Haskell Communities and Activities Report

http:/ /tinyurl.com/haskcar

Twenty-Ninth Edition — November 2015

Andreas Abel
Francesco Ariis
Christiaan Baaij
Jean-Philippe Bernardy
Bjorn Buckwalter
Manuel M. T. Chakravarty
Alberto Gémez Corona
Péter Divianszky
Tom Ellis
Dennis Felsing
PALI Gébor Jénos
Brett G. Giles
Mark Grebe
Greg Hale
Nicu Ionita
Anton Kholomiov
Edward Kmett
Nickolay Kudasov
Andres Loh
Tan Lynagh
Douglas McClean
Dino Morelli
Antonio Nikishaev
Ivan Perez
Simon Peyton Jones
Bryan Richter
David Sabel
Tom Schrijvers
Jeremy Shaw
Gideon Sireling
Kyle Marek-Spartz
Henk-Jan van Tuyl
Adam Vogt
Ingo Wechsung
Brent Yorgey

Mihai Maruseac (ed.)
Chris Allen
Heinrich Apfelmus
Carl Baatz
Alexander Berntsen
Erik de Castro Lopo
Roman Cheplyaka
Duncan Coutts
Corentin Dupont
Maarten Faddegon
Julian Fleischer
Michal J. Gajda
Andrew Gill
Daniel Grober
Bastiaan Heeren
Bob Ippolito
Tan-Woo Kim
Balazs Kémiives
Rob Leslie
Rita Loogen
José Pedro Magalhaes

Simon Michael
Natalia Muska
Ulf Norell
Jens Petersen
Matthew Pickering
Jeffrey Rosenbluth
Martijn Schrage
Michael Schroder

Christian Honer zu Siederdissen

Jim Snow
Lennart Spitzner
Bernhard Urban

Daniel Wagner
Kazu Yamamoto
Alan Zimmerman

Christopher Anand
Emil Axelsson
Doug Beardsley
Joachim Breitner
Lucas DiCioccio
Olaf Chitil
Atze Dijkstra
Richard Eisenberg
Andrew Farmer
Phil Freeman
Andrew Gibiansky
Alexander Granin
Jurriaan Hage
Joey Hess
Robin KAY
Oleg Kiselyov
Eric Kow
Ben Lippmeier
Boris Lykah
Ketil Malde
Mantas Markevicius
Rishiyur Nikhil

Kiwamu Okabe
Haskell Consultancy Munich
Gracjan Polak
Tan Ross
Carter Tazio Schonwald
Austin Seipp
Aditya Siram
Michael Snoyman
Doaitse Swierstra
Alessio Valentini
Greg Weber
Edward Z. Yang
Marco Zocca


http://tinyurl.com/haskcar

Preface

This is the 29th edition of the Haskell Communities and Activities Report.

Quite a lot of things changed since the previous report. Some old entries have resurfaced
and contributors submitted stories in new areas of development but, sadly, several entries have
become too stale and had to be removed. All entries from 2013 except the one about cabal have
been removed for now but we hope to see them resurface again on the next edition. Please do
revive such entries next time if you do have news on them.

To make contributing easier, we are experimenting with moving to a rolling-deadline submis-
sion where each entry can be submitted at any moment of the year. However, we will still have
only 2 editions of HCAR per year, at the usual pace, only the entry submission period will be
extended. This change allows us to change the pipeline for building the report (thus, the next
report might look completely different). Hence, we are also considering opening the building
pipeline to be used by any submitter.

As usual, fresh entries — either completely new or old entries which have been revived after
a short temporarily disappearance — are formatted using a blue background, while updated
entries have a header with a blue background.

A few words from Mihai: The previous issue of HCAR was the last in which Alejandro helped
in editing. Due to other obligations he has decided to step down. I want to thank him for the
effort so far and for the contributions to the Haskell world.

A call for new HCAR entries and updates to existing ones will be issued on the Haskell mailing
lists in late March/early April.

Now enjoy the current report and see what other Haskellers have been up to lately. Any
feedback is very welcome, as always.

Mihai Maruseac, University of Massachusetts Boston, US
(hcar@haskell.org)


mailto: hcar at haskell.org

Contents

3.6.1
3.6.2
3.6.3

4.1
4.2
4.3

5.1
5.1.1
5.1.2
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9
5.2.10
5.2.11
5.3
5.3.1
5.3.2

6.1

6.1.1
6.1.2
6.1.3
6.1.4

Community
Haskellers . . . . . o o e e e e e e e e

Books, Articles, Tutorials

Oleg’s Mini Tutorials and Assorted Small Projects . . . . . . . . ... ... ... ... ..
School of Haskell . . . . . . . . . . . e
Haskell Programming from first principles, a book forall . . . . . .. ... ... ... ... ....
Learning Haskell . . . . . . . . . 0 0 e
Agda Tutorial . . . . . . . . e

Implementations

The Glasgow Haskell Compiler . . . . . . . . . . o o
Ajhc Haskell Compiler . . . . . . . . . . e
The Helium Compiler . . . . . . . . . . o e
UHC, Utrecht Haskell Compiler . . . . . . . . . .. e
Frege . . . o Lo
Specific Platforms . . . . . . . . oL
Haskell on FreeBSD . . . . . . . . . e
Debian Haskell Group . . . . . . . . . . .
Fedora Haskell SIG . . . . . . . . .

Related Languages and Language Design

Agda . . . . e
MiniAgda . . . . . .. e e e
Disciple . . . . . o e

Haskell and ...
Haskell and Parallelism . . . . . . . . . . o e e
Eden . . . e e e e e e

Mighttpd2 — Yet another Web Server . . . . . . . .. . ...
Happstack . . . . . o o e
Snap Framework . . . . . . . ..
MFIoW . . . o e
Sunroof . ..o L e
Blank Canvas . . . . . . . . .. e e
PureScript . . . . . . e
Haskell and Compiler Writing . . . . . . . . . . . . . e
MateVM . . . . o e e
UUAG . . o e

Development Tools

Environments . . . . ... L
Haskell IDE From FP Complete . . . . . . . . . .. .
ghc-mod — Happy Haskell Programming . . . . . . . . .. .. ... . 0.
haskell-ide-engine, a project for unifying IDE functionality . . . . . .. ... ... ... ... ...
HaRe — The Haskell Refactorer . . . . . . . . . . . . . .



6.1.5
6.1.6
6.1.7
6.1.8
6.2

6.2.1
6.2.2
6.3

6.3.1
6.3.2
6.4

6.4.1
6.4.2
6.4.3
6.5

6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.5.6
6.5.7
6.5.8

7.1

7.1.1
7.1.2
7.1.3
7.1.4
7.2

7.2.1
7.2.2
7.3

7.3.1
7.3.2
7.3.3
7.4

74.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7
7.5

7.5.1
7.5.2
7.5.3
7.5.4
7.6

7.6.1
7.6.2
7.6.3
7.6.4
7.7

7.7.1
7.7.2

ghe-exactprint . . . . . . Lo e 28

THaskell: Haskell for Interactive Computing . . . . . . . . . .. ... ... ... .. .... 28
Haskell for Mac . . . . . . . 0 0o e e 29
Haskino . . . . . . o o e e 30
Code Management . . . . . . . . . L e e 30
Darcs . . . . . e 30
cab — A Maintenance Command of Haskell Cabal Packages . . . . . ... ... ... ....... 31
Interfacing to other Languages . . . . . . . . . . . . e 31
javasbridge . .. .. L e 31
HEXX . e e e 31
Deployment . . . . . . . L e e e e 32
Cabal and Hackage . . . . . . . . . e 32
Stackage: the Library Dependency Solution . . . . . . . . .. .. ... ... .. ... . ..., 32
Haskell Cloud . . . . . . . . . e 33
Others . . . . . o e 33
ghe-heap-view .. o o o L e 33
Hat — the Haskell Tracer . . . . . . . . . . . e 33
Tasty . . o o e e 34
Automatic type inference from JSON . . . . . . . .. .. 34
Exference . . . . . e 35
Lentil .« . o o o e 35
The Remote Monad Design Pattern . . . . . . . . .. .. ... 35
Hoed — The Lightweight Algorithmic Debugger for Haskell . . . . . . .. ... ... ... .. ... 36
Libraries, Applications, Projects 38
Language Features . . . . . . . . . L e 38
Conduit . . . . . L 38
GHC type-checker plugin for kind Nat . . . . . . ... . .. . 38
Dependent Haskell . . . . . . . . o 0 39
Yampa . . . ..o e e e e e 39
Education . . . . . . . e e 41
Holmes, Plagiarism Detection for Haskell . . . . . . .. . ... . . 41
Interactive Domain Reasoners . . . . . . . . . . . L L 41
Parsing and Transforming . . . . . . . . . . L e 42
HERMIT . . . . e 42
Utrecht Parser Combinator Library: uu-parsinglib . . . . . ... ... ... ... ... ... 42
Generalized Algebraic Dynamic Programming . . . . . . . . .. .. ... ... 43
Mathematics, Numerical Packages and High Performance Computing . . . . . . ... .. ... .. 44
Rlang-QQ . . . . . e 44
arb-fft . . 45
hblas . . . . . e e e 45
HROOT . . . e e 45
Numerical . . . . . oo e 46
petsc-hs . o L e 46
combinat . . . . ..o e e e e 46
Data Types and Data Structures . . . . . . . . . . .. L e 47
HList — A Library for Typed Heterogeneous Collections . . . . . . . .. ... ... ... ... 47
Transactional Trie . . . . . . . . o . L e e 47
fixplate . . . . . . e e e 47
GENETICS-SOP .« v v v v v e e e e e e e e e e e e e e e e e 48
Databases and Related Tools . . . . . . . . . . . . 48
Persistent . . . . . . L e e 48
Groundhog . . . . . . e e 48
Opaleye . . . o o e e e 49
HLINQ - LINQ for Haskell . . . . . . . . . . . . e 49
User Interfaces . . . . . . . . . o e 49
HsQML . . . e 49
Gtk2Hs . . . . e 50



7.7.3
7.7.4
7.7.5
7.7.6
7.7
7.8
7.8.1
7.8.2
7.8.3
7.8.4
7.8.5
7.8.6
7.9
7.9.1
7.9.2
7.9.3
7.10
7.10.1
7.10.2
7.11
7.11.1
7.11.2
7.11.3
7.12
7.12.1
7.12.2
7.12.3
7.13
7.13.1
7.13.2
7.13.3
7.13.4
7.13.5
7.14
7.14.1
7.14.2
7.14.3
7.14.4
7.14.5
7.14.6
7.14.7
7.14.8
7.14.9
7.14.10
7.14.11
7.14.12
7.14.13
7.14.14
7.14.15
7.14.16

8.1
8.2
8.3
8.4
8.5
8.6

LGtk: Lens GUI Toolkit . . . . . . . . . . e 50

threepenny-gui. . . . . . . . L Lo e 51
reactive-banana . . . . .. Lo e 52
fitkhs - GUI bindings to the FLTK library . . . . . . . . ... ... . . .. 52
wxHaskell . . . . o e 53
Graphics and Audio . . . . . . . . L. e 53
VECE . o o e e e e e 53
diagrams . . . ... e e e e 53
Chordify . . . . . . e e 55
CSOUNA-EXPIeSSION . . . . v v v v et e e e e e e e e e e e 59
hmidi . . . o e e 59
Glome . . . . e e 56
Text and Markup Languages . . . . . . . . . . . L e 57
Ths2TEX . . o 57
PUlD . e 57
Unicode things . . . . . . . . e 57
Natural Language Processing . . . . . . . . . . . e 58
NLP . e 58
Genl . . o e 58
Bioinformatics . . . . . . L. oL e 59
ADPfusion . . . . . . oL 59
Biohaskell . . . . . . . e e 59
arte-ephys: Real-time electrophysiology . . . . . . . . . . .. Lo L 60
Embedding DSLs for Low-Level Processing . . . . . . . . . .. ... .. 60
ChaSH . . . e 60
Feldspar . . . . . . e 61
Kansas Lava . . . . . . o L 0 e e 61
GAaMES . . . o o e e e e 61
The Amoeba-World game project . . . . . . . . . . . . e 61
EtaMOO . . . . e e 62
Scroll . . L e e e 62
Nomyx . . . . o e 63
Barbarossa . . . . ... . e e e e 63
Others . . . . . e e 63
leapseconds-announced . . . . . ... L L e e e e e e e 63
hledger . . . . . . e 64
arbtt . . L e 64
Hoodle . . . . . o e 65
Reffit . . . . o e 65
Laborantin . . . . . . . . . L o e e 65
Transient . . . . . . . L e e e 66
thtool « . L e e 67
gipeda . . .. e e e 67
Octohat (Stack Builders) . . . . . . . . . 67
GIt-ANNEX . . . . L e e e e e 67
openssh-github-keys (Stack Builders) . . . . . . ... ... 68
propellor . . . .o e 68
dimensional: Statically Checked Physical Dimensions . . . . . . . . . ... .. ... ... ..... 68
igrf: The International Geomagnetic Reference Field . . . . .. ... .. ... ... .. ... 69
The Incredible Proof Machine . . . . . . . . . . . . . . . . .. 69
Commercial Users 70
Well-Typed LLP . . . . . . o e 70
Bluespec Tools for Design of Complex Chips and Hardware Accelerators . . . . . .. .. ... .. 70
Haskell in the industry in Munich . . . . .. .. .0 0 0 71
Better . . . . e e 72
Keera Studios LTD . . . . . . . . . e 73
plaimi . . . L e 74



8.7
8.8
8.9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Stack Builders . . . . . . . e e 75
Optimal Computational Algorithms, Inc. . . . . . . . . . . ... . 75
Snowdrift.coop . . . . ... e 75
Research and User Groups 77
Haskell at E6tvos Lordnd University (ELTE), Budapest . . . . . . . . ... ... ... ... .... 77
Artificial Intelligence and Software Technology at Goethe-University Frankfurt . . . . . . . .. .. 77
Functional Programming at the University of Kent . . . . . . . ... ... ... ... ... .... 78
Haskell at KU Leuven, Belgium . . . . .. . .. .. . 79
fp-syd: Functional Programming in Sydney, Australia . . . . . . ... ... ... ... ... ... 79
Functional Programming at Chalmers . . . . . . . . .. . ... 79
Functional Programming at KU . . . . . . ... . 0 oo 81
Regensburg Haskell Meetup . . . . . . . . 0 . e 81
Haskell in the Munich Area . . . . . . . . . . . 82
HaskellMN . . . . o e 84



1 Community

1.1 Haskellers

Report by: Michael Snoyman
Status: experimental

Haskellers is a site designed to promote Haskell as a
language for use in the real world by being a central
meeting place for the myriad talented Haskell develop-
ers out there. It allows users to create profiles complete
with skill sets and packages authored and gives employ-
ers a central place to find Haskell professionals.

Haskellers is a web site in maintenance mode. No
new features are being added, though the site remains
active with many new accounts and job postings con-
tinuing. If you have specific feature requests, feel free
to send them in (especially with pull requests!).

Haskellers remains a site intended for all members
of the Haskell community, from professionals with 15
years experience to people just getting into the lan-
guage.

Further reading

http://www.haskellers.com/


http://www.haskellers.com/

2 Books, Articles, Tutorials

2.1 Oleg’s Mini Tutorials and
Assorted Small Projects

Report by: Oleg Kiselyov

The collection of various Haskell mini tutorials and
assorted small projects (http://okmij.org/ftp/Haskell/)
has received three additions:

Generators: yield = exception + non-determinism

Generators, familiar nowadays from Python (although
they predate Python by about two decades) are the
expressions that yield. They give the benefit of lazy
evaluation — modular on-demand processing — in strict
languages or when lazy evaluation does not apply be-
cause the computation has observable effects such as
I0. The tutorial explains that yield decomposes into
exceptions and non-determinism. The one-line defini-
tion should clarify:

yield :: MonadPlus m = e — EitherT e m ()
yield x = raise x ‘mplus’ return ()

The exception carries the yield’s argument ‘out of
band’, on the emergency channel so to speak; the
non-deterministic choice mplus effectively lets the com-
putation continue despite raising the exception. We
have unwittingly obtained the typing of generators:
MonadPlus m = EitherT e m a is the type of a gen-
erator returning the result of type a while yielding in-
termediate results of type e.

The tutorial derives the above definition by equa-
tional reasoning. It also documents the rich history of
generators.

Read the tutorial online.

Icon-like generators in Haskell

The decomposition of yield into exceptions and non-
determinism sprouts the implementations of generators
in Haskell, logical programming and ML — the imple-
mentations that are correct and working on the first
try. As an illustration, the tutorial shows how to use
Haskell as if it were Icon. For example, the following
Icon code

procedure findodd (s1,s2)
every i := find (s1,s2) do
if ¢ % 2 = 1 then suspend 1
end

that produces all odd indices at which string s occurs
within s2 looks in Haskell as follows

findodd?2 :: (Monad m, LogicT ¢, MonadPlus (t m)) =
String — String — EitherT Int (¢t m) ()

findodd2 s1 s2 = iterE Nothing $ do
14 findIM s1 s2
if ¢ ‘mod‘ 2 = 1 then yield { else return () |])

Read the tutorial online.

Generator from any Foldable

Any abstract data type that implements the
Data.Foldable interface implements the generator inter-
face. In fact, any (collection) type T with the operation
like mapM__:: Monad m = (Element T = m b) - T —
m () that lets a monadic action examine its elements
(of the type Element T) implements the generator in-
terface. The claims holds regardless of the implemen-
tation of the data type, whether it is a data structure
or if the elements to traverse are computed on-the-fly.

The proof of the claim is constructive, short, and
trivial:

foldable__gen :: (MonadPlus m, F.Foldable t) =
t a — EitherT a m ()
foldable__gen = F.mapM __ yield

The type says it all: any Foldable is a generator.
Read the tutorial online.

2.2 School of Haskell

Natalia Muska

Michael Snoyman, Edward Kmett, Simon
Peyton Jones and others

active

Report by:
Participants:

Status:

The School of Haskell has been available since early
2013. It’s main two functions are to be an education
resource for anyone looking to learn Haskell and as
a sharing resources for anyone who has built a valu-
able tutorial. The School of Haskell contains tutorials,
courses, and articles created by both the Haskell com-
munity and the developers at FP Complete. Courses
are available for all levels of developers.

Two new features were added to the School of
Haskell. First is the addition of Disqus for commenting
on each tutorial and highlighting other potentially in-
teresting tutorials. Second is the inclusion of autorun
tags. This enables users to run a snippet as soon as
they open a tutorial.

Currently 3150 tutorials have been created (a 125%
increase from this time last year) and 441 have been


http://okmij.org/ftp/Haskell/
http://okmij.org/ftp/continuations/generators.html#derivation
http://okmij.org/ftp/continuations/generators.html#yield-Haskell
http://okmij.org/ftp/continuations/generators.html#foldable

officially published (a 53% increase from this time last
year). Some of the most visited tutorials are Text Ma-
nipulation Attoparsec, Learning Haskell at the SOH,
Introduction to Haskell - Haskell Basics, and A Little
Lens Starter Tutorial. Over the past year the School
of Haskell has averaged about 16k visitors a month.

All Haskell programmers are encouraged to visit the
School of Haskell and to contribute their ideas and
projects. This is another opportunity to showcase the
virtues of Haskell and the sophistication and high level
thinking of the Haskell community.

Further reading

https:/ /www.fpcomplete.com /school

2.3 Haskell Programming from first
principles, a book forall

Report by: Chris Allen
Participants: Julie Moronuki
Status: In progress, content complete soon

Haskell Programming is a book that aims to get people
from the barest basics to being well-grounded in enough
intermediate Haskell concepts that they can self-learn
what would be typically required to use Haskell in pro-
duction or to begin investigating the theory and de-
sign of Haskell independently. We're writing this book
because many have found learning Haskell to be diffi-
cult, but it doesn’t have to be. What particularly con-
tributes to the good results we’ve been getting has been
an aggressive focus on effective pedagogy and extensive
testing with reviewers as well as feedback from readers.
My coauthor Julie Moronuki is a linguist who’d never
programmed before learning Haskell and authoring the
book with me.

Haskell Programming is currently about 70 percent
complete and is 912 pages long in the v0.7.0 release.
The book is available for sale during the early access,
which includes the 1.0 release of the book in PDF.
We're still doing the main block of writing and test-
ing of material. We’ve got some unannounced material
that we think will excite people a bit as well.

Further reading

o http://haskellbook.com

o https://superginbaby.wordpress.com/2015/05/30/
learning-haskell-the-hard-way/

o http://bitemyapp.com/posts/
2015-08-23-why-we-dont-chuck-readers-into-web-apps.html

2.4 Learning Haskell

Report by: Manuel M. T. Chakravarty
Participants: Gabriele Keller
Status: Work in progress with four published

chapters

Learning Haskell is a new Haskell tutorial that inte-
grates text and screencasts to combine in-depth expla-
nations with the hands-on experience of live coding. It
is aimed at people who are new to Haskell and func-
tional programming. Learning Haskell does not assume
previous programming expertise, but it is structured
such that an experienced programmer who is new to
functional programming will also find it engaging.
Learning Haskell combines perfectly with the Haskell
for Mac programming environment, but it also includes
instructions on working with a conventional command-
line Haskell installation. It is a free resource that
should benefit anyone who wants to learn Haskell.
Learning Haskell is still work in progress, but the
first four chapters are already available. The latest

chapter illustrates various recursive structures using
fractal graphics, such as this fractal tree.

Further chapters will be made available as we com-
plete them.

Further reading

o Learning Haskell is free at http://learn.hfm.io
o Blog post with some background:
http://blog.haskellformac.com /blog/learning-haskell


https://www.fpcomplete.com/school
http://haskellbook.com
https://superginbaby.wordpress.com/2015/05/30/learning-haskell-the-hard-way/
https://superginbaby.wordpress.com/2015/05/30/learning-haskell-the-hard-way/
http://bitemyapp.com/posts/2015-08-23-why-we-dont-chuck-readers-into-web-apps.html
http://bitemyapp.com/posts/2015-08-23-why-we-dont-chuck-readers-into-web-apps.html
http://learn.hfm.io
http://blog.haskellformac.com/blog/learning-haskell

2.5 Agda Tutorial

Report by: Péter Divianszky
Participants: Ambrus Kaposi, students at ELTE IK
Status: experimental

Agda may be the next programming language to learn
after Haskell. Learning Agda gives more insight into
the various type system extensions of Haskell, for ex-
ample.

The main goal of the tutorial is to let people ex-
plore programming in Agda without learning theoret-
ical background in advance. Only secondary school
mathematics is required for the tutorial.

Further reading

http://people.inf.elte.hu/divip/AgdaTutorial /Index.html

10


http://people.inf.elte.hu/divip/AgdaTutorial/Index.html

3 Implementations

3.1 The Glasgow Haskell Compiler

Austin Seipp
many others

Report by:
Participants:

GHC development spurs on, with an exciting new an-
nouncement - the next release will be a super-major
one, culminating in GHC 8.0. There are many rea-
sons for this change, but one of the most exciting is that
GHC is getting a completely new core language.
While this adds a bit of complexity to the compiler, it
paves the way to implement Dependent Haskell over
the course of the next few years.

Major changes in GHC 8.0.1

Support for simple, implicit callstackas with source
locations and implicit parameters providing call-
stacks/source locations, allowing you to have a light-
weight means of getting a call-stack in a Haskell ap-
plication.

Improved optimization diagnostics The compiler is
now more liberal about issues warnings of potentially
non-firing rewrite rules and other potential gotchas.

Support for wildcards in data and type family in-
stances

Injective type families Injective TFs allow you to
specify type families which are injective, i.e. have
a one-to-one relationship.

Applicative do notation With the new
—XApplicativeDo, GHC tries to desugar do-
notation to Applicative where possible, giving a
more convenient sugar for many common Applicative
expressions.

Support for deriving the Lift typeclass - a very com-
mon need when working with Template Haskell.

A PowerPC 64bit code generator The new native
codegen supports Linux/ppc64 in both big endian
and little endian mode.

A beautiful new users guide Now rewritten in re-
Structured Text, and with significantly improved
output and documentation.

Visible type application This allows you to say, for ex-
ample id@Bool to specialize id to Bool — Bool. With
this feature, proxies are never needed.

11

Kind Equalities , which form the first step to build-
ing Dependent Haskell. This feature enables promo-
tion of GADTs to kinds, kind families, heterogeneous
equality (kind-indexed GADTS), and * :: .

Strict Haskell support This includes
—XStrictData and —XStrict language extensions.

new

Support for record pattern synonyms
Implement phase 1 of the MonadFail proposal

Overloaded record fields At long last, ORF will fi-
nally be available in GHC 8.0, allowing multiple uses
of the same field name and a form of type-directed
name resolution.

A huge improvement to pattern matching
(including much better coverage of GADTS),
based on the work of Simon PJ and Georgios
Karachalias.

More Backpack improvements There’s a new user-
facing syntax which allows multiple modules to be
defined a single file, and we’re hoping to release at
least the ability to publish multiple “units” in a sin-
gle Cabal file.

Support for DWARF based stacktraces from Peter
Wortmann, Arash Rouhani, and Ben Gamari with
backtraces from Haskell code.

