
◦ http://eprints.eemcs.utwente.nl/7281/01/

db-utwente-40501F46.pdf
◦ http://www.mii.lt/informatica/pdf/INFO141.pdf
◦ http:

//wwwhome.ewi.utwente.nl/~fokkinga/mmfphd.pdf
◦ http://comonad.com/reader/2008/elgot-coalgebras/
◦ http://comonad.com/reader/2008/

time-for-chronomorphisms/
◦ http://comonad.com/reader/2008/

dynamorphisms-as-chronomorphisms/
◦ http://comonad.com/reader/2008/

generalized-hylomorphisms/
◦ http://web.engr.oregonstate.edu/~erwig/meta/
◦ http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.4.9706&rep=rep1&type=pdf
◦ http://www.cs.ox.ac.uk/people/jeremy.gibbons/

publications/metamorphisms-scp.pdf

7.4.15 kan-extensions

Report by: Edward Kmett
Status: stable

This package provides Kan extensions, Kan lifts, var-
ious forms of the Yoneda lemma, and (co)density
(co)monads.
These constructions have proven useful for many pur-

poses:
◦ Codensity can be used to accelerate the performance

of code written for free monads or to correct the as-
socativity of an “almost-monad” that fails the asso-
ciativity law, as it performs a sort of fusion on (>>=)
operations.

◦ CoT can be used to turn any Comonad into a Monad
transformer.

◦ Various forms of the Yoneda lemma give rise to ways
to enforce “Functor fusion”.

Further reading

◦ http://hackage.haskell.org/package/kan-extensions
◦ http://blog.sigfpe.com/2006/11/yoneda-lemma.html
◦ http:

//blog.sigfpe.com/2006/12/yonedic-addendum.html
◦ http://comonad.com/reader/2008/kan-extensions/
◦ http://comonad.com/reader/2008/kan-extensions-ii/

48

http://hackage.haskell.org/package/profunctors
http://blog.sigfpe.com/2011/07/profunctors-in-haskell.html
http://blog.sigfpe.com/2011/07/profunctors-in-haskell.html
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/profunctors
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/profunctors
http://ncatlab.org/nlab/show/profunctor
http://hackage.haskell.org/package/comonad
http://comonad.com/haskell/Comonads_1.pdf
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/Comonad.pdf
http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/28/slides/Comonad.pdf
http://www.cl.cam.ac.uk/~dao29/publ/codo-notation-orchard-ifl12.pdf
http://www.cl.cam.ac.uk/~dao29/publ/codo-notation-orchard-ifl12.pdf
http://www.ioc.ee/~tarmo/papers/cmcs08.pdf
http://cs.ioc.ee/~tarmo/papers/essence.pdf
http://hackage.haskell.org/package/recursion-schemes
http://hackage.haskell.org/package/recursion-schemes
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8068&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.174.8068&rep=rep1&type=pdf
http://math.ut.ee/~eugene/kabanov-vene-mpc-06.pdf
http://math.ut.ee/~eugene/kabanov-vene-mpc-06.pdf
http://www.ioc.ee/~tarmo/tday-viinistu/kabanov-slides.pdf
http://www.ioc.ee/~tarmo/tday-viinistu/kabanov-slides.pdf
http://www.ioc.ee/~tarmo/papers/msfp08.pdf
http://www.cs.uu.nl/wiki/pub/GP/Schedule/JoaoAlpuim.pdf
http://www.cs.uu.nl/wiki/pub/GP/Schedule/JoaoAlpuim.pdf
http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf
http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf
http://www.mii.lt/informatica/pdf/INFO141.pdf
http://wwwhome.ewi.utwente.nl/~fokkinga/mmfphd.pdf
http://wwwhome.ewi.utwente.nl/~fokkinga/mmfphd.pdf
http://comonad.com/reader/2008/elgot-coalgebras/
http://comonad.com/reader/2008/time-for-chronomorphisms/
http://comonad.com/reader/2008/time-for-chronomorphisms/
http://comonad.com/reader/2008/dynamorphisms-as-chronomorphisms/
http://comonad.com/reader/2008/dynamorphisms-as-chronomorphisms/
http://comonad.com/reader/2008/generalized-hylomorphisms/
http://comonad.com/reader/2008/generalized-hylomorphisms/
http://web.engr.oregonstate.edu/~erwig/meta/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.9706&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.9706&rep=rep1&type=pdf
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/metamorphisms-scp.pdf
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/metamorphisms-scp.pdf
http://hackage.haskell.org/package/kan-extensions
http://blog.sigfpe.com/2006/11/yoneda-lemma.html
http://blog.sigfpe.com/2006/12/yonedic-addendum.html
http://blog.sigfpe.com/2006/12/yonedic-addendum.html
http://comonad.com/reader/2008/kan-extensions/
http://comonad.com/reader/2008/kan-extensions-ii/

◦ http://comonad.com/reader/2008/kan-extension-iii/
◦ http://blog.ezyang.com/2012/01/

problem-set-the-codensity-transformation/
◦ http://www.iai.uni-bonn.de/~jv/mpc08.pdf
◦ http://www.cs.ox.ac.uk/ralf.hinze/Kan.pdf
◦ http://ncatlab.org/nlab/show/Kan+lift
◦ http://hackage.haskell.org/package/monad-ran

7.5 Numerical Packages and High
Performance Computing

7.5.1 arb-fft

Report by: Ian Ross
Status: actively developed

This package started as an experiment to see how
close a pure Haskell FFT implementation could get to
FFTW (“the Fastest Fourier Transform in the West”).
The result is a library that can do fast Fourier trans-
forms for arbitrarily sized vectors with performance
within a factor of about five of FFTW.
Future plans mostly revolve around making things

go faster! In particular, the next thing to do is to write
an equivalent of FFTW’s genfft, a metaprogramming
tool to generate fast straight-line code for transforms of
specialised sizes. Other planned work includes imple-
menting real-to-complex and real-to-real transforms,
multi-dimensional transforms, and some low-level op-
timisation.

Further reading

◦ http://hackage.haskell.org/package/arb-fft
◦ http://www.skybluetrades.net/haskell-fft-index.html

7.5.2 hblas

Report by: Carter Tazio Schonwald
Participants: Stephen Diehl and Csernik Flaviu Andrei
Status: Actively Developed

hblas is high level, easy to extend BLAS/LAPACK
FFI Binding for Haskell.
hblas has several attributes that in aggregate distin-

guish it from alternative BLAS/LAPACK bindings for
Haskell.

1. Zero configuration install

2. FFI wrappers are written in Haskell

3. Provides the fully generality of each supported
BLAS/LAPACK routine, in a type safe wrapper that
still follows the naming conventions of BLAS and
LAPACK.

4. Designed to be easy to extend with further bindings
to BLAS/LAPACK routines (because there are many
many specialized routines!)

5. Adaptively choses between unsafe vs safe foreign
calls based upon estimated runtime of a computa-
tion, to ensure that long running hblas ffi calls in-
teract safely with the GHC runtime and the rest of
an application.

6. hblas is not an end user library, but is designed to
easily interop with any array library that supports
storable vectors.

Further reading

◦ http://www.wellposed.com
◦ http://www.github.com/wellposed/hblas
◦ http://hackage.haskell.org/package/hblas

7.5.3 HROOT

Report by: Ian-Woo Kim
Status: Actively Developing

HROOT is a haskell binding to ROOT framework by
fficxx, a haskell-C++ binding generator tool. ROOT
(http://root.cern.ch) is an OOP framework for data
analysis and statistics, which is developed at CERN.
The ROOT system provides a set of OO frameworks
with all the functionality needed to handle and analyze
large amounts of data in a very efficient way. ROOT is
a de facto standard physics analysis tool in high energy
physics experiments.
This haskell binding to ROOT provides an

industrial-strength statistical analysis libraries to the
haskell community. The haskell code for using HROOT
is very straightforward to both haskell and C++ pro-
grammers thanks to the fficxx binding generator tool.
The following is a sample code and a resultant his-
togram for histogramming a 2D gaussian distribution:

import Data.Random.Distribution.Normal
import HROOT

main :: IO ()
main = do
tcanvas <- newTCanvas "Test" "Test" 640 480
h2 <- newTH2F "test" "test"

100 (-5.0) 5.0 100 (-5.0) 5.0
let dist1 = Normal (0 :: Double)

(2 :: Double)
let go n | n < 0 = return ()

| otherwise = do
histfill dist1 dist2 h2
go (n-1)

go 1000000
draw h2 "lego"
saveAs tcanvas "random2d.pdf" ""

49

http://comonad.com/reader/2008/kan-extension-iii/
http://blog.ezyang.com/2012/01/problem-set-the-codensity-transformation/
http://blog.ezyang.com/2012/01/problem-set-the-codensity-transformation/
http://www.iai.uni-bonn.de/~jv/mpc08.pdf
http://www.cs.ox.ac.uk/ralf.hinze/Kan.pdf
http://ncatlab.org/nlab/show/Kan+lift
http://hackage.haskell.org/package/monad-ran
http://hackage.haskell.org/package/arb-fft
http://www.skybluetrades.net/haskell-fft-index.html
http://www.wellposed.com
http://www.github.com/wellposed/hblas
http://hackage.haskell.org/package/hblas
http://root.cern.ch

histfill :: Normal Double -> TH2F -> IO ()
histfill dist1 hist = do

x <- sample dist1
y <- sample dist1
fill2 hist x y
return ()

Until ghc 7.6, HROOT cannot be used in interpreter
mode of ghc, due to the linker problem. Now with ghc
7.8, ghci now uses the standard system linker for dy-
namically loaded library. Thus, our current focus is to
have full ghc interpreter support for making HROOT a
really useful analysis framework. In addition, we keep
importing features from ROOT to available haskell
functions.

Further reading

http://ianwookim.org/HROOT

7.5.4 Numerical

Report by: Carter Tazio Schonwald
Status: actively developed

The Numerical project, starting with the numerical
package, has the goal of providing a general purpose
numerical computing substrate for Haskell.
To start with, the numerical provides an extensible

set of type classes suitable for both dense and sparse
multi dimensional arrays, high level combinators for
writing good locality code, and some basic matrix com-
putation routines that work on both dense and sparse
matrix formats.
The core Numerical packages, including numerical,

are now in public pre-alpha as of mid May 2014, with
on going active work as of November 2014.
Development of the numerical packages is public on

github, and as they stabilize, alpha releases are being
made available on hackage.

Further reading

◦ http://www.wellposed.com
◦ http://www.github.com/wellposed/numerical
◦ http://hackage.haskell.org/package/numerical

7.6 Data Types and Data Structures

7.6.1 constraints

Report by: Edward Kmett
Participants: Sjoerd Visscher, Austin Seipp
Status: actively developed

This package provides data types and classes for ma-
nipulating values of kind Constraint as exposed by GHC
since 7.4.

Further reading

◦ http://hackage.haskell.org/package/constraints
◦ http://comonad.com/reader/2011/

what-constraints-entail-part-1/
◦ http://comonad.com/reader/2011/

what-constraints-entail-part-2/

7.6.2 HList — A Library for Typed Heterogeneous
Collections

Report by: Adam Vogt
Participants: Oleg Kiselyov, Ralf Lämmel, Keean

Schupke

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host
of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).
An immediate application of HLists is the im-

plementation of open, extensible records with first-
class, reusable, and compile-time only labels. The
dual application is extensible polymorphic variants
(open unions). HList contains several implementa-
tions of open records, including records as sequences
of field values, where the type of each field is an-
notated with its phantom label. We and others
have also used HList for type-safe database access
in Haskell. HList-based Records form the basis of
OOHaskell. The HList library relies on common
extensions of Haskell 2010. HList is being used
in AspectAG (http://www.haskell.org/communities/
11-2011/html/report.html#sect5.4.2), typed EDSL of
attribute grammars, and in Rlang-QQ.
The October 2012 version of HList library marks

the significant re-write to take advantage of the fancier
types offered by GHC 7.4 and 7.6. HList now relies on
promoted data types and on kind polymorphism.
Since the last update, there have been several mi-

nor releases. These include features such as support
for ghc-7.8 as well as additional syntax for the pun
quasiquote.

50

http://ianwookim.org/HROOT
http://www.wellposed.com
http://www.github.com/wellposed/numerical
http://hackage.haskell.org/package/numerical
http://hackage.haskell.org/package/constraints
http://comonad.com/reader/2011/what-constraints-entail-part-1/
http://comonad.com/reader/2011/what-constraints-entail-part-1/
http://comonad.com/reader/2011/what-constraints-entail-part-2/
http://comonad.com/reader/2011/what-constraints-entail-part-2/
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2

Further reading

◦ HList repository: http://code.haskell.org/HList/
◦ HList:
http://okmij.org/ftp/Haskell/types.html#HList

◦ OOHaskell:
https://web.archive.org/web/20130129031410/http:
//homepages.cwi.nl/~ralf/OOHaskell

7.6.3 reflection

Report by: Edward Kmett
Participants: Elliott Hird, Oliver Charles, Carter

Schonwald
Status: stable

This package provides a mechanism to dynamically
construct a type from a term that you can reflect back
down to a term based on the ideas from “Functional
Pearl: Implicit Configurations” by Oleg Kiselyov and
Chung-Chieh Shan. However, the API has been imple-
mented in a much more efficient manner.
This is useful when you need to make a typeclass

instance that depends on a particular value in scope,
such as a modulus or a graph.

Further reading

◦ http://hackage.haskell.org/package/reflection
◦ http:

//www.cs.rutgers.edu/~ccshan/prepose/prepose.pdf
◦ http://comonad.com/reader/2009/incremental-folds/
◦ http://comonad.com/reader/2009/clearer-reflection/
◦ https://www.fpcomplete.com/user/thoughtpolice/

using-reflection

7.6.4 tag-bits

Report by: Edward Kmett
Status: stable

This package provides access to the dynamic pointer
tagging bits used by GHC, and can peek into infotables
to determine (unsafely) whether or not a thunk has
already been evaluated.

Further reading

◦ http://hackage.haskell.org/package/tag-bits
◦ http://research.microsoft.com/en-us/um/people/

simonpj/papers/ptr-tag/
◦ http://ghc.haskell.org/trac/ghc/wiki/Commentary/

Rts/HaskellExecution/PointerTagging
◦ http://ghc.haskell.org/trac/ghc/wiki/Commentary/

Rts/Storage/HeapObjects

7.6.5 hyperloglog

Report by: Edward Kmett
Participants: Ozgun Ataman
Status: actively developed

This package provides an approximate streaming (con-
stant space) unique object counter.
Notably it can be used to approximate a set of several

billion elements with 1-2% inaccuracy in around 1.5k
of memory.

Further reading

◦ http://hackage.haskell.org/package/hyperloglog
◦ http:

//algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf

7.6.6 hybrid-vectors

Report by: Edward Kmett
Status: actively developed

This package provides various ways in which you can
mix the different types of Vector from Roman Leschin-
skiy’s vector package to work with partially unboxed
structures.

Further reading

◦ http://hackage.haskell.org/package/hybrid-vectors
◦ https://www.fpcomplete.com/user/edwardk/

revisiting-matrix-multiplication/part-3

7.6.7 lca

Report by: Edward Kmett
Participants: Daniel Peebles, Andy Sonnenburg
Status: actively developed

This package improves the previous known complexity
bound of online lowest common ancestor search from
O(h) to O(log h) persistently, and without preprocess-
ing by using skew-binary random-access lists to store
the paths.

Further reading

◦ http://hackage.haskell.org/package/lca
◦ https:

//www.fpcomplete.com/user/edwardk/online-lca
◦ http://www.slideshare.net/ekmett/

skewbinary-online-lowest-common-ancestor-search

51

http://code.haskell.org/HList/
http://okmij.org/ftp/Haskell/types.html#HList
https://web.archive.org/web/20130129031410/http://homepages.cwi.nl/~ralf/OOHaskell
https://web.archive.org/web/20130129031410/http://homepages.cwi.nl/~ralf/OOHaskell
http://hackage.haskell.org/package/reflection
http://www.cs.rutgers.edu/~ccshan/prepose/prepose.pdf
http://www.cs.rutgers.edu/~ccshan/prepose/prepose.pdf
http://comonad.com/reader/2009/incremental-folds/
http://comonad.com/reader/2009/clearer-reflection/
https://www.fpcomplete.com/user/thoughtpolice/using-reflection
https://www.fpcomplete.com/user/thoughtpolice/using-reflection
http://hackage.haskell.org/package/tag-bits
http://research.microsoft.com/en-us/um/people/simonpj/papers/ptr-tag/
http://research.microsoft.com/en-us/um/people/simonpj/papers/ptr-tag/
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/PointerTagging
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/PointerTagging
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects
http://ghc.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/HeapObjects
http://hackage.haskell.org/package/hyperloglog
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
http://algo.inria.fr/flajolet/Publications/FlFuGaMe07.pdf
http://hackage.haskell.org/package/hybrid-vectors
https://www.fpcomplete.com/user/edwardk/revisiting-matrix-multiplication/part-3
https://www.fpcomplete.com/user/edwardk/revisiting-matrix-multiplication/part-3
http://hackage.haskell.org/package/lca
https://www.fpcomplete.com/user/edwardk/online-lca
https://www.fpcomplete.com/user/edwardk/online-lca
http://www.slideshare.net/ekmett/skewbinary-online-lowest-common-ancestor-search
http://www.slideshare.net/ekmett/skewbinary-online-lowest-common-ancestor-search

7.6.8 concurrent-supply

Report by: Edward Kmett
Participants: Andrew Cowie, Christiaan Baaij
Status: stable

This package provides a fast supply of concurrent
unique identifiers suitable for use within a single pro-
cess. This benefits from greatly reduced locking over-
head compared to Data.Unique as it only contents for
the common pool every thousand or so identifiers.
One often has a desire to generate a bunch of inte-

ger identifiers within a single process that are unique
within that process. You could use UUIDs, but they
can be expensive to generate; you don’t want to have
your threads contending for a single external counter if
the identifier is not going to be used outside the pro-
cess.
concurrent-supply builds a rose-tree-like structure

which can be split; you can make smaller unique sup-
plies and then you allocate from your supplies locally.
Internally it pulls from a unique supply one block at
a time as you walk into parts of the tree that haven’t
been explored. This ensures that computations are al-
ways replayable within a process, and that the result
appears purely functional to an outside observer.

Further reading

http://hackage.haskell.org/package/concurrent-supply

7.6.9 heaps

Report by: Edward Kmett
Status: actively developed

This package provides asymptotically optimal purely
functional Brodal-Okasaki heaps with a “Haskelly”
API.

Further reading

◦ http://hackage.haskell.org/package/heaps
◦ http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.48.973

7.6.10 sparse

Report by: Edward Kmett
Participants: Carter Schonwald
Status: actively developed

This package provides sparse implicitly Morton-
ordered matrices based on the series ‘revisiting matrix
multiplication’ on the School of Haskell. It is efficient
for sufficiently sparse matrices.

Further reading

◦ http://hackage.haskell.org/package/sparse
◦ https://www.fpcomplete.com/user/edwardk/

revisiting-matrix-multiplication

7.6.11 compressed

Report by: Edward Kmett
Status: stable

This package provides an LZ78-compressed stream as
a data type in Haskell. Compression isn’t used directly
for data compression, but rather to allow for the reuse
of intermediate monoidal results when folding over the
data set. LZ78 is rather distinctive among LZ-variants
in that it doesn’t require exhaustively enumerating the
token set or searching a window. By using conservative
approximations of what possible values the stream may
take, it is also possible to work with this LZ78 stream
as an Applicative or Monad without sacrificing too much
compression on the resulting unfolding.
A similar structure is provided for decompressing

run-length encoded data efficiently by peasant expo-
nentiation.

Further reading

◦ http://hackage.haskell.org/package/compressed
◦ http://oldwww.rasip.fer.hr/research/compress/

algorithms/fund/lz/lz78.html
◦ http://www.binaryessence.com/dct/en000140.htm

7.6.12 charset

Report by: Edward Kmett
Status: stable

This package provides fast unicode character sets based
on complemented PATRICIA tries along with common
charsets for variations on the posix standard and stan-
dard unicode blocks. This encoding has the benefit that
a CharSet and its complement take the same amount of
space. This package is used as a building block by
parsers (→ 7.3.5) and trifecta (→ 7.3.6).