A better LLVM backend We're planning on a major
build system change that will ship GHC 8.0 with a
pre-baked copy of LLVM 3.7.0, that ships with every
major Tier 1 platform.

Big GC improvements for large, 64-bit workloads |,
motivated by work Simon Marlow has been doing
at Facebook. If you have a GC-intensive workload
with large heaps, GHC 8.0.1 should hopefully lower
latency and collection time for your applications.

Upcoming post 8.0 plans

Naturally, there were several things we didn’t get
around to this cycle, or things which are still in flight
and being worked on. (And you can always try to join
us if you want something done!)

Libraries, source language, type system

o A new, type-indexed type representation, data
TTypeRep (a:: k). See TypeableT.

o Support for Type Signature Sections, allowing
you to write (::ty) as a shorthand for (Az — z :: ty).

o A DEPRECATED pragma for exports



o Further work on Dependent Haskell, including pi
types.

Back-end and runtime system

o More DWARF improvements, including experimen-
tations in new performance tools!

o Work continues on GHC on ARM, and more recently,
GHC on AArch64! 8.0 is leagues ahead of 7.10, but
there is still much to be done.

o We’re working on integrating support for Compact
Normal Forms, described in an ICFP 2015 pa-
per. CNFs are designed for the use case of transmit-
ting large data structures across applications, with-
out paying for costly serialization.

Frontend, build-system and miscellaneous changes

o A planned overhaul of GHC’s build system to use
Shake instead of Make is still in play, although it
didn’t make it in time for 8.0.1

o A new Mac Mini will be added to our continuous
integration suite, thanks to a generous donation from
Futurice!

o Work on a new set of flags, —Wcompat, is under-
way, hoping to bring some order to the chaos of
code-breaking language updates, and the implica-
tions these have for —Wall clean codebases.

o Work steams on to make GHC a deterministic com-
piler - always producing the same output object files
for the same input. This has proven to be surpris-
ingly tricky, but we just needed a smart hacker to
step up and tackle it - and Bartosz Nitka has de-
cided to do just that!

Development updates and getting involved

GHC is as busy as ever, and the amount of patches
we review and contributors we actively get has been
steadily increasing. In particular, Ben Gamari from
Well-Typed has joined Austin in ongoing GHC main-
tenance, patch review, and guidance.

But GHC is far, far too large for even a few paid
individuals to fully manage it. As always, if you want
something done, you should get involved and talk to
us!

Since the last release, we’ve continued to see some
major effort expended by new contributors. Matthew
Pickering has lead the way on major improvements to
the state of pattern synonyms, Omer Sinan Agacan
has been tirelessly working on multiple parts of the
compiler, and Thomas Miedema has continued with
seemingly endless energy to improve all areas of GHC.

Of course, it would be even better if your name were
included here! So if you've got a few spare cycles - we
could always use more helping hands...

Links:

https://ghc.haskell.org/trac/ghc/wiki/ApiAnnotations
https://ghc.haskell.org/trac/ghc/wiki/ApplicativeDo
https://ghc.haskell.org/trac/ghc/wiki/Building/Shake
https://ghc.haskell.org/trac/ghc/wiki/DWARF
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell /
Phasel
o https://ghc.haskell.org/trac/ghc/wiki/DistributedHaskell
o https://ghc.haskell.org/trac/ghc/wiki/ExplicitCallStack/
ImplicitLocations
o https://ghc.haskell.org/trac/ghc/wiki/
Explicit TypeApplication
o https://ghc.haskell.org/trac/ghc/wiki/GhcApi
o https://ghc.haskell.org/trac/ghc/wiki/
ImprovedLLVMBackend
o https://ghc.haskell.org/trac/ghc/wiki/
Injective TypeFamilies
o https://ghc.haskell.org/trac/ghc/wiki/
OverloadedRecordFields
o https://ghc.haskell.org/trac/ghc/wiki/
Partial TypeSignatures
o https://ghc.haskell.org/trac/ghc/wiki/Plugins/
TypeChecker
o https://ghc.haskell.org/trac/ghc/wiki/Records/
OverloadedRecordFields
https://ghc.haskell.org/trac/ghc/wiki/StaticPointers
https://ghc.haskell.org/trac/ghc/wiki/Typeable
https://ghc.haskell.org/trac/ghc/wiki/prelude710
http://www.seas.upenn.edu/~eir/papers/2013/fckinds/
fckinds-extended.pdf
o https://github.com/yav/type-nat-solver/raw/master/
docs/paper.pdf
o https://github.com/yav/type-nat-solver
o http://ezyang.com/papers/ezyangl5-cnf.pdf

O O O O O

O O O O

3.2 Ajhc Haskell Compiler

Kiwamu Okabe

John Meacham, Hiroki Mizuno, Hidekazu
Segawa, Takayuki Muranushi
experimental

Report by:
Participants:

Status:
What is it?

Ajhc is a Haskell compiler, and acronym for “A fork of
jhe”.

Jhe  (http://repetae.net/computer/jhc/)  converts
Haskell code into pure C language code running with
jhe’s runtime. And the runtime is written with 3000
lines (include comments) pure C code. It’s a magic!

Ajhc’s mission is to keep contribution to jhc in
the repository. Because the upstream author of jhc,
John Meacham, can’t pull the contribution speedily.
(I think he is too busy to do it.) We should feed-
back jhc any changes. Also Ajhc aims to provide the
Metasepi project with a method to rewrite NetBSD
kernel using Haskell. The method is called Snatch-
driven development http://www.slideshare.net/master__
q/20131020-osc-tokyoajhc.

Ajhc is, so to speak, an accelerator to develop jhe.

12


https://ghc.haskell.org/trac/ghc/wiki/ApiAnnotations
https://ghc.haskell.org/trac/ghc/wiki/ApplicativeDo
https://ghc.haskell.org/trac/ghc/wiki/Building/Shake
https://ghc.haskell.org/trac/ghc/wiki/DWARF
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase1
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase1
https://ghc.haskell.org/trac/ghc/wiki/DistributedHaskell
https://ghc.haskell.org/trac/ghc/wiki/ExplicitCallStack/ImplicitLocations
https://ghc.haskell.org/trac/ghc/wiki/ExplicitCallStack/ImplicitLocations
https://ghc.haskell.org/trac/ghc/wiki/ExplicitTypeApplication
https://ghc.haskell.org/trac/ghc/wiki/ExplicitTypeApplication
https://ghc.haskell.org/trac/ghc/wiki/GhcApi
https://ghc.haskell.org/trac/ghc/wiki/ImprovedLLVMBackend
https://ghc.haskell.org/trac/ghc/wiki/ImprovedLLVMBackend
https://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies
https://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies
https://ghc.haskell.org/trac/ghc/wiki/OverloadedRecordFields
https://ghc.haskell.org/trac/ghc/wiki/OverloadedRecordFields
https://ghc.haskell.org/trac/ghc/wiki/PartialTypeSignatures
https://ghc.haskell.org/trac/ghc/wiki/PartialTypeSignatures
https://ghc.haskell.org/trac/ghc/wiki/Plugins/TypeChecker
https://ghc.haskell.org/trac/ghc/wiki/Plugins/TypeChecker
https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields
https://ghc.haskell.org/trac/ghc/wiki/Records/OverloadedRecordFields
https://ghc.haskell.org/trac/ghc/wiki/StaticPointers
https://ghc.haskell.org/trac/ghc/wiki/Typeable
https://ghc.haskell.org/trac/ghc/wiki/prelude710
http://www.seas.upenn.edu/~eir/papers/2013/fckinds/fckinds-extended.pdf
http://www.seas.upenn.edu/~eir/papers/2013/fckinds/fckinds-extended.pdf
https://github.com/yav/type-nat-solver/raw/master/docs/paper.pdf
https://github.com/yav/type-nat-solver/raw/master/docs/paper.pdf
https://github.com/yav/type-nat-solver
http://ezyang.com/papers/ezyang15-cnf.pdf
http://repetae.net/computer/jhc/
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc

Demonstrations

https://www.youtube.com /watch?v=XEYcR5RG5cA

NetBSD kernel’s HD Audio sound driver has inter-
rupt handler. The interrupt handler of the demo is
re-written by Haskell language using Ajhc.

At the demo, run following operations. First, set
breakpoint at the interrupt of finding headphone, and
see Haskell function names on backtrace. Second, set
breakpoint s_alloc() function, that allocate area in
Haskell heap. Make sure of calling the function while
anytime running kernel. Nevertheless, playing wav file
does not break up.

The source code is found at  https:
//github.com /metasepi/netbsd-arafura-sl The
interrupt ~ handler  source code at  https:

//github.com/metasepi/netbsd-arafura-s1/blob/
fabd5d64f15058c198ba722058c3fb89f84d08a5/
metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15.

Discussion on mailing list: http://www.haskell.org/
pipermail /haskell-cafe/2014-February /112802.html
http://www.youtube.com /watch?v=n6cepTfnFoo

The touchable cube application is written with
Haskell and compiled by Ajhc. In the demo, the ap-
plication is breaked by ndk-gdb debugger when run-
ning GC. You could watch the demo source code at
https://github.com/ajhc/demo-android-ndk.

http://www.youtube.com /watch?v=C9JsJXWyajQ

The demo is running code that compiled with Ajhc
on Cortex-M3 board, mbed. It’s a simple RSS reader
for reddit.com, showing the RSS titles on Text LCD
panel. You could watch the demo detail and source
code at https://github.com/ajhc/demo-cortex-m3.

http://www.youtube.com/watch?v=zkSy0ZroRls

The demo is running Haskell code without any
0OS. Also the clock exception handler is written with
Haskell.

Usage

You can install Ajhc from Hackage.

$ cabal install ajhc

$ ajhc --version

ajhc 0.8.0.9 (9¢c264872105597700e2ba403851cf3b
236cb1646)

compiled by ghc-7.6 on a x86_64 running linux
$ echo ’main = print "hoge"’ > Hoge.hs

$ ajhc Hoge.hs

$ ./hs.out

"hoge"

Please read “Ajhc User’s Manual” to know more de-
tail. (http://ajhc.metasepi.org/manual.html)

Future plans

Maintain Ajhc as compilable with latast GHC.

13

License

o Runtime: MIT License https://github.com/ajhc/ajhc/
blob/master/rts/LICENSE

o Haskell libraries: MIT License https://github.com/ajhc/
ajhc/blob/master/lib/LICENSE

o The others: GPLv2 or Later https://github.com/ajhc/
ajhc/blob/arafura/COPYING

Contact

o Mailing list:
http://groups.google.com/group/metasepi

o Bug tracker: https://github.com/ajhc/ajhc/issues

o Metasepi team:
https://github.com/ajhc?tab=members

Further reading

o Ajhc — Haskell everywhere:
http://ajhc.metasepi.org/

o jhe: http://repetae.net/computer/jhc/

o Metasepi: Project http://metasepi.org/

o Snatch-driven-development: http://www.slideshare.
net/master_q/20131020-osc-tokyoajhc

3.3 The Helium Compiler

Report by:
Participants:

Jurriaan Hage
Bastiaan Heeren

Helium is a compiler that supports a substantial sub-
set of Haskell 98 (but, e.g., n+k patterns are missing).
Type classes are restricted to a number of built-in type
classes and all instances are derived. The advantage of
Helium is that it generates novice friendly error feed-
back, including domain specific type error diagnosis by
means of specialized type rules. Helium and its asso-
ciated packages are available from Hackage. Install it
by running cabal install helium. You should also
cabal install lvmrun on which it dynamically de-
pends for running the compiled code.

Currently Helium is at version 1.8.1. The major
change with respect to 1.8 is that Helium is again
well-integrated with the Hint programming environ-
ment that Arie Middelkoop wrote in Java. The jar-file
for Hint can be found on the Helium website, which is
located at http://www.cs.uu.nl/wiki/Helium. This web-
site also explains in detail what Helium is about, what
it offers, and what we plan to do in the near and far
future.

A student has added parsing and static checking for
type class and instance definitions to the language, but
type inferencing and code generating still need to be
added. Completing support for type classes is the sec-
ond thing on our agenda, the first thing being making
updates to the documentation of the workings of He-
lium on the website.


https://www.youtube.com/watch?v=XEYcR5RG5cA
https://github.com/metasepi/netbsd-arafura-s1
https://github.com/metasepi/netbsd-arafura-s1
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
https://github.com/metasepi/netbsd-arafura-s1/blob/fabd5d64f15058c198ba722058c3fb89f84d08a5/metasepi/sys/hssrc/Dev/Pci/Hdaudio/Hdaudio.hs#L15
http://www.haskell.org/pipermail/haskell-cafe/2014-February/112802.html
http://www.haskell.org/pipermail/haskell-cafe/2014-February/112802.html
http://www.youtube.com/watch?v=n6cepTfnFoo
https://github.com/ajhc/demo-android-ndk
http://www.youtube.com/watch?v=C9JsJXWyajQ
https://github.com/ajhc/demo-cortex-m3
http://www.youtube.com/watch?v=zkSy0ZroRIs
http://ajhc.metasepi.org/manual.html
https://github.com/ajhc/ajhc/blob/master/rts/LICENSE
https://github.com/ajhc/ajhc/blob/master/rts/LICENSE
https://github.com/ajhc/ajhc/blob/master/lib/LICENSE
https://github.com/ajhc/ajhc/blob/master/lib/LICENSE
https://github.com/ajhc/ajhc/blob/arafura/COPYING
https://github.com/ajhc/ajhc/blob/arafura/COPYING
http://groups.google.com/group/metasepi
https://github.com/ajhc/ajhc/issues
https://github.com/ajhc?tab=members
http://ajhc.metasepi.org/
http://repetae.net/computer/jhc/
http://metasepi.org/
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.slideshare.net/master_q/20131020-osc-tokyoajhc
http://www.cs.uu.nl/wiki/Helium

3.4 UHC, Utrecht Haskell Compiler

Report by: Atze Dijkstra
Participants: many others
Status: active development

UHC is the Utrecht Haskell Compiler, supporting al-
most all Haskell98 features and most of Haskell2010,
plus experimental extensions.

Status Current active development directly on UHC:

o Making intermediate Core language available as a
compilable language on its own, used by an experi-
mental Agda backend (Philipp Hausmann).

o The platform independent part of UHC has been
made available via Hackage, as package “uhc-light”
together with a small interpreter for Core files (Atze
Dijkstra, interpreter still under development).

o Implementing static analyses (Tibor Bremer, Jurri-
aan Hage, in progress).

o Rework of the type system (Alejandro Serrano, Jur-
riaan Hage, just started).

Background. UHC actually is a series of compilers of
which the last is UHC, plus infrastructure for facilitat-
ing experimentation and extension. The distinguishing
features for dealing with the complexity of the compiler
and for experimentation are (1) its stepwise organi-
sation as a series of increasingly more complex stan-
dalone compilers, the use of DSL and tools for its (2)
aspectwise organisation (called Shuffle) and (3) tree-
oriented programming (Attribute Grammars, by way
of the Utrecht University Attribute Grammar (UUAG)
system (— 5.3.2).

Further reading

o UHC Homepage:
http://www.cs.uu.nl/wiki/UHC/WebHome

o UHC Github repository:
https://github.com/UU-ComputerScience/uhc

o Attribute grammar system: http:
//www.cs.uu.nl/wiki/HUT /AttributeGrammarSystem

3.5 Frege

Report by:
Participants:

Ingo Wechsung

Dierk Konig, Mark Perry, Marimuthu
Madasami, Sean Corfield, Volker Steiss
and others

Status: actively maintained

Frege is a Haskell dialect for the Java Virtual Machine
(JVM). It covers essentially Haskell 2010, though there
are some mostly insubstantial differences. Several GHC

14

language extensions are supported, most prominently
higher rank types.

As Frege wants to be a practical JVM language, in-
teroperability with existing Java code is essential. To
achieve this, it is not enough to have a foreign function
interface as defined by Haskell 2010. We must also have
the means to inform the compiler about existing data
types (i.e. Java classes and interfaces). We have thus
replaced the FFI by a so called native interface which
is tailored for the purpose.

The compiler, standard library and associated tools
like Eclipse IDE plugin, REPL (interpreter) and several
build tools are in a usable state, despite development is
actively ongoing. The compiler is self hosting and has
no dependencies except for the JDK.

In the growing, but still small community, a con-
sensus developed this summer that existing differences
to Haskell shall be eliminated. Ideally, Haskell source
code could be ported by just compiling it with the Frege
compiler. Thus, the ultimate goal is for Frege to be-
come the Haskell implementation on the JVM.

Already, in the last month, three of the most offend-
ing syntactical differences have been removed: lambda
syntax, instance/class context syntax and recognition
of True and False as boolean literals.

Frege is available under the BSD-3 license at the
GitHub project page. A ready to run JAR file can
be downloaded or retrieved through JVM-typical build
tools like Maven, Gradle or Leiningen.

All new users and contributors are welcome!

Currently, we develop a new backend of the compiler
to support and employ Java 8 lambdas. In addition,
several contributors are porting or re-implementing
GHC libraries, like Array or STM.

Further reading

https://github.com/Frege/frege

3.6 Specific Platforms

3.6.1 Haskell on FreeBSD

Report by: PALI Gabor Janos
Participants: FreeBSD Haskell Team
Status: ongoing

The FreeBSD Haskell Team is a small group of peo-
ple who maintain Haskell software on all actively sup-
ported versions of FreeBSD. The primarily supported
implementation is the Glasgow Haskell Compiler to-
gether with Haskell Cabal, although one may also find
Hugs and NHC98 in the ports tree. FreeBSD is a Tier-
1 platform for GHC (on both x86 and x86_ 64) starting


http://www.cs.uu.nl/wiki/UHC/WebHome
https://github.com/UU-ComputerScience/uhc
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem
https://github.com/Frege/frege

from GHC 6.12.1, hence one can always download na-
tive vanilla binary distributions for each new release.

We have a developer (staging) repository for Haskell
ports that currently features around 600 of many of
the popular Cabal packages. Most of the updates com-
mitted to that repository are continuously integrated
to the official ports tree on a regular basis. In re-
sult, the FreeBSD Ports Collection still offers many
popular and important Haskell software: GHC 7.10.2,
Gtk2Hs, wxHaskell, XMonad, Pandoc, Gitit, Yesod,
Happstack, Snap, Agda (along with its standard li-
brary), git-annex, and so on — all of them are avail-
able on 9.3-RELEASE and 10.2-RELEASE. Note that
we decided to abandon tracking Haskell Platform (al-
though all its former components are still there as indi-
vidual packages), instead we updated the packages to
match their versions on Stackage (at end of August).

If you find yourself interested in helping us or sim-
ply want to use the latest versions of Haskell programs
on FreeBSD, check out our development repository on
GitHub (see below) where you can find the latest ver-
sions of the ports together with all the important point-
ers and information required for contacting or con-
tributing.

Further reading

https://github.com/freebsd-haskell /ports

3.6.2 Debian Haskell Group

Joachim Breitner
working

Report by:
Status:

The Debian Haskell Group aims to provide an optimal
Haskell experience to users of the Debian GNU/Linux
distribution and derived distributions such as Ubuntu.
We try to follow the Haskell Platform versions for the
core package and package a wide range of other use-
ful libraries and programs. At the time of writing, we
maintain 741 source packages.

A system of virtual package names and dependen-
cies, based on the ABI hashes, guarantees that a system
upgrade will leave all installed libraries usable. Most
libraries are also optionally available with profiling en-
abled and the documentation packages register with
the system-wide index.

The just released stable Debian release (“jessie”) pro-
vides the Haskell Platform 2013.2.0.0 and GHC 7.6.3,
while in Debian unstable, we ship GHC 7.8.4. GHC
7.10.2, together with all libraries, is ready to be used
in Debian experimental, and should be uploaded to un-
stable shortly.

Debian users benefit from the Haskell ecosystem
on 14 architecture/kernel combinations, including the
non-Linux-ports KFreeBSD and Hurd.

15

Further reading

http://wiki.debian.org/Haskell

3.6.3 Fedora Haskell SIG

Report by: Jens Petersen
Participants: Ricky Elrod, Ben Boeckel, and others
Status: active

The Fedora Haskell SIG works to provide good Haskell
support in the Fedora Project Linux distribution.

Fedora 22 is about to be released. Updating to ghc-
7.8.4 turned out to be a lot of work. Some packages now
have static subpackages for portability: alex, cabal-
install, pandoc, and darcs. Lots of Haskell packages
were updated to their latest versions (see “Package
changes” below).

Fedora 23 development is starting: we are consider-
ing if we can update to ghc-7.10 if there is a bugfix
release in time, and to refresh packages to their lat-
est versions tracking Stackage where possible. In the
meantime there is a ghc-7.10.1 Fedora Copr repo avail-
able for Fedora 20+ and EPEL 7.

At the time of writing we have 314 Haskell source
packages in Fedora. The cabal-rpm packaging tool has
improved further with a new update command, dnf
support, and various bugfixes and improvements.

If you are interested in Fedora Haskell packaging,
please join our mailing-list and the Freenode #fedora-
haskell channel. You can also follow @fedorahaskell for
occasional updates.

Further reading

o Homepage:
http://fedoraproject.org/wiki/Haskell_SIG
Mailing-list: https:
//admin.fedoraproject.org/mailman/listinfo/haskell
Package list: https://admin.fedoraproject.org/pkgdb/
users/packages/haskell-sig

Package changes: http://git.fedorahosted.org/cgit/
haskell-sig.git/tree/packages/diffs/f21-f22.compare


https://github.com/freebsd-haskell/ports
http://wiki.debian.org/Haskell
http://fedoraproject.org/wiki/Haskell_SIG
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/mailman/listinfo/haskell
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
https://admin.fedoraproject.org/pkgdb/users/packages/haskell-sig
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/f21-f22.compare
http://git.fedorahosted.org/cgit/haskell-sig.git/tree/packages/diffs/f21-f22.compare

4 Related Languages and Language Design

4.1 Agda

UIf Norell

UIf Norell, Nils Anders Danielsson,
Andreas Abel, Jesper Cockx, Makoto
Takeyama, Stevan Andjelkovic,
Jean-Philippe Bernardy, James Chapman,
Dominique Devriese, Peter Divianszki,
Fredrik Nordvall Forsberg, Olle
Fredriksson, Daniel Gustafsson, Alan
Jeffrey, Fredrik Lindblad, Guilhem Moulin,
Nicolas Pouillard, Andrés Sicard-Ramirez
and many others

actively developed

Report by:
Participants:

Status:

Agda is a dependently typed functional programming
language (developed using Haskell). A central feature
of Agda is inductive families, i.e., GADTs which can
be indexed by wvalues and not just types. The lan-
guage also supports coinductive types, parameterized
modules, and mixfix operators, and comes with an in-
teractive interface—the type checker can assist you in
the development of your code.

A lot of work remains in order for Agda to become a
full-fledged programming language (good libraries, ma-
ture compilers, documentation, etc.), but already in its
current state it can provide lots of fun as a platform
for experiments in dependently typed programming.

Since the release of Agda 2.4.0 in June 2014 a lot
has happened in the Agda project and community. For
instance:

o There have been two Agda courses at the Oregon
Programming Languages Summer School (OPLSS).

In 2014 by Ulf Norell, and in 2015 by Peter Dybjer.

Agda has moved to github: https://github.com/

agda/agda.

Agda 2.4.2 was released in September 2014, and
the latest stable version is Agda 2.4.2.4, released in
September 2015.

The restriction of Agda to not use Streicher’s Axiom
K was proved correct by Jesper Cockx et al. in the
ICFP 2014 paper Pattern Matching without K.

Instance arguments are now powerful enough to em-
ulate Haskell-style type classes.

The reflection machinery has been extended, mak-
ing it possible to define convenient reflection based
tactics.

16

o Improved compiler performance, and a new backend
targeting the Utrecht Haskell Compiler (UHC).

Release of Agda 2.4.4 is planned for early 2016.

Further reading

The Agda Wiki: http://wiki.portal.chalmers.se/agda/

4.2 MiniAgda
Report by: Andreas Abel
Status: experimental

MiniAgda is a tiny dependently-typed programming
language in the style of Agda (— 4.1). It serves as a lab-
oratory to test potential additions to the language and
type system of Agda. MiniAgda’s termination checker
is a fusion of sized types and size-change termination
and supports coinduction. Bounded size quantification
and destructor patterns for a more general handling
of coinduction. Equality incorporates eta-expansion at
record and singleton types. Function arguments can be
declared as static; such arguments are discarded during
equality checking and compilation.

MiniAgda is now hosted on http://hub.darcs.net/
abel /miniagda.

MiniAgda is available as Haskell source code on hack-
age and compiles with GHC 6.12.x — 7.8.2.