Further reading

http://hackage.haskell.org/package/charset

7.6.13 Convenience types (Edward Kmett)

Report by: Edward Kmett
Participants: several others
Status: stable

◦ The either package provides an EitherT monad
transformer, that unlike ErrorT does not carry the
unnecessary class constraint. Removing this limita-
tion is necessary for many operations.
EitherT is also used extensively by Gabriel Gonzales’
errors package.
With either 4.0, we consolidated many of the ex-
isting combinators from Chris Done’s eithers pack-
age and Gregory Crosswhite’s either-unwrap pack-
age, both of which are now deprecated.

52

http://hackage.haskell.org/package/concurrent-supply
http://hackage.haskell.org/package/heaps
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.973
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.973
http://hackage.haskell.org/package/sparse
https://www.fpcomplete.com/user/edwardk/revisiting-matrix-multiplication
https://www.fpcomplete.com/user/edwardk/revisiting-matrix-multiplication
http://hackage.haskell.org/package/compressed
http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html
http://oldwww.rasip.fer.hr/research/compress/algorithms/fund/lz/lz78.html
http://www.binaryessence.com/dct/en000140.htm
http://hackage.haskell.org/package/charset

◦ The tagged package provides a simple Tagged new-
type that carries an extra phantom type parameter,
and a Proxy data type that has since been merged
into base with GHC 7.8.
These are useful as safer ways to plumb type argu-
ments than by passing undefined values around.

◦ Th void package provides a single “uninhabited”
data type in a canonical location along with all of
the appropriate instances.
The need for such a data type arises in shockingly
many situations as it serves as an initial object for
the category of Haskell data types.

Further reading

◦ http://hackage.haskell.org/package/either
◦ http://hackage.haskell.org/package/errors
◦ http://hackage.haskell.org/package/tagged
◦ http://hackage.haskell.org/package/void

7.7 Databases and Related Tools

7.7.1 tables

Report by: Edward Kmett
Participants: Nathan van Doorn, Tim Dixon, Niklas

Haas, Dag Odenhall, Petr Pilar, Austin
Seipp

Status: actively developed

The tables package provides a multiply-indexed
in-memory data store in the spirit of ixset or
data-store, but with a lens-based API.

Further reading

◦ http://hackage.haskell.org/package/tables
◦ https://github.com/ekmett/tables#examples

7.7.2 Persistent

Report by: Greg Weber
Participants: Michael Snoyman, Felipe Lessa
Status: stable

The last HCAR announcement was for the release of
Persistent 2.0, featuring a flexible primary key type.
Since then, persistent has mostly experienced bug

fixes, including recent fixes and increased backend sup-
port for the new flexible primary key type.
Haskell has many different database bindings avail-

able, but most provide few usefeul static guarantees.
Persistent uses knowledge of the data schema to pro-
vide a type-safe interface to the database. Persistent is
designed to work across different databases, currently
working on Sqlite, PostgreSQL, MongoDB, MySQL,
Redis, and ZooKeeper.

Persistent provides a high-level query interface that
works against all backends.

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones"] []

The result of this will be a list of Haskell records.
Persistent can also be used to write type-safe query

libraries that are specific. esqueleto is a library for writ-
ing arbitrary SQL queries that is built on Persistent.

Future plans

Persistent is in a stable, feature complete state. Future
plans are only to increase its ease the places where it
can be easitly used:
◦ Declaring a schema separately from a record, pos-

sibly leveraging GHC’s new annotations feature or
another pattern
Persistent users may also be interested in Groundhog

(→ 7.7.3), a similar project.
Persistent is recommended to Yesod (→ 5.2.5) users.

However, there is nothing particular to Yesod or even
web development about it. You can have a type-safe,
productive way to store data for any kind of Haskell
project.

Further reading

◦ http://www.yesodweb.com/book/persistent
◦ http://hackage.haskell.org/package/esqueleto
◦ http:

//www.yesodweb.com/blog/2014/09/persistent-2
◦ http://www.yesodweb.com/blog/2014/08/

announcing-persistent-2

7.7.3 Groundhog

Report by: Boris Lykah
Status: stable

Groundhog is a library for mapping user defined
datatypes to the database and manipulating them in a
high-level typesafe manner. It is easy to plug Ground-
hog into an existing project since it does not need mod-
ifying a datatype or providing detailed settings. The
schema can be configured flexibly which facilitates inte-
gration with existing databases. It supports composite
keys, indexes, references across several schemas. Just
one line is enough to analyze the type and map it to
the table. The migration mechanism can automati-
cally check, initialize, and migrate database schema.
Groundhog has backends for Sqlite, PostgreSQL, and
MySQL.
Unlike Persistent (→ 7.7.2) it maps the datatypes in-

stead of creating new ones. The types can be poly-
morphic and contain multiple constructors. It al-
lows creating sophisticated queries which might include
arithmetic expressions, functions, and operators. The
database-specific operators, for example, array-related

53

http://hackage.haskell.org/package/either
http://hackage.haskell.org/package/errors
http://hackage.haskell.org/package/tagged
http://hackage.haskell.org/package/void
http://hackage.haskell.org/package/tables
https://github.com/ekmett/tables#examples
http://www.yesodweb.com/book/persistent
http://hackage.haskell.org/package/esqueleto
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2

in PostgreSQL are statically guaranteed to run only
for PostgreSQL connection. Its support for the natu-
ral and composite keys is implemented using generic
embedded datatype mechanism.
Groundhog has got several commercial users which

have positive feedback. Most of the recent changes were
done to meet their needs. The new features include
PostgreSQL geometric operators, Fractional, Floating,
and Integral instances for lifted expressions, logging
queries, references to tables not mapped to Haskell
datatype, default column values, and several utility
functions.

Further reading

◦ Tutorial,
http://www.fpcomplete.com/user/lykahb/groundhog

◦ Homepage, http://github.com/lykahb/groundhog
◦ Hackage package,

http://hackage.haskell.org/package/groundhog

7.7.4 Opaleye

Report by: Tom Ellis
Status: stable, active

Opaleye is an open-source library which provides an
SQL-generating embedded domain specific language. It
allows SQL queries to be written within Haskell in a
typesafe and composable fashion, with clear semantics.
The project was publically released in December

2014. It is stable and actively maintained, and used in
production in a number of commercial environments.
Professional support is provided by Purely Agile.
Just like Haskell, Opaleye takes the principles of type

safety, composability and semantics very seriously, and
one aim for Opaleye is to be “the Haskell” of relational
query languages.
In order to provide the best user experience and to

avoid compatibility issues, Opaleye specifically targets
PostgreSQL. It would be straightforward produce an
adaptation of Opaleye targeting other popular SQL
databases such as MySQL, SQL Server, Oracle and
SQLite. Offers of collaboration on such projects would
be most welcome.
Opaleye is inspired by theoretical work by David Spi-

vak, and by practical work by the HaskellDB team. In-
deed in many ways Opaleye can be seen as a spiritual
successor to HaskellDB. Opaleye takes many ideas from
the latter but is more flexible and has clearer semantics.

Further reading

http://hackage.haskell.org/package/opaleye

7.7.5 HLINQ - LINQ for Haskell

Report by: Mantas Markevicius
Participants: Mike Dodds, Jason Reich
Status: Experimental

HLINQ is a Haskell implementation of the LINQ
database query framework [1] modelled on Cheney et
al’s T-LINQ system for F# [2]. Database queries
in HLINQ are written in a syntax close to standard
Haskell do notation:

Queries can be composed using Template Haskell
splicing operators, while type-safety rules provide ad-
ditional correctness guarantees. Additionally, HLINQ
is built on the HDBC library and uses prepared SQL
statements protecting it against most SQL injection
type attacks. Furthermore queries are avalanche-safe,
meaning that for any query only a single SQL state-
ment will be generated. Our system is in prototype
stage, but microbenchmarks show performance com-
petitive with HaskellDB.
The project is hosted on GitHub [3], with a technical

report planned soon.

Further reading

1. Microsoft LINQ: https:
//msdn.microsoft.com/en-us/library/bb397926.aspx

2. Cheney, James, Sam Lindley, and Philip Wadler.
"A practical theory of language-integrated query."
ACM SIGPLAN Notices. Vol. 48. No. 9. ACM,
2013.

3. https://github.com/juventietis/HLINQ

7.8 User Interfaces

7.8.1 HsQML

Report by: Robin KAY
Status: active development

HsQML provides access to a modern graphical user
interface toolkit by way of a binding to the cross-
platform Qt Quick framework.

54

http://www.fpcomplete.com/user/lykahb/groundhog
http://github.com/lykahb/groundhog
http://hackage.haskell.org/package/groundhog
http://hackage.haskell.org/package/opaleye
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://github.com/juventietis/HLINQ

The library focuses on mechanisms for marshalling
data between Haskell and Qt’s domain-specific QML
language. The intention is that QML, which incorpo-
rates both a declarative syntax and JavaScript code,
can be used to design and animate the front-end of
an application while being able to easily interface with
Haskell code for functionality.

Status The latest version at time of press is 0.3.3.0.
Changes released since the previous edition of this re-
port include support for rendering custom OpenGL
graphics onto QML elements, facilities for managing
object life-cycles with weak references and finalisers,
and a number of bug fixes. It has been tested on the
major desktop platforms: Linux, Windows, and Ma-
cOS.

Further reading

http://www.gekkou.co.uk/software/hsqml/

7.8.2 Gtk2Hs

Report by: Daniel Wagner
Participants: Hamish Mackenzie, Axel Simon, Duncan

Coutts, Andy Stewart, and many others
Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.
GUIs written using Gtk2Hs use themes to resemble

the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.
Gtk2Hs features:
◦ Automatic memory management (unlike some other
C/C++ GUI libraries, Gtk+ provides proper sup-
port for garbage-collected languages)

◦ Unicode support
◦ High quality vector graphics using Cairo
◦ Extensive reference documentation
◦ An implementation of the “Haskell School of Expres-

sion” graphics API
◦ Bindings to many other libraries that build on Gtk:

gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit
Recent efforts include increasing the coverage of the

gtk3 bindings, as well as myriad miscellaneous bugfixes.
Thanks to all who contributed!

Further reading

◦ News and downloads: http://haskell.org/gtk2hs/
◦ Development version: darcs get
http://code.haskell.org/gtk2hs/

7.8.3 LGtk: Lens GUI Toolkit

Report by: Péter Diviánszky
Participants: Csaba Hruska
Status: experimental, actively developed

LGtk is a GUI Toolkit with the following goals:
◦ Provide a Haskell EDSL for declarative description

of interactive graphical applications
◦ Provide an API for custom widget design
◦ Provide a playground for high-level declarative fea-

tures like derived state-save and undo-redo opera-
tions and type-driven GUI generation
There is a demo application which presents the cur-

rent features of LGtk.

Changes in lgtk-0.8 since the last official announce-
ment:
◦ New features

– New GLFW backend. One consequence is that
the dependency on Gtk is not strict any more.

– Canvas widgets rendering diagrams composed
with the diagrams library. Mouse and keyboard
events are also supported.

– Widget toolkit generated with the diagrams li-
brary.

– Slider widgets
◦ Architectural changes

55

http://www.gekkou.co.uk/software/hsqml/
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/

– Updated demo application
– Switch from data-lens to Edward Kmett’s lens

library
– Upgrade to work with GHC 8.2
– Repository moved to GitHub

◦ Inner changes
– Generalized and cleaned up interface of refer-

ences
– Cleaned up widget interface
– More efficient reference implementation

Further reading

◦ haskell.org wiki page:
http://www.haskell.org/haskellwiki/LGtk

◦ Haddock documentation on HackageDB:
http://hackage.haskell.org/package/lgtk

◦ Wordpress blog: http://lgtk.wordpress.com/
◦ GitHub repository: https://github.com/divipp/lgtk

7.8.4 wxHaskell

Report by: Henk-Jan van Tuyl
Status: active development

The wxHaskell development is progressing, wxHaskell
is adapted to the new GHC release, preperations are
made to support wxWidgets 3.1. New functionality
has been added and development is going on for a sim-
pler installation procedure. For the new developments,
check our GitHub repository; there will be a release in
the near future. New project participants are welcome.
wxHaskell is a portable and native GUI library for

Haskell. The goal of the project is to provide an indus-
trial strength GUI library for Haskell, but without the
burden of developing (and maintaining) one ourselves.
wxHaskell is therefore built on top of wxWidgets: a

comprehensive C++ library that is portable across all
major GUI platforms; including GTK, Windows, X11,
and MacOS X. Furthermore, it is a mature library (in
development since 1992) that supports a wide range of
widgets with the native look-and-feel.

Further reading

http://haskell.org/haskellwiki/WxHaskell

7.8.5 threepenny-gui

Report by: Heinrich Apfelmus
Status: active development

Threepenny-gui is a framework for writing graphical
user interfaces (GUI) that uses the web browser as a
display. Features include:

◦ Easy installation. Everyone has a reasonably mod-
ern web browser installed. Just install the library
from Hackage and you are ready to go. The library
is cross-platform.

◦ HTML + JavaScript. You have all capabilities of
HTML at your disposal when creating user inter-
faces. This is a blessing, but it can also be a curse,
so the library includes a few layout combinators to
quickly create user interfaces without the need to
deal with the mess that is CSS. A foreign function
interface (FFI) allows you to execute JavaScript code
in the browser.

◦ Functional Reactive Programming (FRP) promises
to eliminate the spaghetti code that you usually
get when using the traditional imperative style for
programming user interactions. Threepenny has an
FRP library built-in, but its use is completely op-
tional. Employ FRP when it is convenient and fall
back to the traditional style when you hit an impasse.

Status

The project is alive and kicking, the latest release is
version 0.6.0.1. You can download the library from
Hackage and use it right away to write that cheap GUI
you need for your project. Here a screenshot from the
example code:

For a collection of real world applications that use the
library, have a look at the gallery on the homepage.
Compared to the previous report, the communica-

tion with the web browser has been overhauled com-
pletely. Internally, Threepenny implements a HTTP
server that sends JavaScript code to the web browser
and receives JSON data back. However, to the library
user, this is presented as a JavaScript foreign function
interface. The module Foreign.JavaScript gives you
the essential tools needed to manipulate JavaScript ob-
jects, call functions, and even export Haskell functions
to be called from JavaScript. Moreover, the FFI also
handles garbage collection. The GUI parts of the li-

56

http://www.haskell.org/haskellwiki/LGtk
http://hackage.haskell.org/package/lgtk
http://lgtk.wordpress.com/
https://github.com/divipp/lgtk
http://haskell.org/haskellwiki/WxHaskell

brary are built on top of this FFI, but you can also use
it independently if you like.

Current development

The library is still very much in flux, significant API
changes are likely in future versions. The goal is to
make GUI programming as simple as possible, and that
just needs some experimentation.
In future versions of Threepenny, I hope to focus on

making the process of designing of a GUI simpler and
faster. Unfortunately, creating a GUI with HTML and
CSS usually takes a significant amount of design work.
My hope is that this work can be reduced by offering a
default style, incorporating an existing HTML UI kit,
and packaging everything in a nice set of combinators.

Further reading

◦ Project homepage:
http://wiki.haskell.org/Threepenny-gui

◦ Example code: https://github.com/
HeinrichApfelmus/threepenny-gui#examples

◦ Application gallery:
http://wiki.haskell.org/Threepenny-gui#Gallery

7.8.6 reactive-banana

Report by: Heinrich Apfelmus
Status: active development

Reactive-banana is a library for functional reactive
programming (FRP).
FRP offers an elegant and concise way to express

interactive programs such as graphical user interfaces,
animations, computer music or robot controllers. It
promises to avoid the spaghetti code that is all too com-
mon in traditional approaches to GUI programming.
The goal of the library is to provide a solid founda-

tion.
◦ Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

◦ The library features an efficient implementation. No
more spooky time leaks, predicting space & time us-
age should be straightforward.

The library is meant to be used in conjunction with
existing libraries that are specific to your problem do-
main. For instance, you can hook it into any event-
based GUI framework, like wxHaskell or Gtk2Hs. Sev-
eral helper packages like reactive-banana-wx provide a
small amount of glue code that can make life easier.
Status. The latest version of the reactive-banana li-

brary is 0.8.1.2. The library is still in active devel-
opment, but compared to the previous report, releases
have mostly been aimed at ensuring compatibility with
the current Haskell ecosystem.
Current development. The next version reactive-

banana will finally implement garbage collection for
dynamically created events and behaviors, and it will
also feature some dramatic performance improvements.
Judging from various user reports, it also seems that
the API for dynamic event switching is too complex,
in particular concerning the phantom type parameter
t. Chances are that reactive-banana will drastically
change its API in the future.

Further reading

◦ Project homepage:
http://wiki.haskell.org/Reactive-banana

◦ Example code:
http://wiki.haskell.org/Reactive-banana/Examples

7.8.7 fltkhs - GUI bindings to the FLTK library

Report by: Aditya Siram
Status: active

The fltks project is a set of bindings to the FLTK
C++ toolkit (www.fltk.org). Coverage is fairly com-
plete (85%) and it is easy to install and use. The main
goal of this effort is to provide a low-cost, hassle-free
way of creating self-contained, native GUI applications
in pure Haskell that are portable to Windows, Linux
and OSX.
FLTK was chosen because it is a mature toolkit and

designed to be lightweight, portable and self-contained.
In turn, fltks inherits these qualities with the addi-
tional benefit of having almost no dependencies outside
of base and FLTK itself. This makes it very easy to get
up and running with fltks.
fltks is also designed to be easy to use and learn.

It tries to accomplish this by providing an API that
matches the FLTK API as closely as possible so that a
user can look up the pre-existing FLTK documentation
for some function and in most cases be able to “guess”
the corresponding Haskell function that delegates to
it. Additionally fltks currently ships with 15 demos
which are exact ports of demos shipped with the FLTK
distribution so the user can study the code side-by-side.
In most cases there is direct correspondence.
fltks is also extensible in a couple of ways. Firstly,

the user can create custom GUI widgets in pure Haskell

57

http://wiki.haskell.org/Threepenny-gui
https://github.com/HeinrichApfelmus/threepenny-gui#examples
https://github.com/HeinrichApfelmus/threepenny-gui#examples
http://wiki.haskell.org/Threepenny-gui#Gallery
http://wiki.haskell.org/Reactive-banana
http://wiki.haskell.org/Reactive-banana/Examples
www.fltk.org

by simply overriding some key C++ functions with
Haskell functions. Secondly, it is easy to add third-
party widgets without touching the core bindings.
Meaning if there is a useful FLTK widget that is not
part of the FLTK distribution, the user can easily wrap
it and publish it as a separate package without ever
touching these bindings. Hopefully this fosters con-
tribution allowing fltks to keep up with the FLTK
ecosystem and even outpace it since users are now able
to create new widgets in pure Haskell.
Ongoing work includes not only covering 100% of the

API and porting all the demos but also adding sup-
port for FLUID (http://en.wikipedia.org/wiki/FLUID),
the FLTK GUI builder. Haskellers will then be able
to take any existing FLTK app which uses FLUID to
build the user interface and migrate it to Haskell.
Contributions are welcome!

Further reading

https://hackage.haskell.org/package/fltkhs

7.9 Graphics and Audio

7.9.1 diagrams

Report by: Brent Yorgey
Participants: Daniel Bergey, Jan Bracker, Christopher

Chalmers, Daniil Frumin, Allan Gardner,
Andrew Gill, Niklas Haas, John Lato,
Chris Mears, Jeff Rosenbluth, Michael

Sloan, Ryan Yates, Brent Yorgey
Status: active development

The diagrams framework provides an embedded
domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is still much more to
be done, but diagrams is already quite fully-featured,
with a comprehensive user manual, a large collection of
primitive shapes and attributes, many different modes
of composition, paths, cubic splines, images, text, arbi-
trary monoidal annotations, named subdiagrams, and
more.

What’s new

Since the last HCAR edition, diagrams 1.3 was released
in April. New features include:
◦ Computing intersection points between paths
◦ Support for generalized affine maps between different

vector spaces, including projections
◦ New backends: diagrams-html5 generates
Javascript to draw on an HTML canvas;
diagrams-pgf generates PGF code suitable for
inclusion in a TEXdocument

◦ Better interface for recompilation looping via the
command line

◦ Generalized numerics: diagrams are now parameter-
ized by a suitable numeric type, rather than having
Double baked in

◦ A refactoring to use the linear package instead of
vector-space

GSoC

This coming summer, Ajay Ramanathan will work un-
der the guidance of Chris Chalmers to develop a li-
brary/API for working with a layered “Grammar of
Graphics”, using diagrams as a foundation.