Further reading

http://www.cse.chalmers.se/~abela/miniagda/

4.3 Disciple

Report by:
Participants:

Ben Lippmeier
Ben Lippmeier, Amos Robinson, Erik de
Castro Lopo, Kyle van Berendonck

Status: experimental, active development

The Disciplined Disciple Compiler (DDC) is a research
compiler used to investigate program transformation
in the presence of computational effects. It compiles a
family of strict functional core languages and supports
region, effect and closure typing. This extra informa-
tion provides a handle on the operational behaviour of
code that isn’t available in other languages. Programs
can be written in either a pure/functional or effect-
ful/imperative style, and one of our goals is to provide
both styles coherently in the same language.


https://github.com/agda/agda
https://github.com/agda/agda
http://wiki.portal.chalmers.se/agda/
http://hub.darcs.net/abel/miniagda
http://hub.darcs.net/abel/miniagda
http://www.cse.chalmers.se/~abela/miniagda/

What is new?

DDC is in an experimental, pre-alpha state, though
parts of it do work. In March this year we released
DDC 0.4.1, with the following new features:

o

Added a bi-directional type inferencer based on
Joshua DuninAeld and Neelakantan Krishnaswami’s
recent ICFP paper.

Added a region extension language construct, and
coeffect system.

Added the Disciple Tetra language which includes
infix operators and desugars into Disciple Core Tetra.
Compilation of Tetra and Core Tetra programs to C
and LLVM.

o Early support for rate inference in Core Flow.
o Flow fusion now generates vector primops for maps

and folds.

o Support for user-defined algebraic data types.

o

O O O O

Civilized error messages for unsupported or incom-
plete features.

Most type error messages now give source locations.
Building on Windows platforms.

Better support for foreign imported types and values.
Changed to Git for version control.

Further reading

http://disciple.ouroborus.net

17


http://disciple.ouroborus.net

5 Haskell and ...

5.1 Haskell and Parallelism

5.1.1 Eden

Report by:
Participants:

Rita Loogen
in Madrid: Yolanda Ortega-Mallén,
Mercedes Hidalgo, Lidia Sanchez-Gil,
Fernando Rubio, Alberto de la Encina,

in Marburg: Mischa Dieterle, Thomas
Horstmeyer, Rita Loogen, Lukas Schiller,
in Sydney: Jost Berthold

Status: ongoing

Eden extends Haskell with a small set of syntactic con-
structs for explicit process specification and creation.
While providing enough control to implement paral-
lel algorithms efficiently, it frees the programmer from
the tedious task of managing low-level details by intro-
ducing automatic communication (via head-strict lazy
lists), synchronization, and process handling.

Eden’s primitive constructs are process abstractions
and process instantiations. Higher-level coordination is
achieved by defining skeletons, ranging from a simple
parallel map to sophisticated master-worker schemes.
They have been used to parallelize a set of non-trivial
programs.

Eden’s interface supports a simple definition of ar-
bitrary communication topologies using Remote Data.
The remote data concept can also be used to compose
skeletons in an elegant and effective way, especially in
distributed settings. A PA-monad enables the eager
execution of user defined sequences of Parallel Actions
in Eden.

Survey and standard reference: Rita Loogen,
Yolanda Ortega-Mallén, and Ricardo Pena: Parallel
Functional Programming in FEden, Journal of Func-
tional Programming 15(3), 2005, pages 431-475.

Eden - Parallel Functional
V. Zsok, 7. Horvath,

Tutorial: Rita Loogen:
Programming in Haskell, in:

18

and R. Plasmeijer (Eds.): CEFP 2011, Springer LNCS
7241, 2012, pp. 142-206.

(see also:  http://www.mathematik.uni-marburg.de/
~eden/?content=cefp)

Implementation

Eden is implemented by modifications to the Glasgow-
Haskell Compiler (extending its runtime system to use
multiple communicating instances). Apart from MPI
or PVM in cluster environments, Eden supports a
shared memory mode on multicore platforms, which
uses multiple independent heaps but does not depend
on any middleware. Building on this runtime support,
the Haskell package edenmodules defines the language,
and edenskels provides a library of parallel skeletons.

A version based on GHC-7.8.2 (including binary
packages and prepared source bundles) has been re-
leased in April 2014. This version fixed a number of
issues related to error shut-down and recovery, and
featured extended support for serialising Haskell data
structures. The release of a version based on GHC-7.10
is in preparation. Previous stable releases with binary
packages and bundles are still available on the Eden
web pages.

The source code repository for Eden releases is
http://james.mathematik.uni-marburg.de:8080/gitweb,
the Eden libraries (Haskell-level) are also available via
Hackage. Please contact us if you need any support.

Tools and libraries

The Eden trace viewer tool EdenTV provides a visual-
isation of Eden program runs on various levels. Activ-
ity profiles are produced for processing elements (ma-
chines), Eden processes and threads. In addition mes-
sage transfer can be shown between processes and ma-
chines. EdenTV is written in Haskell and is freely avail-
able on the Eden web pages and on hackage. Eden’s
thread view can also be used to visualise ghc event-
logs. Recently, in the course of his Bachelor thesis, Bas-
tian Reitemeier developed another trace viewer tool,
Eden-Tracelab, which is capable of visualising large
trace files, without being constrained by the available
memory. Details can be found in his blogpost http:
//brtmr.de/2015/10/17 /introducing-eden-tracelab.html.

The Eden skeleton library is under constant develop-
ment. Currently it contains various skeletons for par-
allel maps, workpools, divide-and-conquer, topologies
and many more. Take a look on the Eden pages.


http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://www.mathematik.uni-marburg.de/~eden/?content=cefp
http://james.mathematik.uni-marburg.de:8080/gitweb
http://brtmr.de/2015/10/17/introducing-eden-tracelab.html
http://brtmr.de/2015/10/17/introducing-eden-tracelab.html

Recent and Forthcoming Publications

o Lidia Sanchez-Gil: On the equivalence of opera-
tional and denotational semantics for parallel func-
tional languages, PhD Thesis, Facultad de Infor-
matica, Universidad Complutense de Madrid, July
2015. http://eprints.ucm.es/33213/

o Bastian Reitemeier: Analysis of Large Eden Trace
Files, Bachelor Thesis, Philipps-Universitat Mar-
burg, October 2015.

o Thomas Horstmeyer: Smarter Communication
Channels, Pre-Symposium Proceedings of IFL 2015,
Sept. 2015.

o Lukas Schiller: A functional view of BatcherASs
bitonic sorting network, Pre-Symposium Proceedings
of IFL 2015, Sept. 2015.

o M. Dieterle, Th. Horstmeyer, R. Loogen, J.
Berthold: Skeleton Composition vs Stable Process
Systems in FEden, submitted for publication

o J. Berthold, H.-W. Loidl, K. Hammond: PAFEAN:
Portable Runtime Support for Physically-Shared-
Nothing Architectures in Parallel Haskell Dialects,
submitted for publication

Further reading

http://www.mathematik.uni-marburg.de/~eden

5.1.2 Wakarusa

Report by: Andrew Gill
Participants: Mark Grebe, Ryan Scott, James Stanton,

David Young
Status: active

The Wakarusa project is a domain-specific language
toolkit, that makes domain-specific languages easier to
deploy in high-performance scenarios. The technology
is going to be initially applied to two types of high-
performance platforms, GPGPUs and FPGAs. How-
ever, the toolkit will be general purpose, and we ex-
pect the result will also make it easier to deploy DSLs
in situations where resource usage needs to be well-
understand, such as cloud resources and embedded sys-
tems. The project is funded by the NSF.

Wakarusa is a river just south of Lawrence, KS,
where the main campus of the University of Kansas
is located. Wakarusa is approximately translated as
“deep river”, and we use deep embeddings a key tech-
nology in our DSL toolkit. Hence the project name
Wakarusa.

A key technical challenge with syntactic alternatives
to deep embeddings is knowing when to stop unfold-
ing. We are using a new design pattern, called the
remote monad (— 6.5.7), which allows a monad to be
virtualized, and run remotely, to bound our unfold-
ing. We have already used remote monads for graph-

ics (Blank Canvas), hardware bus protocols (A-bridge),
a driver for MineCraft, an implementation of JSON-
RPC, and a compiler for the Arduino (— 6.1.8). Using
the remote monad design pattern, and HERMIT, we
are developing a translation framework that translates
monadic Haskell to GPGPUs (building on accelerate),
and monadic Haskell to Hardware (building on Kansas
Lava), and monadic imperative Haskell to Arduino C.

Further reading

o https://github.com/ku-fpg/wakarusa
o http://ku-fpg.github.io/research /wakarusa/

5.2 Haskell and the Web

5.2.1 WAI
Report by: Michael Snoyman
Participants: Greg Weber
Status: stable

The Web Application Interface (WAI) is an inter-
face between Haskell web applications and Haskell web
servers. By targeting the WAI, a web framework or web
application gets access to multiple deployment plat-
forms. Platforms in use include CGI, the Warp web
server, and desktop webkit.

WAL is also a platform for re-using code between web
applications and web frameworks through WAI mid-
dleware and WAI applications. WAI middleware can
inspect and transform a request, for example by auto-
matically gzipping a response or logging a request. The
Yesod (— 5.2.2) web framework provides the ability to
embed arbitrary WAI applications as subsites, making
them a part of a larger web application.

By targeting WAI, every web framework can share
WAI code instead of wasting effort re-implementing
the same functionality. There are also some new web
frameworks that take a completely different approach
to web development that use WAI, such as webwire
(FRP), MFlow (continuation-based) and dingo (GUI).
The Scotty (—5.2.11) web framework also continues
to be developed, and provides a lighter-weight alterna-
tive to Yesod. Other frameworks- whether existing or
newcomers- are welcome to take advantage of the exist-
ing WAI architecture to focus on the more innovative
features of web development.

WALI applications can send a response themselves.
For example, wai-app-static is used by Yesod to serve
static files. However, one does not need to use a web
framework, but can simply build a web application us-
ing the WAI interface alone. The Hoogle web service
targets WAI directly.

Since the last HCAR, WAI has successfully released
version 3.0, which removes dependency on any specific
streaming data framework. A separate wai-conduit
package provides conduit bindings, and such bindings


http://eprints.ucm.es/33213/
http://www.mathematik.uni-marburg.de/~eden
https://github.com/ku-fpg/wakarusa
http://ku-fpg.github.io/research/wakarusa/

can easily be provided for other streaming data frame-
works.

The WAI community continues to grow, with new
applications and web frameworks continuing to be
added. We’ve recently started a new mailing list to dis-
cuss WAI related topics. Interested parties are strongly
encouraged to join in!

Further reading

o http://www.yesodweb.com /book/wai
o https://groups.google.com/d/forum/haskell-wai

5.2.2 Yesod
Report by: Michael Snoyman
Participants:  Greg Weber, Luite Stegeman, Felipe Lessa
Status: stable

Yesod is a traditional MVC RESTful framework. By
applying Haskell’s strengths to this paradigm, Yesod
helps users create highly scalable web applications.

Performance scalablity comes from the amazing
GHC compiler and runtime. GHC provides fast code
and built-in evented asynchronous 10.

But Yesod is even more focused on scalable develop-
ment. The key to achieving this is applying Haskell’s
type-safety to an otherwise traditional MVC REST web
framework.

Of course type-safety guarantees against typos or the
wrong type in a function. But Yesod cranks this up
a notch to guarantee common web application errors
won’t occur.
declarative routing with type-safe urls — say good-
bye to broken links
no XSS attacks — form submissions are automati-
cally sanitized
database safety through the Persistent library (—

(¢]

7.6.1) — no SQL injection and queries are always
valid

o valid template variables with proper template inser-
tion — variables are known at compile time and

treated differently according to their type using the

shakesperean templating system.

When type safety conflicts with programmer produc-
tivity, Yesod is not afraid to use Haskell’s most ad-
vanced features of Template Haskell and quasi-quoting
to provide easier development for its users. In partic-
ular, these are used for declarative routing, declarative
schemas, and compile-time templates.

MVC stands for model-view-controller. The pre-
ferred library for models is Persistent (— 7.6.1). Views
can be handled by the Shakespeare family of compile-
time template languages. This includes Hamlet, which
takes the tedium out of HTML. Both of these libraries
are optional, and you can use any Haskell alternative.
Controllers are invoked through declarative routing and
can return different representations of a resource (html,
json, etc).

20

Yesod is broken up into many smaller projects
and leverages Wai (— 5.2.1) to communicate with the
server. This means that many of the powerful fea-
tures of Yesod can be used in different web development
stacks that use WAI such as Scotty (— 5.2.11).

The new 1.4 release of Yesod is almost a completely
backwards-compatible change. The version bump was
mostly performed to break compatibility with older
versions of dependencies, which allowed us to remove
approximately 500 lines of conditionally compiled code.
Notable changes in 1.4 include:

o New routing system with more overlap checking con-
trol.

yesod-auth works with your database and your
JSON.

o yesod-test sends HTTP/1.1 as the version.

o Type-based caching with keys.

The Yesod team is quite happy with the current level
of stability in Yesod. Since the 1.0 release, Yesod has
maintained a high level of API stability, and we in-
tend to continue this tradition. Future directions for
Yesod are now largely driven by community input and
patches. We’ve been making progress on the goal of
easier client-side interaction, and have high-level inter-
action with languages like Fay, TypeScript, and Coffe-
Script. GHCJS support is in the works.

The Yesod site (http://www.yesodweb.com/) is a
great place for information. It has code examples,
screencasts, the Yesod blog and — most importantly
— a book on Yesod.

To see an example site with source code available,
you can view Haskellers (— 1.1) source code: (https:
//github.com /snoyberg/haskellers).

Further reading

http://www.yesodweb.com/

5.2.3 Scotty
Report by: Andrew Farmer
Participants: Andrew Farmer
Status: active

Scotty is a Haskell web framework inspired by Ruby’s
Sinatra, using WAI (— 5.2.1) and Warp (— 5.2.4), and
is designed to be a cheap and cheerful way to write
RESTHful, declarative web applications.
o A page is as simple as defining the verb, url pattern,
and Text content.
o It is template-language agnostic. Anything that re-
turns a Text value will do.
o Conforms to WAI Application interface.
o Uses very fast Warp webserver by default.
The goal of Scotty is to enable the development of
simple HTTP/JSON interfaces to Haskell applications.


http://www.yesodweb.com/book/wai
https://groups.google.com/d/forum/haskell-wai
http://www.yesodweb.com/
https://github.com/snoyberg/haskellers
https://github.com/snoyberg/haskellers
http://www.yesodweb.com/

Implemented as a monad transformer stack, Scotty ap-
plications can be embedded in arbitrary MonadIOs.
The Scotty API is minimal, and fully documented via
haddock. The API has recently remained stable, with
a steady stream of improvements contributed by the
community.

Further reading

o Hackage: http://hackage.haskell.org/package/scotty
o Github: https://github.com/scotty-web /scotty

5.2.4 Warp

Report by: Michael Snoyman

Warp is a high performance, easy to deploy HTTP
server backend for WAI (—5.2.1). Since the last
HCAR, Warp has followed WAI in its move from con-
duit to a lower level streaming data abstraction. We’ve
additionally continued work on more optimizations,
and improved support for power efficiency by using the
auto-update package.

Due to the combined use of ByteStrings, blaze-
builder, conduit, and GHC’s improved I/O manager,
WAI+Warp has consistently proven to be Haskell’s
most performant web deployment option.

Warp is actively used to serve up most of the users
of WAI (and Yesod).

“Warp: A Haskell Web Server” by Michael Snoyman
was published in the May/June 2011 issue of IEEE In-
ternet Computing:

o Issue page: http://www.computer.org/portal /web/
csdl/abs/mags/ic/2011/03/mic201103toc.htm

o PDF: http://steve.vinoski.net/pdf/IC-Warp_a_
Haskell_Web_ Server.pdf

5.2.5 Mighttpd2 — Yet another Web Server

Kazu Yamamoto
open source, actively developed

Report by:
Status:

Mighttpd (called mighty) version 3 is a simple but prac-
tical Web server in Haskell. It provides features to han-
dle static files, redirection, CGI, reverse proxy, reload-
ing configuration files and graceful shutdown. Also
TLS is experimentally supported.

Since Warp supports HTTP /2, Mighttpd 3 is able
to serve in HTTP/2 (if TLS is enabled) as well as
HTTP/1.1.

You can install Mighttpd 3 (mighttpd2) from Hack-
ageDB. Note that the package name is mighttpd2, not
mighttpd3, for historical reasons.

Further reading

o http://www.mew.org/~kazu/proj/mighttpd/en/
o http://www.yesodweb.com/blog/2015/07 /http2

21

5.2.6 Happstack

Report by: Jeremy Shaw

Happstack is a very fine collection of libraries for cre-
ating web applications in Haskell. We aim to leverage
the unique characteristics of Haskell to create a highly-
scalable, robust, and expressive web framework.

Over the past year, much development has been fo-
cused on the higher-level components such as a rewrite
of the happstack-authentication library and work
on unifying the various stripe bindings into a single
authoritative binding.

Over the next year we hope to get back to the core
and focus on hyperdrive, a new low-level, trustworthy
HTTP backend, as well as focusing on developing and
deploying applications using nixops.

Further reading

o http://www.happstack.com/
o http://www.happstack.com/docs/crashcourse/index.html

5.2.7 Snap Framework

Report by:
Participants:

Doug Beardsley

Gregory Collins, Shu-yu Guo, James
Sanders, Carl Howells, Shane O'Brien,
Ozgun Ataman, Chris Smith, Jurrien
Stutterheim, Gabriel Gonzalez, and others

Status: active development

The Snap Framework is a web application framework
built from the ground up for speed, reliability, stability,
and ease of use. The project’s goal is to be a cohesive
high-level platform for web development that leverages
the power and expressiveness of Haskell to make build-
ing websites quick and easy.

If you would like to contribute, get a question an-
swered, or just keep up with the latest activity, stop by
the #snapframework IRC channel on Freenode.

Further reading

o Snaplet Directory:
http://snapframework.com/snaplets
o http://snapframework.com

5.2.8 MFlow
Report by: Alberto Gémez Corona
Status: active development

MFlow is a Web framework of the kind of other func-
tional, stateful frameworks like WASH, Seaside, Ocsi-
gen or Racket. MFlow does not use continuation pass-
ing properly, but a backtracking monad that permits


http://hackage.haskell.org/package/scotty
https://github.com/scotty-web/scotty
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://www.computer.org/portal/web/csdl/abs/mags/ic/2011/03/mic201103toc.htm
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://steve.vinoski.net/pdf/IC-Warp_a_Haskell_Web_Server.pdf
http://www.mew.org/~kazu/proj/mighttpd/en/
http://www.yesodweb.com/blog/2015/07/http2
http://www.happstack.com/
http://www.happstack.com/docs/crashcourse/index.html
http://snapframework.com/snaplets
http://snapframework.com

the synchronization of browser and server and error
tracing. This monad is on top of another “Workflow”
monad that adds effects for logging and recovery of
process/session state. In addition, MFlow is RESTful.
Any GET page in the flow can be pointed to with a
REST URL.

The navigation as well as the page results are type
safe. Internal links are safe and generate GET re-
quests. POST request are generated when formlets
with form fields are used and submitted. It also imple-
ments monadic formlets: They can modify themselves
within a page. If JavaScript is enabled, the widget re-
freshes itself within the page. If not, the whole page is
refreshed to reflect the change of the widget.

MFlow hides the heterogeneous elements of a web ap-
plication and expose a clear, modular, type safe DSL
of applicative and monadic combinators to create from
multipage to single page applications. These combina-
tors, called widgets or enhanced formlets, pack together
javascript, HTML, CSS and the server code. [1].

A paper describing the MFlow internals has been
published in The Monad Reader issue 23 [2]

The use of backtracking to solve ”the integration
problem”. It happens when the loose coupling produce
exceptional conditions that may trigger the rollback of
actions in the context of failures, shutdowns and restart
of the systems (long running processes). That has been
demonstrated using MFlow in [3].

A web application can be considered as an special
case of integration. MFlow pack the elements of a web
aplication within composable widgets. This ”deep inte-
gration” is the path followed by the software industry
to create from higher level framewors to operating sys-
tems [4]

perch[5] and hplayground are two new packages that
make run the page logic of MFlow in the Web Browser
using Haste, the Haskell-to-JavaScript compiler. perch
has the syntax of blaze-html and hplayground uses the
syntax and primitives of the View Monad. Both per-
mit the page logic of MFlow to run fully in the Web
Browser. Under the same syntax, they are completely
different. It generates trees by calling DOM primitives
directly. While string builders are unary tree construc-
tors, perch uses a generalized builder for n-trees. It
also has combinators for the modification of elements
and it can assign perch event handlers to elements and
it has also JQuery-like operations. It can be used alone
for the creation of client-side applications.

Perch run in Haste and has been ported to GHCJS
by Arthur Fayzrakhmanov.

hplayground is a monadic functional reactive[6]
framework with MFlow syntax that permits the cre-
ation of seamless client-side applications. it uses the
Transient monad. hplayground can sequence perch ren-
derings with events. It is possible to construct compos-
able monadic and applicative formlets with validations,
and event handling included these formlets may modify
his own rendering.

22

There is a site with example Haste-perch-
hplayground (made with MFlow) online[6] . There is
also a tutorial for the creation of Client-side applica-
tions, that describe the structure of a small accounting
application for haskell beginners[7].

Since the events are handled locally but there are
no event handlers, Monadic Reactive may be a bet-
ter alternative to functional Reactive in the creation of
seamless Web Browser applications whenever there are
many dynamic DOM updates[8].

Future work: To port hplayground to GHCJS. To
manage client-side applications as nodes in the cloud
using websockets and transient.

Further reading

o MFlow as a DSL for web applications https://www.
fpcomplete.com /school /to-infinity-and-beyond/
older-but-still-interesting/MFlowDSL1

o MFlow, a continuation-based web framework
without continuations http://themonadreader.
wordpress.com /2014 /04 /23 /issue-23

o How Haskell can solve the integration problem
https://www.fpcomplete.com /school/
to-infinity-and-beyond/pick-of-the-week /
how-haskell-can-solve-the-integration-problem

o Towards a deeper integration: A Web language:
http://haskell-web.blogspot.com.es/2014 /04 /
towards-deeper-integration-web-language.html

o Perch https://github.com/agocorona/haste-perch

o hplayground demos http://tryplayg.herokuapp.com

o haste-perch-hplaygroun tutorial
http://www.airpair.com/haskell/posts/
haskell-tutorial-introduction-to-web-apps

o react.js a solution for a problem that Haskell can
solve in better ways
http://haskell-web.blogspot.com.es/2014/11/
browser-programming-reactjs-as-solution.html

o MFlow demo site: http://mflowdemo.herokuapp.com

5.2.9 Sunroof

Report by: Andrew Gill
Participants: Jan Bracker
Status: active

Sunroof is a Domain Specific Language (DSL) for gen-
erating JavaScript. It is built on top of the JS-monad,
which, like the Haskell IO-monad, allows read and write
access to external resources, but specifically JavaScript
resources. As such, Sunroof is primarily a feature-
rich foreign function API to the browser’s JavaScript
engine, and all the browser-specific functionality, like
HTML-based rendering, event handling, and drawing
to the HTML5) canvas.

Furthermore, Sunroof offers two threading models
for building on top of JavaScript, atomic and block-
ing threads. This allows full access to JavaScript APIs,
but using Haskell concurrency abstractions, like M Vars


https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
https://www.fpcomplete.com/school/to-infinity-and-beyond/older-but-still-interesting/MFlowDSL1
http://themonadreader.wordpress.com/2014/04/23/issue-23
http://themonadreader.wordpress.com/2014/04/23/issue-23
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/how-haskell-can-solve-the-integration-problem
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
http://haskell-web.blogspot.com.es/2014/04/towards-deeper-integration-web-language.html
https://github.com/agocorona/haste-perch
http://tryplayg.herokuapp.com
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://www.airpair.com/haskell/posts/haskell-tutorial-introduction-to-web-apps
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://haskell-web.blogspot.com.es/2014/11/browser-programming-reactjs-as-solution.html
http://mflowdemo.herokuapp.com

and Channels. In combination with the push mecha-
nism Kansas-Comet, Sunroof offers a great platform
to build interactive web applications, giving the ability
to interleave Haskell and JavaScript computations with
each other as needed.

Hello W@rﬂdi‘ . “,
= -z
~ N

s < S ~

/// 9 \\\
1.8.3 Text Stroke a1 I

Co
o | i 100 [NEEEEEIIN  Cons
o B Con
fib 11 =144 ” ' o
Arithmeti
0 Basis

It has successfully been used to write smaller appli-
cations. These applications range from 2D rendering
using the HTML5 canvas element, over small GUIs, up
to executing the QuickCheck tests of Sunroof and dis-
playing the results in a neat fashion. The development
has been active over the past 6 months and there is a
drafted paper submitted to TFP 2013.

Further reading

o Homepage: http:

/ /www.ittc.ku.edu/csdl/fpg/software/sunroof.html
o Tutorial: https:

//github.com /ku-fpg/sunroof-compiler /wiki/Tutorial
o Main Repository:

https://github.com/ku-fpg/sunroof-compiler

5.2.10 Blank Canvas

Andrew Gill

Justin Dawson, Mark Grebe, Ryan Scott,
James Stanton, Jeffrey Rosenbluth, and
Neil Sculthorpe

active

Report by:
Participants:

Status:

Blank Canvas is a Haskell binding to the complete
HTML5 Canvas API. Blank Canvas allows Haskell
users to write, in Haskell, interactive images onto their
web browsers. Blank Canvas gives the user a single full-
window canvas, and provides many well-documented
functions for rendering images. Out of the box, Blank
Canvas is pac-man complete — it is a platform for sim-
ple graphics, classic video games, and building more
powerful abstractions that use graphics.

Blank Canvas was written in Spring 2012, as part
of the preparation for a graduate-level functional pro-
gramming class. In Fall 2012 and Fall 2013, we used
Blank Canvas to teach Functional Reactive Program-
ming. This was our first hint that the Blank Canvas

23

library was faster than we expected, as we had hun-
dreds of balls bouncing smoothly on the screen, much
to the students’ delight.

Blank Canvas has now been used by the students in
four separate instances of our functional programming
class. Students find it easy to understand, given the
analog between the IO monad, and the remote Can-
vas monad, with student often choosing to use Blank
Canvas for their end-of-semester project. To give two
examples, one end-of-semester project was Omar Bari
and Dain Vermaak’s Isometric Tile Game, that can be
rotated in 3D in real-time; another project was Blan-
keroids, a playable asteroids clone, written by Mark
Grebe, on top of Yampa and yampa-canvas.

L]

AJA
3

- _'{ 5

C 5
-4 = i
- =5

(&
—\
™
~_J

For more details, read the blank-canvas wiki.

Further reading

o https://hackage.haskell.org/package/blank-canvas
o https://github.com/ku-fpg/blank-canvas
o https://github.com/ku-fpg/blank-canvas/wiki


http://www.ittc.ku.edu/csdl/fpg/software/sunroof.html
http://www.ittc.ku.edu/csdl/fpg/software/sunroof.html
https://github.com/ku-fpg/sunroof-compiler/wiki/Tutorial
https://github.com/ku-fpg/sunroof-compiler/wiki/Tutorial
https://github.com/ku-fpg/sunroof-compiler
https://hackage.haskell.org/package/blank-canvas
https://github.com/ku-fpg/blank-canvas
https://github.com/ku-fpg/blank-canvas/wiki

5.2.11 PureScript

Phil Freeman
active, looking for contributors

Report by:
Status:

PureScript is a small strongly typed programming lan-
guage that compiles to efficient, readable JavaScript.
The PureScript compiler is written in Haskell.

The PureScript language features Haskell-like syn-
tax, type classes, rank-n types, extensible records and
extensible effects.

PureScript features a comprehensive standard li-
brary, and a large number of other libraries and tools
under development, covering data structures, algo-
rithms, Javascript integration, web services, game de-
velopment, testing, asynchronous programming, FRP,
graphics, audio, Ul implementation, and many other
areas. It is easy to wrap existing Javascript function-
ality for use in PureScript, making PureScript a great
way to get started with strongly-typed pure functional
programming on the web. PureScript is currently used
successfully in production in commercial code.

The PureScript compiler was recently the focus of
two successful Google Summer of Code projects, gen-
erously supported by the Haskell.org organization:

o The development of a searchable online database of
PureScript code with type search and rendered doc-
umentation

o The addition of an exhaustivity and redundancy
checker for pattern matches.

PureScript development is currently focussed on the
following areas:

o Improving the performance of the compiler.

o Improving error messages.

o Enabling new backends (C++, Lua, Python, etc.)

o The development of new PureScript libraries
The PureScript compiler can be downloaded from

purescript.org, or compiled from source from Hackage.

Further reading

https://github.com/purescript/purescript/

5.3 Haskell and Compiler Writing

5.3.1 MateVM
Report by: Bernhard Urban
Participants: Harald Steinlechner
Status: looking for new contributors

MateVM is a method-based Java Just-In-Time Com-
piler. That is, it compiles a method to native code on
demand (i.e. on the first invocation of a method). We
use existing libraries:

hs-java for processing Java Classfiles according to The
Java Virtual Machine Specification.

harpy enables runtime code generation for i686 ma-
chines in Haskell, in a domain specific language style.

We believe that Haskell is suitable to implement com-
piler technologies. However, we have to jump between
“Haskell world” and “native code world”, due to the
low-level nature of Just-In-Time compiler in a virtual
machine. This poses some challenges when it comes to
signal handling and other interesting rather low level
operations. Not immediately visible, the task turns out
to be well suited for Haskell although we experienced
some tensions with signal handling and GHCi. We are
looking forward to sharing our experience on this.

In the current state we are able to execute simple
Java programs. The compiler eliminates the JavaVM
stack via abstract interpretation, does a liveness anal-
ysis, linear scan register allocation and finally machine
code emission. The software architecture enables easy
addition of further optimization passes based on an in-
termediate representation.

Future plans are, to add an interpreter to gather pro-
file information for the compiler and also do more ag-
gressive optimizations (e.g. method inlining or stack
allocation). An interpreter can also be used to enable
speculation during compilation and, if such a specula-
tion fails, compiled code can deoptimize to the inter-
preter.

Apart from that, features are still missing to com-
ply as a JavaVM, most noteable are proper support for
classloaders, floating point operations or threads. We
would like to see a real base library such as GNU Class-
path or the JDK running with MateVM some day.
Other hot topics are Hoopl and Garbage Collection.

‘We are looking for new contributors! If you are
interested in this project, do not hesitate to join us on
IRC (#MateVM @ OFTC) or contact us on Github.

Further reading

https://github.com/MateVM
http://docs.oracle.com/javase/specs/jvms/se7 /html/
http://hackage.haskell.org/package/hs-java
http://hackage.haskell.org/package/harpy
http://www.gnu.org/software/classpath/
http://hackage.haskell.org/package/hoopl-3.8.7.4
http://en.wikipedia.org/wiki/Club-Mate

O O O O O O O

5.3.2 UUAG
Report by: Atze Dijkstra
Participants: ST Group of Utrecht University
Status: stable, maintained

UUAG is the Utrecht University Attribute Grammar
system. It is a preprocessor for Haskell that makes it
easy to write catamorphisms, i.e., functions that do to
any data type what foldr does to lists. Tree walks are

24


purescript.org
https://github.com/purescript/purescript/
https://github.com/MateVM
http://docs.oracle.com/javase/specs/jvms/se7/html/
http://hackage.haskell.org/package/hs-java
http://hackage.haskell.org/package/harpy
http://www.gnu.org/software/classpath/
http://hackage.haskell.org/package/hoopl-3.8.7.4
http://en.wikipedia.org/wiki/Club-Mate

defined using the intuitive concepts of inherited and
synthesized attributes, while keeping the full expressive
power of Haskell. The generated tree walks are efficient
in both space and time.

An AG program is a collection of rules, which are
pure Haskell functions between attributes. Idiomatic
tree computations are neatly expressed in terms of
copy, default, and collection rules. Attributes them-
selves can masquerade as subtrees and be analyzed ac-
cordingly (higher-order attribute). The order in which
to visit the tree is derived automatically from the at-
tribute computations. The tree walk is a single traver-
sal from the perspective of the programmer.

Nonterminals (data types), productions (data con-
structors), attributes, and rules for attributes can be
specified separately, and are woven and ordered auto-
matically. These aspect-oriented programming features
make AGs convenient to use in large projects.

The system is in use by a variety of large and
small projects, such as the Utrecht Haskell Compiler
UHC (— 3.4), the editor Proxima for structured doc-
uments (http://www.haskell.org/communities/05-2010/
html/report.html#sect6.4.5), the Helium compiler
(http://www.haskell.org/communities/05-2009 /html/
report.html#tsect2.3), the Generic Haskell compiler,
UUAG itself, and many master student projects.
The current version is 0.9.52.1 (January 2015), is
extensively tested, and is available on Hackage. There
is also a Cabal plugin for easy use of AG files in
Haskell projects.

We recently implemented the following enhance-
ments:

Evaluation scheduling. We have done a project to im-
prove the scheduling algorithms for AGs. The pre-
viously implemented algorithms for scheduling AG
computations did not fully satisfy our needs; the code
we write goes beyond the class of OAGs, but the al-
gorithm by Kennedy and Warren (1976) results in
an undesired increase of generated code due to non-
linear evaluation orders. However, because we know
that our code belongs to the class of linear orderable
AGs, we wanted to find and algorithm that can find
this linear order, and thus lies in between the two ex-
isting approaches. We have created a backtracking
algorithm for this which is currently implemented in
the UUAG (-aoag flag).

Another approach to this scheduling problem that we
implemented is the use of SAT-solvers. The schedul-
ing problem can be reduced to a SAT-formula and
efficiently solved by existing solvers. The advantage
is that this opens up possibilities for the user to influ-
ence the resulting schedule, for example by providing
a cost-function that should be minimized. We have
also implemented this approach in the UUAG which
uses Minisat as external SAT-solver (-loag flag).

We have recently worked on the following enhance-
ments:

25

Incremental evaluation. We have just finished a Ph.D.
project that investigated incremental evaluation of
AGs. The target of this work was to improve the
UUAG compiler by adding support for incremental
evaluation, for example by statically generating dif-
ferent evaluation orders based on changes in the in-
put. The project has lead to several publications,
but the result has not yet been implemented into the
UUAG compiler.

Further reading

o http://www.cs.uu.nl/wiki/bin/view/HUT/
AttributeGrammarSystem
o http://hackage.haskell.org/package/uuagc


http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2010/html/report.html#sect6.4.5
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.haskell.org/communities/05-2009/html/report.html#sect2.3
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://www.cs.uu.nl/wiki/bin/view/HUT/AttributeGrammarSystem
http://hackage.haskell.org/package/uuagc

6 Development Tools

6.1 Environments
6.1.1 Haskell IDE From FP Complete

Natalia Muska
available, stable

Report by:
Status:

Since FP Complete™ announced the launch of FP
Haskell Center™ (FPHC) in early September 2013, a
lot of additions to the original IDE have been added
and the pricing structure has changed dramatically.
The new features and the pricing modifications are a
direct result of community feedback. The changes were
gradually rolled out over the past year.

As of October 1, 2014, all users of FPHC who are
using it for non-commercial projects have free access
under the new Open Publish model. This means that
Open Publish accounts will automatically publish all
projects on the FPHC site with each commit, similar
to Github. This move is meant to make FPHC more
valuable, and increase support for users sharing their
work with the community. There are still paid sub-
scriptions available for Commercial projects.

This is a current list of features included with the
free version of FPHC:

Create and Edit Haskell Projects,

Open Projects from Git, FPHC, or Web
Continuous Error and Type Information

Hoogle and Haddock Integration

Easy to use build system

Vetted Stable Libraries

Easy to Understand Error Messages

No setup or install

Free Community Support

Push Projects to Git and GitHub

Emacs Integration

Shared Team Accounts

Support for Sub Projects

Multiple Repository Projects

Deploy to FP Application Servers

Large Project and Megarepos Support (new)
Subscriptions include continuous refresh releases on
new features, updates, bug fixes and free community
support

Over the past year the feedback and activity on
FPHC has been very positive. To ensure FPHC is
meeting the demands of the Haskell community, FP
complete is constantly seeking feedback and sugges-
tions from users and the Haskell community.

O 0O 0O 0O 0o 0o o 0o 0o 000 0O 0o o0 o o

Further reading

Visit www.fpcomplete.com for more information.

6.1.2 ghc-mod — Happy Haskell Programming

Daniel Grober
open source, actively developed

Report by:
Status:

ghc-mod is both a backend program for enhancing edi-
tors and other kinds of development environments with
support for Haskell, and an Emacs package providing
the user facing functionality, internally called ghc for
historical reasons. Other people have also developed
numerous front ends for Vim and there also exist some
for Atom and a few other proprietary editors.

This summer’s two month ghc-mod hacking session
was mostly spent (finally) getting a release supporting
GHC 7.10 out the door as well as fixing bugs and adding
full support for the Stack build tool.

Since the last report the haskell-ide-engine project
has seen the light of day. There we are planning to
adopt ghc-mod as a core component to use its environ-
ment abstraction.

The haskell-ide-engine project itself is aiming to be
the central component of a unified Haskell Tooling
landscape.

In the light of this ghc-mod’s mission statement re-
mains the same but in the future it will be but one,
important, component in a larger ecosystem of Haskell
Tools.

We are looking forward to haskell-ide-engine making
the Haskell Tooling landscape a lot less fragmented.
However until this project produces meaningful results
life goes on and ghc-mod’s ecosystem needs to be main-
tained.

Right now ghc-mod has only one core developer and
a handful of occasional contributors. If you want to
help make Haskell development even more fun come
and join us!

Further reading

https://github.com/kazu-yamamoto/ghc-mod

6.1.3 haskell-ide-engine, a project for unifying IDE
functionality

Chris Allen

Alan Zimmerman, Michael Sloan, Gracjan
Polak, Daniel Grober, others welcome
Open source, just beginning

Report by:
Participants:

Status:

haskell-ide is a backend for driving the sort of features
programmers expect out of IDE environments. Per-
haps soon to be called haskell-ide-engine, haskell-ide is


www.fpcomplete.com
https://github.com/kazu-yamamoto/ghc-mod

a project to unify tooling efforts into something differ-
ent text editors, and indeed IDEs as well, could use to
avoid duplication of effort.

Features like type errors, linting, refactoring, and re-
formatting code are planned. People who are familiar
with a particular part of the chain can focus their ef-
forts there, knowing that the other parts will be han-
dled by other components of the backend. Inspiration
is being taken from the work the Idris community has
done toward an interactive editing environment as well.
This is a deliberately broad scope, the initial versions
will be very limited at first. The sooner we can get
started the sooner we will have something concrete to
criticise and improve.

Help is very much needed and wanted so if this is
a problem that interests you, please pitch in! This is
not a project just for a small inner circle. Anyone who
wants to will be added to the project on github, address
your request to alanz or hvr.

Further reading

o https://github.com /haskell /haskell-ide-engine

o https://mail.haskell.org/pipermail /haskell-cafe/
2015-October/121875.html
https://www.fpcomplete.com/blog/2015/10/
new-haskell-ide-repo
https://www.reddit.com/r/haskell/comments/
3pt560/ann_haskellide_ project/
https://www.reddit.com/r/haskell /comments/
3qbgmo/fp_complete_the_new__haskellide_repo/

6.1.4 HaRe — The Haskell Refactorer

Alan Zimmerman

Francisco Soares, Chris Brown, Stephen
Adams, Huiging Li, Matthew Pickering,
Gracjan Polak

Report by:
Participants:

Refactorings are source-to-source program transforma-
tions which change program structure and organiza-
tion, but not program functionality. Documented in
catalogs and supported by tools, refactoring provides
the means to adapt and improve the design of existing
code, and has thus enabled the trend towards modern
agile software development processes.

Our project, Refactoring Functional Programs, has
as its major goal to build a tool to support refactor-
ings in Haskell. The HaRe tool is now in its seventh
major release. HaRe supports full Haskell 2010, and
is integrated with (X)Emacs. All the refactorings that
HaRe supports, including renaming, scope change, gen-
eralization and a number of others, are module-aware,
so that a change will be reflected in all the modules

27

in a project, rather than just in the module where the
change is initiated.

Snapshots of HaRe are available from our GitHub
repository (see below) and Hackage. There are re-
lated presentations and publications from the group
(including LDTA’05, TFP’05, SCAM’06, PEPM’08,
PEPM’10, TFP’10, Huiqing’s PhD thesis and Chris’s
PhD thesis). The final report for the project appears
on the University of Kent Refactoring Functional Pro-
grams page (see below).

There is also a Google+ community called HaRe, a
Google Group called https://groups.google.com /forum/
#!forum/hare and an IRC channel on freenode called
#haskell-refactorer. IRC is the preferred contact
method.

Current version of HaRe supports 7.10.2 and work is
continuing to support GHC version 8.x forward. The
new version makes use of ghc-exactprint library, which
only has GHC support from GHC 7.10.2 onwards.

Development on the core HaRe is focusing is on mak-
ing sure that deficiencies identified in the API Anno-
tations in GHC used by ghc-exactprint are removed in
time for GHC 8.0.1, so that the identity refactoring can
cover more of the corner cases.

There is also a new haskell-ide project which will
allow HaRe to operate as a plugin and will ease its
integration into multiple IDEs.

Recent developments

o The current version is 8.2, which supports GHC
7.10.2 only, and was released in October 2015.
Matthew Pickering has been deeply involved in the
ghc-exactprint development, and successfully com-
pleted his Google Summer of Code project which in-
volved bringing it up to standard, which has helped
tremendously for HaRe.

There is plenty to do, so anyone who has an interest
is welcome to fork the repo and get stuck in.
Stephen Adams is continuing his PhD at the Univer-
sity of Kent and will be working on data refactoring
in Haskell.

Further reading

http://www.cs.kent.ac.uk/projects/refactor-fp/
https://github.com/RefactoringTools/HaRe
https://github.com/alanz/ghc-exactprint
http://mpickering.github.io/gsoc2015.html
https://github.com/haskell /haskell-ide

O O O O O


https://github.com/haskell/haskell-ide-engine
https://mail.haskell.org/pipermail/haskell-cafe/2015-October/121875.html
https://mail.haskell.org/pipermail/haskell-cafe/2015-October/121875.html
https://www.fpcomplete.com/blog/2015/10/new-haskell-ide-repo
https://www.fpcomplete.com/blog/2015/10/new-haskell-ide-repo
https://www.reddit.com/r/haskell/comments/3pt560/ann_haskellide_project/
https://www.reddit.com/r/haskell/comments/3pt560/ann_haskellide_project/
https://www.reddit.com/r/haskell/comments/3qbgmo/fp_complete_the_new_haskellide_repo/
https://www.reddit.com/r/haskell/comments/3qbgmo/fp_complete_the_new_haskellide_repo/
https://groups.google.com/forum/#!forum/hare
https://groups.google.com/forum/#!forum/hare
http://www.cs.kent.ac.uk/projects/refactor-fp/
https://github.com/RefactoringTools/HaRe
https://github.com/alanz/ghc-exactprint
http://mpickering.github.io/gsoc2015.html
https://github.com/haskell/haskell-ide

6.1.5 ghc-exactprint

Report by: Matthew Pickering
Participants: Alan Zimmerman
Status: Active, Experimental

ghc-exactprint aims to be a low-level foundation for
refactoring tools. Unlike most refactoring tools, it
works directly with the GHC API which means that
it can understand any legal Haskell source file.

The program works in two phases. The first phase
takes the output from the parser and converts all ab-
solute source positions into relative source positions.
This means that it is much easier to manipulate the
AST as you do not have to worry about updating ir-
relevant parts of your program. The second phase per-
forms the reverse process, it converts relative source
positions back into absolute positions before printing
the source file. The entire library is based around a free
monad which keeps track of which annotations should
be where. Each process is then a different interpreta-
tion of this structure.

In theory these two processes should be entirely sepa-
rate but at the moment they are not entirely decoupled
due to shortcomings we are addressing in GHC 8.0.

In order to verify our foundations, the program has
been run on every source file on Hackage. This testing
highlighted a number of bugs which have been fixed
for GHC 7.10.2. Apart from a few outstanding issues
with very rare cases, we can now confidently say that
ghc-exactprint is capable of processing any Haskell
source file.

Over the last few months Alan Zimmerman has in-
tegrated ghc-exactprint into HaRe(— 6.1.4) whilst
Matthew Pickering participated in Google Summer of
Code to provide integration with HLint.

Both of these proceeded smoothly, and are now work-
ing.

ghc-exactprint has also been used for a proof of
concept tool to migrate code forward for AMP and
MRP, see link below.

Alan Zimmerman also presented ghc-exactprint at
HIW2015, and Matthew Pickering at SkillsMatter in
October. Links to the respective videos are provided
below.

Further reading

o https://github.com/alanz/ghc-exactprint

o https://github.com/hvr/Hs2010To201x

o https://www.youtube.com/watch?v=U5_9mfQAUBo
- HIW2015

o https://skillsmatter.com /skillscasts/
6539-a-new-foundation-for-refactoring-ghc-exactprint
- Skills Matter, (free) registration required

28

6.1.6 IHaskell: Haskell for Interactive Computing

Report by:
Status:

Andrew Gibiansky
stable

IHaskell is an interactive interface for Haskell develop-
ment. It provides a notebook interface (in the style of
Mathematica or Maple). The notebook interface runs
in a browser and provides the user with editable cells
in which they can create and execute code. The output
of this code is displayed in a rich format right below,
and if it’s not quite right, the user can go back, edit the
cell, and re-execute. This rich format defaults to the
same boring plain-text output as GHCi would give you;
however, library authors will be able to define their own
formats for displaying their data structures in a useful
way, with the only limit being that the display output
must be viewable in a browser (images, HTML, CSS,
Javascript). For instance, integration with graphing li-
braries yields in-browser data visualizations, while inte-
gration with Aeson’s JSON yields a syntax-highlighted
JSON output for complex data structures.

toRenderable

$ pie title .~ "Relative Population"
$ pie plot . pie_data .~ map pitem values
$ def

Relative Population

London

Sydney

New York

Mumbai

\_Mexico City

Implementation-wise, IHaskell is a language kernel
backend for the Jupyter project, a language-agnostic
protocol and set of frontends by which interactive code
environments such as REPLs and notebooks can com-
municate with a language evaluator backend. THaskell
also provides a generic library for writing Jupyter ker-
nels, which has been used successfully in the ICryptol
project.


https://github.com/alanz/ghc-exactprint
https://github.com/hvr/Hs2010To201x
https://www.youtube.com/watch?v=U5_9mfQAUBo
https://skillsmatter.com/skillscasts/6539-a-new-foundation-for-refactoring-ghc-exactprint
https://skillsmatter.com/skillscasts/6539-a-new-foundation-for-refactoring-ghc-exactprint

-- We can draw diagrams, right in the notebook.
:extension NoMonomorphismRestriction
import Diagrams.Prelude

-- By Brent Yorgey

-- Draw a Sierpinski triangle!
sierpinski 1 egTriangle 1
sierpinski n s

(s ||| s) # centerx
where s = sierpinski (n-1)

-- The “diagram” function is used to display them
diagram $ sierpinski 4
# centerXY
# fc black
“atop” square 10
# fc white

Integration with popular Haskell libraries can give
us beautiful and potentially interactive visualizations
of Haskell data structures. On one hand, this could
range from simple things such as foldable record struc-
tures — imagine being able to explore complex nested
records by folding and unfolding bits and pieces at a
time, instead of trying to mentally parse them from the
GHCi output. On the other end, we have interactive
outputs, such as Parsec parsers which generate small
input boxes that run the parser on any input they’re
given. And these things are just the beginning — tight
integration with IPython may eventually be able to
provide things such as code-folding in your REPL or
an integrated debugger interface.

Further reading

https://github.com/gibiansky/IHaskell

29

6.1.7 Haskell for Mac

Manuel M. T. Chakravarty
Available & actively developed

Report by:
Status:

© @ Q

wwwwwwwwwwwwwwwwww

Haskell for Mac is an easy-to-use integrated program-
ming environment for Haskell on OS X. It includes its
own Haskell distribution and requires no further set up.
It features interactive Haskell playgrounds to explore

and experiment with code. Playground code is not
only type-checked, but also executed while you type,
which leads to a fast turn around during debugging or
experimenting with new code.

Integrated environment. Haskell for Mac inte-
grates everything needed to start writing Haskell code,
including an editor with syntax highlighting and cus-
tomisable themes. (Alternatively, users can also con-
figure an external editor.) Haskell for Mac creates
Haskell projects based on standard Cabal specifications
for compatibility with the rest of the Haskell ecosystem.
It includes the Glasgow Haskell Compiler (GHC) and
over 200 of the most popular packages.

Type directed development. Haskell for Mac
uses GHC’s support for deferred type errors so that
you can still execute playground code in the face of
type errors. This is convenient during refactoring to
test changes, while some code still hasn’t been adapted
to new signatures. Moreover, you can use type holes to
stub out missing pieces of code, while still being able
to run code. The system will also report the types ex-
pected for holes and the types of the available bindings.

Interactive graphics. Haskell for Mac includes
special support for the Rasterific, Diagrams, and Chart
libraries. Graphical results are immediately displayed
in the playground. They are also live and change as
you modify the program code.

Moreover, Haskell for Mac includes a binding to the
main parts of Apple’s 2D animation and games frame-
work SpriteKit. The Haskell binding to SpriteKit is
purely functional using an immutable representation
of the scene graph and pure transformation functions.
SpriteKit scenes are rendered as interactive popover
windows in the Haskell for Mac playground, where they
react to keyboard, mouse, and trackpad events.


https://github.com/gibiansky/IHaskell

Haskell for Mac is available for purchase from the
Mac App Store. Just search for "Haskell", or visit our
website for a direct link. We are always available for
questions or feedback at support@haskellformac.com.

The current version of Haskell for Mac is based on
GHC 7.8.4 and LTS Haskell 2.20. We are currently
preparing an update to GHC 7.10 and LTS Haskell 3.
We are working on several extensions to Haskell for
Mac, which we will announce once we have concrete
release dates.

Further reading

The Haskell for Mac website: http://haskellformac.com

6.1.8 Haskino
Report by: Mark Grebe
Participants: Andrew Gill
Status: active

Haskino is a Haskell development environment for
programming the Arduino microcontroller boards in a
high level functional language instead of the low level C
language normally used. Haskino presents two compli-
mentary ways of developing programs for the Arduino.