58

http://en.wikipedia.org/wiki/FLUID
https://hackage.haskell.org/package/fltkhs

Contributing

There is plenty of exciting work to be done; new con-
tributors are welcome! Diagrams has developed an
encouraging, responsive, and fun developer commu-
nity, and makes for a great opportunity to learn and
hack on some “real-world” Haskell code. Because of its
size, generality, and enthusiastic embrace of advanced
type system features, diagrams can be intimidating to
would-be users and contributors; however, we are ac-
tively working on new documentation and resources
to help combat this. For more information on ways
to contribute and how to get started, see the Con-
tributing page on the diagrams wiki: http://haskell.org/
haskellwiki/Diagrams/Contributing, or come hang out in
the #diagrams IRC channel on freenode.

Further reading

◦ http://projects.haskell.org/diagrams
◦ http://projects.haskell.org/diagrams/gallery.html
◦ http://haskell.org/haskellwiki/Diagrams
◦ http://github.com/diagrams
◦ http://www.cis.upenn.edu/~byorgey/pub/

monoid-pearl.pdf
◦ http://www.youtube.com/watch?v=X-8NCkD2vOw

7.9.2 Chordify

Report by: José Pedro Magalhães
Participants: W. Bas de Haas, Dion ten Heggeler, Gijs

Bekenkamp, Tijmen Ruizendaal
Status: actively developed

Chordify is a music player that extracts chords from
musical sources like Youtube, Deezer, Soundcloud, or
your own files, and shows you which chord to play
when. The aim of Chordify is to make state-of-the-
art music technology accessible to a broader audience.
Our interface is designed to be simple: everyone who
can hold a musical instrument should be able to use it.
Behind the scenes, we use the sonic annotator for

extraction of audio features. These features consist
of the downbeat positions and the tonal content of a
piece of music. Next, the Haskell program HarmTrace
takes these features and computes the chords. Harm-
Trace uses a model of Western tonal harmony to aid
in the chord selection. At beat positions where the au-
dio matches a particular chord well, this chord is used
in final transcription. However, in case there is uncer-
tainty about the sounding chords at a specific position
in the song, the HarmTrace harmony model will select
the correct chords based on the rules of tonal harmony.
We’ve recently added the ability to manually edit the

chord sequences to allow our users to improve Chordify
directly. We plan to use these edits to improve the al-
gorithm itself, and to implement a system that merges
edits from various users into one single corrected ver-
sion.
The code for HarmTrace is available on Hackage, and

we have ICFP’11 and ISMIR’12 publications describing
some of the technology behind Chordify.

Further reading

http://chordify.net

59

http://haskell.org/haskellwiki/Diagrams/Contributing
http://haskell.org/haskellwiki/Diagrams/Contributing
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.cis.upenn.edu/~byorgey/pub/monoid-pearl.pdf
http://www.youtube.com/watch?v=X-8NCkD2vOw
http://chordify.net
http://www.omras2.org/SonicAnnotator
http://hackage.haskell.org/package/HarmTrace
http://hackage.haskell.org/package/HarmTrace
http://dreixel.net/research/pdf/fmmh.pdf
http://dreixel.net/research/pdf/iactehmk.pdf
http://chordify.net

7.9.3 csound-expression

Report by: Anton Kholomiov
Status: active, experimental

The csound-expression is a library for electronic music
production. It’s based on very efficient and feature rich
synth Csound.
It strives to be as simple and responsive as it can

be. A couple of lines of code should be enough to make
something interesting. There are sensible defaults that
allow the user to express the musical ideas with very
short sentences.
The list of main features:
◦ It’s easy to use. Made for artists not for algebraists.

– Easy to use band limited oscillators.
– There is a GUI. It’s not limited to text. We can

create sliders, knobs, buttons and control our
synth in real-time.

– The Csound can work with frequencies. The
world of microtonal music opens up.

– We can use the library as a sampler to cre-
ate soundscapes in real-time. Check out the
csound-sampler library on the Hackage.

– Lot’s of ready to use effects (resonators, filters,
delays, distortions, flangers).

– Many modern synthesis techniques are available
(granular synthesis, hyper vectorial synthesis,
etc).

– There are lots of predefined instruments. Check
out the csound-catalog on Hackage.

– Good support for composition with scores.
◦ The Csound is very efficient

– Unlimited polyphony
– Almost all Csound audio units are available.

It’s more than 1000 audio units.
– Csound is very portable. The output Csound

file can run on android, i-devices, raspberry pi
and even in the browser.

◦ The Csound is open
– There is support for MIDI and OSC. Just plug

and play.
– There is support for JACK. We can use it in

our DAW of choice.
– We can run it within many other languages.

There is support for reading control and audio
signals from the outside world.

– We can play sound fonts in sf2 format. With
this feature we get access to thousands of
free sampled instruments. Just google for free
soundfonts.

◦ The library is very composable
– A musical concept is just a part of the language.

It’s a value or a function. We can treat the
musical concepts as ordinary Haskell values.

– An audio unit is a function. It can process sig-

nals. An instrument is just a function from
notes to signals.

– There is no barrier between notes and instru-
ments. If we apply instrument to the notes we
get the signal as the output. It can become a
part of another instrument.

– Event streams and GUIs are based on FRP.
User gets the stream of mouse clicks and can
process it with fmap, filter it or merge with an-
other signal.

◦ The library is made for real time usage
– We can try our ideas right in the interpreter.

we can load the synth into ghci, define an audio
signal right in the REPL, hit enter and listen to
the sound.

– There GUIs. We can create knobs, sliders, 2D-
planes, virtual midi-keyboards, buttons, etc.
There a lot of predefined widgets for live perfor-
mances (mixers, grids of launch buttons, racks
of effects, we can create a virtual pedal boards).
Check out the modules Csound.Air.Live and
Csound.Air.Fx.

– It has support for MIDI and OSC protocols. We
can control it with any device we like.

– There are many functions that made a playback
of samples very easy. We have support for inde-
pendent time and tempo stretching, creation of
involved musical patterns, triggering of samples
from the keyboard or midi devices, etc.

– It’s very efficient so it can run even on Atom
processors in real-time.

Since the last report, There are many handy updates.
◦ There are functions for independent stretching of sig-

nal by pitch and tempo. It’s a vital tool for a sam-
pler. And it works in real-time! We can create cus-
tom samplers (module Csound.Air.Wave).

◦ There are functions for triggering the samples with
keyboard, midi-device or an event stream (module
Csound.Air.Sampler).

◦ There are functions for creation of step sequencers.
Step sequencers are very useful in dance and techno
music (module Csound.Air.Envelope).

◦ There are easy to use opcodes for granular syn-
thesis. The granular synthesis is a modern tech-
nique for creation of soundscapes by reading the
given audio file (or a live input signal stored in
the buffer) in small portions called grains (module
Csound.Air.Granular).

◦ The type for scores was redesigned. Many event
stream functions now can trigger not a single event
but a score of notes. The score type is supplied with
functions that simplify the creation of musical pat-
terns. The main type fro scores comes with the li-
brary temporal-media.

◦ There is a novel approach to event scheduling. We
can delay or limit an audio signal with an event. We
can create a sequence of audio signals that are played
when something happens (like button click, or some

60

another signal crosses the threshold). The signal is
supplied with information on how long it lasts. It’s
called signal segment. The duration is expressed not
in in fixed amount of seconds, but in event streams.
When the first event happens the signal stops. We
can create many handy functions for scheduling the
audio signals with event streams based on this ap-
proach (module Csound.Air.Seg).

◦ Easy to use functions for hyper vectorial synthesis.
It makes possible to control many parameters with
a couple of sliders or control signals. It interpolates
between many vectors reducing the dimension of con-
trol space (module Csound.Air.Hvs).

◦ and many more
I’ve created some music with the library. You can

listen to it on the soundcloud https://soundcloud.com/
anton-kho. You can even run it from sources https:
//github.com/anton-k/csound-bits/tree/master/pieces.
The future plans for the library is to improve docu-

mentation and guide make some tutorials and papers,
to make it more available to the audience of musicians
and hackers.

Further reading

https://github.com/anton-k/csound-expression

7.9.4 Glome

Report by: Jim Snow
Status: New Version of Glome Raytracer

Glome is a ray tracer I wrote quite some time ago. The
project had been dormant for about five years until
a few months ago when I decided to fix some long-
standing bugs and get it back into a state that compiles
with recent versions of GHC. I got a little carried away,
and ended up adding some major new features.
First, some background. Glome is a ray tracer, which

renders 3d images by tracing rays from the camera into
the scene and testing them for intersection with scene
objects. Glome supports a handful of basic primitive
types including planes, spheres, boxes, triangles, cones,
and cylinders. It also has a number of composite primi-
tives that modify the behavior of other primitives, such
as CSG difference and intersection.
One of the more interesting composite primitives is

a BIH-based accelleration structure, which sorts primi-
tives into a hierarchy of bounding volumes. This allows
for scenes with a very large number of primitives to be
rendered efficiently.
Major new changes to Glome are a re-factoring of

the shader code so that it is now possible to define
textures in terms of user-defined types and write your
own shader (though the default should be fine for most
uses), a new tagging system, some changes to the front-
end viewer application (which uses SDL now instead of
OpenGL), and a new triangle mesh primitive type.

Tagging requires a bit of explanation. When a ray
intersects with something in the scene, Glome returns
a lot of information about the properties of the loca-
tion where the ray hit, but until recently it didn’t give
much of a clue as to what exactly the ray hit. For 3D
rendering applications, you don’t usually care, but for
many computational geometry tasks you do very much
care.

The new tagging system makes it possible to asso-
ciate any 3D primitive with a tag, such that the tag is
returned along with any ray intersection that hit the
wrapped primitive. Tags are returned in a list, so that
it’s possible to have a heirarchy of tagged objects.

As an example of tags in action, I tagged some of the
objects in Glome’s default test scene, and instrumented
the viewer so that clicking on the image causes a ray
to be traced into the scene from the cursor’s location,
and then we print any tags returned by the ray inter-
section test. (Tags can be any type, but for illustrative
purposes, the test scene uses strings.)

An interesting feature of the tagging system is that
you don’t necessarily have to click directly on the object
to get back the tag; you could also click on the image
of the object reflected off of some other shiny object in
the scene.

Even though Glome is still a bit too slow for practi-
cal interactive 3D applications (I’ve been able to get
around 2-3 FPS at 720x480 for reasonably complex
scenes on a fairly fast machine), tags should at least
make it easier to write interactive applications when
Moore’s law catches up.

Glome is split into three packages: GloveVec, a vec-
tor library, GlomeTrace, the ray-tracing engine, and
GlomeView, a simple front-end viewer application. All
are available on hackage or via github under a GPLv2
license.

61

https://soundcloud.com/anton-kho
https://soundcloud.com/anton-kho
https://github.com/anton-k/csound-bits/tree/master/pieces
https://github.com/anton-k/csound-bits/tree/master/pieces
https://github.com/anton-k/csound-expression

Further reading

◦ https://github.com/jimsnow/glome
◦ http://www.haskell.org/haskellwiki/Glome

7.10 Text and Markup Languages

7.10.1 epub-tools (Command-line epub Utilities)

Report by: Dino Morelli
Status: stable, actively developed

A suite of command-line utilities for creating and ma-
nipulating epub book files. Included are: epubmeta,
epubname, epubzip.
epubmeta is a command-line utility for examining

and editing epub book metadata. With it you can ex-
port, import and edit the raw OPF Package XML doc-
ument for a given book. Or simply dump the metadata
to stdout for viewing in a friendly format.
epubname is a command-line utility for renaming

epub ebook files based on the metadata. It tries to
use author names and title info to construct a sensible
name.
epubzip is a handy utility for zipping up the files

that comprise an epub into an .epub zip file. Using
the same technology as epubname, it can try to make
a meaningful filename for the book.
This project is built on the latest epub-metadata li-

brary and so supports epub3 for the first time.
See also epub-metadata (→ 7.3.1).
epub-tools is available from Hackage and the Darcs

repository below.

Further reading

◦ Project page: http://ui3.info/d/proj/epub-tools.html
◦ Source repository: darcs get
http://ui3.info/darcs/epub-tools

7.10.2 lens-aeson

Report by: Edward Kmett
Participants: Paul Wilson, Benno FÃĳnfstÃĳck, Michael

Sloan, Adrian Keet
Status: actively developed

This package provides a suite of combinators that wrap
around Bryan O’Sullivan’s aeson library using the lens
library (→ 7.1.2) to make many data access and ma-
nipulation problems much more succinctly expressable.
We provide lenses, traversals, isomorphisms and prisms
that conspire to make it easy to manipulate complex
JSON objects.

Further reading

◦ http://hackage.haskell.org/package/lens-aeson
◦ https://www.fpcomplete.com/user/tel/

lens-aeson-traversals-prisms

7.10.3 lhs2TEX

Report by: Andres Löh
Status: stable, maintained

This tool by Ralf Hinze and Andres Löh is a preproces-
sor that transforms literate Haskell or Agda code into
LATEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by lhs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.
The program is stable and can take on large docu-

ments.
The current version is 1.18 and has been released

in September 2012. Development repository and bug
tracker are on GitHub. There are still plans for a
rewrite of lhs2TEX with the goal of cleaning up the in-
ternals and making the functionality of lhs2TEX avail-
able as a library.

Further reading

◦ http://www.andres-loeh.de/lhs2tex
◦ https://github.com/kosmikus/lhs2tex

7.10.4 pulp

Report by: Daniel Wagner
Participants: Daniel Wagner, Michael Greenberg
Status: Not yet released

Anybody who has used LATEX knows that it is a fan-
tastic tool for typesetting; but its error reporting leaves
much to be desired. Even simple documents that use
a handful of packages can produce hundreds of lines of

62

https://github.com/jimsnow/glome
http://www.haskell.org/haskellwiki/Glome
http://ui3.info/d/proj/epub-tools.html
http://ui3.info/darcs/epub-tools
http://hackage.haskell.org/package/lens-aeson
https://www.fpcomplete.com/user/tel/lens-aeson-traversals-prisms
https://www.fpcomplete.com/user/tel/lens-aeson-traversals-prisms
http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex

uninteresting output on a successful run. Picking out
the parts that require action is a serious chore, and lo-
cating the right part of the document source to change
can be tiresome when there are many files.
Pulp is a parser for LATEX log files with a small but

expressive configuration language for identifying which
messages are of interest. A typical run of pulp after
successfully building a document produces no output;
this makes it very easy to spot when something has
gone wrong. Next time you want to produce a great
paper, process your log with pulp!

Features
◦ LATEX log parser with special-case support for many
popular packages and classes

◦ Expressive configuration language
– Filter out document-specific unimportance
– Increase verbosity as the document nears com-

pletion
◦ Uniform error reporting format with file and line in-

formation
◦ Instructions for use with latexmk
◦ Rudimentary Windows support

Further reading

http://github.com/dmwit/pulp

7.10.5 hyphenation

Report by: Edward Kmett
Status: stable

This package provides configurable Knuth-Liang hy-
phenation using the UTF-8 encoded hyphenation pat-
terns for 69 languages, based on the patterns provided
by the hyph-utf8 project for LATEX. It can be mixed
with a pretty-printer to provide proper break-points
within words.

Further reading

◦ http://hackage.haskell.org/package/hyphenation
◦ http://www.ctan.org/tex-archive/language/hyph-utf8

7.11 Natural Language Processing

7.11.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.

The Haskell NLP community was founded in March
2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell.
At the present, the mailing list is mainly used to

make announcements to the Haskell NLP community.
We hope that we will continue to expand the list and
expand our ways of making it useful to people poten-
tially using Haskell in the NLP world.

New packages
◦ Earley-0.8.0 (Olle Fredriksson)

This (Text.Earley) is a library consisting of two
parts:

1. Text.Earley.Grammar: An embedded
context-free grammar (CFG) domain-specific
language (DSL) with semantic action specifica-
tion in applicative style.
An example of a typical expression grammar
working on an input tokenized into strings is
the following:

expr :: Grammar r String (Prod r String String Expr)
expr = mdo

x1 ← rule $ Add<$> x1 < ∗ namedSymbol "+"<∗> x2
<|> x2
<? > "sum"

x2 ← rule $ Mul<$> x2 < ∗ namedSymbol "*"<∗> x3
<|> x3
<? > "product"

x3 ← rule $ Var <$> (satisfy ident <? > "identifier")
<|> namedSymbol "(" ∗> x1 < ∗ namedSymbol ")"

return x1
where

ident (x: _) = isAlpha x
ident = False

2. Text.Earley.Parser: An implementation of (a
modification of) the Earley parsing algorithm.
To invoke the parser on the above grammar, run
e.g. (here using words as a stupid tokeniser):

fullParses $ parser expr $ words "a + b * (c + d)"
= ([Add (Var "a") (Mul (Var "b")
(Add (Var "c") (Var "d")))]
,Report { ...}
)

Note that we get a list of all the possible parses
(though in this case there is only one).

https://github.com/ollef/Earley

Further reading

◦ The Haskell NLP page http://projects.haskell.org/nlp

63

http://github.com/dmwit/pulp
http://hackage.haskell.org/package/hyphenation
http://www.ctan.org/tex-archive/language/hyph-utf8
https://github.com/ollef/Earley
http://projects.haskell.org/nlp

7.11.2 GenI

Report by: Eric Kow

GenI is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
GenI in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.
GenI is now mirrored on GitHub, with its issue

tracker and wiki and homepage also hosted there. The
most recent release, GenI 0.24 (2013-09-18), allows for
custom semantic inputs, making it simpler to use GenI
in a wider variety for applications. This has recently
been joined by a companion geni-util package which
offers a rudimentary geniserver client and a reporting
tool for grammar debugging.

GenI is available on Hackage, and can be installed
via cabal-install, along with its GUI and HTTP server
user interfaces. For more information, please contact
us on the geni-users mailing list.

Further reading

◦ http://github.com/kowey/GenI
◦ http://projects.haskell.org/GenI
◦ Paper from Haskell Workshop 2006:

http://hal.inria.fr/inria-00088787/en
◦ http://websympa.loria.fr/wwsympa/info/geni-users

7.12 Bioinformatics

7.12.1 ADPfusion

Report by: Christian Höner zu Siederdissen
Status: usable, active development

ADPfusion provides a low-level domain-specific lan-
guage (DSL) for the formulation of dynamic programs
with emphasis on computational biology and linguis-
tics. Following ideas established in Algebraic dynamic
programming (ADP) a problem is separated into a
grammar defining the search space and one or more
algebras that score and select elements of the search
space. The DSL has been designed with performance
and a high level of abstraction in mind.
ADPfusion grammars are abstract over the type of

terminal and syntactic symbols. Thus it is possible
to use the same notation for problems over different
input types. We support strings, and sets in linear and
context-free languages. We will support more input
types in the future. ADPfusion is extendable by the
user without having to modify the core library.
As an example, consider a grammar that recognizes

palindromes. Given the non-terminal p, as well as
parsers for single characters c and the empty input ε,
the production rule for palindromes can be formulated
as p→ c p c | ε.
The corresponding ADPfusion code is similar:

p (f <<< c % p % c ||| g <<< e ... h)

We need a number of combinators as “glue” and
additional evaluation functions f , g, and h. With
f c1 p c2 = p && (c1 ≡ c2) scoring a candidate,
g e = True, and h xs = or xs determining if the
current substring is palindromic.
This effectively turns the grammar into a memo-

function that then yields the optimal solution via a call
to axiom p. Backtracking for co- and sub-optimal solu-
tions is provided as well. The backtracking machinary
is derived automatically and requires the user to only
provide a set of pretty-printing evaluation functions.
As of now, code written in ADPfusion achieves per-

formance close to hand-optimized C, and outperforms
similar approaches (Haskell-based ADP, GAPC pro-
ducing C++) thanks to stream fusion. The figure shows
running times for the Nussinov algorithm.

64

http://github.com/kowey/GenI
http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users

The entry on generalized Algebraic Dynamic Pro-
gramming provides information on the associated high-
level environment for the development of dynamic pro-
grams.

Further reading

◦ http://www.bioinf.uni-leipzig.de/Software/gADP
◦ http://hackage.haskell.org/package/ADPfusion
◦ http://dx.doi.org/10.1145/2364527.2364559

7.12.2 Ab-initio electronic structure in Haskell

Report by: Alessio Valentini
Participants: Felipe Zapata, Angel Alvarez
Status: Active

We are three friends from Alcalá de Henares (Spain),
two PhD students in computational chemistry from
ResMol group and one sysadmin working at Alcalá Uni-
versity computer center. We all share the same passion
in programming and after some adventures in Fortran,
Bash, Python and Erlang we are now fully committed
to Haskell. As PhD students working in this area, every
day we face codes that are both difficult to read and
improve, with no guidelines and poor documentation.
The set of problems inherent in computational chem-

istry are mainly due to the theoretical models complex-
ity and the need of reducing as much as possible the
computational time, leading to a demand of extremely
solid and efficient software. What is happening in the
actual context is the result of a poor interface between
the two adjoining worlds of chemist and computer sci-
ence and the necessity of publishing papers and sci-
entific material to raise funds. This usually leads to
software hastily developed by a few chemists with only
a side-interest in programming and therefore a limited
skill set.
The very few software that can be deemed remark-

able are usually the result of massive funding, and even
those packages are now facing huge problems in terms
of parallelization, concurrency and stability of the code.
Most of the efforts are spent trying to fix these issues
instead of being addressed at developing better code
(improve modularity and intelligibility) or new features
and new algorithms.

We witness the proliferation of projects that serve no
other purpose than to provide a bridge between differ-
ent software, while the main core of molecular model-
ing codes, in most cases written in Fortran 77, remains
untouched since the eighties.
Our first purpose in this project is to become bet-

ter at Haskell programming and having fun managing
a package that is every day becoming bigger. But
we kind of dream of a molecular modeling software
that can fully express the great upsides of functional
programming. Fewer lines of code, better readability,
great parallelization, embedded domain specific lan-
guages (EDSL) ... and maybe more efficiency, too !
Ab-initio molecular modeling is a branch of com-

putational chemistry that, for a set of given atoms,
solves the Schrödinger equation (the analogous of New-
ton’s equation in quantum mechanics), with no inclu-
sion of parameters derived from experimental data. In
such systems it is quite easy to calculate forces be-
tween nuclei but things get tricky when we calculate
the potential energy contribution of forces related to
electrons. In this case we can adopt a first approxi-
mation, the so called Hartree-Fock, that considers the
electron-electron repulsion as an average between each
electron and the mean field of all the others. This the-
ory is right now the cornerstone of more sophisticated
methods, such Multiconfigurational Methods, Møller-
Plesset Perturbation Theory or Coupled Cluster, and
the mathematical models behind its implementation
are vastly used throughout the world of computational
chemistry.
This package can calculate the Hartree Fock energy

of a given molecule geometry and a basis set solving the
Roothaan Hall equations through a self consistent field
procedure. It uses the Harris Functional as an initial
density guess and the DIIS method to greatly improve
the convergence.
The entire code is written using the Repa library and

focusing our efforts on efficiency, parallelism (speedups
vs cores: 2,3 on 4 and 3.5 on 8) and code readabil-
ity. Using Haskell’s higher order abstraction we are
trying to develop an EDSL appropriate for quantum
mechanics problems, creating code operators able to
fairly mimic the physical ones.
The code is available for download in Felipe’s gitHub

page.
A Hartree Fock π orbital in PSB3:

We are currently developing this code in our spare
time, working on analytical gradients, on the Prisma al-

65

http://www.bioinf.uni-leipzig.de/Software/gADP
http://hackage.haskell.org/package/ADPfusion
http://dx.doi.org/10.1145/2364527.2364559
http://www2.uah.es/resmol/
http://www.uah.es/
http://www.uah.es/
http://en.wikipedia.org/wiki/Ab_initio_quantum_chemistry_methods
http://tinyurl.com/yc6j5l
http://en.wikipedia.org/wiki/CASSCF
http://tinyurl.com/qgkuhz5
http://tinyurl.com/qgkuhz5
http://en.wikipedia.org/wiki/Coupled_cluster
http://en.wikipedia.org/wiki/XYZ_file_format
https://bse.pnl.gov/bse/portal
http://en.wikipedia.org/wiki/Roothaan_equations
http://prb.aps.org/abstract/PRB/v31/i4/p1770_1
http://onlinelibrary.wiley.com/doi/10.1002/jcc.540030413/abstract
http://hackage.haskell.org/package/repa
https://github.com/felipeZ/Haskell-abinitio.git
https://github.com/felipeZ/Haskell-abinitio.git
http://onlinelibrary.wiley.com/doi/10.1002/qua.560400605/abstract;jsessionid=EE5A6D653572ABB326136C9319CA63E5.f04t02?deniedAccessCustomisedMessage=&userIsAuthenticated=false
http://onlinelibrary.wiley.com/doi/10.1002/qua.560400605/abstract;jsessionid=EE5A6D653572ABB326136C9319CA63E5.f04t02?deniedAccessCustomisedMessage=&userIsAuthenticated=false

gorithm and on a solid eigenvalue problem solver. The
aims of this projects are a full Haskell implementation
of Multiconfigurational Methods and possibly an inte-
gration with our molecular dynamics project.

Further reading

◦ https://github.com/felipeZ/Haskell-abinitio.git
◦ http://themonadreader.files.wordpress.com/2013/03/

issue214.pdf

7.12.3 Semi-Classical Molecular Dynamics in
Haskell

Report by: Alessio Valentini
Participants: Felipe Zapata, Angel Alvarez
Status: Active

As a first approximation, we can split the world of
Molecular Dynamics into three branches: Force Fields,
Classical (Semi-Classical) and Quantum Molecular Dy-
namics. The first approach completely ignores the de-
scription of the electrons, and the system is described
by a "Balls and Springs" model leading to very cheap
calculations that can be performed in big systems.
From a chemical point of view, anyway, this approach

often suffers severe drawbacks, since every time an ac-
curate description of electrons is needed (i.e. when
studying the formation or breaking of bonds, reations
involving excited states, or heavily polarized systems)
we cannot rely on pure Classical Mechanics.
On the other side, even if the Quantum Dynamics ap-

proach is capable of describing the real quantum behav-
ior of every single electron and nucleus, it comes with
a huge increase in computational cost. It is basically
unaffordable for systems with more than 5-6 atoms.
That’s why we need to take in consideration the Clas-
sical and Semi Classical Dynamics, where the system’s
forces are calculated using a Quantum method, while
the geometry is updated with Classical Mechanics and
some ad-hoc formulae to take into account quantum
effects.
As PhD students in computational chemistry we of-

ten found ourselves in this situation: we have a chemi-
cal problem that might appear simple at first, but then
it is usually quite difficult to find all the features nec-
essary to tackle it in the same package. It is often
the case where software "X" is lacking feature "Z" while
software "Y" is missing feature "W".
The possible solutions to this impasse are:

1. to encode the missing features in the software of
choice, a task that can reveal itself as very difficult
and time consuming, since most of the time we are
dealing with monolithic software written in Fortran,
usually quite old and poorly maintained.

2. to write an external software (i.e. parser/launcher)
capable of interact concurrently with several soft-
ware, which is currently the approach employed in

most cases. So much that the vast majority of com-
putational chemists keeps a personal folder that con-
tains just collections of parsers and scripts.

Energies vs time for a two electronic states system:

Our project takes advantage of the exceptional mod-
ularity that Haskell offers, and represents our effort to
unify in a comprehensive tool all those routines that
are needed in our research group to perform Classical
and Semi Classical Molecular Dynamics. Our current
goal is to keep a robust code and to minimize the need
to use external software, limiting their application to
the computation of the gradient.

Given some initial conditions and an external pro-
gram (currently Molcas and Gaussian are supported)
capable of calculating the energy gradient, our code is
able to parse its log file and perform the whole "Semi-
Classical part" of the Molecular Dynamics.

The code employs the Velocity Verlet algorithm to
propagate the geometries, the Nosé Hoover thermostate
for a constant temperature bath and the Tully Hammes
Schiffer hopping algorithm (along with correction of
Persico-Granucci) to take in consideration hops be-
tween different electronic states. It also features the
possibility to add external forces to the molecule, to
simulate constrained conditions that can be found, for
example, in a protein binding pocket.

This is still a small project, but we are using it con-
stantly in our research group as a flexible tool for molec-
ular dynamics, waiting for our other project to calcu-
late the ab-initio gradient for us.

Further reading

https://github.com/AngelitoJ/HsDynamics

66

http://onlinelibrary.wiley.com/doi/10.1002/qua.560400605/abstract;jsessionid=EE5A6D653572ABB326136C9319CA63E5.f04t02?deniedAccessCustomisedMessage=&userIsAuthenticated=false
http://prb.aps.org/abstract/PRB/v79/i11/e115112
https://github.com/AngelitoJ/HsDynamics
https://github.com/felipeZ/Haskell-abinitio.git
http://themonadreader.files.wordpress.com/2013/03/issue214.pdf
http://themonadreader.files.wordpress.com/2013/03/issue214.pdf
http://www.molcas.org/
http://www.gaussian.com/
http://en.wikipedia.org/wiki/Verlet_integration
http://tinyurl.com/qxog7ha
http://scitation.aip.org/content/aip/journal/jcp/101/6/10.1063/1.467455
http://scitation.aip.org/content/aip/journal/jcp/101/6/10.1063/1.467455
http://www.ncbi.nlm.nih.gov/pubmed/17430023
https://github.com/felipeZ/Haskell-abinitio.git
https://github.com/AngelitoJ/HsDynamics

7.12.4 Biohaskell

Report by: Ketil Malde
Participants: Christian Höner zu Siederdissen, Michal J.

Gajda, Nick Ignolia, Felipe Almeida Lessa,
Dan Fornika, Maik Riechert, Ashish

Agarwal, Grant Rotskoff, Florian
Eggenhofer, Sarah Berkemer, Niklas

Hambüchen

Bioinformatics in Haskell is a steadily growing field,
and the Bio section on Hackage now contains 69 li-
braries and applications. The biohaskell web site co-
ordinates this effort, and provides documentation and
related information. Anybody interested in the com-
bination of Haskell and bioinformatics is encouraged
to sign up to the mailing list (currently by emailing
〈ketil@malde.org〉Ketil), and to register and document
their contributions on the http://biohaskell.org wiki.
In the summer of 2014, Sarah Berkemer was financed

by Google’s Summer of Code program to work on op-
timizing transalign. After a summer’s work, Sarah was
able to improve both space and time usage. Other
new additions are parsers by Floran Eggenhofer for
the NCBI Genbank format and for Clustal mulitiple
sequence alignments. There is also a new library for
working with EEG devices, written by Niklas Ham-
büchen and Patrick Chilton.

Further reading

◦ http://biohaskell.org
◦ http://blog.malde.org
◦ http://www.bioinf.uni-leipzig.de/~choener/haskell/
◦ https://bioinf.eva.mpg.de/biohazard/

7.12.5 arte-ephys: Real-time electrophysiology

Report by: Greg Hale
Participants: Alex Chen
Status: work in progress

Arte-ephys is a soft real-time neural recording system
for experimental systems neuroscientists.
Our lab uses electrode arrays for brain recording in

freely moving animals, to determine how these neurons
build, remember, and use spatial maps.
We previously recorded and analyzed our data in two

separate stages. We are now building a recording sys-
tem focused on streaming instead of offline analysis,

for real-time feedback experiments. For example, we
found that activity in the brain of resting rats often
wanders back to representations of specific parts of a
recently-learned maze, and we would now like to au-
tomatically detect these events and reward the rat im-
mediately for expressing them, to see if this influences
either the speed of learning of a specific part of the
maze or the nature of later spatial information coding.
We now have a proof-of-concept that streams

recorded data from disk, performs the necessary pre-
processing, and accurately decodes neural signals in re-
altime, while drawing the results with gloss. Our next
goal is to integrate this into a sytem that streams raw
neural data during the experiment.

Further reading

◦ http://github.com/ImAlsoGreg/arte-ephys
◦ http://github.com/ImAlsoGreg/haskell-tetrode-ephys
◦ http://web.mit.edu/wilsonlab/html/research.html

7.13 Embedding DSLs for Low-Level
Processing

7.13.1 CλaSH

Report by: Christiaan Baaij
Participants: Jan Kuper, Arjan Boeijink, Rinse Wester
Status: actively developed

The first line of the package description on hackage is:

CλaSH (pronounced ’clash’) is a functional hard-
ware description language that borrows its syntax
and semantics from the functional programming
language Haskell.

In essence, however, it is a combination of:
◦ A Haskell library containing data types and func-

tions for circuit design: http://hackage.haskell.org/
package/clash-prelude.

◦ A compiler that transforms the Haskell code to low-
level synthesisable VHDL or SystemVerilog: http://
hackage.haskell.org/package/clash-ghc.

67

http://hackage.haskell.org/packages/archive/pkg-list.html#cat:bioinformatics
http://biohaskell.org
mailto: ketil at malde.org
http://biohaskell.org
https://www.google-melange.com/gsoc/homepage/google/gsoc2014
http://blog.malde.org/posts/transitive-alignments.html
http://biohaskell.org/GSoC_blog
https://hackage.haskell.org/package/Genbank
https://hackage.haskell.org/package/ClustalParser
https://hackage.haskell.org/package/hemokit
https://hackage.haskell.org/package/hemokit
http://biohaskell.org
http://blog.malde.org
http://www.bioinf.uni-leipzig.de/~choener/haskell/
https://bioinf.eva.mpg.de/biohazard/
http://github.com/ImAlsoGreg/arte-ephys
http://github.com/ImAlsoGreg/haskell-tetrode-ephys
http://web.mit.edu/wilsonlab/html/research.html
http://hackage.haskell.org/package/clash-prelude
http://hackage.haskell.org/package/clash-prelude
http://hackage.haskell.org/package/clash-ghc
http://hackage.haskell.org/package/clash-ghc

Of course, the compiler cannot transform arbitrary
Haskell code to hardware, but only the structural sub-
set of Haskell. This subset is vaguely described as the
semantic subset of Haskell from which a finite struc-
ture can be inferred, and hence excludes unbounded
recursion. The CλaSH compiler is thus a proper com-
piler (based on static analysis), and not an embed-
ded Domain Specific Language (DSL) such as Kansas
Lava (→ 7.13.3).
CλaSH has been in active development since

2010, and its last entry in HCAR was in 2011
http://www.haskell.org/communities/05-2011/html/
report.html#sect7.5.1. Since then we have signif-
icantly improved stability, enlarged the subset of
transformable Haskell, improved performance of
the compiler, and added SystemVerilog generation.
And, perhaps most importantly, vastly improved
documentation.
CλaSH is available on hackage, for GHC version 7.10

and higher:

$ cabal update
$ cabal install clash-ghc

Development plans for CλaSH are:
◦ Behavioural synthesis of unbounded recursion (by In-
gmar te Raa).

◦ Use a dependently typed internal core language, so
that we can use both Haskell/GHC and Idris http://
http://www.idris-lang.org/ as front-end language for
circuit design (by Christiaan Baaij).

Further reading

http://www.clash-lang.org

7.13.2 Feldspar

Report by: Emil Axelsson
Status: active development

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and is currently being developed by projects
at Chalmers University of Technology (→ 9.6), SICS
Swedish ICT AB and Ericsson AB.
The motivating application of Feldspar is telecoms

processing, but the language is intended to be useful
for DSP in general. The aim is to allow DSP functions
to be written in pure functional style in order to raise
the abstraction level of the code and to enable more
high-level optimizations. The current version consists
of an extensive library of numeric and array processing
operations as well as a code generator producing C code
for running on embedded targets.
At present, Feldspar can express the pure data-

intensive numeric algorithms which are at the core of

any DSP application. There is also support for the
expression and compilation of parallel algorithms.
Ongoing work, presented at IFL 2014, extends

Feldspar with basic input/output capabilities and adds
a library to express streaming systems using a syn-
chronous programming model. Future work involves
extending and improving the system programming part
of the language, and adding support for compilation to
heterogeneous multi-core targets.

Further reading

◦ http://feldspar.github.io
◦ http://hackage.haskell.org/package/feldspar-language
◦ http://hackage.haskell.org/package/feldspar-compiler

7.13.3 Kansas Lava

Report by: Andrew Gill
Participants: Bowe Neuenschwander
Status: ongoing

Kansas Lava is a Domain Specific Language (DSL) for
expressing hardware descriptions of computations, and
is hosted inside the language Haskell. Kansas Lava pro-
grams are descriptions of specific hardware entities, the
connections between them, and other computational
abstractions that can compile down to these entities.
Large circuits have been successfully expressed using
Kansas Lava, and Haskell’s powerful abstraction mech-
anisms, as well as generic generative techniques, can be
applied to good effect to provide descriptions of highly
efficient circuits.
◦ The Fabric monad is now a Monad transformer. The

Fabric monad historically provided access to named
input/output ports, and now also provides named
variables, implemented by ports that loop back on
themselves. This additional primitive capability al-
lows for a typed state machine monad. This design
gives an elegant stratospheric pattern: purely func-
tional circuits using streams; a monad for layout over
space; and a monad for state generation, that acts
over time.

◦ On top of the Fabric monad, we are implementing an
atomic transaction layer, which provides a BSV-like
interface, but in Haskell. An initial implementation
has been completed, and this is being reworked to
include BSV’s Ephemeral History Registers.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

68

http://www.haskell.org/communities/05-2011/html/report.html#sect7.5.1
http://www.haskell.org/communities/05-2011/html/report.html#sect7.5.1
http://http://www.idris-lang.org/
http://http://www.idris-lang.org/
http://www.clash-lang.org
http://ifl2014.github.io/submissions/ifl2014_submission_23.pdf
http://feldspar.github.io
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

7.14 Games

7.14.1 The Amoeba-World game project

Report by: Alexander Granin
Status: work in progress

In functional programming, there is a serious problem:
there are no materials for the development of large
applications. As we know, this field is well studied
for imperative and object-oriented languages. There
are books on design, architecture, design patterns and
modeling practices. But we have no idea how this big
knowledge can be adapted to functional languages.
I’m working on a game called “The Amoeba World”.

The goal of this project is to explore approaches to
the development of large applications on Haskell. The
results of my research are some articles which will be
used to compose a book about functional design and
architecture. Currently two articles are written out of
the planned four (in Russian, but the articles will be
translated to English soon). The first highlights the is-
sue of whether the mainstream knowledge of architec-
ture is applicable to the functional paradigm and what
tools can be used for designing of architecture. It shows
that the UML is ill-suited for the functional paradigm
and the architecture is constructed using mind maps
and concept cards. The second article talks about a
low-level design of the application using the language
Haskell. It has a theoretical part named what makes a
good design, but there is also practical part describing
of the some anti-patterns in Haskell. The third article
is under development now. In it, the application design
based on properties and scenarios is researched. The
fourth article will be discussing the use of FRP.
Code of the game “The Amoeba World” should be

written well to be a good example of the design con-
cepts. These concepts are: using DSL, parsing, layer-
ing, using lenses, Inversion of Control, testing, FRP,
SDL, usefulness of monads. The overall architecture of
the game looks as follows:

At the moment, the game logic has been rewritten
twice. The draft of game logic is ready. A special file
format ’ARF’ (Amoeba Raw File) for the game objects
is done. Parsec is used for parsing, and a custom safe
translator is written, which works on rules. Now I’m
are working on a Application Layer. Settings loading
is done. A primitive renderer for the game world is
created. A draft game cycle and IO event handler from

SDL subsystem is done by using Netwire FRP library.
The next objectives are to add an interaction within the
game world and then move to the execution of scenarios
on game objects.

Further reading

◦ https://github.com/graninas/The-Amoeba-World
◦ http://bit.ly/ArchitectureAndDesingInFP (in Russian)

7.14.2 EtaMOO

Report by: Rob Leslie
Status: experimental, active development

EtaMOO is a new, experimental MOO server imple-
mentation written in Haskell. MOOs are network ac-
cessible, multi-user, programmable, interactive systems
well suited to the construction of text-based adventure
games, conferencing systems, and other collaborative
software. The design of EtaMOO is modeled closely
after LambdaMOO, perhaps the most widely used im-
plementation of MOO to date.
Unlike LambdaMOO which is a single-threaded

server, EtaMOO seeks to offer a fully multi-threaded
environment, including concurrent execution of MOO
tasks. To retain backward compatibility with the gen-
eral MOO code expectation of single-threaded seman-
tics, EtaMOO makes extensive use of software trans-
actional memory (STM) to resolve possible conflicts
among simultaneously running MOO tasks.
EtaMOO fully implements the MOO programming

language as specified for the latest version of the Lamb-
daMOO server, with the aim of offering drop-in com-
patibility. Several enhancements are also planned to be
introduced over time, such as support for 64-bit MOO
integers, Unicode MOO strings, and others.
While still under development, the current imple-

mentation supports loading a LambdaMOO-format
database from a file, receiving client (telnet) connec-
tions from the network, and executing MOO code as a
result of processing the commands received from each
connection. Soon to be implemented will be the ability
to save the changes made to the MOO object database
back to a file, at which point the server should be
largely usable.
Latest development of EtaMOO can be seen on

GitHub, with periodic releases also being made avail-
able through Hackage.