The first method allows programming of an Arduino
tethered to a host computer through a serial connec-
tion. This work started with Levent Erkok’s hArduino
package. To this we have added our strong Remote
Monad concepts, which provide a more efficient method
of communication with the board. We have also re-
placed the Firmata serial communication protocol and
firmware with a new protocol and firmware which also
allow for more efficient communication, and are ex-

30

pandable to meet the needs of our second programming
method.

The second method of programming the Arduino
uses a deep embedding to out-source entire groups of
commands and control-flow idioms. These programs
may then be stored in EEPROM on the board, and
executed from startup, with no connection to the host
computer required. A Haskell programmer can start
program development with the first method, which al-
lows for convenient prototyping and debugging. The
program can then be moved to the second method,
with the entire computation being performed on the
Arduino, and not requiring the host computer.

The development has been active over the past 6
months and there is a paper accepted for publication
at PADL 2016.

Further reading

o https://github.com/ku-fpg/haskino
o https://github.com/ku-fpg/wiki

6.2 Code Management

6.2.1 Darcs
Report by: Eric Kow
Participants: darcs-users list
Status: active development

Darcs is a distributed revision control system written
in Haskell. In Darcs, every copy of your source code
is a full repository, which allows for full operation in a
disconnected environment, and also allows anyone with
read access to a Darcs repository to easily create their
own branch and modify it with the full power of Darcs’
revision control. Darcs is based on an underlying the-
ory of patches, which allows for safe reordering and
merging of patches even in complex scenarios. For all
its power, Darcs remains a very easy to use tool for ev-
ery day use because it follows the principle of keeping
simple things simple.

Our most recent release was Darcs 2.10 (April
2015). This release includes the new darcs rebase
command (for merging and amending patches that
would be hard to do with patch theory alone), nu-
merous optimisations and performance improvements,
a darcs convert command for switching to and from
Git, as well as general improvements to the user inter-
face.

In more recent news, we have gotten back into what
we hope to be a habit of regular Darcs hacking sprints,
with a recent one in Paris this September and in Seville
this upcoming January. We also have a new maintainer,


support@haskellformac.com
http://haskellformac.com
https://github.com/ku-fpg/haskino
https://github.com/ku-fpg/wiki

Guillaume Hoffmann. Guillaume has been with the
project for five years now and has been working on
bringing new developers into the project and making
links between Darcs and other communities.

SFC and donations Darcs is free software licensed un-
der the GNU GPL (version 2 or greater). Darcs is a
proud member of the Software Freedom Conservancy,
a US tax-exempt 501(c)(3) organization. We accept
donations at http://darcs.net/donations.html.

Further reading

o http://darcs.net
o http://darcs.net/Releases/2.10

6.2.2 cab — A Maintenance Command of Haskell
Cabal Packages

Kazu Yamamoto
open source, actively developed

Report by:
Status:

cab is a MacPorts-like maintenance command of
Haskell cabal packages. Some parts of this program
are a wrapper to ghc-pkg and cabal.

If you are always confused due to inconsistency of
ghc-pkg and cabal, or if you want a way to check all
outdated packages, or if you want a way to remove out-
dated packages recursively, this command helps you.

cab now supports GHC 7.10.

Further reading

http://www.mew.org/~kazu/proj/cab/en/

6.3 Interfacing to other Languages
6.3.1 java-bridge

Julian Fleischer
active development

Report by:
Status:

The Java Bridge is a library for interfacing the Java
Virtual Machine with Haskell code and vice versa. It
comes with a rich DSL for discovering and invoking
Java methods and allows to set up callbacks into the
Haskell runtime. If exported via the FFI it is also pos-
sible to use Haskell libraries from within the JVM na-
tively.

The package also offers a bindings generator which
translates the API of a Java class or package into a
Haskell API. Using the bindings generator it is possible
to generate a Haskell module with a clean Haskell API
that invokes Java behind the scenes. Typical conver-
sions, for example byte arrays to lists or Java maps to
lists of key value pairs, are taken care of. The generated
bindings and predefined conversions are extensible by
defining appropriate type class instances accordingly.

31

While the documentation for the bindings generator
still needs improvement, the overall library is in a quite
usable state.

The java bridge is published under the MIT license
and available via hackage as java-bridge.

Further reading

If you want to know more about the inner
workings: The Java Bridge has been cre-
ated as part of a bachelor thesis which you

can access at http://page.mi.fu-berlin.de/scravy/
bridging-the-gap-between-haskell-and-java.pdf.

6.3.2 fficxx
Report by: lan-Woo Kim
Participants: Ryan Feng
Status: Actively Developing

flicxx (“eff fix”) is an automatic haskell Foreign Func-
tion Interface (FFI) generator to C++. While haskell
has a well-specified standard for C FFI, interfacing
C++ library to haskell is notoriously hard. The goal
of flicxx is to ease making haskell-C++ binding and
to provide relatively nice mapping between two com-
pletely different programming paradigms.

To make a C++ binding, one write a haskell model
of the C++ public interfaces, and then fficxx auto-
matically generates necessary boilerplate codes in sev-
eral levels: C++4-C shims, C-haskell FFI, low level
haskell type representation for C++ class/object and
high level haskell type and typeclass representation and
some casting functions. The generated codes are orga-
nized into proper haskell modules to minimize name
space collision and packaged up as cabal packages.

The tool is designed to adapt different configurations
and unique needs, such as splitting bindings into multi-
ple cabal packages and renaming classes and functions
to resolve some obstacles that are originated from nam-
ing collision, which is quite inevitable in making an FFI
library.

The information of a C++ library can be written
in terms of simple haskell expressions, aiming at good
usability for ordinary haskell users. For example, if we
have a C++ library which has the following interface:

class A {
public:
AQ;
virtual void Foo();
};
class B :
public:
BO;

virtual void Bar();

public A {

};

one provide the model in terms of haskell data type
defined in fficxx library:


http://darcs.net/donations.html
http://darcs.net
http://darcs.net/Releases/2.10
http://www.mew.org/~kazu/proj/cab/en/
http://page.mi.fu-berlin.de/scravy/bridging-the-gap-between-haskell-and-java.pdf
http://page.mi.fu-berlin.de/scravy/bridging-the-gap-between-haskell-and-java.pdf

a = myclass "A" [] mempty Nothing

[ Constructor [] Nothing

, Virtual void_ "Foo" [ ] Nothing ]
b = myclass "B" [al mempty Nothing

[ Constructor [] Nothing
, Virtual void_ "Bar" [] Nothing ]

One of the projects that successfully uses flicxx is
HROOT which is a haskell binding to the ROOT li-
brary. ROOT is a big C++ histogramming and statis-
tical analysis framework. Due to flicxx, the HROOT
package faithfully reflects the ROOT C++ class hier-
archy, and the user from C++ can use the package
relatively easily.

flicxx is available on hackage and being developed
on the author’s github (http://github.com/wavewave/
fficxx). In 2013, with Ryan Feng, we tried to make
flicxx more modernized with more transparent sup-
port of various C/C++ data types, including consis-
tent multiple pointer/reference operations and function
pointers. fficxx is still being in progress in incorporat-
ing the new pointer operations. C++ template support
is now planned.

Further reading

http://ianwookim.org/fficxx

6.4 Deployment

6.4.1 Cabal and Hackage

Report by: Duncan Coutts

Background

Cabal is the standard packaging system for Haskell
software. It specifies a standard way in which Haskell
libraries and applications can be packaged so that it
is easy for consumers to use them, or re-package them,
regardless of the Haskell implementation or installation
platform.

Hackage is a distribution point for Cabal packages.
It is an online archive of Cabal packages which can
be used via the website and client-side software such
as cabal-install. Hackage enables users to find, browse
and download Cabal packages, plus view their API doc-
umentation.

cabal-install is the command line interface for the
Cabal and Hackage system. It provides a command line
program cabal which has sub-commands for installing
and managing Haskell packages.

Looking forward

We would like to encourage people considering con-
tributing to take a look at the bug tracker on github,
take part in discussions on tickets and pull requests, or
submit their own. The bug tracker is reasonably well

32

maintained and it should be relatively clear to new con-
tributors what is in need of attention and which tasks
are considered relatively easy. For more in-depth dis-
cussion there is also the cabal-devel mailing list.

Further reading

o Cabal homepage: http://www.haskell.org/cabal

o Hackage package collection:
http://hackage.haskell.org/

o Bug tracker: https://github.com/haskell /cabal/

6.4.2 Stackage: the Library Dependency Solution

Natalia Muska
new

Report by:
Status:

Stackage began in November 2012 with the mission
of making it possible to build stable, vetted sets of
packages. The overall goal was to make the Cabal
experience better. Two years into the project, a lot
of progress has been made and now it includes both
Stackage and the Stackage Server. To date, there are
over 700 packages available in Stackage. The official
site is www.stackage.org.

Stackage Update: Stackage is an infrastructure to
create stable builds of complete package sets referred
to as "snapshots." Stackage provides users with the as-
surance that their packages will always build, will ac-
tually compile, all tests suites pass, and all will work
across three GHC versions (7.8, 7.6, and 7.4). Users of
a snapshot verified by Stackage can expect all packages
to install the first time.

Each snapshot is given a unique hash which is a di-
gest of that snapshot’s package set. Snapshots don’t
change. Once a hash is provided, it refers only to that
snapshot. So if a user writes a project using snapshot
abalbblaf, and in two months switches to another ma-
chine and builds their project with abalbblaf, it will
succeed.

For package authors, Stackage gives them the valu-
able knowledge that their package builds and tests suc-
cessfully across the current, stable and old GHC ver-
sions. Library authors have guarantees that users of
Stackage can easily use their library and can do so on
a reasonable number of GHCs. Authors are also in-
formed when a newly uploaded package breaks theirs,
meaning it’s time to update the package for it to be
included in the latest snapshot.

Recently Stackage added some additional features in-
cluding Haddock documentation and cabal.config files.
By including Haddock documentation in Stackage all
new exclusive snapshots have Haddock links allowing
users to view documentation of all packages included
in the snapshot. This means users can generally view
everything in one place, on one high-availability ser-
vice. By creating a cabal.config link on snapshot pages,
Stackage users don’t have to change their remote-repo
field.


http://github.com/wavewave/fficxx
http://github.com/wavewave/fficxx
http://ianwookim.org/fficxx
http://www.haskell.org/cabal
http://hackage.haskell.org/
https://github.com/haskell/cabal/

Stackage Server: Before Stackage Server, use of
Stackage was limited to either manually downloading
a project and building it all locally, or by using FP
Haskell Center. With Stackage Server, users are able
to go to the server web site and pick a snapshot. On
the build is a simple copy/paste line to use as a Cabal
repo, to replace the users existing remote-repo line.

When a new package is released and has been prop-
erly updated, users can go to the Stackage home page
and get the latest snapshot and update their repo. The
Stackage server also supports the uploading of custom
snapshots, this allows a company, a Linux distribution,
an organization, a university, or just as a general hacker
who wants to keep all their projects under one package
set, to maintain their own custom series of snapshots,
and also make it available to other people. Then the
burden will be on those users to make sure it builds,
rather than the recommended and Stackage maintained
snapshots.

If you've written some code that you're actively
maintaining, don’t hesitate to get it in Stackage. You’ll
be widening the potential audience of users for your
code by getting your package into Stackage, and you’ll
get some helpful feedback from the automated builds
so that users can more reliably build your code.

6.4.3 Haskell Cloud

Report by: Gideon Sireling

Haskell Cloud is an OpenShift cartridge for deploying
Haskell on Red Hat’s open source PaaS cloud. It in-
cludes GHC 7.8, cabal-install, Gold linker, and a choice
of pre-installed frameworks - a full list can be viewed
on the Wiki.

Using a Haskell Cloud cartridge, existing Haskell
projects can be uploaded, build, and run from the
cloud with minimal changes. Ongoing development is
focused on OpenShift’s upcoming Docker release and
GHC 7.10.

Further reading
o https://bitbucket.org/accursoft/haskell-cloud
o http://www.haskell.org/haskellwiki/Web/Cloud#OpenShift

o https://blog.openshift.com/
functional-programming- in-the- cloud- how- to- run-haskell-on-openshift /

6.5 Others

6.5.1 ghc-heap-view

Report by: Joachim Breitner
Participants: Dennis Felsing
Status: active development

The library ghc-heap-view provides means to inspect
the GHC’s heap and analyze the actual layout of
Haskell objects in memory. This allows you to inves-
tigate memory consumption, sharing and lazy evalua-
tion.

33

This means that the actual layout of Haskell objects
in memory can be analyzed. You can investigate shar-
ing as well as lazy evaluation using ghc-heap-view.

The package also provides the GHCi command
:printHeap, which is similar to the debuggers’ :print
command but is able to show more closures and their
sharing behaviour:

> let x = cycle [True, False]
> :printHeap x
_bco

> head x

True

> :printHeap x
let x1 = True :
in x1

> take 3 x
[True,False,True]
> :printHeap x
let x1 = True :
in x1

_thunk x1 [False]

False : x1

The graphical tool ghe-vis (— ??) builds on ghe-
heap-view.

Since version 0.5.3, ghc-heap-view also supports
GHC 7.8.

Further reading

o http://www.joachim-breitner.de/blog/archives/
548-ghc-heap-view-Complete-referential-opacity.html

o http://www.joachim-breitner.de/blog/archives/
580-GHCi-integration-for- GHC.HeapView.html

o http://www.joachim-breitner.de/blog/archives/
590-Evaluation-State-Assertions-in-Haskell.html

6.5.2 Hat — the Haskell Tracer

Report by: Olaf Chitil

Hat is a source-level tracer for Haskell. Hat gives ac-
cess to detailed, otherwise invisible information about
a computation.

Hat helps locating errors in programs. Furthermore,
it is useful for understanding how a (correct) program
works, especially for teaching and program mainte-
nance. Hat is not a time or space profiler. Hat can be
used for programs that terminate normally, that ter-
minate with an error message or that terminate when
interrupted by the programmer.

You trace a program with Hat by following these
steps:

1. With hat-trans translate all the source modules of
your Haskell program into tracing versions. Compile
and link (including the Hat library) these tracing ver-
sions with ghc as normal.


https://bitbucket.org/accursoft/haskell-cloud
http://www.haskell.org/haskellwiki/Web/Cloud#OpenShift
https://blog.openshift.com/functional-programming-in-the-cloud-how-to-run-haskell-on-openshift/
https://blog.openshift.com/functional-programming-in-the-cloud-how-to-run-haskell-on-openshift/
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/548-ghc-heap-view-Complete-referential-opacity.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/580-GHCi-integration-for-GHC.HeapView.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html
http://www.joachim-breitner.de/blog/archives/590-Evaluation-State-Assertions-in-Haskell.html

2. Run the program. It does exactly the same as the
original program except for additionally writing a
trace to file.

. After the program has terminated, view the trace
with a tool. Hat comes with several tools for se-
lectively viewing fragments of the trace in different
ways: hat-observe for Hood-like observations, hat-
trail for exploring a computation backwards, hat-
explore for freely stepping through a computation,
hat-detect for algorithmic debugging, ...

Hat is distributed as a package on Hackage that con-
tains all Hat tools and tracing versions of standard li-
braries. Hat works with the Glasgow Haskell compiler
for Haskell programs that are written in Haskell 98 plus
a few language extensions such as multi-parameter type
classes and functional dependencies. Note that all mod-
ules of a traced program have to be transformed, in-
cluding trusted libraries (transformed in trusted mode).
For portability all viewing tools have a textual inter-
face; however, many tools require an ANSI terminal
and thus run on Unix / Linux / OS X, but not on
Windows.

Further reading

o Initial website: http://projects.haskell.org/hat
o Hackage package:
http://hackage.haskell.org/package/hat

6.5.3 Tasty

Roman Cheplyaka

Michael LaCorte, Sergey Vinokurov, and
many others

actively maintained

Report by:
Participants:

Status:

Tasty is a modern testing framework for Haskell. As
of May 2015, 230 hackage packages use Tasty for their
tests. We've heard from several companies that use
Tasty to test their Haskell software.

What's new since the last HCAR?

o Tasty now sets the number of parallel running tests

equal to the number of available capabilities (i.e. the

number set by -N) by default. As always, that can

be changed with -j.

Printing test results on Windows used to be slow,

but now it’s fast!

Tasty-HUnit now has a new  function,

testCaseSteps, which lets you annotate a multi-

step unit test. Here’s an example:

main

defaultMain $
testCaseSteps
\step -> do

"Multi-step test" $

step "Step 1"

34

-- do something

step "Step 2"

-- do something else
As a reminder from the last HCAR, Tasty-HUnit no
longer uses the original HUnit package; instead it
reimplements the relelvant subset of its API.
The way Tasty-Golden works internally has
changed. There are a few consequences (see the
CHANGELOG for details); an interesting one is
that you can now update golden files in parallel.
Also, if a golden file doesn’t exist, it will be created
automatically. You’ll see a message like

UnboxedTuples: 0K (0.04s)

Golden file did not exist; created

This is convenient when adding new tests.

Further reading

o For more information about Tasty and how to use
it, please consult the README at
http://bit.ly/tasty-home

o Tasty has a mailing list http://bit.ly/tasty-ml and
an IRC channel (#tasty on FreeNode), where you
can get help with Tasty.

6.5.4 Automatic type inference from JSON

Michal J. Gajda
stable

Report by:
Status:

This rapid software development tool json-autotype
interprets JSON data and converts them into Haskell
module with data type declarations.

$ json-autotype input.json -o JSONTypes.hs

The generated declarations use automatically de-
rived Aeson class instances to read and write data di-
rectly from/to JSON strings, and facilitate interaction
with growing number of large JSON APIs.

Generated parser can be immediately tested on an
input data:

$ runghc JSONTypes.hs input.json

The software can be installed directly from Hackage.

It uses sophisticated union type unification, and ro-
bustly interprets most ambiguities using clever typing.

The tool has reached maturity this year, and thanks
to automated testing procedures it seems to robustly
infer types for all JSON inputs considered valid by Ae-
son.

The author welcomes comments and suggestions at
(mjgajda@gmail.com).

Further reading

http://hackage.haskell.org/packages/json-autotype


http://projects.haskell.org/hat
http://hackage.haskell.org/package/hat
http://bit.ly/tasty-home
http://bit.ly/tasty-ml
https://github.com/mgajda/json-autotype
mailto: mjgajda at gmail.com
http://hackage.haskell.org/packages/json-autotype

6.5.5 Exference

Lennart Spitzner
experimental, active development

Report by:
Status:

Exference is a tool aimed at supporting developers writ-
ing Haskell code by generating expressions from a type,
e.g.

Input:

(Show b) => (a -> b) -> [a] -> [String]
Output:

\ f1 -> fmap (show . f1)

Input:

(Monad m, Monad n)
=> ([a] > b ->c) ->m [na]l -=>m (n b)
->m (n c)

Output:

\ f1 -> 1iftA2 (\ hs i >
1iftA2 (\ n os -> f1 os n) i (sequenceA hs))

The algorithm does a proof search specialized to the
Haskell type system. In contrast to Djinn, the well
known tool with the same general purpose, Exference
supports a larger subset of the Haskell type system -
most prominently type classes. The cost of this feature
is that Exference makes no promise regarding termi-
nation (because the problem becomes an undecidable
one; a draft of a proof can be found in the pdf below).
Of course the implementation applies a time-out.
There are two primary use-cases for Exference:

In combination with typed holes: The programmer
can insert typed holes into the source code, retrieve
the expected type from ghc and forward this type to
Exference. If a solution, i.e. an expression, is found
and if it has the right semantics, it can be used to
fill the typed hole.

As a type-class-aware search engine. For example,
Exference is able to answer queries such as Int —
Float, where the common search engines like hoogle
or hayoo are not of much use.

Since the last HCAR, development has slowed down
but continued. Additions include minor optimizations,
support for type declarations, improvements to the in-
terface (simplifications of the expression, etc.) and ex-
pansion of the default environment.

Try it out by on IRC(freenode): exferenceBot is in
#haskell and #exference.

Further reading

o https://github.com/Ispitzner/exference
o https://github.com/Ispitzner/exference/raw/master/
exference.pdf

35

6.5.6 Lentil
Report by: Francesco Ariis
Status: working

Lentil helps the programmers who litter their code with
TODOs and FIXMEs.

Lentil goes through a project and outputs all issues
in a pretty format, referencing their file/line position.
As today it recognises Haskell, Javascript, C/C++,
Python, Ruby, Pascal, Perl, Shell and Nix source files,
plus plain .txt files.

Lentil syntax allows you to put [tagls in your issues,
which can then be used to filter /extract/export data.

Current version is 0.1.6.2, the immediate goal being
switching to pipes for searching the directory trees.

Further reading

o manual: http://ariis.it/static/articles/lentil /page.html
o decentralised issue tracking:
http://ariis.it/static/articles/decentralised-lentil /page.html

6.5.7 The Remote Monad Design Pattern

Andrew Gill

Justin Dawson, Mark Grebe, James
Stanton, David Young

active

Report by:
Participants:

Status:

The remote monad design pattern is a way of mak-
ing Remote Procedure Calls (RPCs), and other calls
that leave the Haskell eco-system, considerably less ex-
pensive. The idea is that, rather than directly call a re-
mote procedure, we instead give the remote procedure
call a service-specific monadic type, and invoke the re-
mote procedure call using a monadic “send” function.
Specifically, a remote monad is a monad that has its
evaluation function in a remote location, outside the
local runtime system.

By factoring the RPC into sending invocation and
service name, we can group together procedure calls,
and amortize the cost of the remote call. To give an
example, Blank Canvas, our library for remotely access-
ing the JavaScript HTML5 Canvas, has a send func-
tion, lineWidth and strokeStyle services, and our
remote monad is called Canvas:

send :: Device -> Canvas a -> I0 a
lineWidth : Double -> Canvas ()
strokeStyle :: Text -> Canvas ()

If we wanted to change the (remote) line width, the
lineWidth RPC can be invoked by combining send and
lineWidth:

send device (lineWidth 10)
Likewise, if we wanted to change the (remote) stroke

color, the strokeStyle RPC can be invoked by com-
bining send and strokeStyle:


https://github.com/lspitzner/exference
https://github.com/lspitzner/exference/raw/master/exference.pdf
https://github.com/lspitzner/exference/raw/master/exference.pdf
http://ariis.it/static/articles/lentil/page.html
http://ariis.it/static/articles/decentralised-lentil/page.html

send device (strokeStyle "red")

The key idea is that remote monadic commands can
be locally combined before sending them to a remote
server. For example:

send device (lineWidth 10 >> strokeStyle "red")

The complication is that, in general, monadic com-
mands can return a result, which may be used by sub-
sequent commands. For example, if we add a monadic
command that returns a Boolean,

isPointInPath :: (Double,Double) -> Canvas Bool

we could use the result as follows:

send device $ do
inside <- isPointInPath (0,0)
lineWidth (if inside then 10 else 2)

The invocation of send can also return a value:

do res <- send device (isPointInPath (0,0))

Thus, while the monadic commands inside send are
executed in a remote location, the results of those ex-
ecutions need to be made available for use locally.

We have a paper in the 2015 Haskell Symposium that
discusses these ideas in more detail. We have identified
six variants of the design pattern, including a weak
remote monad, which calls primitives one at a time,
and a strong remote monad, which bundles primitives
together in a robust way that amortizes the cost of
calling remote capabilities. We have also identified over
a dozen use-cases of this design pattern being used in
practice.

Further reading

http://ku-fpg.github.io/practice /remotemonad

6.5.8 Hoed — The Lightweight Algorithmic
Debugger for Haskell

Maarten Faddegon
active

Report by:
Status

Hoed is a lightweight algorithmic debugger that is prac-
tical to use for real-world programs because it works
with any Haskell run-time system and does not require
trusted libraries to be transformed.

To locate a defect with Hoed you annotate suspected
functions and compile as usual. Then you run your
program, information about the annotated functions is
collected. Finally you connect to a debugging session
using a webbrowser.

Using Hoed

Let us consider the following program, a defective im-
plementation of a parity function with a test property.

isOdd :: Int -> Bool

is0dd n = isEven (plusOne n)
isEven :: Int -> Bool
isEven n = mod2 n ==
plusOne :: Int -> Int
plusOne n = n + 1

mod2 :: Int -> Int

mod2 n = div n 2

prop_is0dd :: Int -> Bool
prop_isOdd x = is0dd (2*x+1)
main :: I0 ()

main = print0 (prop_is0dd 1)
main :: I0 ()

main = quickcheck prop_isOdd

Using the property-based test tool QuickCheck we
find the counter example 1 for our property.