Further reading

◦ https://github.com/verement/etamoo
◦ https://hackage.haskell.org/package/EtaMOO
◦ https://en.wikipedia.org/wiki/MOO

69

https://github.com/graninas/The-Amoeba-World
http://bit.ly/ArchitectureAndDesingInFP
https://github.com/verement/etamoo
https://hackage.haskell.org/package/EtaMOO
https://en.wikipedia.org/wiki/MOO

7.14.3 scroll

Report by: Joey Hess
Status: stable, complete

Scroll is a roguelike game, developed in one week as an
entry in the 2015 Seven Day Roguelike Challenge.
In scroll, you’re a bookworm that’s stuck on a scroll.

You have to dodge between words and use spells to
make your way down the page as the scroll is read.
Go too slow and you’ll get wound up in the scroll and
crushed.
This was my first experience with using Haskell for

game development, and I found it quite an interesting
experience, and a great crutch in such an intense coding
sprint. Strong typing and purely functional code saved
me from many late night mistakes, until I eventually
became so exhausted that String → String seemed like
a good idea. Even infinite lists found a use; one of
scroll’s levels features a reversed infinite stream of con-
sciousness based on Joyce’s Ulysses. . .
Scroll was written in continuation passing style, and

this turned out to be especially useful in developing
its magic system, with spells that did things ranging
from creating other spells, to using a quick continuation
based threading system to handle background tasks, to
letting the player enter the altered reality of a dream,
from which they could wake up later.
I had a great time creating a game in such a short

time with Haskell, and documenting my progress in 7
blog posts, and it’s been well received by players.

Further reading

http://joeyh.name/code/scroll/

7.14.4 Nomyx

Report by: Corentin Dupont
Status: pre-release version

Nomyx is a unique game where you can change the rules
of the game itself, while playing it! In fact, changing
the rules is the goal of the game. Changing a rule
is considered as a move. Of course even that can be
changed! The players can submit new rules or modify
existing ones, thus completely changing the behaviour
of the game through time. The rules are managed and
interpreted by the computer. They must be written
in the Nomyx language, based on Haskell. This is the
first complete implementation of a Nomic game on a
computer.
At the beginning, the initial rules are describing:
◦ How to add new rules and change existing ones. For
example a unanimity vote is necessary to have a new
rule accepted.

◦ How to win the game. For example you win the game
if you have 5 rules accepted.

But of course even that can be changed!
A Beta version has been released. A match is cur-

rently on-going, join us! A lot of learning material is
available, including a video, a tutorial, a FAQ, a forum
and API documentation.
If you like Nomyx, you can help! There is a develop-

ment mailing list (check the website). The plans now
are to fix the remaining bugs and release a V1.0 in some
month.

Further reading

http://www.nomyx.net

7.15 Others

7.15.1 General framework for multi-agent systems

Report by: Nickolay Kudasov
Status: experimental

The goal is to create a general framework for developing
and testing of multi-agent systems. That includes gen-
eral representation for multi-agent systems as well as
library implementations for well-known agent models,
distributed algorithms and communication and coordi-
nation patterns.
Notions of agent and environment are separated with

the help of free monads. Agent-environment interface
is defined by an underlying functor.
The basic representation of agent and environment

has been chosen and tested for an agent-based dis-
tributed graph coloring problem.
The concrete implementation is being revised fre-

quiently and thus is not very stable.
Implementations for some general distributed algo-

rithms (ABT, DBA, etc.) will be available shortly.

Further reading

https://github.com/fizruk/free-agent

7.15.2 ersatz

Report by: Edward Kmett
Participants: Johan Kiviniemi, Iain Lane
Status: stable

Ersatz is a library for generating QSAT (CNF/QBF)
problems using a monad. It takes care of generating the
normal form, encoding your problem, marshaling the
data to an external solver, and parsing and interpreting
the result into Haskell types.
What differentiates Ersatz from other SAT bindings

is the use of observable sharing in the API.
This enables you to use the a much richer subset of

Haskell than the purely monadic meta-language, and it
becomes much easier to see that the resulting encoding
is correct.

70

http://joeyh.name/code/scroll/
http://www.nomyx.net
https://github.com/fizruk/free-agent

Support is offered for decoding various Haskell
datatypes from the solution provided by the SAT
solver.
A couple of examples are included with the distri-

bution. Neither are as fast as a dedicated solver for
their respective domains, but they showcase how you
can solve real world problems involving 10s or 100s of
thousands of variables and constraints.

Further reading

http://hackage.haskell.org/package/ersatz

7.15.3 leapseconds-announced

Report by: Björn Buckwalter
Status: stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondTable with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.
up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.
Version 2015 of leapseconds-announced contains all

leap seconds up to 2015-07-01. A new version will be
uploaded if/when the IERS announces a new leap sec-
ond.

Further reading

https:
//hackage.haskell.org/package/leapseconds-announced

7.15.4 arbtt

Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!

Further reading

◦ http://arbtt.nomeata.de/
◦ http://www.joachim-breitner.de/blog/archives/

336-The-Automatic-Rule-Based-Time-Tracker.html
◦ http://arbtt.nomeata.de/doc/users_guide/

7.15.5 Hoodle

Report by: Ian-Woo Kim
Status: Actively Developing

Hoodle is a pen-notetaking programing written in
haskell using Gtk2hs. The name Hoodle is from Haskell
+ doodle.

This project first started as making a haskell clone
of Xournal, a notetaking program developed in C. But
now Hoodle has more unique features, as well as basic
pen notetaking function. Pen input is directly fed into
from X11 events, which has sub-pixel level accuracy
for the case of wacom tablets. Therefore, the resultant
pen strokes are much smoother than other similar open-
source programs such as Jarnal and Gournal.
Hoodle can be used for annotation on PDF files, and

also supports importing images of PNG, JPG and SVG
types, and exporting Hoodle documents to PDF. One
of the most interesting features is “linking”: each Hoo-
dle document can be linked with each other by simple
drag-and-drop operations. Then, the user can navi-
gate linked Hoodle documents as we do in web browser.
Another interesting feature is that one can edit a doc-
ument in split views, so that a long Hoodle document
can be easily edited. Hoodle can embed LATEXtexts and
the embedded text can be edited via network.
GUI programming is in general tightly tied into a

GUI framework. Since most frameworks rely on call-
backs for event processing, program logic is likely to be
scattered in many callback functions. We cure this sit-
uation by using coroutines. In haskell, coroutine can be
implemented in a straightforward way without relying
on specific language feature. This abstraction enable us
to reason through the program logic itself, not through
an inverted logic in a GUI framework.
Hoodle is being very actively developed as an open-

source project hosted on Github. The released versions
are located on Hackage, and it can be installed by sim-
ple cabal install. On Linux, OS X, and Windows sys-
tems with Gtk2hs and Poppler, Hoodle can be installed
without problems. Recently, it is packaged for NixOS.
Making a Hoodle binary package for other linux distri-
butions, OS X and window is planned.

71

http://hackage.haskell.org/package/ersatz
https://hackage.haskell.org/package/leapseconds-announced
https://hackage.haskell.org/package/leapseconds-announced
http://arbtt.nomeata.de/
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://arbtt.nomeata.de/doc/users_guide/

The development focus as of now is to have more flex-
ible link features (link to arbitrary position of a doc-
ument) and an internal database for document man-
agement. Hoodle manages documents with a unique
UUID, but it does not have a good internal database
yet. This feature can also be extended to saving Hoo-
dle documents in cloud storage in a consistent way.
Refining rendering with appropriate GPU acceleration
is also planned. In the long run, we plan to support
mobile platforms.

Further reading

http://ianwookim.org/hoodle

7.15.6 Reffit

Report by: Greg Hale
Status: work in progress

Reffit is a Snap website for collecting and organizing
short comments on peer reviewed papers, blog posts,
and videotaped talks. We hope to attract a community
and foster a culture of open discussion of papers, with
a lighthearted attitude, informality, and gamification.

Further reading

◦ http://reffit.com
◦ http://github.com/ImAlsoGreg/reffit

7.15.7 Laborantin

Report by: Lucas DiCioccio
Status: Working, development for new features

Conducting scientific experiments is hard. Laborantin
is a DSL to run and analyze scientific experiments.
Laborantin is well-suited for experiments that you can
run offline such as benchmarks with many parameters.
Laborantin encourages users to express experiments

parameters, experiment results, as well as execution,
startup, and teardown procedures in a methodical man-
ner. For instance, the following snippet defines a net-
work ‘ping’ experiment with a destination and packet-
size parameters.

ping = scenario "ping" $ do
describe "ping to a remote server"
parameter "destination" $ do

describe "a destination server (host or ip)"
values [str "example.com", str "dicioccio.fr"]

parameter "packet-size" $ do
describe "packet size in bytes"
values [num 50, num 1500]

run $ do
(StringParam srv) <- param "destination"
(NumberParam ps) <- param "packet-size"
liftIO (execPing srv ps) >>= writeResult "ping.out"

execPing :: Text -> Rational -> IO (Text)
execPing host pktSz =

let args = ["-c", "10"
, "-s" , show (round pktSz) , T.unpack host]

in fmap T.pack (readProcess "ping" args "")

Laborantin also lets users express dependencies be-
tween experiments. Laborantin is designed to allow
multiple backend (where to run and store experiments)
and multiple frontends (how a user interacts with Lab-
orantin). The current backend stores experiment re-
sults on the filesystem and provides a command line
frontend.
Contributions are welcome. In the future, we plan

to enrich Laborantin with helper modules for common
tasks such as starting and collecting outputs of remote
processes, reformatting results, and generating plots
(e.g., with Diagrams). Laborantin would also bene-
fit from new backends (e.g., to store results in an SQL
database or HDFS) and new frontends (e.g., an inte-
gration in IHaskell).

Further reading

◦ Hackage page:
http://hackage.haskell.org/package/laborantin-hs

◦ Example of web-benchmarks: https:
//github.com/lucasdicioccio/laborantin-bench-web

7.15.8 tempuhs

Report by: Alexander Berntsen
Status: pre-release

tempuhs is an ambitious effort by plaimi (→ 8.7) to
chronicle time. This means recording events, and ar-
ranging them with regards to time.
The grand vision is a system capable of storing a

timespan that includes The Big Bang on the scale of
Planck-time, the history of the universe on the scale of
milliards-of-years, your Mother’s birthday on the scale
of days in the Gregorian new style calendar, and your
meeting scheduler on the scale of minutes. These are
represented as timespans inside of a big parent times-
pan as of today, allowing a frontend to present this and
navigate between levels of zoom that preserve precision
and resolution.
In addition to having a grand vision for functional-

ity, careful thought is placed on the design of tempuhs
and how to use it. tempuhs should be completely fron-

72

http://ianwookim.org/hoodle
http://reffit.com
http://github.com/ImAlsoGreg/reffit
http://hackage.haskell.org/package/laborantin-hs
https://github.com/lucasdicioccio/laborantin-bench-web
https://github.com/lucasdicioccio/laborantin-bench-web

tend agnostic and extendible. Generality is taken to its
logical extreme in functionality and architecture both.
tempuhs consists of two pieces. tempuhs may refer

to both of these pieces, or one in particular: the library
which specifies how we represent our data. tempuhs-
server is the Web server that makes tempuhs frontend
agnostic by being a common API for communicating
with the database. The tempuhs backbone will in the
future need to deal with conversion between time units.
All of this is AGPLv3, and contributions would be

very welcome. We would be happy to help you find
your way around in the source code, or setting up your
own frontend for tempuhs.
The technology currently used for tempuhs includes

HSpec and HUnit for tests, the Scotty Web server, Per-
sistent for dealing with databases (PostgreSQL for the
production server and SQLite for the tests), wai for var-
ious things, The Glorious Glasgow Haskell Compiler (of
course), and some other libraries.

Further reading

◦ https://secure.plaimi.net/works/tempuhs.html
◦ https://github.com/plaimi/tempuhs
◦ https://github.com/plaimi/tempuhs-server

7.15.9 tttool

Report by: Joachim Breitner
Status: active development

The Ravensburger Tiptoi R© pen is an interactive toy
for kids aged 4 to 10 that uses OiD technology to react
when pointed at the objects on Ravensburger’s Tip-
toi books, games, puzzles and other toys. The are
programmed via binary files in a proprietary, undoc-
umented data format.
We have reverse engineered the format, and created

a tool to analze these files and generate your own.
This program, called tttool, is implemented in Haskell,
which turned out to be a good choice: Thanks to
Haskell’s platform independence, we can easily serve
users on Linux, Windows and OS X.
The implementation makes use of some nice Haskell

idoms such as a monad that, while parsing a binary, cre-
ates a hierarchical description of it and a writer monad
that uses lazyness and MonadFix to reference positions
in the file “before” these are determined.

Further reading

◦ https://github.com/entropia/tip-toi-reveng
◦ http://tttool.entropia.de/ (in German)
◦ http://funktionale-programmierung.de/2015/04/15/
monaden-reverse-engineering.html (in German)

7.15.10 Transient

Report by: Alberto Gómez Corona
Status: active development

Transient is a new way to manage continuations for the
creation of high level effects like event handling, back-
tracking, indetermism, thread control. With this mech-
anism it is possible to create combinators that permit
newcomers to Haskell to program at a higher level that
was not previously possible. Transient programs look
like specifications.
The impedance mismatch between specifications and

programming comes from the fact that requirement de-
scriptions manage similar concepts, but at a higher
level: For example: this specification description: "the
query processor will send request for each data source
and filter the results according with the provided func-
tion"
A specification like this is described as a sequence of

steps, as if the functionality were a single process, but
really it implies many threads, synchronization, event
handling, possibly undoing actions under some condi-
tions, stopping on some condition etc.
Transient permits to write a monadic sequence that

express this requirement with a one-to-one correspon-
dence, since the effects of parallelization, event han-
dling, thread management, and indeterminism are in-
cluded and are managed automatically. a monadic or
applicative expression in Transient may receive events
in the middle of the sequence and may dispatch threads
for these events and yet externally it is a single expres-
sion.
Transient uses a different way to produce effects: A

transient statement can access the continuations that
are scheduled in the sequence after himself. Therefore
it can add, execute them when an event arrives or store
then in state, so that other statements can make use of
them later, so combinations of statements can change
the execution flow.
Future work:
Transient will be the base EDSL for both MFlow and

HPlayground.

Further reading

◦ Transient GIT repository
https://github.com/agocorona/transient

◦ An EDSL for Hard-working IT programmers
https://www.fpcomplete.com/user/agocorona/
EDSL-for-hard-working-IT-programmers

◦ The hardworking programmer II: practical
backtracking to undo actions
https://www.fpcomplete.com/user/agocorona/
the-hardworking-programmer-ii-practical-backtracking-to-undo-actions

73

https://secure.plaimi.net/works/tempuhs.html
https://github.com/plaimi/tempuhs
https://github.com/plaimi/tempuhs-server
https://github.com/entropia/tip-toi-reveng
http://tttool.entropia.de/
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html
https://github.com/agocorona/transient
https://www.fpcomplete.com/user/agocorona/EDSL-for-hard-working-IT-programmers
https://www.fpcomplete.com/user/agocorona/EDSL-for-hard-working-IT-programmers
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions

7.15.11 gipeda

Report by: Joachim Breitner
Status: active development

Gipeda is a a tool that presents data from your pro-
gram’s benchmark suite (or any other source), with nice
tables and shiny graphs. Its name is an abbreviation
for “Git performance dashboard” and highlights that it
is aware of git, with its DAG of commit.
The implementation builds on shake and creates

static files, so that hosting a gipeda site is easily possi-
ble.
Gipeda is meant to be used for GHC development,

and is just waiting for the designated site at http://perf.
haskell.org to go live, but can be used independently of
GHC as well.

Further reading

◦ https://github.com/nomeata/gipeda

7.15.12 Octohat (Stack Builders)

Report by: Stack Builders
Participants: Juan Carlos Paucar, Sebastian Estrella,

Juan Pablo Santos
Status: Working, well-tested minimal wrapper

around GitHub’s API

Octohat is a comprehensively test-covered Haskell li-
brary that wraps GitHub’s API. While we have used
it successfully in an open-source project to automate
granting access control to servers, it is in very early
development, and it only covers a small portion of
GitHub’s API.
Octohat is available on Hackage, and the source code

can be found on GitHub.
We have already received some contributions from

the community for Octohat, and we are looking forward
to more contributions in the future.

Further reading

◦ https://github.com/stackbuilders/octohat

◦ Octohat announcement

◦ Octohat update

7.15.13 git-annex

Report by: Joey Hess
Status: stable, actively developed

git-annex allows managing files with git, without check-
ing the file contents into git. While that may seem
paradoxical, it is useful when dealing with files larger
than git can currently easily handle, whether due to
limitations in memory, time, or disk space.
As well as integrating with the git command-line

tools, git-annex includes a graphical app which can be
used to keep a folder synchronized between computers.
This is implemented as a local webapp using yesod and
warp.
git-annex runs on Linux, OSX and other Unixes, and

has been ported to Windows. There is also an incom-
plete but somewhat usable port to Android.
Five years into its development, git-annex has a wide

user community. It is being used by organizations for
purposes as varied as keeping remote Brazilian com-
munities in touch and managing Neurological imaging
data. It is available in a number of Linux distributions,
in OSX Homebrew, and is one of the most downloaded
utilities on Hackage. It was my first Haskell program.

At this point, my goals for git-annex are to continue
to improve its foundations, while at the same time keep-
ing up with the constant flood of suggestions from its
user community, which range from adding support for
storing files on more cloud storage platforms (around
20 are already supported), to improving its usability for
new and non technically inclined users, to scaling bet-
ter to support Big Data, to improving its support for
creating metadata driven views of files in a git reposi-
tory.
At some point I’d also like to split off any one of a

half-dozen general-purpose Haskell libraries that have
grown up inside the git-annex source tree.

Further reading

http://git-annex.branchable.com/

74

http://perf.haskell.org
http://perf.haskell.org
https://github.com/nomeata/gipeda
https://hackage.haskell.org/package/openssh-github-keys
https://hackage.haskell.org/package/openssh-github-keys
http://hackage.haskell.org/package/octohat
https://github.com/stackbuilders/octohat
https://github.com/stackbuilders/octohat
http://www.stackbuilders.com/news/announcing-octohat-a-new-haskell-wrapper-for-github-s-api
http://www.stackbuilders.com/news/new-octohat-release
http://git-annex.branchable.com/

7.15.14 openssh-github-keys (Stack Builders)

Report by: Stack Builders
Participants: Justin Leitgeb
Status: A library to automatically manage SSH

access to servers using GitHub teams

It is common to control access to a Linux server by
changing public keys listed in the authorized_keys
file. Instead of modifying this file to grant and revoke
access, a relatively new feature of OpenSSH allows the
accepted public keys to be pulled from standard output
of a command.
This package acts as a bridge between the OpenSSH

daemon and GitHub so that you can manage access
to servers by simply changing a GitHub Team, in-
stead of manually modifying the authorized_keys file.
This package uses the Octohat wrapper library for the
GitHub API which we recently released.
openssh-github-keys is still experimental, but we are

using it on a couple of internal servers for testing pur-
poses. It is available on Hackage and contributions and
bug reports are welcome in the GitHub repository.
While we don’t have immediate plans to put openssh-

github-keys into heavier production use, we are inter-
ested in seeing if community members and system ad-
ministrators find it useful for managing server access.

Further reading

https://github.com/stackbuilders/openssh-github-keys

7.15.15 propellor

Report by: Joey Hess
Status: actively developed

Propellor is a configuration management system for
Linux that is configured using Haskell. It fills a simi-
lar role as Puppet, Chef, or Ansible, but using Haskell
instead of the ad-hoc configuration language typical of
such software. Propellor is somewhat inspired by the
functional configuration management of NixOS.
A simple configuration of a web server in Propellor

looks like this:

webServer :: Host
webServer = host "webserver.example.com"

& ipv4 "93.184.216.34"
& staticSiteDeployedTo "/var/www"

‘requires‘ Apt.serviceInstalledRunning "apache2"
‘onChange‘ Apache.reloaded

staticSiteDeployedTo :: FilePath→ Property NoInfo

There have been many benefits to using Haskell for
configuring and building Propellor, but the most strik-
ing are the many ways that the type system can be
used to help ensure that Propellor deploys correct and

consistent systems. Beyond typical static type bene-
fits, GADTs and type families have proven useful. For
details, see http://propellor.branchable.com/posts/
An eventual goal is for Propellor to use type level

programming to detect at compile time when a host has
eg, multiple servers configured that would fight over the
same port. Moving system administration toward using
types to prove correctness properties of the system.
Another exciting possibility is using Propellor to not

only configure existing Linux systems, but to manage
their entire installation process. This has already been
prototyped in a surprisingly small amount of added
code (under 200 lines), which can replace arbitrary
Linux systems with clean re-installs described entirely
by Propellor’s config.hs.

Further reading

http://propellor.branchable.com/

7.15.16 dimensional: Statically Checked Physical
Dimensions

Report by: Björn Buckwalter
Participants: Douglas McClean
Status: active

Dimensional is a library providing data types for per-
forming arithmetics with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity
of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage within
the frame of the SI. Example:

d :: Fractional a ⇒ Time a → Length a
d t = a /_2 ∗ t ˆ pos2

where a = 9.82 ∗˜ (meter / second ˆ pos2)

The dimensional library currently has three incarna-
tions:
◦ dimensional – The “classic” dimensional library re-

leased in 2006 is based on multi-parameter type
classes and functional dependencies. It is stable with
units being added on an as-needed basis. The pri-
mary documentation is the literate Haskell source
code.

◦ dimensional-tf – In January 2012 a port of dimen-
sional using type families was released.

◦ dimensional-dk – Recent activities have been focused
around a port of dimensional using the data kinds
and closed type families introduced in GHC 7.8.
dimensional-dk improves upon classic dimensional
and dimensional-tf in virtually every way (including

75

http://hackage.haskell.org/package/octohat
http://hackage.haskell.org/package/openssh-github-keys
https://github.com/stackbuilders/openssh-github-keys
https://github.com/stackbuilders/openssh-github-keys
http://propellor.branchable.com/

proper Haddock documentation!) with only minimal
impact to the API.

Further reading

◦ http://dimensional.googlecode.com
◦ https://github.com/bjornbm/dimensional-dk

76

http://dimensional.googlecode.com
https://github.com/bjornbm/dimensional-dk

8 Commercial Users

8.1 Well-Typed LLP

Report by: Andres Löh
Participants: Duncan Coutts

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at 〈info@well-typed.com〉.
We are working for a variety of commercial clients,

but naturally, only some of our projects are publicly
visible.
Austin has been working hard to help get GHC-7.8

released.
On behalf of the Industrial Haskell Group (IHG) (→

8.4), we are currently working on tasks related to Hack-
age 2 and Cabal.
We continue to be involved in the community, main-

taining several packages on Hackage and giving talks
at a number of conferences. Some of our recent
projects are available online, such as for example Ed-
sko’s ghc-events-analyze tool, or Adam’s talk about
overloaded record fields in Haskell (links below).
We are continuing to offer training services. We offer

regular courses in London (the next course dates are in
July and in October), and on-demand on-site training
courses elsewhere as well.
We are of course always looking for new clients and

projects, so if you have something we could help you
with, just drop us an e-mail.

Further reading

◦ Company page: http://www.well-typed.com
◦ Blog: http://blog.well-typed.com/
◦ Training page:
http://www.well-typed.com/services_training

◦ Skills Matter Haskell course overview:
https://skillsmatter.com/explore?content=
courses&location=&q=Haskell

◦ ghc-events-analyze:
http://www.well-typed.com/blog/86/

◦ Adam’s records talk:
http://www.well-typed.com/blog/93/

8.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by: Rishiyur Nikhil
Status: Commercial product; free for academia

Bluespec, Inc. provides an industrial-strength language
(BSV) and tools for high-level hardware design. Com-
ponents designed with these are shipping in some com-
mercial smartphones and tablets today.
BSV is used for all aspects of ASIC and FPGA de-

sign — specification, synthesis, modeling, and verifi-
cation. Digital circuits are described using a nota-
tion with Haskell semantics, including algebraic types,
polymorphism, type classes, higher-order functions and
monadic elaboration. Strong static checking is also
used to support discipline for multiple clock-domains
and gated clocks. The dynamic semantics of a such
circuits are described using Term Rewriting Systems
(which are essentially atomic state transitions). BSV
is applicable to all kinds of hardware systems, from al-
gorithmic “datapath” blocks to complex control blocks
such as processors, DMAs, interconnects, and caches,
and to complete SoCs (Systems on a Chip).
Perhaps uniquely among hardware-design languages,

BSV’s rewrite rules enable design-by-refinement, where
an initial executable approximate design is systemati-
cally transformed into a quality implementation by suc-
cessively adding functionality and architectural detail.
Before synthesizing to hardare, a circuit description

can be executed and debugged in Bluesim, a fast simu-
lation tool. Then, the bsc tool compiles BSV into high-
quality Verilog, which is then further synthesized into
netlists for ASICs and FPGAs using standard synthesis
tools. There are extensive libraries and infrastructure
components to make it easy to build FPGA-based ac-
celerators for compute-intensive software.
Bluespec also provides implementations and develop-

ment environments for CPUs based on the U.C. Berke-
ley RISC-V instruction set (www.riscv.org).

Status and availability

BSV tools have been available since 2004, both com-
mercially and free for academic teaching and research.
It is used in a several leading universities (incl. MIT,
U.Cambridge, and IIT Chennai) for computer architec-
ture research.

77

mailto: info at well-typed.com
http://www.well-typed.com
http://blog.well-typed.com/
http://www.well-typed.com/services_training
https://skillsmatter.com/explore?content=courses&location=&q=Haskell
https://skillsmatter.com/explore?content=courses&location=&q=Haskell
http://www.well-typed.com/blog/86/
http://www.well-typed.com/blog/93/

Further reading

◦ Types, Functional Programming and Atomic
Transactions in Hardware Design, R.S. Nikhil, in In
Search of Elegance in the Theory and Practice of
Computation, Essays dedicated to Peter Buneman
(Festschrift), Springer-Verlag Lecture Notes in
Computer Science, LNCS 8000, pp.418-431, 2013.

◦ Abstraction in Hardware System Design, R.S.
Nikhil, in Communications of the ACM, 54:10,
October 2011, pp. 36-44.

◦ BSV by Example, R.S. Nikhil and K. Czeck, 2010,
book available on Amazon.com (or free PDF from
Bluespec, Inc.)

◦ http://bluespec.com/SmallExamples/index.html:
from BSV by Example.

◦ http:
//www.cl.cam.ac.uk/~swm11/examples/bluespec/:
Simon Moore’s BSV examples (U. Cambridge).

◦ http://csg.csail.mit.edu/6.375: Complex Digital
Systems, MIT courseware.

8.3 Haskell in the industry in Munich

Report by: Haskell Consultancy Munich

Haskell is used by several companies specializing in
the development of reliable software and hardware, for
example for the automotive industry in Munich. It
is also in use by the developers of medical software
which needs assure the integrity of data processing al-
gorithms. It is also used by new media and internet
companies. You may contact the author of this report
(〈haskell.consultancy@gmail.com〉) for details.

Haskell at Google Munich

Google is using Haskell in Ganeti (http://code.
google.com/p/ganeti/), a tool for managing clusters of
virtual servers built on top of Xen and KVM. There is
a mailing list (http://groups.google.com/group/ganeti)
which is the official contact to the team.
There are lots of presentations about Ganeti online

(http://downloads.ganeti.org/presentations/), and some
of them are accompanied by videos to be found with a
quick search on the internet.

Energy Flow Analysis – Ingenieurbüro Guttenberg
& Hördegen

The Engineering Office provides services and tools
to companies designing and operating smart systems
with energy management: Smart Grids, Smart Houses,
Smart Production, and so on. Smart systems are com-
plex: efficiency is only one aspect in a challenging sys-
tem design. We want to make measurement and opti-
misation of overall system efficiency as comfortable and
easy as possible. The objective is to provide support
in choosing between system functionality, performance,
safety, and reliability as well as energy efficiency. We
provide a support service for the whole development
chain, starting with specification, through system de-
sign and simulation to system implementation and val-
idation. The advantage of our approach is that we
can directly model, investigate and optimise energy
flow. This opens new possibilities, such as better op-
timisation of efficiency, operation, and design for local
grids containing electrochemical storage, thermal stor-
age, heat pumps, block heat and power units and so
on.
Since it combines good performance and paralleliza-

tion features while providing a very high level of assur-
ance, we have chosen to execute our technology with
Haskell.
For more information, please visit http://www.

energiefluss.info. There is an introductory document
to the services provided (http://energiefluss.info/img/
profile_gh.pdf).

Informatik Consulting Systems AG

ICS AG (http://ics-ag.de), with 11 offices in Germany,
use Haskell for their software, as it is a good fit for
their domain, which is simulation, safety, and business-
critical systems. It affords ICS a competitive edge
over the market. Industries ICS work with include ad-
vanced technologies, automotive, industrial solutions,
and transportation and they have an impressive list of
customers (http://ics-ag.de/kunden.html).

Haskell Consultancy Munich

The author of this report runs a Haskell consultancy.
Established in 2008, the business provides full-stack

78

http://bluespec.com/SmallExamples/index.html
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://csg.csail.mit.edu/6.375
mailto: haskell.consultancy at gmail.com
http://code.google.com/p/ganeti/
http://code.google.com/p/ganeti/
http://groups.google.com/group/ganeti
http://downloads.ganeti.org/presentations/
http://www.energiefluss.info
http://www.energiefluss.info
http://energiefluss.info/img/profile_gh.pdf
http://energiefluss.info/img/profile_gh.pdf
http://ics-ag.de
http://ics-ag.de/kunden.html

support for industries ranging from finance and me-
dia to medical and electronics design and automation,
with a permanent focus on functional programming.
We have a strong background in statistics and oper-
ations research. The current trend in the industry is
the migration of monolithic legacy software in C, C#,
Python, Java, or PHP towards a functional, service-
oriented architecture, with on-site training of person-
nel in the new programming paradigm. Another trend
is design of hard realtime applications for industrial
use. Further information can be requested via email
(〈haskell.consultancy@gmail.com〉).

Funktionale Programmierung – Dr. Heinrich
Hördegen

Funktionale Programmierung - Dr. Heinrich Hörde-
gen (http://funktional.info) is a Haskell and functional
programming software consultancy located in Munich.
Dr. Hördegen has a lot of experience in software en-

gineering and has been an advocate of functional pro-
gramming since 2005. It follows that during his doc-
toral thesis at the LORIA (http://www.loria.fr) he was
able to design and implement compiler modules for the
AVISPA project (http://www.avispa-project.org/) using
OCaml.
Dr. Hördegen has been using Haskell as his main

technology to implement robust and reliable soft-
ware since 2009. In his role co-founder and CTO of
Ingenieurbüro Guttenberg & Hördegen (http://www.
energiefluss.info) he leads the development of propri-
etary software for energy flow analysis. This complex
system is comprised of 50000 lines of code, distributed
into 130 modules.
Some of Dr. Hördegen’s favourite things about

Haskell are algebraic data types, which simplify sym-
bolic computation, the amazing speed Haskell can pro-
vide during number crunching, the powerful paralleliza-
tion capabilities Haskell provides, and finally Cloud
Haskell, which lets you easily distribute computations
onto whole clusters.
Dr. Hördegen’s consultancy sponsors and organizes

the Haskell Meetup (http://www.haskell-munich.de/)
and supports the Haskell community as a whole.

codecentric AG

Here at codecentric (https://www.codecentric.de/),
we believe that more than ever it’s important to keep
our tools sharp in order to provide real value to our

customers. The best way to do this is to provide soft-
ware expertise and an environment in which people can
freely express their ideas and develop their skills. One
of the results is codecentric Data Lab, where mathe-
maticians, data scientists and software developers join
forces to live up to the big data hype. Another is
the Functional Institute (http://clojureworkshop.com/),
which helps to spread the word about functional pro-
gramming with Clojure and Haskell.
We provide services in functional programming in

Clojure and Haskell as well as services for Big Data
projects, ranging from project support and knowledge
sharing to bespoke software development and project
management. We are over 200 employees strong in 10
offices around Germany and Europe. You may contact
Alex Petrov (〈alex.petrov@codecentric.de〉) with any en-
quiries.

8.4 Industrial Haskell Group

Report by: Andres Löh

The Industrial Haskell Group (IHG) is an organization
to support the needs of commercial users of Haskell.
The main activity of the IHG is to fund work on the

Haskell development platform. It currently operates
two schemes:
◦ The collaborative development scheme pools re-

sources from full members in order to fund specific
development projects to their mutual benefit.

◦ Associate and academic members contribute to a
separate fund which is used for maintenance and de-
velopment work that benefits the members and com-
munity in general.
Projects the IHG has funded in the past years include

work on Hackage 2, Cabal and cabal-install, and GHC
itself.
Details of the tasks undertaken by the IHG are ap-

pearing on the Well-Typed (→ 8.1) blog, on the IHG
status page and on standard communication channels
such as the Haskell mailing list.
In the past six months, three new associate members

have joined the IHG: Jon Kristensen, alephcloud and
OTAS Technologies.
The collaborative development scheme is running

continuously, so if you are interested in joining as a
member, please get in touch. Details of the different
membership options (full, associate, or academic) can
be found on the website.
We are very interested in new members.
If you are interested in joining the IHG, or if you

just have any questions or comments, please drop us
an e-mail at 〈info@industry.haskell.org〉.

Further reading

◦ http://industry.haskell.org/
◦ http://industry.haskell.org/status/

79

mailto: haskell.consultancy at gmail.com
http://funktional.info
http://www.loria.fr
http://www.avispa-project.org/
http://www.energiefluss.info
http://www.energiefluss.info
http://www.haskell-munich.de/
https://www.codecentric.de/
http://clojureworkshop.com/
mailto: alex.petrov at codecentric.de
mailto: info at industry.haskell.org
http://industry.haskell.org/
http://industry.haskell.org/status/

8.5 Better

Report by: Carl Baatz

Better provides a platform for delivering adaptive on-
line training to students and employees.
Companies and universities work with us to develop

courses which are capable of adapting to individual
learners. This adaptivity is based on evidence we col-
lect about the learner’s understanding of the course ma-
terial (primarily by means of frequent light-weight as-
sessments). These courses run on our platform, which
exposes a (mobile-compatible) web interface to learn-
ers. The platform also generates course statistics so
that managers/teachers can monitor the progress of the
class taking the course and evaluate its effectiveness.
The backend is entirely written in Haskell. We use

the snap web framework and we have a storage layer
written on top of postgres-simple which abstracts
data retrieval, modification, and versioning. The choice
of language has worked out well for us: as well as the joy
of writing Haskell for a living, we get straightforward
deployment and extensive server monitoring courtesy
of ekg. Using GHC’s profiling capabilities, we have
also managed to squeeze some impressive performance
out of our deployment.
The application-specific logic is all written in Haskell,

as is most of the view layer. As much rendering as pos-
sible is performed on the backend using blaze-html,
and the results are sent to a fairly thin single-page
web application written in Typescript (which, while
not perfect, brings some invaluable static analysis to
our front-end codebase).
The company is based in Zurich, and the majority of

the engineering team are Haskellers. We enjoy a high
level of involvement with the Zurich Haskell commu-
nity and are delighted to be able to host the monthly
HaskellerZ user group meetups and the yearly ZuriHac
hackathon.

8.6 Keera Studios LTD

Report by: Ivan Perez

Keera Studios Ltd. is a game development studio cur-
rently working on Android games using Haskell. We
have published the first commercial game for Android
written in Haskell, now available on Google Playtm

(https://goo.gl/cM1tD8).
We have also shown a breakout-like game running on

a Android tablet (http://goo.gl/53pK2x), using hard-
ware acceleration and parallelism. The desktop version
of this game additionally supports Nintendo Wiimotes
and Kinect. This proves that Haskell truly is viable op-
tion for professional game development, both for mobile
and for desktop.

We have developed GALE, a DSL for graphic adven-
tures, together with an engine and a basic IDE that al-
lows non-programmers to create their own 2D graphic
adventure games without any knowledge of program-
ming. Supported features include multiple charac-
ter states and animations, multiple scenes and lay-
ers, movement bitmasks (used for shortest-path cal-
culation), luggage, conversations, sound effects, back-
ground music, and a customizable UI. The IDE takes
care of asset management, generating a fully portable
game with all the necessary files. The engine is multi-
platform, working seamlessly on Linux, Windows and
Android. We are currently beta-testing GALE games
on Google Play.

We have released Keera Hails, the reactive library
we use for desktop GUI applications, as Open Source
(http://git.io/vTvXg). Keera Hails is being actively
developed and provides integration with Gtk+, network
sockets, files, FRP Yampa signal functions and other
external resources. Keera Hails also addresses com-
mon problems in Model-View-Controller, providing an
application skeleton with a scalable architecture and
thread-safe access to the application’s internal model.
Accompanying libraries provide standarised solutions
for common features such as configuation files and in-
ternationalisation. We have used this framework in
commercial applications (including but not limited to
GALE IDE), and in the Open-Source posture monitor
Keera Posture (http://git.io/vTvXy).

We are committed to using Haskell for all our
operations. For games we often opt for the Ar-
rowized Functional Reactive Programming Domain-
Specific Language Yampa (http://git.io/vTvxQ) or for
Keera GALE. For desktop GUI applications we use our
own Keera Hails (http://git.io/vTvXg). To create web
applications and internal support tools we use Yesod,
and have recently put in production a project manage-
ment, issue tracking and invoicing web application to
facilitate communication with our clients.

For more information, please contact us
at . Screenshots, videos and other details
are published regularly on our Facebook page
(https://www.facebook.com/keerastudios). and on
our website (http://www.keera.co.uk).

80

https://goo.gl/cM1tD8
http://goo.gl/53pK2x
http://git.io/vTvXg
http://git.io/vTvXy
http://git.io/vTvxQ
http://git.io/vTvXg
mailto:keera\protect \unhbox \voidb@x \hbox {\protect \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmr/m/it/10 {\T1/lmr/m/n/10 }\T1/lmr/m/it/10 \size@update \enc@update \par@update keera\char 46{}co\char 46{}uk\char 125{}\char 123{}keera}keera.co.uk
https://www.facebook.com/keerastudios
http://www.keera.co.uk

8.7 plaimi

Report by: Alexander Berntsen

plaimi are an omnium-gatherum of free software re-
searchers and hackers from Norway.
Haskell is the primary language used at plaimi. We

use it for all our currently active development projects.
Our development computers and servers all use Gen-
too Linux, and consequently Gentoo-Haskell. We con-
tribute back to the Haskell and Gentoo ecosystems, and
have upstream patches for many of the libraries and
tools that we use. One of the researchers at plaimi is
on the Gentoo development team, and has contributed
to both Gentoo-Haskell and the package manager it
uses, Portage.
Our website is https://secure.plaimi.net/. Contact in-

formation may be obtained there. We are currently
looking for work. Do you have any? Get in touch!
WeâĂŹd also love to hear from anyone that has ques-
tions, ideas or patches for our projects.

8.8 Stack Builders

Report by: Stack Builders
Status: software consultancy

Stack Builders is an international Haskell and Ruby
agile software consultancy with offices in New York,
United States, and Quito, Ecuador.
In addition to our Haskell software consultancy ser-

vices, we are actively involved with the Haskell com-
munity:
◦ We organize Quito Lambda, a monthly meetup
about functional programming in Quito, Ecuador.

◦ We maintain several packages in Hackage includ-
ing hapistrano, inflections, octohat, openssh-github-
keys, and twitter-feed.

◦ We talk about Haskell at universities and events such
as Lambda Days and BarCamp Rochester.

◦ We write blog posts and tutorials about Haskell.

For more information, take a look at our website or
get in touch with us at info@stackbuilders.com.