./MyProgram
**x* Failed! Falsifiable (after 1 test): 1

Hoed can help us determine which function is de-
fective. We annotate the functions isOdd, isEven,
plusOne and mod2 as follows:

import Debug.Hoed.Pure

isOdd :: Int -> Bool

is0dd = observe "is0dd" is0dd’
is0dd’ n = isEven (plusOne n)
isEven :: Int -> Bool

isEven = observe "isEven" isEven’
isEven’ n = mod2 n ==

plusOne :: Int -> Int

plusOne = observe "plusOne" plusOne’
plusOne’ n =n + 1

mod2 :: Int -> Int

mod2 = observe "mod2" mod2’

mod2’ n = div n 2

prop_is0dd :: Int -> Bool
prop_is0dd x = is0dd (2*x+1)
main :: I0 ()

main = print0 (prop_is0Odd 1)

And run our program:

36


http://ku-fpg.github.io/practice/remotemonad

./MyProgram
False
Listening on http://127.0.0.1:10000/

Now you can use your webbrowser to interact with
Hoed.

There is a classic algorithmic debugging interface in
which you are shown computation statements, these are
function applications and their result, and are asked to
judge if these are correct. After judging enough com-
putation statements the algorithmic debugger tells you
where the defect is in your code.

| Hoed debugging se... * | + ‘
127.0.0.1:10000 ¢ Rim & » =

About Hoed | Observe | Algorithmic Debugging | Explore | ;
isEven 4 = False :( -] right v \ wrong X\

XisEven 4 = False  plusOne 3 =4

}

Amod24=2 0

Fault detected in: mod2 4 = 2

=

In the explore mode, you can also freely browse the
tree of computation statements to get a better un-
derstanding of your program. The observe mode is
inspired by HOOD and gives a list of computation
statements. Using regular expressions this list can be
searched. Algorithmic debugging normally starts at
the top of the tree, e.g. the application of is0dd to
(2*x+1) in the program above, using explore or ob-
serve mode a different starting point can be chosen.

Further reading

o http://wiki.haskell.org/Hoed
o http://hackage.haskell.org/package/Hoed

37


http://wiki.haskell.org/Hoed
http://hackage.haskell.org/package/Hoed

7 Libraries, Applications, Projects

7.1 Language Features

7.1.1 Conduit
Report by: Michael Snoyman
Status: stable

While lazy I/O has served the Haskell community well
for many purposes in the past, it is not a panacea.
The inherent non-determinism with regard to resource
management can cause problems in such situations as
file serving from a high traffic web server, where the
bottleneck is the number of file descriptors available to
a process.

The left fold enumerator was one of the first ap-
proaches to dealing with streaming data without us-
ing lazy 1/0O. While it is certainly a workable solution,
it requires a certain inversion of control to be applied
to code. Additionally, many people have found the
concept daunting. Most importantly for our purposes,
certain kinds of operations, such as interleaving data
sources and sinks, are prohibitively difficult under that
model.

The conduit package was designed as an alternate
approach to the same problem. The root of our simplifi-
cation is removing one of the constraints in the enumer-
ator approach. In order to guarantee proper resource
finalization, the data source must always maintain the
flow of execution in a program. This can lead to con-
fusing code in many cases. In conduit, we separate out
guaranteed resource finalization as its own component,
namely the ResourceT transformer.

Once this transformation is in place, data produc-
ers, consumers, and transformers (known as Sources,
Sinks, and Conduits, respectively) can each maintain
control of their own execution, and pass off control via
coroutines. The user need not deal directly with any
of this low-level plumbing; a simple monadic interface
(inspired greatly by the pipes package) is sufficient for
almost all use cases.

Since its initial release, conduit has been through
many design iterations, all the while keeping to its ini-
tial core principles. Since the last HCAR, we've re-
leased version 1.2. This release introduces two changes:
it adds a stream fusion implementation to allow much
more optimized runs for some forms of pipelines, and
uses the codensity transform to provide better behavior
of monadic bind.

Additionally, much work has gone into
conduit-combinators and streaming-commons,
both of which are packages introduced in the last
HCAR.

There is a rich ecosystem of libraries available to
be used with conduit, including cryptography, network

38

communications, serialization, XML processing, and
more.

The library is available on Hackage. There is an in-
teractive tutorial available on the FP Complete School
of Haskell. You can find many conduit-based packages
in the Conduit category on Hackage as well.

Further reading

o http://hackage.haskell.org/package/conduit

o https://www.fpcomplete.com/user/snoyberg/
library-documentation /conduit-overview

o http://hackage.haskell.org/packages/archive/pkg-list.
html#cat:conduit

7.1.2 GHC type-checker plugin for kind Nat

Report by:
Status:

Christiaan Baaij
actively developed

As of GHC version 7.10, GHC’s type checking and in-
ference mechanisms can be enriched by plugins. This
particular plugin enriches GHC’s knowledge of arith-
metic on the type-level. Specifically it allows the
compiler to reason about equalities of types of kind
GHC.TypeLits.Nat.

GHC’s type-checker’s knowledge of arithmetic is vir-
tually non-existent: it doesn’t know addition is associa-
tive and commutative, that multiplication distributes
over addition, etc. In a dependently-typed language,
or in Haskell using singleton types, one can provide
proofs for these properties and use them to type-check
programs that depend on these properties in order to
be (type-)correct. However, most of these properties of
arithmetic over natural number are elementary school
level knowledge, and it is cumbersome and tiresome to
keep on providing and proving them manually. This
type-checker plugin adds the knowledge of these prop-
erties to GHC’s type-checker.

For example, using this plugin, GHC now knows
that:

(x+2)7(y + 2)
is equal to:
4xx*%(2 + )7y + 4%x(2 + x)7y + (2 + x)Ty*xx"2

The way that the plugin works, is that it nor-
malises arithmetic expressions to a normal form that
very much resembles Cantor normal form for ordi-
nals(http://en.wikipedia.org/wiki/Ordinal_arithmetic#
Cantor_normal_form).  Subsequently, it perform a


http://hackage.haskell.org/package/conduit
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:conduit
http://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form
http://en.wikipedia.org/wiki/Ordinal_arithmetic#Cantor_normal_form

simple syntactic equality of the two expressions.
Indeed, in the example above, the latter expression is
the normal form of the former expression.

The main test suite for the plugin can
be found at: https://github.com/christiaanb/
ghc-typelits-natnormalise /blob/master /tests/ Tests.hs.

It demonstrates what kind of correct code can be
written without type equality annotations, or the use
of unsafeCoerce.

One important aspect of this plugin is that it only
enriches the type checker’s knowledge of equalities, but
not inequalities. That is, it does not allow GHC to
solve constraints such as:

CmpNat (x + 2) (x + 3) ~ °LT

The plugin is available on hackage, for GHC version
7.10 and higher:

$ cabal update
$ cabal install ghc-typelits-natnormalise

What’s new since last HCAR:

Support for interacting with other type-checker
plugins, the first being http://hackage.haskell.org/
package/ghc-typelits-extra.

Prove more equalities (http://hackage.haskell.org/
package/ghc-typelits-natnormalise-0.3.2 /changelog).

Development focus for the plugin is on: proving more
equalities, further testing, and improving its test suite.

Further reading

o http://hackage.haskell.org/package/
ghc-typelits-natnormalise

o http://hackage.haskell.org/package/base/docs/
GHC-TypelLits.html

7.1.3 Dependent Haskell

Report by:
Status:

Richard Eisenberg
work in progress

I am working on an ambitious update to GHC that
will bring full dependent types to the language. On
my branch [1] the Core language and type inferenace
have already been updated according to the description
in our ICFP’13 paper [2]. Accordingly, all type-level
constructs are simultaneously kind-level constructs, as
there is no distinction between types and kinds. Specif-
ically, GADTs and type families will be promotable to
kinds. At this point, I conjecture that any construct
writable in those other dependently-typed languages
will be expressible in Haskell through the use of single-
tons.

39

As of the time of writing, the branch works on many
examples but is still a bit buggy. I am currently in the
process of merging into GHC’s master branch; expect
this to land in HEAD by the end of November.

After this phase, I will embark on working a proper
II-binder into the language, much along the lines of
Adam Gundry’s thesis on the topic [3]. Having IT would
give us “proper” dependent types, and there would be
no more need for singletons. A sampling of what I
hope is possible when this work is done is online [4],
excerpted here:

data Vec:: * — Integer — * where
Nil ::Vec a0
zw)iia— Vecan— Veca (1'+n)

replicate :: m n. Va. a — Vec a n
replicate Q0 _ = Nil
replicate x = x ::: replicate x

Of course, the design here (especially for the proper de-
pendent types) is preliminary, and input is encouraged.

Further reading

o [1]: https://github.com/goldfirere/ghc, the nokinds
branch.

[2]: System FC with Ezplicit Kind Equality, by
Stephanie Weirich, Justin Hsu, and Richard

A. Eisenberg. ICFP ’13. http://www.cis.upenn.edu/
~eir/papers/2013/fckinds/fckinds.pdf

[3]: Type Inference, Haskell and Dependent Types,
by Adam Gundry. PhD Thesis, 2013.
https://personal.cis.strath.ac.uk/adam.gundry/thesis/
[4]: https://github.com/goldfirere/nyc-hug-oct2014/
blob/master/ Tomorrow.hs

Haskell Implementors’” Workshop 2014 presentation
on Dependent Haskell. Slides:
http://www.cis.upenn.edu/~eir/talks/2014/
hiw-dependent-haskell.pdf; Video:
https://www.youtube.com/watch?v=0805YjOsQjl
Repo for presentation on Dependent Haskell at the
NYC Haskell Users’ Group:
https://github.com/goldfirere/nyc-hug-oct2014

Wiki page with elements of the design: https:
//ghc.haskell.org/trac/ghc/wiki/DependentHaskell

7.1.4 Yampa
Report by: lvan Perez
Yampa (Github:  http://git.io/vTvxQ, Hackage:

http://goo.gl/JGwycF), is a Functional Reactive Pro-
gramming implementation in the form of a EDSL to de-
fine Signal Functions, that is, transformations of input
signals into output signals (aka. behaviours in other
FRP dialects).

Yampa systems are defined as combinations of Signal
Functions. The core of Yampa includes combinators to


https://github.com/christiaanb/ghc-typelits-natnormalise/blob/master/tests/Tests.hs
https://github.com/christiaanb/ghc-typelits-natnormalise/blob/master/tests/Tests.hs
http://hackage.haskell.org/package/ghc-typelits-extra
http://hackage.haskell.org/package/ghc-typelits-extra
http://hackage.haskell.org/package/ghc-typelits-natnormalise-0.3.2/changelog
http://hackage.haskell.org/package/ghc-typelits-natnormalise-0.3.2/changelog
http://hackage.haskell.org/package/ghc-typelits-natnormalise
http://hackage.haskell.org/package/ghc-typelits-natnormalise
http://hackage.haskell.org/package/base/docs/GHC-TypeLits.html
http://hackage.haskell.org/package/base/docs/GHC-TypeLits.html
https://github.com/goldfirere/ghc
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
http://www.cis.upenn.edu/~eir/papers/2013/fckinds/fckinds.pdf
https://personal.cis.strath.ac.uk/adam.gundry/thesis/
https://github.com/goldfirere/nyc-hug-oct2014/blob/master/Tomorrow.hs
https://github.com/goldfirere/nyc-hug-oct2014/blob/master/Tomorrow.hs
http://www.cis.upenn.edu/~eir/talks/2014/hiw-dependent-haskell.pdf
http://www.cis.upenn.edu/~eir/talks/2014/hiw-dependent-haskell.pdf
https://www.youtube.com/watch?v=O805YjOsQjI
https://github.com/goldfirere/nyc-hug-oct2014
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell
https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell
http://git.io/vTvxQ
http://goo.gl/JGwycF

create constant signals, apply pointwise (or time-wise)
functions to signals, access the running time of a signal
function, introduce delays and create loopbacks (car-
rying present output as future input). These systems
can also be dynamic: their structure can change by
using switching combinators, which enable the applica-
tion of a different signal function at some point in the
execution. Combined with combinators to deal with
signal function collections, this enables a form of dy-
namic FRP in which new signals can be introduced,
frozen, unfrozen, removed and altered at will.

Yampa is designed to guarantee causality: the value
of an output signal at a time ¢ can only depend on
values of input signals at times [0,¢]. Yampa restricts
access to other signals only to the immediate past, by
letting signals functions carry state for the future. FRP
signal functions implement the Arrow and ArrowLoop
typeclasses, making it possible to use both the arrow
notation and arrow combinators. A suitable thinking
model for FRP in Yampa is that of signal processing,
in which components (signal functions) transform sig-
nals based on their present value and the component’s
internal state. Components can be serialized, applied
in parallel, etc.

Unlike other implementations of FRP, Yampa en-
forces a strict separation of effects and pure transforma-
tions. All IO code must exist outside the Signal Func-
tions, making Yampa systems easier to reason about
and debug.

Yampa has been used to create both free/open-
source and commercial games. Examples of the former
include Frag (http://goo.gl/8bfSmz), a basic reimple-
mentation of the Quake III Arena engine in Haskell,
and Haskanoid (http://git.io/v8eq3), an arkanoid
game featuring SDL graphics and sound with Wiimote
& Kinect support. Examples of the latter include Keera
Studios’ Magic Cookies! (https://goo.gl/0A8z61), a

board game for Android written in Haskell and avali-
able via Google Play for Android store.

Yampa is actively maitained. The last updates have
focused on introducing documentation, structuring the
code to facilitate navigation, eliminating legacy code

40

superceeded by other Haskell libraries, and increasing
code quality in general. Over the years, performance in
FRP has been an active topic of discussion and Yampa
has been optimised heavily (games like Haskanoid have
been clocked at over 700 frames per second on a stan-
dard PC). Also because Yampa is pure, the introduc-
tion of parallelism is straightforward. In future ver-
sions, the benchmarking package criterion will be
used to evaluate and increase performance. We en-
courage all Haskellers to participate by opening issues
on our Github page (http://git.io/vTvxQ), adding im-
provements, creating tutorials and examples, and using
Yampa in their next amazing Haskell games.

Extensions to Arrowized Functional Reactive Pro-
gramming are an active research topic. The Functional
Programming Laboratory at the University of Notting-
ham is working on several extensions to make Yampa
more general and modular, facilitate other uses cases,
increase performance and work around existing limita-
tions. To collaborate with our research on FRP, please
contact Ivan Perez at and Henrik Nilsson at .


http://goo.gl/8bfSmz
http://git.io/v8eq3
https://goo.gl/0A8z6i
http://git.io/vTvxQ
mailto:ixp\protect \unhbox \voidb@x \hbox {\protect \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmtt/m/n/10 {\T1/lmr/m/n/10 }\T1/lmtt/m/n/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmtt/m/n/10 {\T1/lmr/m/n/10 }\T1/lmtt/m/n/10 \size@update \enc@update \par@update cs\char 46{}nott\char 46{}ac\char 46{}uk\char 125{}\char 123{}ixp}cs.nott.ac.uk
mailto:nhn\protect \unhbox \voidb@x \hbox {\protect \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmtt/m/n/10 {\T1/lmr/m/n/10 }\T1/lmtt/m/n/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmtt/m/n/10 {\T1/lmr/m/n/10 }\T1/lmtt/m/n/10 \size@update \enc@update \par@update cs\char 46{}nott\char 46{}ac\char 46{}uk\char 125{}\char 123{}nhn}cs.nott.ac.uk

7.2 Education

7.2.1 Holmes, Plagiarism Detection for Haskell

Report by:
Participants:

Jurriaan Hage
Brian Vermeer, Gerben Verburg

Holmes is a tool for detecting plagiarism in Haskell
programs. A prototype implementation was made by
Brian Vermeer under supervision of Jurriaan Hage, in
order to determine which heuristics work well. This
implementation could deal only with Helium programs.
We found that a token stream based comparison and
Moss style fingerprinting work well enough, if you re-
move template code and dead code before the compari-
son. Since we compute the control flow graphs anyway,
we decided to also keep some form of similarity check-
ing of control-flow graphs (particularly, to be able to
deal with certain refactorings).

In November 2010, Gerben Verburg started to
reimplement Holmes keeping only the heuristics we
figured were useful, basing that implementation on
haskell-src-exts. A large scale empirical validation
has been made, and the results are good. We have
found quite a bit of plagiarism in a collection of about
2200 submissions, including a substantial number in
which refactoring was used to mask the plagiarism. A
paper has been written, which has been presented at
CSERC’13, and should become available in the ACM
Digital Library.

The tool will be made available through Hackage at
some point, but before that happens it can already be
obtained on request from Jurriaan Hage.

Contact

(J.HageQuu.nl)

7.2.2 Interactive Domain Reasoners

Bastiaan Heeren

Johan Jeuring, Alex Gerdes, Josje Lodder,
Hieke Keuning, lvica Milovanovic
experimental, active development

Report by:
Participants:

Status:

IDEAS (Interactive Domain-specific Exercise Assis-
tants) is a joint research project between the Open
University of the Netherlands and Utrecht University.
The project’s goal is to use software and compiler tech-
nology to build state-of-the-art components for intelli-
gent tutoring systems (ITS) and learning environments.
The ‘ideas’ software package provides a generic frame-
work for constructing the expert knowledge module
(also known as a domain reasoner) for an ITS or learn-
ing environment. Domain knowledge is offered as a
set of feedback services that are used by external tools
such as the digital mathematical environment (first/left

We have developed several domain reasoners based on
this framework, including reasoners for mathematics,
linear algebra, logic, learning Haskell (the Ask-Elle pro-
gramming tutor) and evaluating Haskell expressions,
and for practicing communication skills (the serious
game Communicate!, second/right screenshot).

o0 0% 03| Bl meer Tip Help abe| [L|[T
x*+20=9x
|
T
X -9x+20=0
|
P
x| (x-5)(x+4)=0
Tip: X
drieterm ontbinden
¥ -9x+20=0
wordt dan:

(x-4)(x-5)=0

Jezelf voorstellen - contact maken ' informatie verzamelen | procedure ultieggen | reactie geven

We have continued working on the domain reason-
ers that are used by our programming tutors. The
Ask-Elle functional programming tutor lets you prac-
tice introductory functional programming exercises in
Haskell. We have extended this tutor with QuickCheck
properties for testing the correctness of student pro-
grams, and for the generation of counterexamples. We
have analysed the usage of the tutor to find out how
many student submissions are correctly diagnosed as
right or wrong. Tim Olmer has developed a tutor in
which a student can practice with evaluating Haskell
expressions. Finally, Hieke Keuning has developed a
programming tutor for imperative programming.

Practice with the evaluation of a Haskell Expression

Ask-Elle

We are continuing our research in various directions.
We are investigating feedback generation for axiomatic

screenshot), MathDox, and the Math-Bridge system. proofs for propositional logic, and are planning to add

41


mailto: J.Hage at uu.nl
http://ideas.cs.uu.nl/www
http://hackage.haskell.org/package/ideas
http://www.projects.science.uu.nl/communicate/
http://ideas.cs.uu.nl/FPTutor/
http://ideas.cs.uu.nl/HEE/
http://ideas.cs.uu.nl/HEE/

this to our logic tutor. We have just started on a statis-
tics tutor. We also want to add student models to
our framework and use these to make the tutors more
adaptive, and develop authoring tools to simplify the
creation of domain reasoners.

The library for developing domain reasoners with
feedback services is available as a Cabal source pack-
age. We have written a tutorial on how to make your
own domain reasoner with this library. We have also
released our domain reasoner for mathematics and logic
as a separate package.

Further reading

o Bastiaan Heeren, Johan Jeuring, and Alex Gerdes.
Specifying Rewrite Strategies for Interactive
Exercises. Mathematics in Computer Science,
3(3):349-370, 2010.

o Bastiaan Heeren and Johan Jeuring. Feedback
services for stepwise exercises. Science of Computer
Programming, Special Issue on Software
Development Concerns in the e-Learning Domain,
volume 88, 110-129, 2014.

o Tim Olmer, Bastiaan Heeren, Johan Jeuring.
Evaluating Haskell expressions in a tutoring
environment. Trends in Functional Programming in
Education 2014.

o Hieke Keuning, Bastiaan Heeren, Johan Jeuring.
Strategy-based feedback in a programming tutor.
Computer Science Education Research Conference
(CSERC 2014).

o Johan Jeuring, Thomas van Binsbergen, Alex
Gerdes, Bastiaan Heeren. Model solutions and
properties for diagnosing student programs in
Ask-Elle. Computer Science Education Research
Conference (CSERC 2014).

7.3 Parsing and Transforming

7.3.1 HERMIT
Report by: Andrew Gill
Participants: Andrew Farmer, Neil Sculthorpe, Ryan
Scott
Status: active
The Haskell Equational Reasoning Model-to-

Implementation Tunnel (HERMIT) is an NSF-funded
project being run at KU (—9.7), which aims to im-
prove the applicability of Haskell-hosted Semi-Formal
Models to High Assurance Development. Specifically,
HERMIT uses a Haskell-hosted DSL and a refinement
DSL to perform rewrites directly on Haskell Core, the
GHC internal representation.

Over the summer, we reworked our user-level refine-

ment DSL to use Haskell, by making use of the remote
monad (— 6.5.7). This new shell, dubbed the Black

42

Shell, replaced the REPL with GHCi, and brings the
full power of Haskell DSLs to new API. The port has
been completed, and we hope to release HERMIT, with
the Black Shell, shortly.

Further reading

https://github.com/ku-fpg/hermit

7.3.2 Utrecht Parser Combinator Library:
uu-parsinglib

Doaitse Swierstra
actively developed

Report by:
Status:

With respect to the previous version the code for build-
ing interleaved parsers was split off into a separate
package uu-interleaved, such that it can be used
by other parsing libraries too. Based on this an-
other small package uu-options was constructed which
can be used to parse command line options and files
with preferences. The internals of these are described
in a technical report: http://www.cs.uu.nl/research/
techreps/UU-CS-2013-005.html.

As an example of its use we show how to fill a record
from the command line. We start out by defining the
record which is to hold the options to be possibly set:

data Prefers = Agda | Haskell deriving Show
data Address = Address { city__:: String
, street__:: String }
deriving Show
= Name { name__:: String
, prefers__:: Prefers
, ints__:: [Int]
, address__:: Address}
deriving Show

data Name

$ (deriveLenses " Name)
$ (deriveLenses " Address)

The next thing to do is to specify a default record con-
taining the default values:

defaults = Name "Doaitse" Haskell []
(Address "Utrecht"
"Princetonplein")

Next we define the parser for the options, by specifying
each option:


http://ideas.cs.uu.nl/logex
http://hackage.haskell.org/package/ideas
http://hackage.haskell.org/package/ideas
http://ideas.cs.uu.nl/tutorial
http://hackage.haskell.org/package/ideas-math
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/SpecifyingStrategiesJournal.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/HEE.html
http://www.open.ou.nl/bhr/HEE.html
http://www.open.ou.nl/bhr/FeedbackIPTutor.html
http://www.open.ou.nl/bhr/AskElleAnalysis.html
http://www.open.ou.nl/bhr/AskElleAnalysis.html
http://www.open.ou.nl/bhr/AskElleAnalysis.html
https://github.com/ku-fpg/hermit
http://www.cs.uu.nl/research/techreps/UU-CS-2013-005.html
http://www.cs.uu.nl/research/techreps/UU-CS-2013-005.html

oName =

name ‘option’ ( "name", pString,
"Name")
<> ints ‘options‘ ( "ints", pNaturalRaw,
"Some numbers")
<> prefers ‘choose’ [("agda",  Agda,

"Agda preferred")
, ("haskell", Haskell,
"Haskell preferred")

]
<> address ‘field
( city ‘option‘ ("city", pString,
"Home city")
<> street ‘option' ("street", pString,

"Home Street")
)

Finally when running this parser by the command
run (($defaults) <$> mkP oName) on the string
("-int=7 -city=Tynaarlo -i 5 -agda -i3 " H
"-street=Zandlust") the result is

Name {name__ = Doaitse
, prefers_ = Agda

Jints_ =1[7,5,3]
, address__ = Address
{city_ = Tynaarlo

, street_ = Zandlust }

}

If you make a mistake in the list of options, auto-
matic error reporting and correction steps in and you
get the following message:

./OptionsDemo --street=Zandlust -nDoaitse
-i3 --city=Tynaarlo

[Char] optional Name

--ints Int recurring Some numbers
Choose at least one from(

——name

--agda required Agda preferred

--haskell required Haskell preferred
)

--city [Char] optional Home city

--street [Char] optional Home Street

-- Correcting steps:

- Inserted "-a" at position 70
-= expecting one of
[ "--agda", "--agda=", "--haskell",
"--haskell=", "--ints=", "--ints",
Il_ill’ Il_hll, ll_all]

-- Inserted EOT at position 70
-- expecting EOT

Features

o Combinators for easily describing parsers which pro-
duce their results online, do not hang on to the in-
put and provide excellent error messages. As such

43

they are “surprise free” when used by people not fully
aware of their internal workings.

o Parsers “correct” the input such that parsing can
proceed when an erroneous input is encountered.

o The library basically provides the to be preferred ap-
plicative interface and a monadic interface where this
is really needed (which is hardly ever).

o No need for try-like constructs which make writing
Parsec based parsers tricky.

o Scanners can be switched dynamically, so several dif-
ferent languages can occur intertwined in a single in-
put file.

o Parsers can be run in an interleaved way, thus gen-
eralizing the merging and permuting parsers into a
single applicative interface. This makes it e.g. pos-
sible to deal with white space or comments in the
input in a completely separate way, without having
to think about this in the parser for the language
at hand (provided of course that white space is not
syntactically relevant).

Future plans

Future versions will contain a check for grammars being
not left-recursive, thus taking away the only remaining
source of surprises when using parser combinator li-
braries. This makes the library even greater for use in
teaching environments. Future versions of the library,
using even more abstract interpretation, will make use
of computed look-ahead information to speed up the
parsing process further.

Contact

If you are interested in using the current version of the
library in order to provide feedback on the provided
interface, contact (doaitse@swierstra.net). There is a
low volume, moderated mailing list which was moved
to (parsing@lists.science.uu.nl) (see also http://www.cs.
uu.nl/wiki/bin/view/HUT /ParserCombinators).

7.3.3 Generalized Algebraic Dynamic Programming

Christian Hoéner zu Siederdissen
usable, active development

Report by:
Status:

Generalized Algebraic Dynamic Programming provides
a solution for high-level dynamic programs. We treat
the formal grammars underlying each DP algorithm as
an algebraic object which allows us to calculate with
them. Below, we describe three highlights, our systems
offers:

Grammars Products

We have developed a theory of algebraic operations
over linear and context-free grammars. This theory al-


mailto: doaitse at swierstra.net
mailto: parsing at lists.science.uu.nl
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators
http://www.cs.uu.nl/wiki/bin/view/HUT/ParserCombinators

lows us to combine simple “atomic” grammars to create
more complex ones.

With the compiler that accompanies our theory, we
make it easy to experiment with grammars and their
products. Atomic grammars are user-defined and the
algebraic operations on the atomic grammars are em-
bedded in a rigerous mathematical framework.

Our immediate applications are problems in compu-
tational biology and linguistics. In these domains, al-
gorithms that combine structural features on individ-
ual inputs (or tapes) with an alignment or structure
between tapes are becoming more commonplace. Our
theory will simplify building grammar-based applica-
tions by dealing with the intrinsic complexity of these
algorithms.

We provide multiple types of output. I#TEX is avail-
able to those users who prefer to manually write the re-
sulting grammars. Alternatively, Haskell modules can
be created. TemplateHaskell and QuasiQuoting ma-
chinery is also available turning this framework into a
fully usable embedded domain-specific language. The
DSL or Haskell module use ADPfusion (— 7.11.1) with
multitape extensions, delivering “close-to-C” perfor-
mance.

Set Grammars

Most dynamic programming frameworks we are aware
of deal with problems over sequence data. There
are, however, many dynamic programming solutions to
problems that are inherently non-sequence like. Hamil-
tonian path problems, finding optimal paths through a
graph while visiting each node, are a well-studied ex-
ample.

We have extended our formal grammar library to
deal with problems that can not be encoded via linear
data types. This provides the user of our framework
with two benefits. She can now easily encode problems
based on set-like inputs and obtain dynamic program-
ming solutions. On a more general level, the extension
of ADPfusion and the formal grammars library shows
how to encode new classes of problems that are now
gaining traction and are being studied.

If, say, the user wants to calculate the shortest
Hamiltonian path through all nodes of a graph, then
the grammar for this problem is:

s (f<<<s %nlll g<<<n ...h)

which states that a path s is either extended by a node
n, or that a path is started by having just a first, single
node n. Functions f and g evaluate the cost of moving
to the new node. gADP has notions of sets with inter-
faces (here: for s) that provide the needed functionality
for stating that all nodes in s have been visited with
a final visited node from which an edge to n is to be
taken.

44

Automatic Outside Grammars

Our third contribution to high-level and efficient dy-
namic programming is the ability to automatically con-
struct Outside algorithms given an Inside algorithm.
The combination of an Inside algorithm and its cor-
responding Outside algorithm allow the developer to
answer refined questions for the ensemble of all (sub-
optimal) solutions.

The image below depicts one such automatically cre-
ated grammar that parses a string from the Outside in.
T and C are non-terminal symbols of the Outside gram-
mar; the production rules also make use of the S and
B non-terminals of the Inside version.

. A |
<i>
i J i1 j

B

Kkel i j

T A |
S
JHILI+]

One can, for example, not only ask for the most effi-
cient path through all cities on a map, but also answer
which path between two cities is the most frequented
one, given all possible travel routes. In networks, this
allows one to determine paths that are chosen with high
likelihood.

Further reading

o http://www.bioinf.uni-leipzig.de/Software/gADP /
o http://dx.doi.org/10.1109/TCBB.2014.2326155
o http://dx.doi.org/10.1007/978-3-319-12418-6_8

7.4 Mathematics, Numerical Packages and
High Performance Computing

7.4.1 Rlang-QQ

Report by:
Status:

Adam Vogt
active development

Rlang-QQ is intended to make it easier to call R from
Haskell programs. This allows access to a large num-
ber of R packages for graphing, statistics or other uses.
Rlang-QQ provides a quasiquoter which runs the R in-
terpreter and tries to translate values between the two
languages.

Haskell expressions can be referenced from R using
syntax like $(take 10 [1.0 .. ]1). Haskell variables
can also be passed in by prefixing them with hs_: hs_x
refers to x. Values that can be taken out of a Haskell
x :: Chan t are accessible using ch_x. When the
R code has an assignment such as hs_x <- £(), the
quasiquote evaluates to an HList record which contains
the result from £Q).

Future work may include supporting the serialization
of more data types between the two languages, passing


http://www.bioinf.uni-leipzig.de/Software/gADP/
http://dx.doi.org/10.1109/TCBB.2014.2326155
http://dx.doi.org/10.1007/978-3-319-12418-6_8

data between the two runtimes in-memory instead of 5. Adaptively choses between unsafe vs safe foreign

through files, and doing inference when possible on the
R-code to restrict the types of the Haskell values that
are serialized or deserialized.

Further reading

o http://hackage.haskell.org/package/Rlang-QQ
o http://www.r-project.org/
o http://www.haskell.org/haskellwiki/Quasiquotation

7.4.2 arb-fft
Report by: lan Ross
Status: actively developed

This package started as an experiment to see how
close a pure Haskell FFT implementation could get to
FFTW (“the Fastest Fourier Transform in the West”).
The result is a library that can do fast Fourier trans-
forms for arbitrarily sized vectors with performance
within a factor of about five of FFTW.

Future plans mostly revolve around making things
go faster! In particular, the next thing to do is to write
an equivalent of FFTW’s genfft, a metaprogramming
tool to generate fast straight-line code for transforms of
specialised sizes. Other planned work includes imple-
menting real-to-complex and real-to-real transforms,
multi-dimensional transforms, and some low-level op-
timisation.

Further reading

o http://hackage.haskell.org/package/arb-fft
o http://www.skybluetrades.net/haskell-fft-index.html

7.4.3 hblas
Report by: Carter Tazio Schonwald
Participants: Stephen Diehl and Csernik Flaviu Andrei
Status: Actively Developed

hblas is high level, easy to extend BLAS/LAPACK
FFI Binding for Haskell.

hblas has several attributes that in aggregate distin-
guish it from alternative BLAS/LAPACK bindings for
Haskell.

1. Zero configuration install
2. FFI wrappers are written in Haskell

3. Provides the fully generality of each supported
BLAS/LAPACK routine, in a type safe wrapper that
still follows the naming conventions of BLAS and
LAPACK.

4. Designed to be easy to extend with further bindings
to BLAS/LAPACK routines (because there are many
many specialized routines!)

45

calls based upon estimated runtime of a computa-
tion, to ensure that long running hblas ffi calls in-
teract safely with the GHC runtime and the rest of
an application.

6. hblas is not an end user library, but is designed to
easily interop with any array library that supports
storable vectors.

Further reading

o http://www.wellposed.com
o http://www.github.com /wellposed /hblas
o http://hackage.haskell.org/package/hblas

7.4.4 HROOT
Report by: lan-Woo Kim
Status: Actively Developing

HROOT is a haskell binding to ROOT framework by
fficxx, a haskell-C++ binding generator tool. ROOT
(http://root.cern.ch) is an OOP framework for data
analysis and statistics, which is developed at CERN.
The ROOT system provides a set of OO frameworks
with all the functionality needed to handle and analyze
large amounts of data in a very efficient way. ROOT is
a de facto standard physics analysis tool in high energy
physics experiments.

This haskell binding to ROOT provides an
industrial-strength statistical analysis libraries to the
haskell community. The haskell code for using HROOT
is very straightforward to both haskell and C++ pro-
grammers thanks to the flicxx binding generator tool.
The following is a sample code and a resultant his-
togram for histogramming a 2D gaussian distribution:

import Data.Random.Distribution.Normal
import HROOT

main :: I0 O
main do
tcanvas <- newTCanvas "Test" "Test"
h2 <- newTH2F "test" "test"
100 (-5.0) 5.0 100 (-5.0) 5.0
let distl = Normal (O :: Double)
(2 :: Double)
let gon | n < 0 = return Q)
| otherwise = do
histfill distl dist2 h2
go (n-1)

640 480

go 1000000
draw h2 "lego"
saveAs tcanvas '"random2d.pdf" ""

histfill :: Normal Double -> TH2F -> I0 ()
histfill distl hist = do

x <- sample distl

y <- sample distl


http://hackage.haskell.org/package/Rlang-QQ
http://www.r-project.org/
http://www.haskell.org/haskellwiki/Quasiquotation
http://hackage.haskell.org/package/arb-fft
http://www.skybluetrades.net/haskell-fft-index.html
http://www.wellposed.com
http://www.github.com/wellposed/hblas
http://hackage.haskell.org/package/hblas
http://root.cern.ch

£i112 hist x y
return ()

test

test
Entries 1000001
Mean x  0.002153
Meany -0.003326
. RMS x 1.908
RMS y 1.909

Until ghc 7.6, HROOT cannot be used in interpreter
mode of ghc, due to the linker problem. Now with ghc
7.8, ghci now uses the standard system linker for dy-
namically loaded library. Thus, our current focus is to
have full ghc interpreter support for making HROOT a
really useful analysis framework. In addition, we keep
importing features from ROOT to available haskell
functions.

Further reading

http://ianwookim.org/HROOT

7.4.5 Numerical

Carter Tazio Schonwald
actively developed

Report by:
Status:

The Numerical project, starting with the numerical
package, has the goal of providing a general purpose
numerical computing substrate for Haskell.

To start with, the numerical provides an extensible
set of type classes suitable for both dense and sparse
multi dimensional arrays, high level combinators for
writing good locality code, and some basic matrix com-
putation routines that work on both dense and sparse
matrix formats.

The core Numerical packages, including numerical,
are now in public pre-alpha as of mid May 2014, with
on going active work as of November 2014.

Development of the numerical packages is public on
github, and as they stabilize, alpha releases are being
made available on hackage.

Further reading

o http://www.wellposed.com
o http://www.github.com /wellposed /numerical
o http://hackage.haskell.org/package/numerical

7.4.6 petsc-hs

Marco Zocca
experimental, actively developed

Report by:
Status:

PETSc (http://www.mcs.anl.gov/petsc/) is an exten-
sive C library for scientific computation. It provides a
unified interface to distributed datastructures and algo-
rithms for parallel solution of numerical problems, e.g.
(non-)linear equation systems, time integration of dy-
namical systems, nonlinear (constrained) optimization.
It is built upon MPI but abstracts it “out of sight”;
however the API lets advanced users interleave compu-
tation and communication in order to experiment with
resource usage and performance.

Many applications using PETSc are concerned with
the solution of discretized PDEs for modelling physical
phenomena, but the numerical primitives offered can
be applied in many other contexts as well.

The aim of petsc-hs is to provide a compositional,
type- and memory-safe way to interact with this library.
The bindings are based on inline-c (https://hackage.
haskell.org/package/inline-c) for quick experimentation
with the C side.

Development of petsc-hs is public on github as of
October 2015.

At present (November 2015), bindings for most of the
basic functionality are available, memory pointers have
been made lexically scoped and rudimentary exception
handling is in place; the library is dynamically linked
and can be tested with GHCi.

The immediate development plans are to move out of
the experimental phase: currently the effort is concen-
trated on representing distributed mutable array oper-
ations and overall giving the library a more declarative
interface while at the same time encapsulating the C
version’s best programming practices. Once this will
be in place, a number of example PETSc programs will
be provided and the API will be specialized to various
use cases. Due to the multidisciplinary nature of this
work, contributions, comments and test cases are more
than welcome.

Further reading

https://github.com/ocramz/petsc-hs

7.4.7 combinat

Baldzs Kémiives
actively developed

Report by:
Status:

The combinat package is a broad-reaching combina-
torics library. It provides functions to generate, ma-
nipulate, count and visualize various combinatorial ob-
jects, for example: trees, partitions, compositions, lat-
tice paths, power series, permutations, braids, Young

46


http://ianwookim.org/HROOT
http://www.wellposed.com
http://www.github.com/wellposed/numerical
http://hackage.haskell.org/package/numerical
http://www.mcs.anl.gov/petsc/
https://hackage.haskell.org/package/inline-c
https://hackage.haskell.org/package/inline-c
https://github.com/ocramz/petsc-hs

tableaux, and so on.

There is ASCII visualization for most structures,
which makes it convenient to work in GHCi, and also
graphviz and/or diagrams for some of them (the lat-
ter ones in a separate package).

Development is mostly done in short bursts, based
mainly on the current (always changing) interests of
the author.

Further reading

o http://hackage.haskell.org/package/combinat
o http://hackage.haskell.org/package/combinat-diagrams

7.5 Data Types and Data Structures

7.5.1 HList — A Library for Typed Heterogeneous

Collections
Report by: Adam Vogt
Participants: Oleg Kiselyov, Ralf Lammel, Keean
Schupke

HList is a comprehensive, general purpose Haskell li-
brary for typed heterogeneous collections including ex-
tensible polymorphic records and variants. HList is
analogous to the standard list library, providing a host
of various construction, look-up, filtering, and iteration
primitives. In contrast to the regular lists, elements of
heterogeneous lists do not have to have the same type.
HList lets the user formulate statically checkable con-
straints: for example, no two elements of a collection
may have the same type (so the elements can be un-
ambiguously indexed by their type).

An immediate application of HLists is the im-
plementation of open, extensible records with first-
class, reusable, and compile-time only labels. The
dual application is extensible polymorphic variants
(open unions). HList contains several implementa-
tions of open records, including records as sequences
of field values, where the type of each field is an-
notated with its phantom label. We and others
have also used HList for type-safe database access
in Haskell. HList-based Records form the basis of
OOHaskell. The HList library relies on common
extensions of Haskell 2010. HList is being used
in  AspectAG  (http://www.haskell.org/communities/
11-2011/html/report.html#sect5.4.2), typed EDSL of
attribute grammars, and in Rlang-QQ.

The October 2012 version of HList library marks
the significant re-write to take advantage of the fancier
types offered by GHC 7.4 and 7.6. HList now relies on
promoted data types and on kind polymorphism.

Since the last update, there have been several mi-
nor releases. These include features such as support
for ghc-7.8 as well as additional syntax for the pun
quasiquote.

47

Further reading

o HList repository: http://code.haskell.org/HList/

o HList: http://okmij.org/ftp/Haskell /types.html#HList

o OOHaskell:
https://web.archive.org/web/20130129031410/http:
//homepages.cwi.nl/~ralf/OOHaskell

7.5.2 Transactional Trie

Michael Schréder
stable

Report by:
Status:

The transactional trie is a contention-free hash map for
Software Transactional Memory (STM). It is based on
the lock-free concurrent hash trie.

“Contention-free” means that it will never cause spu-
rious conflicts between STM transactions operating on
different elements of the map at the same time. Com-
pared to simply putting a HashMap into a TVar, it is
up to 8x faster and uses 10x less memory.

Further reading

o http://hackage.haskell.org/package/ttrie

o http://github.com/mcschroeder /thesis, in particular
chapter 3, which includes a detailed discussion of
the transactional trie’s design and implementation,
its limitations, and an evaluation of its performance.

7.5.3 fixplate
Report by: Balazs Kémiives
Status: experimental

The fixplate package is a re-implementation of Neil
Mitchell’s uniplate generic programming library, to
work on data types realized as fixed points of functors
(as opposed to plain recursive data types). It turns
out that Functor, Foldable and Traversable instances are
enough for this style of generic programming.

The original motivation for this exercise was the abil-
ity to add extra data to the nodes of an existing tree,
motivated by attribute grammars. Recursion schemes
also fit here very well, though they are less powerful.

Apart from the standard traversals, the library also
provides a generic zipper, generic tries, generic tree
hashing, a generic expression pretty-printer and generic
tree visualization. The library itself is fully Haskell98-
compatible, though some GHC extensions can make it
more convenient to use.

Further reading

http://hackage.haskell.org/package/fixplate


http://hackage.haskell.org/package/combinat
http://hackage.haskell.org/package/combinat-diagrams
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://www.haskell.org/communities/11-2011/html/report.html#sect5.4.2
http://code.haskell.org/HList/
http://okmij.org/ftp/Haskell/types.html#HList
https://web.archive.org/web/20130129031410/http://homepages.cwi.nl/~ralf/OOHaskell
https://web.archive.org/web/20130129031410/http://homepages.cwi.nl/~ralf/OOHaskell
http://hackage.haskell.org/package/ttrie
http://github.com/mcschroeder/thesis
http://hackage.haskell.org/package/fixplate

7.5.4 generics-sop

Andres Loh
Andres Loh, Edsko de Vries

Report by:
Participants:

The generics-sop (“sop” is for “sum of products”)
package is a library for datatype-generic program-
ming in Haskell, in the spirit of GHC’s built-in
DeriveGeneric construct and the generic-deriving
package.

Datatypes are represented using a structurally iso-
morphic representation that can be used to define
functions that work automatically for a large class of
datatypes (comparisons, traversals, translations, and
more). In contrast with the previously existing li-
braries, generics-sop does not use the full power
of current GHC type system extensions to model
datatypes as an n-ary sum (choice) between the con-
structors, and the arguments of each constructor as
an n-ary product (sequence, i. e., heterogeneous lists).
The library comes with several powerful combinators
that work on n-ary sums and products, allowing to de-
fine generic functions in a very concise and composi-
tional style.

The current release is 0.2.0.0.

A paper and a somewhat more recent, slightly longer,
tutorial covering type-level programming as well as the
use of this library, are available.

Further reading

o generics-sop package:
https://hackage.haskell.org/package/generics-sop/

o Tutorial (summer school lecture notes):
https://github.com/kosmikus/SSGEP/

o Paper:
http://www.andres-loeh.de/TrueSumsOfProducts/

7.6 Databases and Related Tools

7.6.1 Persistent

Report by: Greg Weber
Participants: Michael Snoyman, Felipe Lessa
Status: stable

The last HCAR announcement was for the release of
Persistent 2.0, featuring a flexible primary key type.

Since then, persistent has mostly experienced bug
fixes, including recent fixes and increased backend sup-
port for the new flexible primary key type.

Haskell has many different database bindings avail-
able, but most provide few usefeul static guarantees.
Persistent uses knowledge of the data schema to pro-
vide a type-safe interface to the database. Persistent is
designed to work across different databases, currently
working on Sqlite, PostgreSQL, MongoDB, MySQL,
Redis, and ZooKeeper.

48

Persistent provides a high-level query interface that
works against all backends.

selectList [PersonFirstName == . "Simon",
PersonLastName == . "Jones"] []

The result of this will be a list of Haskell records.

Persistent can also be used to write type-safe query
libraries that are specific. esqueleto is a library for writ-
ing arbitrary SQL queries that is built on Persistent.

Future plans

Persistent is in a stable, feature complete state. Future
plans are only to increase its ease the places where it
can be easitly used:

o Declaring a schema separately from a record, pos-
sibly leveraging GHC’s new annotations feature or
another pattern
Persistent users may also be interested in Groundhog

(—7.6.2), a similar project.

Persistent is recommended to Yesod (— 5.2.2) users.
However, there is nothing particular to Yesod or even
web development about it. You can have a type-safe,
productive way to store data for any kind of Haskell
project.

Further reading

[}

http://www.yesodweb.com /book/persistent
http://hackage.haskell.org/package/esqueleto
http:
//www.yesodweb.com /blog/2014 /09 /persistent-2
http://www.yesodweb.com /blog/2014/08/
announcing-persistent-2

o

o

[¢]

7.6.2 Groundhog

Report by:
Status:

Boris Lykah
stable

Groundhog is a library for mapping user defined
datatypes to the database and manipulating them in a
high-level typesafe manner. It is easy to plug Ground-
hog into an existing project since it does not need mod-
ifying a datatype or providing detailed settings. The
schema can be configured flexibly which facilitates inte-
gration with existing databases. It supports composite
keys, indexes, references across several schemas. Just
one line is enough to analyze the type and map it to
the table. The migration mechanism can automati-
cally check, initialize, and migrate database schema.
Groundhog has backends for Sqlite, PostgreSQL, and
MySQL.

Unlike Persistent (— 7.6.1) it maps the datatypes in-
stead of creating new ones. The types can be poly-
morphic and contain multiple constructors. It al-
lows creating sophisticated queries which might include
arithmetic expressions, functions, and operators. The
database-specific operators, for example, array-related


https://hackage.haskell.org/package/generics-sop/
https://github.com/kosmikus/SSGEP/
http://www.andres-loeh.de/TrueSumsOfProducts/
http://www.yesodweb.com/book/persistent
http://hackage.haskell.org/package/esqueleto
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/09/persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2
http://www.yesodweb.com/blog/2014/08/announcing-persistent-2

in PostgreSQL are statically guaranteed to run only
for PostgreSQL connection. Its support for the natu-
ral and composite keys is implemented using generic
embedded datatype mechanism.

Groundhog has got several commercial users which
have positive feedback. Most of the recent changes were
done to meet their needs. The new features include
PostgreSQL geometric operators, Fractional, Floating,
and Integral instances for lifted expressions, logging
queries, references to tables not mapped to Haskell
datatype, default column values, and several utility
functions.

Further reading

o Tutorial,
http://www.fpcomplete.com /user/lykahb/groundhog
o Homepage, http://github.com/lykahb/groundhog
o Hackage package,
http://hackage.haskell.org/package/groundhog

7.6.3 Opaleye
Report by: Tom Ellis
Status: stable, active

Opaleye is an open-source library which provides an
SQL-generating embedded domain specific language. It
allows SQL queries to be written within Haskell in a
typesafe and composable fashion, with clear semantics.

The project was publically released in December
2014. It is stable and actively maintained, and used in
production in a number of commercial environments.
Professional support is provided by Purely Agile.

Just like Haskell, Opaleye takes the principles of type
safety, composability and semantics very seriously, and
one aim for Opaleye is to be “the Haskell” of relational
query languages.

In order to provide the best user experience and to
avoid compatibility issues, Opaleye specifically targets
PostgreSQL. It would be straightforward produce an
adaptation of Opaleye targeting other popular SQL
databases such as MySQL, SQL Server, Oracle and
SQLite. Offers of collaboration on such projects would
be most welcome.

Opaleye is inspired by theoretical work by David Spi-
vak, and by practical work by the HaskellDB team. In-
deed in many ways Opaleye can be seen as a spiritual
successor to HaskellDB. Opaleye takes many ideas from
the latter but is more flexible and has clearer semantics.

Further reading

http://hackage.haskell.org/package/opaleye

49

7.6.4 HLINQ - LINQ for Haskell

Report by: Mantas Markevicius
Participants: Mike Dodds, Jason Reich
Status: Experimental

HLINQ is a Haskell implementation of the LINQ
database query framework [1] modelled on Cheney et
al’s T-LINQ system for F# [2]. Database queries
in HLINQ are written in a syntax close to standard
Haskell do notation:

getAge people = do getAge = [|]|do
p <- people p <- people db
guard ((name p) == "Edna") guard ((name p) == "Edna")

return (age p) return (age p)||]

Queries can be composed using Template Haskell
splicing operators, while type-safety rules provide ad-
ditional correctness guarantees. Additionally, HLINQ
is built on the HDBC library and uses prepared SQL
statements protecting it against most SQL injection
type attacks. Furthermore queries are avalanche-safe,
meaning that for any query only a single SQL state-
ment will be generated. Our system is in prototype
stage, but microbenchmarks show performance com-
petitive with HaskellDB.

The project is hosted on GitHub [3], with a technical
report planned soon.

Further reading

1. Microsoft LINQ: https:
//msdn.microsoft.com/en-us/library /bb397926.aspx

2. Cheney, James, Sam Lindley, and Philip Wadler.
"A practical theory of language-integrated query."
ACM SIGPLAN Notices. Vol. 48. No. 9. ACM,
2013.

3. https://github.com /juventietis/HLINQ

7.7 User Interfaces

7.7.1 HsQML
Report by: Robin KAY
Status: active development

HSQML/Linux

© 0 O HsQML/Mac0S

HsQML provides access to a modern graphical user
interface toolkit by way of a binding to the cross-
platform Qt Quick framework.