Further reading

http://www.stackbuilders.com/

8.9 Optimal Computational Algorithms,
Inc.

Report by: Christopher Anand

OCA develops high-performance, high-assurance
mathematical software using Coconut (COde CON-
structing User Tool), a hierarchy of DSLs embedded
in Haskell, which were originally developed at McMas-
ter University. The DSLs encode declarative assembly
language, symbolic linear algebra, and algebraic trans-
formations. Accompanying tools include interpreters,
simulators, instruction schedulers, code transformers
(both rule-based and ad-hoc) and graph and schedule
visualizers.
To date, Coconut math function libraries have been

developed for five commercial architectures. Taking
advantage of Cocont’s symbolic code generation, soft-
ware for reconstructing multi-coil Magnetic Resonance
Images was generated from a high-level mathematical
specification. The implementation makes full use of
dual-CPUs, multiple cores and SIMD parallelism, and
is licensed to a multi-national company. The specifica-
tion is transformed using rules for symbolic differenti-
ation, algebraic simplification and parallelization. The
soundness of the generated parallelization can be veri-
fied in linear time (measured with respect to program
size).

Further reading

◦ http://www.cas.mcmaster.ca/~kahl/Publications/
TR/Anand-Kahl-2007a_DSL/

◦ http://www.cas.mcmaster.ca/~anand/papers/
AnandKahlThaller2006.pdf

◦ http://www.cas.mcmaster.ca/sqrl/papers/
SQRLreport50.pdf

◦ https://macsphere.mcmaster.ca/handle/11375/10755
◦ http://www.cas.mcmaster.ca/~anand/papers/

CAS-14-05-CA.pdf

81

https://secure.plaimi.net/
mailto:info@stackbuilders.com
http://www.stackbuilders.com/
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Anand-Kahl-2007a_DSL/
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Anand-Kahl-2007a_DSL/
http://www.cas.mcmaster.ca/~anand/papers/AnandKahlThaller2006.pdf
http://www.cas.mcmaster.ca/~anand/papers/AnandKahlThaller2006.pdf
http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport50.pdf
http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport50.pdf
https://macsphere.mcmaster.ca/handle/11375/10755
http://www.cas.mcmaster.ca/~anand/papers/CAS-14-05-CA.pdf
http://www.cas.mcmaster.ca/~anand/papers/CAS-14-05-CA.pdf

9 Research and User Groups

9.1 Haskell at Eötvös Loránd University
(ELTE), Budapest

Report by: PÁLI Gábor János
Status: ongoing

Education

We are again glad to report that there are many dif-
ferent courses on Haskell at Eötvös Loránd University,
Faculty of Informatics. Currently, we are offering the
following courses in that regard:
◦ Functional programming for first-year Hungarian un-
dergraduates in Software Technology and second-
year Hungarian teacher of informatics students, both
as part of their official curriculum.

◦ An additional semester on functional programming
with Haskell, where many of the advanced concepts
are featured. This is an optional course for Hungar-
ian undergraduate and master’s students, supported
by the Eötvös József Collegium.

◦ Advanced functional programming for Hungarian
and foreign-language master’s students in Soft-
ware Technology, supported by the fund TÁMOP-
4.1.2.A/1-11/1-2011-0052. The curriculum fea-
tures discussion of parallel and concurrent program-
ming, property-based testing, purely functional data
structures, efficient I/O implementations, embedded
domain-specific languages, and reactive program-
ming.
In addition to these, there is also a Haskell-related

course, Type Systems of Programming Languages,
taught for Hungarian master’s students in Software
Technology. This course gives a more formal intro-
duction to the basics and mechanics of type systems
applied in many statically-typed functional languages.
For teaching some of the courses mentioned above,

we have been using an interactive online evaluation
and testing system, called ActiveHs. It contains sev-
eral dozens of systematized exercises, and through that,
some of our course materials are available there in En-
glish as well.
Besides teaching Haskell, some effort has been made

to restart our introductory course on Agda with an
English-language tutorial. It is based on the works
of PÃľter DiviÃąnszky and Ambrus Kaposi from the
previous years, and the chapters for the first semester
has been reviewed and improved by GÃąbor. Matthias
Troffaes has moved PÃľter’s original darcs repository
to GitHub for more visibility. Note that the changes

made to the lectures notes used at the course has not
yet been merged into the git repository, but it will done
soon as time permits. We are hoping that our tutorial
may be of use for other universities.
Our homebrew online assignment management sys-

tem, "BE-AD" keeps working on for the third semester
starting from this February. The BE-AD system is im-
plemented almost entirely in Haskell, based on the Snap
web framework and Bootstrap. Its goal to help the lec-
turers with scheduling course assignments and tests,
and it can automatically check the submitted solutions
as an option. It currently has over 1,100 users and it
provides support for 14 courses at the department, in-
cluding all the Haskell and Agda ones. This is still in an
alpha status yet so it is not available on Hackage as of
yet, only on GitHub, but so far it has been performing
well, especially in combination with ActiveHs.
GÃąbor also regularly advises bachelor’s and mas-

ter’s theses in Haskell, sometimes in cooperation with
Csaba Hruska and PÃľter DiviÃąnszky, the developers
of LambdaCube 3D, on related topics.

Further reading

◦ Haskell course materials (in English):
http://pnyf.inf.elte.hu/fp/Index_en.xml

◦ Agda tutorial (in English):
http://people.inf.elte.hu/pgj/agda/tutorial/

◦ ActiveHs:
http://hackage.haskell.org/package/activehs

◦ BE-AD: http://github.com/andorp/bead

9.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

Report by: David Sabel
Participants: Manfred Schmidt-Schauß

Semantics of Functional Programming Lan-
guages. Extended call-by-need lambda calculi model
the semantics of Haskell. In our research we ana-
lyze the semantics of those calculi with a special fo-
cus on the correctness of program analyses and pro-
gram transformations. Our results include the correct-
ness of strictness analysis by abstract reduction, re-
sults on the equivalence of the call-by-name and call-
by-need semantics, correctness of program transforma-
tions w.r.t. contextual equivalence, and investigations
on the conservativity of language extensions. Recently,
we analyzed a polymorphically typed core language

82

http://pnyf.inf.elte.hu/fp/Index_en.xml
http://people.inf.elte.hu/pgj/agda/tutorial/
http://hackage.haskell.org/package/activehs
http://github.com/andorp/bead

of Haskell which uses System F-polymorphism, and
we analyzed the question whether program transfor-
mations are optimizations, i.e. whether they improve
the time resource behavior. We showed that common
subexpression elimination is indeed an improvement
(which seems to be obvious, but its proof was an open
problem for several years). We also showed that our no-
tion of improvement is (asymptotically) resource equiv-
alent to the improvement theory developed by Moran
& Sands in an untyped setting.
We also established theoretical results like complete-

ness of applicative bisimilarity w.r.t. contextual equiv-
alence, and unsoundness of applicative bisimilarity in
nondeterministic languages with letrec.
We also use Haskell to develop automated tools to

show correctness of program transformations, where
the method is syntax-oriented and computes so-called
forking and commuting diagrams by a combination of
several unification algorithms. Also automated termi-
nation provers for term rewrite systems are used in a
part of the automation. Future research goals are to
automate correctness proofs of program translations as
they appear in compilers.
Concurrency. We analyzed a higher-order func-

tional language with concurrent threads, monadic IO,
MVars and concurrent futures which models Concur-
rent Haskell. We proved correctness of program trans-
formations, correctness of an abstract machine, and we
proved that this language conservatively extends the
purely functional core of Haskell. In a similar pro-
gram calculus we proved correctness of a highly concur-
rent implementation of Software Transactional Memory
(STM) and developed an alternative implementation of
STM Haskell which performs quite early conflict detec-
tion.
Grammar based compression. This research

topic focuses on algorithms on grammar compressed
data like strings, matrices, and terms. Our goal is to
reconstruct known algorithms on uncompressed data
for their use on grammars without prior decompres-
sion. We implemented several of those algorithms as
a Haskell library including efficient algorithms for fully
compressed pattern matching.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

9.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems

Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell,
we use for example also Erlang and ML, Haskell pro-
vides a major focus and common language for teaching
and research.
Our members pursue a variety of Haskell-related

projects, several of which are reported in other sec-
tions of this report. Three new PhD students joined
the group last September. Stephen Adams is working
on advanced refactoring of Haskell programs. Andreas
Reuleaux is working on refactoring dependently typed
functional programs. Maarten Faddegon is working on
making tracing for Haskell practical and easy to use.
In June he will talk at PLDI 2015 about “Algorithmic
Debugging of Real-World Haskell Programs: Deriving
Dependencies from the Cost Centre Stack”. Olaf Chitil
is working on tracing, including the further develop-
ment of the Haskell tracer Hat, and on type error de-
bugging. Scott Owens is working on verified compilers
for the (strict) functional language CakeML. Currently
Colin Runciman from the University of York is visiting
the PLAS group during his study leave.
We are always looking for more PhD students. We

are particularly keen to recruit students interested in
programming tools for verification, tracing, refactoring,
type checking and any useful feedback for a program-
mer. The school and university have support for strong
candidates: more details at http://www.cs.kent.ac.uk/
pg or contact any of us individually by email.
We are also keen to attract researchers to Kent

to work with us. There are many opportunities
for research funding that could be taken up at
Kent, as shown in the website http://www.kent.ac.uk/
researchservices/sciences/fellowships/index.html. Please
let us know if you’re interested in applying for one of
these, and we’ll be happy to work with you on this.
Finally, if you would like to visit Kent, either to give

a seminar if you’re passing through London or the UK,
or to stay for a longer period, please let us know.

Further reading

◦ PLAS group:
http://www.cs.kent.ac.uk/research/groups/plas/

◦ Haskell: the craft of functional programming:
http://www.haskellcraft.com

◦ Refactoring Functional Programs: http:
//www.cs.kent.ac.uk/research/groups/plas/hare.html

◦ Hat, the Haskell Tracer:
http://projects.haskell.org/hat/

◦ CakeML, a verification friendly dialect of SML:
https://cakeml.org

◦ Heat, an IDE for learning Haskell:
http://www.cs.kent.ac.uk/projects/heat/

83

http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/pg
http://www.cs.kent.ac.uk/pg
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.cs.kent.ac.uk/research/groups/plas/
http://www.haskellcraft.com
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://projects.haskell.org/hat/
https://cakeml.org
http://www.cs.kent.ac.uk/projects/heat/

9.4 Haskell at KU Leuven, Belgium

Report by: Tom Schrijvers

Functional Programming, and Haskell in particular, is
an active topic of research and teaching in the Declar-
ative Languages & Systems group of KU Leuven, Bel-
gium.

Teaching Haskell is an integral part of the curricu-
lum for both informatics bachelors and masters of en-
gineering in computer science. In addition, we offer
and supervise a range of Haskell-related master thesis
topics.

Research We actively pursue various Haskell-related
lines of research. Some recent and ongoing work:
◦ Steven Keuchel works on InBound, a Haskell-
like DSL for specifying abstract syntax trees with
binders.

◦ George Karachlias works on extending GHC’s pat-
tern match checker to deal with GADTs, in collab-
oration with Dimitrios Vytiniotis and Simon Peyton
Jones.

◦ Alexander Vandenbroucke extends the nondetermin-
ism monad with tabulation, a form of memoization
“on steroids” from logic programming.

◦ With Nicolas Wu we have recently worked on fusion
for free monads to obtain efficient algebraic effect
handlers. See our forthcoming MPC 2015 paper.

◦ With Mauro Jaskelioff and Exequiel Rivas we launch
a new slogan:

Nondeterminism monads are just near-
semirings in the category of endofunctors,
what’s the problem?

See our forthcoming paper at PPDP 2015.

Leuven Haskell User Group We host the Leuven
Haskell User Group, which has held its first meet-
ing on March 3, 2015. The group meets roughly
every other week and combines formal presentations
with informal discussion. For more information: http:
//groups.google.com/forum/#!forum/leuven-haskell

Further reading

http://people.cs.kuleuven.be/~tom.schrijvers/Research/

9.5 fp-syd: Functional Programming in
Sydney, Australia

Report by: Erik de Castro Lopo
Participants: Ben Lippmeier, Shane Stephens, and

others

We are a seminar and social group for people in Sydney,
Australia, interested in Functional Programming and
related fields. Members of the group include users of
Haskell, Ocaml, LISP, Scala, F#, Scheme and others.
We have 10 meetings per year (Feb–Nov) and meet
on the third (usually, sometimes fourth) Wednesday of
each month. We regularly get 30–40 attendees, with
a 70/30 industry/research split. Talks this year have
included material on compilers, theorem proving, type
systems, Haskell web programming, Haskell database
libraries, Scala and more. We usually have about 90
mins of talks, starting at 6:30pm, then go for drinks
afterwards. All welcome.

Further reading

◦ http://groups.google.com/group/fp-syd
◦ http://fp-syd.ouroborus.net/
◦ http://fp-syd.ouroborus.net/wiki/Past/2013

9.6 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component
of the CSE department at Chalmers and University
of Gothenburg. In particular, Haskell has a very im-
portant place, as it is used as the vehicle for teaching
and numerous research projects. Besides functional
programming, language technology, and in particular
domain specific languages is a common aspect in our
projects. We have hosted ICFP 2014 in Gothenburg
this September.

Property-based testing. QuickCheck, developed at
Chalmers, is one of the standard tools for testing
Haskell programs. It has been ported to Erlang and
used by Ericsson, Quviq, and others. QuickCheck con-
tinues to be improved. Quickcheck-based tools and re-
lated techniques are currently being developed:
◦ We have shown how to successfully apply

QuickCheck to test polymorphic properties.
◦ A new exhaustive testing tool (testing-feat on Hack-

age) has been developed. It is especially suited to
generate test cases from large groups of mutually re-
cursive syntax tree types. A paper describing it was
presented at the Haskell Symposium 2012.

◦ Testing Type Class Laws: the specification of a class
in Haskell often starts with stating, in comments, the

84

http://groups.google.com/forum/#!forum/leuven-haskell
http://groups.google.com/forum/#!forum/leuven-haskell
http://people.cs.kuleuven.be/~tom.schrijvers/Research/
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://fp-syd.ouroborus.net/wiki/Past/2013
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/FP
http://icfpconference.org/icfp2014/
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://hackage.haskell.org/package/testing-feat
http://dl.acm.org/citation.cfm?id=2364515&CFID=114228077&CFTOKEN=91363922
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws

laws that should be satisfied by methods defined in
instances of the class, followed by the type of the
methods of the class. We have developed a library
(ClassLaws) that supports testing such class laws us-
ing QuickCheck.

Parsing: BNFC. The BNF Converter (BNFC) is a
frontend for various parser generators in various lan-
guages. BNFC is written in Haskell and is commonly
used as a frontend for the Haskell tools Alex and Happy.
BNFC has recently been extended in two directions:
◦ A Haskell backend, which offers incremental and par-
allel parsing capabilities, as well as the ability to
parse context-free grammars in full generality, has
been added to BNFC. The underlying concepts are
described in a paper published at ICFP 2013.

◦ BNFC has been embedded in a library (called BNFC-
meta on Hackage) using Template-Haskell. An im-
portant aspect of BNFC-meta is that it automat-
ically provides quasi-quotes for the specified lan-
guage. This includes a powerful and flexible facility
for anti-quotation.

Parsing: Combinators. A new package for
combinator-based parsing has been released on
Hackage. The combinators are based on the paper
Parallel Parsing Processes. The technique is based on
parsing in parallel all the possibly valid alternatives.
This means that the parser never “hold onto” old
input. A try combinator is also superfluous.

Parsing: Natural languages. Grammatical Frame-
work is a declarative language for describing natural
language grammars. It is useful in various applica-
tions ranging from natural language generation, pars-
ing and translation to software localization. The frame-
work provides a library of large coverage grammars for
currently fifteen languages from which the developers
could derive smaller grammars specific for the seman-
tics of a particular application.

Generic Programming. Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic pro-
gramming research at Chalmers. Recent developments
include fundamental work on parametricity. This work
has led to the development of a new kind of abstraction,
to generalize notions of erasure. This means that a new
kind of generic programming is available to the pro-
grammer. A paper describing the idea was presented
in ICFP 2013.
Our research on generic-programming is lively, as

witnessed by a constant stream of publications: Testing
Type Class Laws, Functional Enumeration of Algebraic
Types (FEAT), Testing versus proving in climate im-
pact research and Dependently-typed programming in
scientific computing — examples from economic mod-
elling. The last two are part of our effort to contribute

to the emerging research programme in Global Systems
Science.

Program Inversion/bidirectionalization. Program
transformation systems that generate pairs of pro-
grams that are some sort of inverses of each other. The
pairs are guaranteed to be consistent by construction
with respect to certain laws. Applications include
pretty-printing/parsing, XML transformation etc. The
work is done in collaboration with University of Tokyo
and University of Bonn.

Language-based security. SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory. Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (→ 4.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. While today’s
GHC incorporates much of the dependently-typed fea-
ture set, supporting plain old Haskell means a certain
amount of clunkiness. Agda provides a cleaner lan-
guage, while remaining close to Haskell syntax.

Embedded domain-specific languages. The func-
tional programming group has developed several dif-
ferent domain-specific languages embedded in Haskell.
The active ones are:
◦ Feldspar (→ 7.13.2) is a domain-specific language

for digital signal processing (DSP).
◦ Obsidian is a language for data-parallel program-

ming targeting GPUs.
Most recently we used Obsidian to implement an
interesting variation of counting sort that also re-
moves duplicate elements. This work was presented
at FHPC 2013.
We are also working on general methods for EDSL

development:
◦ Syntactic is a library that aims to support the def-

inition of EDSLs. The core of the library was pre-
sented at ICFP 2012. The paper presents a generic
model of typed abstract syntax trees in Haskell,
which can serve as a basis for a library supporting
the implementation of deeply embedded DSLs.

◦ Names For Free. A new technique for represent-
ing names and bindings of object languages repre-
sented as Haskell data types has been developed.

85

http://hackage.haskell.org/package/ClassLaws
http://www.cse.chalmers.se/~bernardy/PP.pdf
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/parsek-1.0.0
http://hackage.haskell.org/package/parsek-1.0.0
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=254719
http://www.grammaticalframework.org/
http://www.grammaticalframework.org/
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ParaDep
http://www.cse.chalmers.se/~bernardy/CCCC.pdf
http://www.cse.chalmers.se/~bernardy/CCCC.pdf
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/TestingVersusProvingInClimateImpactResearch
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/TestingVersusProvingInClimateImpactResearch
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://blog.global-systems-science.eu/?author=45
http://blog.global-systems-science.eu/?author=45
http://www.cse.chalmers.se/~joels/writing/csort.pdf
http://www.cse.chalmers.se/~joels/writing/csort.pdf
http://hackage.haskell.org/package/syntactic

The essence of the technique is to represent names
using typed de Bruijn indices. The type captures ex-
actly the context where the index is valid, and hence
is as safe to use as a name. The technique was pre-
sented at Haskell Symposium 2013. We are currently
extending the technique to work for proofs as well as
programs.

◦ Circular Higher-Order Syntax We have also de-
veloped a light-weight method for generating names
while building an expression with binders. The
method lends itself to be used in the front end of
EDSLs based on higher-order syntax. The technique
was presented at ICFP 2013.

◦ Simple and Compositional Monad Reification
A method for reification of monads (compilation of
monadic embedded languages) that is both simple
and composable. The method was presented at ICFP
2013.

Automated reasoning. We are responsible for a suite
of automated-reasoning tools:
◦ Equinox is an automated theorem prover for pure

first-order logic with equality. Equinox actually im-
plements a hierarchy of logics, realized as a stack
of theorem provers that use abstraction refinement
to talk with each other. In the bottom sits an effi-
cient SAT solver. Paradox is a finite-domain model
finder for pure first-order logic with equality. Para-
dox is a MACE-style model finder, which means that
it translates a first-order problem into a sequence of
SAT problems, which are solved by a SAT solver.

◦ Infinox is an automated tool for analysing first-
order logic problems, aimed at showing finite un-
satisfiability, i.e., the absence of models with finite
domains. All three tools are developed in Haskell.

◦ QuickSpec generates algebraic specifications for an
API automatically, in the form of equations veri-
fied by random testing. http://www.cse.chalmers.se/
~nicsma/quickspec.pdf

◦ Hip (the Haskell Inductive Prover) is a new tool
to automatically prove properties about Haskell pro-
grams by using induction or co-induction. The ap-
proach taken is to compile Haskell programs to first
order theories. Induction is applied on the meta
level, and proof search is carried out by automated
theorem provers for first order logic with equality.