The library focuses on mechanisms for marshalling
data between Haskell and Qt’s domain-specific QML


http://www.fpcomplete.com/user/lykahb/groundhog
http://github.com/lykahb/groundhog
http://hackage.haskell.org/package/groundhog
http://hackage.haskell.org/package/opaleye
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://msdn.microsoft.com/en-us/library/bb397926.aspx
https://github.com/juventietis/HLINQ

language. The intention is that QML, which incorpo-
rates both a declarative syntax and JavaScript code,
can be used to design and animate the front-end of
an application while being able to easily interface with
Haskell code for functionality.

Status The latest version at time of press is 0.3.3.0.
Changes released since the previous edition of this re-
port include support for rendering custom OpenGL
graphics onto QML elements, facilities for managing
object life-cycles with weak references and finalisers,
and a number of bug fixes. It has been tested on the
major desktop platforms: Linux, Windows, and Ma-
cOS.

Further reading

http://www.gekkou.co.uk /software/hsqml/

7.7.2 Gtk2Hs

Report by:
Participants:

Daniel Wagner
Hamish Mackenzie, Axel Simon, Duncan
Coutts, Andy Stewart, and many others

Status: beta, actively developed

Gtk2Hs is a set of Haskell bindings to many of the
libraries included in the Gtk+/Gnome platform. Gtk+
is an extensive and mature multi-platform toolkit for
creating graphical user interfaces.

GUIs written using Gtk2Hs use themes to resemble
the native look on Windows. Gtk is the toolkit used by
Gnome, one of the two major GUI toolkits on Linux.
On Mac OS programs written using Gtk2Hs are run
by Apple’s X11 server but may also be linked against
a native Aqua implementation of Gtk.

Gtk2Hs features:

o Automatic memory management (unlike some other

C/C++ GUI libraries, Gtk+ provides proper sup-

port for garbage-collected languages)

Unicode support

High quality vector graphics using Cairo

Extensive reference documentation

An implementation of the “Haskell School of Expres-

sion” graphics API

o Bindings to many other libraries that build on Gtk:
gio, GConf, GtkSourceView 2.0, glade, gstreamer,
vte, webkit

O O O O

Recent efforts include increasing the coverage of the
gtk3 bindings, as well as myriad miscellaneous bugfixes.
Thanks to all who contributed!

Further reading

o News and downloads: http://haskell.org/gtk2hs/
o Development version: darcs get

http://code.haskell.org/gtk2hs/

50

7.7.3 LGtk: Lens GUI Toolkit

Report by: Péter Divianszky
Participants: Csaba Hruska
Status: experimental, actively developed

LGtk is a GUI Toolkit with the following goals:

o Provide a Haskell EDSL for declarative description
of interactive graphical applications

o Provide an API for custom widget design

o Provide a playground for high-level declarative fea-
tures like derived state-save and undo-redo opera-
tions and type-driven GUI generation
There is a demo application which presents the cur-

rent features of LGtk.

Diagrams + GLFW

/__Widget Elements \ / System \ / Examples \ / Maze

JJoj forgiving mode

cdsmith's
Mihai Maruseac's

maze generator

55

Congratulatlon'
[ Try again |New maze

20 |(+1)( -1 ) width
20 (41 )( -1 ) height

X

lgtkdemo

Widget Elements | System | Examples | Maze | InCanvas

(O [& forgiving mode

cdsmith's
maze generator

Congratulation!
Try again || New maze

20 a1 g1 width

20 +1 -1 |height

Changes in 1gtk-0.8 since the last official announce-
ment:
o New features
— New GLFW backend. One consequence is that
the dependency on Gtk is not strict any more.
— Canvas widgets rendering diagrams composed
with the diagrams library. Mouse and keyboard
events are also supported.
— Widget toolkit generated with the diagrams li-
brary.
— Slider widgets
o Architectural changes


http://www.gekkou.co.uk/software/hsqml/
http://haskell.org/gtk2hs/
http://code.haskell.org/gtk2hs/

— Updated demo application

— Switch from data-lens to Edward Kmett’s lens
library

— Upgrade to work with GHC 8.2

— Repository moved to GitHub

o Inner changes

— Generalized and cleaned up interface of refer-
ences

— Cleaned up widget interface

— More efficient reference implementation

Further reading

o haskell.org wiki page:
http://www.haskell.org/haskellwiki/LGtk

o Haddock documentation on HackageDB:
http://hackage.haskell.org/package/lgtk

o Wordpress blog: http://lgtk.wordpress.com/

o GitHub repository: https://github.com /divipp/Igtk

7.7.4 threepenny-gui

Heinrich Apfelmus
active development

Report by:
Status:

Threepenny-gui is a framework for writing graphical
user interfaces (GUI) that uses the web browser as a
display. Features include:

o FEasy installation. Everyone has a reasonably mod-
ern web browser installed. Just install the library
from Hackage and you are ready to go. The library
is cross-platform.

o HTML + JavaScript. You have all capabilities of
HTML at your disposal when creating user inter-
faces. This is a blessing, but it can also be a curse,
so the library includes a few layout combinators to
quickly create user interfaces without the need to
deal with the mess that is CSS. A foreign function
interface (FFI) allows you to execute JavaScript code
in the browser.

o Functional Reactive Programming (FRP) promises
to eliminate the spaghetti code that you usually
get when using the traditional imperative style for
programming user interactions. Threepenny has an
FRP library built-in, but its use is completely op-
tional. Employ FRP when it is convenient and fall
back to the traditional style when you hit an impasse.

Status

The project is alive and kicking, the latest release is
version 0.6.0.3. You can download the library from
Hackage and use it right away to write that cheap GUI
you need for your project. Here a screenshot from the
example code:

51

For a collection of real world applications that use the
library, have a look at the gallery on the homepage.

Compared to the previous report, no major changes
have been made. A bug related to garbage collection of
event handlers has been fixed, and the library has been
updated to work with the current Haskell ecosystem.

Current development

The library is still very much in flux, significant API
changes are likely in future versions. The goal is to
make GUI programming as simple as possible, and that
just needs some experimentation.

While Threepenny uses the web browser as a dis-
play, the goal was always to provide an environ-
ment for developing desktop applications. Recentely,
a new platform for developing desktop applications
with JavaScript has emerged, called Electron. I have
successfully managed to connect Threepenny with the
Electron platform, but I don’t know how to best in-
tegrate this with the Haskell ecosystem, in particular
Cabal. If you can offer any help with this, please let
me know.

Further reading

o Project homepage:
http://wiki.haskell.org/ Threepenny-gui

o Example code: https://github.com/
HeinrichApfelmus/threepenny-gui#£examples

o Application gallery:
http://wiki.haskell.org/Threepenny-gui#Gallery


http://www.haskell.org/haskellwiki/LGtk
http://hackage.haskell.org/package/lgtk
http://lgtk.wordpress.com/
https://github.com/divipp/lgtk
http://electron.atom.io/
http://wiki.haskell.org/Threepenny-gui
https://github.com/HeinrichApfelmus/threepenny-gui#examples
https://github.com/HeinrichApfelmus/threepenny-gui#examples
http://wiki.haskell.org/Threepenny-gui#Gallery

7.7.5 reactive-banana

Heinrich Apfelmus
active development

Report by:
Status:

Reactive-banana is a library for functional reactive
programming (FRP).

FRP offers an elegant and concise way to express
interactive programs such as graphical user interfaces,
animations, computer music or robot controllers. It
promises to avoid the spaghetti code that is all too com-
mon in traditional approaches to GUI programming.

The goal of the library is to provide a solid founda-
tion.

o Programmers interested in implementing FRP will
have a reference for a simple semantics with a work-
ing implementation. The library stays close to the
semantics pioneered by Conal Elliott.

The library features an efficient implementation. No
more spooky time leaks, predicting space & time us-
age should be straightforward.

The library is meant to be used in conjunction with
existing libraries that are specific to your problem do-
main. For instance, you can hook it into any event-
based GUI framework, like wxHaskell or Gtk2Hs. Sev-
eral helper packages like reactive-banana-wx provide a
small amount of glue code that can make life easier.

Status. With the release of version 1.0.0.0, the de-
velopment of the reactive-banana library has reached
a milestone! I finally feel that the library does all the
things that I wanted it to do.

In particular, compared to the previous report, the
library now implements garbage collection for dynam-
ically switched events. Also, the API no longer uses
a phantom parameter to keep track of starting times;
instead, a monadic approach is used. This simplifies
the API for dynamic event switching, at the cost of re-
quiring monadic types for some first-order combinators
like stepper.

Additionally, there has been a small change concern-
ing the semantics of the Event type: It is no longer
possible to have multiple simultaneous occurrences in
a single event stream. This forces the programmer to
be more thoughtful about simultaneous event occur-
rences, a common source of bugs. The expressivity is
the same, the old semantics can be recovered by using
lists as occurrences.

52

Current development. With the library being com-
plete, is there anything left to do? Well, of course, a
library is never complete! However, my future focus
will lie more on applications of FRP, rather than the
implementation of the FRP primitives. For instance, I
want to make more use of FRP in my threepenny-gui
project, which is a library for writing graphical user in-
terfaces in Haskell (— 7.7.4). In turn, this will probably
lead to improvements in the reactive-banana library, be
it API revisions or performance tuning.

Further reading

o Project homepage:
http://wiki.haskell.org/Reactive-banana

o Example code:
http://wiki.haskell.org/Reactive-banana/Examples

7.7.6 fltkhs - GUI bindings to the FLTK library

Aditya Siram
active

Report by:
Status:

The fltks project is a set of bindings to the FLTK
C++ toolkit (www.fltk.org). Coverage is fairly com-
plete ( 85%) and it is easy to install and use. The main
goal of this effort is to provide a low-cost, hassle-free
way of creating self-contained, native GUI applications
in pure Haskell that are portable to Windows, Linux
and OSX.

FLTK was chosen because it is a mature toolkit and
designed to be lightweight, portable and self-contained.
In turn, £1tks inherits these qualities with the addi-
tional benefit of having almost no dependencies outside
of base and FLTK itself. This makes it very easy to get
up and running with fltks.

fltks is also designed to be easy to use and learn.
It tries to accomplish this by providing an API that
matches the FLTK API as closely as possible so that a
user can look up the pre-existing FLTK documentation
for some function and in most cases be able to “guess”
the corresponding Haskell function that delegates to
it. Additionally f1tks currently ships with 15 demos
which are exact ports of demos shipped with the FLTK
distribution so the user can study the code side-by-side.
In most cases there is direct correspondence.

fltks is also extensible in a couple of ways. Firstly,
the user can create custom GUI widgets in pure Haskell
by simply overriding some key C++ functions with
Haskell functions. Secondly, it is easy to add third-
party widgets without touching the core bindings.
Meaning if there is a useful FLTK widget that is not
part of the FLTK distribution, the user can easily wrap
it and publish it as a separate package without ever
touching these bindings. Hopefully this fosters con-
tribution allowing fltks to keep up with the FLTK
ecosystem and even outpace it since users are now able
to create new widgets in pure Haskell.


http://wiki.haskell.org/Reactive-banana
http://wiki.haskell.org/Reactive-banana/Examples
www.fltk.org

Ongoing work includes not only covering 100% of the
API and porting all the demos but also adding sup-
port for FLUID (http://en.wikipedia.org/wiki/FLUID),
the FLTK GUI builder. Haskellers will then be able
to take any existing FLTK app which uses FLUID to
build the user interface and migrate it to Haskell.

Contributions are welcome!

Further reading

https://hackage.haskell.org/package/fltkhs

7.7.7 wxHaskell

Henk-Jan van Tuyl
active development

Report by:
Status:

#Haskell

Since the previous HCAR, wxHaskell versions 0.92
and 0.92.1 were released; functionality has been added
and bugs were solved. Windows users may be glad to
hear that wxHaskell is now very easy to install, so if
you found it too hard to install, try again with one of
the new installer packages. For further developments,
check our GitHub repository. New project participants
are welcome.

wxHaskell is a portable and native GUI library for
Haskell. The goal of the project is to provide an indus-
trial strength GUI library for Haskell, but without the
burden of developing (and maintaining) one ourselves.

wxHaskell is therefore built on top of wxWidgets: a
comprehensive C++ library that is portable across all
major GUI platforms; including GTK, Windows, X11,
and MacOS X. Furthermore, it is a mature library (in
development since 1992) that supports a wide range of
widgets with the native look-and-feel.

A screen printout of a sample wxHaskell program:

- Image Viewer

Further reading

https:/ /wiki.haskell.org/WxHaskell

53

7.8 Graphics and Audio

7.8.1 vect
Report by: Baldzs Komiives
Status: mostly stable

The vect package is low-dimensional linear algebra li-
brary intended specifically for computer graphics. It
provides types and operations in 2, 3 and 4 dimensions,
and is more-or-less feature-complete. OpenGL support
is available as a separate package.

The library is intentionally monomorphic, providing
as base fields the concrete types Float and Double. The
monomorphicity makes life easier for both the user and
the compiler, and we think that for graphics these two
types cover most of the typical use cases. Nevertheless,
a third, polymorphic version may be added in the fu-
ture (until that happens, there is a polymorphic fork
on Hackage).

Further reading

o http://hackage.haskell.org/package/vect
o http://hackage.haskell.org/package/vect-opengl

7.8.2 diagrams

Report by: Brent Yorgey

Participants: many

Status: active development
The diagrams framework provides an embedded

domain-specific language for declarative drawing. The
overall vision is for diagrams to become a viable alter-
native to DSLs like MetaPost or Asymptote, but with
the advantages of being declarative—describing what
to draw, not how to draw it—and embedded—putting
the entire power of Haskell (and Hackage) at the ser-
vice of diagram creation. There is always more to be
done, but diagrams is already quite fully-featured, with
a comprehensive user manual and a growing set of tu-
torials, a large collection of primitive shapes and at-
tributes, many different modes of composition, paths,
cubic splines, images, text, arbitrary monoidal annota-
tions, named subdiagrams, and more.


http://en.wikipedia.org/wiki/FLUID
https://hackage.haskell.org/package/fltkhs
https://wiki.haskell.org/WxHaskell
http://hackage.haskell.org/package/vect
http://hackage.haskell.org/package/vect-opengl

What's new

There has not yet been a new major release of dia-

grams since version 1.3 in April, but work has contin-

ued apace. Here is a sampling of new features already

in diagrams HEAD or currently being worked on:

o B-spline support, and B-spline to cubic Bezier con-
version

o Path union and intersection

o CSG support for 3D diagrams

o New techniques and tools for drawing 2D projections
of 3D diagrams, illustrated above

o Constraint-based layout

diagrams-pandoc, a pandoc filter which can auto-
matically compile diagrams code included inline in pan-
doc documents, had its first release to Hackage.

We are also working on using stack to create a sys-
tem for easier, more reproducible builds, which will
benefit both users and developers, and form the basis
for much more comprehensive continuous integration
testing.

54

Contributing

There is plenty of exciting work to be done; new con-
tributors are welcome! Diagrams has developed an
encouraging, responsive, and fun developer commu-
nity, and makes for a great opportunity to learn and
hack on some “real-world” Haskell code. Because of its
size, generality, and enthusiastic embrace of advanced
type system features, diagrams can be intimidating to
would-be users and contributors; however, we are ac-
tively working on new documentation and resources
to help combat this. For more information on ways
to contribute and how to get started, see the Con-
tributing page on the diagrams wiki: http://haskell.org/
haskellwiki/Diagrams/Contributing, or come hang out in
the #diagrams IRC channel on freenode.

Further reading

http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams

http:
//ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
o http://www.youtube.com/watch?v=X-8NCkD2vOw

O O O O O


http://haskell.org/haskellwiki/Diagrams/Contributing
http://haskell.org/haskellwiki/Diagrams/Contributing
http://projects.haskell.org/diagrams
http://projects.haskell.org/diagrams/gallery.html
http://haskell.org/haskellwiki/Diagrams
http://github.com/diagrams
http://ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
http://ozark.hendrix.edu/~yorgey/pub/monoid-pearl.pdf
http://www.youtube.com/watch?v=X-8NCkD2vOw

7.8.3 Chordify

Report by:
Participants:

José Pedro Magalhaes

W. Bas de Haas, Dion ten Heggeler, Gijs
Bekenkamp, Tijmen Ruizendaal

actively developed

Status:

Sia - Chandelier

B L e Wi A L.
3
B
A Fo
Bn A Fm
F Bn
I3 [] P A
Fn F A
Fo F A

Similar to Sia - Chandelier sroEn

Chordify is a music player that extracts chords from
musical sources like Youtube, Deezer, Soundcloud, or
your own files, and shows you which chord to play
when. The aim of Chordify is to make state-of-the-
art music technology accessible to a broader audience.
Our interface is designed to be simple: everyone who
can hold a musical instrument should be able to use it.

Behind the scenes, we use the sonic annotator for
extraction of audio features. These features consist
of the downbeat positions and the tonal content of a
piece of music. Next, the Haskell program HarmTrace
takes these features and computes the chords. Harm-
Trace uses a model of Western tonal harmony to aid
in the chord selection. At beat positions where the au-
dio matches a particular chord well, this chord is used
in final transcription. However, in case there is uncer-
tainty about the sounding chords at a specific position
in the song, the HarmTrace harmony model will select
the correct chords based on the rules of tonal harmony.

We've recently completely redesigned Chordify and
now showcase featured songs, popular songs in your
country, and artist pages. We've also made some
changes to the chord editing feature, making it eas-
ier to copy-paste edits, and letting users change the
measure of the song. We plan to use the edits to im-
prove the algorithm itself, and to implement a system
that merges edits from various users into one single
corrected version.

The code for HarmTrace is available on Hackage, and
we have ICFP’11 and ISMIR’12 publications describing
some of the technology behind Chordify.

Further reading

http://chordify.net

7.8.4 csound-expression

Anton Kholomiov
active, experimental

Report by:
Status:

The csound-expression is a Haskell framework for elec-
tronic music production. It’s based on very efficient
and feature rich synth Csound. It strives to be as sim-
ple and responsive as it can be. Features include almost
all Csound build in audio units support, composable
GUIs, FRP for event scheduling, MIDI and OSC sup-
port and many others. The library was updated for
GHC-7.10.

2004 beautiful instruments are implemented. See
the csound-catalog package. Each instrument is ready
for real-time usage. Three drum machines are imple-
mented. There is a library of standard effects. It can

" be used as a guitar processor.

G IR

55

With Csound it inherits many cutting edge sound
synth techniques like granular synthesis or hyper vec-
torial synthesis, ambisonics.

The csound-expression is a Csound code generator.
The flexible nature of Csound (it’s written in C and has
wonderful API) allows to use the produced code on any
desktop OS, Android, iOS, Raspberry Pi, Unity, within
many other languages. We can create audio engines
with Haskell.

The library was presented at the Russian Function
programming conference 2015 and at the International
Csound Conference 2015.

The future plans for the library is to bring it on
stage and make some audio installations with it, to
improve documentation. I've created some music with
the library. You can listen to it on the soundcloud
https://soundcloud.com/anton-kho.

The library is available on Hackage. See the pack-
ages csound-expression, csound-sampler and csound-
catalog.

Further reading

https://github.com/anton-k/csound-expression

7.8.5 hmidi
Report by: Balazs Kémiives
Status: stable

The hmidi package provides bindings to the OS-level
MIDI services, allowing Haskell programs to communi-
cate with physical or virtual MIDI devices, for exam-
ple MIDI keyboards, controllers, synthesizers, or music
software.

Supported operating systems are Mac OS X and
Windows. Linux (ALSA) support may be added at
some future time.


http://chordify.net
http://www.omras2.org/SonicAnnotator
http://hackage.haskell.org/package/HarmTrace
http://hackage.haskell.org/package/HarmTrace
http://dreixel.net/research/pdf/fmmh.pdf
http://dreixel.net/research/pdf/iactehmk.pdf
http://chordify.net
https://soundcloud.com/anton-kho
https://github.com/anton-k/csound-expression

An example application is provided by the
launchpad-control package, which provides a high-
level interface to the Novation Launchpad MIDI con-
troller.

Further reading

o http://hackage.haskell.org/package/hmidi
o http:
/ /hackage.haskell.org/package/launchpad-control

7.8.6 Glome
Report by: Jim Snow
Status: New Version of Glome Raytracer

Glome is a ray tracer I wrote quite some time ago. The
project had been dormant for about five years until
a few months ago when I decided to fix some long-
standing bugs and get it back into a state that compiles
with recent versions of GHC. I got a little carried away,
and ended up adding some major new features.

First, some background. Glome is a ray tracer, which
renders 3d images by tracing rays from the camera into
the scene and testing them for intersection with scene
objects. Glome supports a handful of basic primitive
types including planes, spheres, boxes, triangles, cones,
and cylinders. It also has a number of composite primi-
tives that modify the behavior of other primitives, such
as CSG difference and intersection.

One of the more interesting composite primitives is
a BIH-based accelleration structure, which sorts primi-
tives into a hierarchy of bounding volumes. This allows
for scenes with a very large number of primitives to be
rendered efficiently.

Major new changes to Glome are a re-factoring of
the shader code so that it is now possible to define
textures in terms of user-defined types and write your
own shader (though the default should be fine for most
uses), a new tagging system, some changes to the front-
end viewer application (which uses SDL now instead of
OpenGL), and a new triangle mesh primitive type.

Tagging requires a bit of explanation. When a ray
intersects with something in the scene, Glome returns
a lot of information about the properties of the loca-
tion where the ray hit, but until recently it didn’t give
much of a clue as to what exactly the ray hit. For 3D
rendering applications, you don’t usually care, but for
many computational geometry tasks you do very much
care.

The new tagging system makes it possible to asso-
ciate any 3D primitive with a tag, such that the tag is
returned along with any ray intersection that hit the
wrapped primitive. Tags are returned in a list, so that
it’s possible to have a heirarchy of tagged objects.

As an example of tags in action, I tagged some of the
objects in Glome’s default test scene, and instrumented

56

the viewer so that clicking on the image causes a ray
to be traced into the scene from the cursor’s location,
and then we print any tags returned by the ray inter-
section test. (Tags can be any type, but for illustrative
purposes, the test scene uses strings.)

An interesting feature of the tagging system is that
you don’t necessarily have to click directly on the object
to get back the tag; you could also click on the image
of the object reflected off of some other shiny object in
the scene.

Even though Glome is still a bit too slow for practi-
cal interactive 3D applications (I've been able to get
around 2-3 FPS at 720x480 for reasonably complex
scenes on a fairly fast machine), tags should at least
make it easier to write interactive applications when
Moore’s law catches up.

Glome is split into three packages: GloveVec, a vec-
tor library, GlomeTrace, the ray-tracing engine, and
GlomeView, a simple front-end viewer application. All
are available on hackage or via github under a GPLv2
license.

- -+ x

Further reading

o https://github.com/jimsnow/glome
o http://www.haskell.org/haskellwiki/Glome


http://hackage.haskell.org/package/hmidi
http://hackage.haskell.org/package/launchpad-control
http://hackage.haskell.org/package/launchpad-control
https://github.com/jimsnow/glome
http://www.haskell.org/haskellwiki/Glome

7.9 Text and Markup Languages

7.9.1 hs2TEX
Report by: Andres Loh
Status: stable, maintained

This tool by Ralf Hinze and Andres Loh is a preproces-
sor that transforms literate Haskell or Agda code into
ETEX documents. The output is highly customizable
by means of formatting directives that are interpreted
by 1hs2TEX. Other directives allow the selective inclu-
sion of program fragments, so that multiple versions
of a program and/or document can be produced from
a common source. The input is parsed using a lib-
eral parser that can interpret many languages with a
Haskell-like syntax.

The program is stable and can take on large docu-
ments.

The current version is 1.19 and has been released in
April 2015. Development repository and bug tracker
are on GitHub. The tool is mostly in plain mainte-
nance mode, although there are still vague plans for
a complete rewrite of 1hs2TEX, hopefully cleaning up
the internals and making the functionality of lhs2TEX
available as a library.

Further reading

o http://www.andres-loeh.de/lhs2tex
o https://github.com/kosmikus/Ihs2tex

7.9.2 pulp
Report by: Daniel Wagner
Participants: Daniel Wagner, Michael Greenberg
Status: Not yet released

Anybody who has used I¥TEX knows that it is a fan-
tastic tool for typesetting; but its error reporting leaves
much to be desired. Even simple documents that use
a handful of packages can produce hundreds of lines of
uninteresting output on a successful run. Picking out
the parts that require action is a serious chore, and lo-
cating the right part of the document source to change
can be tiresome when there are many files.

Pulp is a parser for IMTEX log files with a small but
expressive configuration language for identifying which
messages are of interest. A typical run of pulp after
successfully building a document produces no output;
this makes it very easy to spot when something has
gone wrong. Next time you want to produce a great
paper, process your log with pulp!

Features
o IATEX log parser with special-case support for many
popular packages and classes

57

o Expressive configuration language
— Filter out document-specific unimportance
— Increase verbosity as the document nears com-
pletion
o Uniform error reporting format with file and line in-
formation
Instructions for use with latexmk
Rudimentary Windows support

o

[¢]

Further reading

http://github.com/dmwit/pulp

7.9.3 Unicode things

Antonio Nikishaev
work in progress

Report by:
Status:

Many programming languages offer non-existing or
very poor support for Unicode. While many think
that Haskell is not one of them, this is not completely
true. The way-to-go library of