◦ On top of Hip we built HipSpec, which automat-
ically tries to find appropriate background lemmas
for properties where only doing induction is too
weak. It uses the translation and structural induc-
tion from Hip. The background lemmas are from
the equational theories built by QuickSpec. Both
the user-stated properties and those from Quick-
Spec are now tried to be proven with induction.
Conjectures proved to be theorems are added to
the theory as lemmas, to aid proving later prop-
erties which may require them. For more in-

formation, see http://web.student.chalmers.se/~danr/
hipspec-atx.pdfthe draft paper.

Teaching. Haskell is present in the curriculum as
early as the first year of the BSc programme. We have
four courses solely dedicated to functional program-
ming (of which three are MSc-level courses), but we also
provide courses which use Haskell for teaching other as-
pects of computer science, such the syntax and seman-
tics of programming languages, compiler construction,
data structures and parallel programming.

9.7 Functional Programming at KU

Report by: Andrew Gill
Status: ongoing

Functional Programming continues at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexan-
der) and the Functional Programming Group (lead by
Andrew Gill) together form the core functional pro-
gramming initiative at KU. There are three major
Haskell projects at KU (as well as numerous smaller
ones): the GHC rewrite plugin HERMIT (→ 7.3.3),
the Wakarusa Project (→ 5.1.3), and the Blank Canvas
HTML5 Graphics Library (→ 5.2.10).

Further reading

◦ The Functional Programming Group:
http://www.ittc.ku.edu/csdl/fpg

9.8 Regensburg Haskell Meetup

Report by: Andres Löh

Since autumn 2014 Haskellers in Regensburg, Bavaria,
Germany have been meeting roughly once per month
to socialize and discuss Haskell-related topics.
Haskell beginners and experts are equally welcome.

Meetings are announced on our meetup page: http://
www.meetup.com/Regensburg-Haskell-Meetup/.

86

http://www.cse.chalmers.se/~bernardy/NamesForFree.pdf
http://www.cse.chalmers.se/~bernardy/NamesForFree.pdf
http://www.cse.chalmers.se/~emax/documents/axelsson2013using.pdf
http://www.cse.chalmers.se/~emax/documents/axelsson2013using.pdf
http://www.cse.chalmers.se/~joels/writing/bb.pdf
http://www.cse.chalmers.se/~joels/writing/bb.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://www.ittc.ku.edu/csdl/fpg
http://www.meetup.com/Regensburg-Haskell-Meetup/
http://www.meetup.com/Regensburg-Haskell-Meetup/

9.9 Haskell in the Munich Area

Report by: Haskell Consultancy Munich

Haskell in education

Haskell is widely used as an educational tool for both
teaching students in computer science as well as for
teaching industry programmers transitioning to func-
tional programming. It is very well suited for that and
there is a huge educational body present in Munich.

Haskell at the Ludwig-Maximilians-Universität,
Munich

Following a limited test run last year which in-
cluded 12 people, the Institut für Informatik (Insti-
tute for Computer Science) has switched their Program-
ming and Modelling (http://www.tcs.ifi.lmu.de/lehre/
ss-2014/promo) course fromML to Haskell. It runs dur-
ing the summer semester and is frequented by 688 stu-
dents. It is a mandatory course for Computer Science
and Media Information Technology students as well as
many students going for degrees related to computer
science, e.g. Computer Linguistics (where lambda cal-
culus is very important) or Mathematics. The course
consists of a lecture and tutorial and is led by Prof.
Dr. Martin Hofmann and Dr. Steffen Jost. It started
on the 7th April, 2014. It is expected that 450 stu-
dents will complete the course. Notably, the course is
televised and is accessible at the LMU portal for Pro-
gramming and Modelling (https://videoonline.edu.lmu.
de/de/sommersemester-2014/5032).
Haskell is also used in Advanced Functional Program-

ming (https://www.tcs.ifi.lmu.de/lehre/ss-2012/fun)
which runs during the winter semester and is attended
by 20-30 students. It is mandatory for Computer
Science as well as Media Information Technology
students.
Neither of these courses has any entry requirements,

and you may enter the university during the summer
semester, which makes them very accessible.
Any questions may be directed to Dr. Steffen Jost

(〈jost@tcs.ifi.lmu.de〉).

Haskell at the Hochschule für angewandte
Wissenschaften München (Academy for applied
sciences Munich)

Haskell is taught in two courses at the College:
Functional Programming and Compiler Design. Both
courses consist of lectures and labs. Prof. Dr. Oliver
Braun has brought Haskell to the school and has been
using it during the last year for both courses; before
that he taught Haskell at FH Schmalkalden Thüringen
(http://www.fh-schmalkalden.de/) for 3.5 years.
Compiler Design (http://ob.cs.hm.edu/lectures/

compiler) is a compulsory course taught, depending
on the group, using Haskell, Scheme, or Java. The
Haskell version is frequented by over 40 students. Part
of the note depends on a compiler authored in Haskell.
Functional Programming (http://ob.cs.hm.edu/

lectures/fun) is a new, non-compulsory course attended
by 20 students, taught with Haskell. The grade de-
pends among others on an exam in Haskell knowledge
and a project authored in Haskell with the Yesod web
framework. It is taught with Learn You a Haskell
and teaches practical skills such as Cabal, Haddock,
QuickCheck, HUnit, Git, and Yesod. The school
department’s website itself is in Snap.
Dr. Oliver Braun has started using Haskell in 1997,

when it became the first programming language he’s
used during his studies. He has later used Haskell dur-
ing his thesis and afterwards his dissertation. He finds
Haskell great for teaching. Oliver Braun can be reached
via email (〈ob@cs.hm.edu〉).

Haskell as a teaching tool in the industry

Haskell is used in Munich to teach functional program-
ming to industrial programmers. Since it uses the same
basic programming model, it can also be used as a sim-
ple learning tool to introduce people to Scala. That is
because both are based on System F and Haskell has a
very clean, minimal implementation of it. It has been
successfully used to teach a team of 10 PHP program-
mers the basics of functional programming and Scala
and, together with other educational tools, get them
up and running within a couple months, during which
time the team remained productive. This approach
makes it easy for companies to switch from the likes of
PHP, Java, .NET, or C# to functional programming
(Haskell, Scala, Clojure). At the same time the project
switched to SOA (service oriented architecture) using

87

http://www.tcs.ifi.lmu.de/lehre/ss-2014/promo
http://www.tcs.ifi.lmu.de/lehre/ss-2014/promo
https://videoonline.edu.lmu.de/de/sommersemester-2014/5032
https://videoonline.edu.lmu.de/de/sommersemester-2014/5032
https://www.tcs.ifi.lmu.de/lehre/ss-2012/fun
mailto: jost at tcs.ifi.lmu.de
http://www.fh-schmalkalden.de/
http://ob.cs.hm.edu/lectures/compiler
http://ob.cs.hm.edu/lectures/compiler
http://ob.cs.hm.edu/lectures/fun
http://ob.cs.hm.edu/lectures/fun
mailto: ob at cs.hm.edu

the Twitter scala libraries. Having understood the ba-
sics of FP in Haskell, the team could easily move onto
the more complicated task of understanding the more
unique and intricate parts of Scala that correspond to
extensions to System F while being able to understand
Scala’s syntax. You may contact the author of this
report (〈haskell.consultancy@gmail.com〉) for details.

Haskell community

There are several meetups dedicated to Haskell in Mu-
nich. The organizers have initiated cooperation in or-
der to build and support the local community, as well
as the community in Germany. There is something re-
lated to Haskell happening every week.
The organizers would like to establish contact with

other Haskell communities in Germany as well as the
whole world. You may write to the Haskell Hackathon
organizer (〈haskell.hackathon@gmail.com〉). As of 2014,
it is known that there is Haskell activity in Berlin,
Cologne (Köln), Düsseldorf, Frankfurt am Main, Halle,
Hamburg, and Stuttgart, as well as in Austria, Switzer-
land and the Czech Republic. If you’re from one of
those communities, please write us! The Munich com-
munity welcomes any new connections from other lo-
cations.
The community receives notable guests, such as:
◦ Reinhard Zumkeller, one of the regular contributors
to the OEIS. Reinhard likes to use Haskell for work
with integer sequences.

◦ Lars R. Hupel, the maintainer of scalaz. Lars teaches
with Haskell at the local university and enjoys ad-
vanced topics in type systems and category theory.

◦ Andres Löh, co-founder of Well-Typed LLP. Andres
always brings up very practical discussions on the
use of Haskell. For example, he has recently held a
presentation on the Par monad.

◦ Heiko Seeberger from . Heiko is interested in all sorts
of functional programming and loves Haskell for its
simplicity and consistency.

◦ many others which the author of this report could
not reach for comment before the publication due to
time constraints.
The community is very lively and there are many ini-

tiatives being worked on. For example, actively popu-
larizing Haskell in the local industry, creating a network
of companies, programmers, and informational events.
The author of this report may be reached for more in-
formation (〈haskell.consultancy@gmail.com〉).

Haskell Hackathon

The Haskell Hackathon is a small meeting for people
who would like to build their Haskell skillset. People
bring their laptops and work on one of the proposed
topics together, sharing experience and teaching each
other. Topics range from very easy (if you don’t know
Haskell, you may come and the organizer will teach

you the basics one on one) through intermediate (how
to best set up the dev env, how to read the papers, how
to use important libraries) to very advanced (free ap-
plicatives, comonads). Defocus is discouraged (subjects
not related to Haskell are limited). The operating lan-
guage is German but if you speak any other language
you are welcome to join us.
The Hackathon is organized by the author of this re-

port (〈haskell.consultancy@gmail.com〉) and is currently
in its second year. It is frequented by the staff
and students of the local universities, industry pro-
grammers, as well as Haskell enthusiasts. You may
contact the Hackathon with any questions via email
(〈haskell.hackathon@gmail.com〉).
We keep track of ideas we would like to explore dur-

ing the Haskell Hackathon (http://haskell-hackathon.
no-ip.org/ideen.html). Any and all new questions are
welcome!

Haskell Meetup

The Haskell Meetup, also called Haskell Stammtisch
(which directly translates to: Haskell regulars table)
is a social event for the Haskell community. It is the
original Haskell event in Munich. Everyone is welcome
(even non-Haskell programmers!). It happens once a
month, usually at Cafe Puck which is a pub in one of
the cooler parts of Munich, where the members can eat
schnitzel and drink beer while chatting about topics
ranging from Haskell itself to abstract mathematics,
industrial programming, and so on. The group is very
welcoming and they make you feel right at home. The
Meetup attracts between 15 and 20 guests and there’s
a large proportion of regulars. Attendance ranges from
students, through mathematicians (notably the OEIS
has a presence), industry programmers, physicists, and
engineers. The Meetup receives international guests
and sometimes we hold lectures.
The Haskell Meetup, established 29th September

2011 by Heinrich Hördegen. It is sponsored by
Funktionale Programmierung Dr. Heinrich Hördegen
(http://funktional.info) and Energy Flow Analysis –
Ingenieurbüro Guttenberg & Hördegen (http://www.
energiefluss.info).

Munich Lambda

Munich Lambda (http://www.meetup.com/
Munich-Lambda/) was founded on Jun 28, 2013
by Alex Petrov. There have been 12 events so far,
on topics including Haskell, Clojure, and generally
functional programming, as well as Emacs. Meetups
on the topic of Haskell occur every month to two
months.
Typically, the meetup begins with a short introduc-

tory round where the visitors can talk about their work
or hobbies and grab some food (provided by sponsors),
followed by couple of presentations, and topped off by

88

mailto: haskell.consultancy at gmail.com
mailto: haskell.hackathon at gmail.com
mailto: haskell.consultancy at gmail.com
mailto: haskell.consultancy at gmail.com
mailto: haskell.hackathon at gmail.com
http://haskell-hackathon.no-ip.org/ideen.html
http://haskell-hackathon.no-ip.org/ideen.html
http://funktional.info
http://www.energiefluss.info
http://www.energiefluss.info
http://www.meetup.com/Munich-Lambda/
http://www.meetup.com/Munich-Lambda/

an informal discussion of relevant topics and getting
to know each other. It is a great opportunity to meet
other likeminded people who like Haskell or would like
to start out with it.
Munich Lambda is sponsored by codecentric (http:

//www.codecentric.de/) and StyleFruits (http://www.
stylefruits.de).

Mailing lists in Munich

There are two mailing lists in use: https:
//lists.fs.lmu.de/mailman/listinfo/high-order-munich
and http://mailman.common-lisp.net/cgi-bin/mailman/
listinfo/munich-lisp.
The lists are used for event announcements as well

as to continue discussions stemming from recent events.
It is usually expected that anyone subscribed to one is
also on the other, but conversations normally happen
only on one or the other. There are 59 subscribers to
high-order-munich.
There is a mail distributor for the Haskell Hackathon

(http://haskell-hackathon.no-ip.org). In order to receive
emails, send mail to the Haskell Hackathon organizer
(〈haskell.hackathon@gmail.com〉).

ZuriHac 2014, Budapest Hackathon 2014, and the
Munich Hackathon

There is a group of people going to ZuriHac 2014
(http://www.haskell.org/haskellwiki/ZuriHac2014). We
are currently planning the logistics. If you would
like to join us, you may write to the high-order-
munich mailing list (https://lists.fs.lmu.de/mailman/
listinfo/high-order-munich). Some people going to Zuri-
Hac want to visit Munich first and will be received by
the Munich community. There will be events during
the week before ZuriHac. Boarding in Munich is inex-
pensive; the bus to Zurich is only 15 Euro and you may
travel with a group of Haskell enthusiasts. There is a
lot to see and visit in Munich. It is an easy travel des-
tination as the Munich Airport has direct connections
with most large airports in the world. Zurich is 312
kilometers (194 miles) away and no passport is neces-
sary to travel from Munich to Zurich.
In addition, there is a group going to the Bu-

dapest Hackathon (http://www.haskell.org/haskellwiki/
BudapestHackathon2014), which is a week before Zuri-
Hac. To connect those two together, both geographi-
cally and in time, a Munich Lambda event is planned
for the 4th of June in Munich. The travel is very cheap
(the bus tickets from Budapest to Munich and from
Munich to Zurich are on the order of 30 Euro). This
way people can attend all three, completing what has
been nicknamed the Haskell World Tour 2014. For
more information you may contact the organizer of
the Haskell Hackathon in Munich (〈haskell.hackathon@
gmail.com〉). You may have fun, meet people from three

huge Haskell communities, travel together, and see the
world, all in one week!

Halle

There is a group of Haskell members going to HaL-
9 in Halle (http://www.haskell.org/pipermail/haskell/
2014-March/024115.html), which is 439 kilometers (273
miles) away. Henning Thielemann (〈schlepptop@
henning-thielemann.de〉), the event organizer, is in
charge of car pooling for visitors coming from all lo-
cations.

9.10 HaskellMN

Report by: Kyle Marek-Spartz
Participants: Tyler Holien
Status: ongoing

HaskellMN is a user group from Minnesota. We have
monthly meetings on the thirdWednesday in downtown
Saint Paul.

Further reading

http://www.haskell.mn

89

http://www.codecentric.de/
http://www.codecentric.de/
http://www.stylefruits.de
http://www.stylefruits.de
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
http://mailman.common-lisp.net/cgi-bin/mailman/listinfo/munich-lisp
http://mailman.common-lisp.net/cgi-bin/mailman/listinfo/munich-lisp
http://haskell-hackathon.no-ip.org
mailto: haskell.hackathon at gmail.com
http://www.haskell.org/haskellwiki/ZuriHac2014
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
http://www.haskell.org/haskellwiki/BudapestHackathon2014
http://www.haskell.org/haskellwiki/BudapestHackathon2014
mailto: haskell.hackathon at gmail.com
mailto: haskell.hackathon at gmail.com
http://www.haskell.org/pipermail/haskell/2014-March/024115.html
http://www.haskell.org/pipermail/haskell/2014-March/024115.html
mailto: schlepptop at henning-thielemann.de
mailto: schlepptop at henning-thielemann.de
http://www.haskell.mn

	Community
	Haskellers

	Books, Articles, Tutorials
	The Monad.Reader
	Oleg's Mini Tutorials and Assorted Small Projects
	School of Haskell
	Agda Tutorial

	Implementations
	The Glasgow Haskell Compiler
	Ajhc Haskell Compiler
	The Helium Compiler
	UHC, Utrecht Haskell Compiler
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Fedora Haskell SIG

	Related Languages and Language Design
	Agda
	MiniAgda
	Disciple
	Ermine

	Haskell and …
	Haskell and Parallelism
	Eden
	speculation
	Wakarusa

	Haskell and the Web
	WAI
	Warp
	Happstack
	Mighttpd2 — Yet another Web Server
	Yesod
	Snap Framework
	MFlow
	Scotty
	Sunroof
	Blank Canvas
	PureScript

	Haskell and Compiler Writing
	MateVM
	UUAG
	LQPL — A Quantum Programming Language Compiler and Emulator
	free — Free Monads
	bound — Making De Bruijn Succ Less

	Development Tools
	Environments
	Haskell IDE From FP Complete
	EclipseFP
	ghc-mod — Happy Haskell Programming
	HaRe — The Haskell Refactorer
	ghc-exactprint
	IHaskell: Haskell for Interactive Computing

	Code Management
	Darcs
	cab — A Maintenance Command of Haskell Cabal Packages

	Interfacing to other Languages
	java-bridge
	fficxx

	Deployment
	Cabal and Hackage
	Stackage: the Library Dependency Solution
	Haskell Cloud

	Others
	ghc-heap-view
	ghc-vis
	Hat — the Haskell Tracer
	Tasty
	Automatic type inference from JSON
	Exference

	Libraries, Applications, Projects
	Language Features
	Conduit
	lens
	folds
	machines
	exceptions
	Faking even more dependent types!
	Type checking units-of-measure
	GHC type-checker plugin for kind Nat
	Dependent Haskell

	Education
	Exercism: crowd-sourced code reviews on daily practice problems
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners

	Parsing and Transforming
	epub-metadata
	Utrecht Parser Combinator Library: uu-parsinglib
	HERMIT
	Generalized Algebraic Dynamic Programming
	parsers
	trifecta

	Mathematics
	Rlang-QQ
	order-statistics
	linear
	algebra
	semigroups and semigroupoids
	Arithmetics packages (Edward Kmett)
	ad
	integration
	contravariant
	categories
	bifunctors
	profunctors
	comonad
	recursion-schemes
	kan-extensions

	Numerical Packages and High Performance Computing
	arb-fft
	hblas
	HROOT
	Numerical

	Data Types and Data Structures
	constraints
	HList — A Library for Typed Heterogeneous Collections
	reflection
	tag-bits
	hyperloglog
	hybrid-vectors
	lca
	concurrent-supply
	heaps
	sparse
	compressed
	charset
	Convenience types (Edward Kmett)

	Databases and Related Tools
	tables
	Persistent
	Groundhog
	Opaleye
	HLINQ - LINQ for Haskell

	User Interfaces
	HsQML
	Gtk2Hs
	LGtk: Lens GUI Toolkit
	wxHaskell
	threepenny-gui
	reactive-banana
	fltkhs - GUI bindings to the FLTK library

	Graphics and Audio
	diagrams
	Chordify
	csound-expression
	Glome

	Text and Markup Languages
	epub-tools (Command-line epub Utilities)
	lens-aeson
	lhs2TeX
	pulp
	hyphenation

	Natural Language Processing
	NLP
	GenI

	Bioinformatics
	ADPfusion
	Ab-initio electronic structure in Haskell
	Semi-Classical Molecular Dynamics in Haskell
	Biohaskell
	arte-ephys: Real-time electrophysiology

	Embedding DSLs for Low-Level Processing
	CaSH
	Feldspar
	Kansas Lava

	Games
	The Amoeba-World game project
	EtaMOO
	scroll
	Nomyx

	Others
	General framework for multi-agent systems
	ersatz
	leapseconds-announced
	arbtt
	Hoodle
	Reffit
	Laborantin
	tempuhs
	tttool
	Transient
	gipeda
	Octohat (Stack Builders)
	git-annex
	openssh-github-keys (Stack Builders)
	propellor
	dimensional: Statically Checked Physical Dimensions

	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Haskell in the industry in Munich
	Industrial Haskell Group
	Better
	Keera Studios LTD
	plaimi
	Stack Builders
	Optimal Computational Algorithms, Inc.

	Research and User Groups
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Haskell at KU Leuven, Belgium
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Functional Programming at KU
	Regensburg Haskell Meetup
	Haskell in the Munich Area
	HaskellMN

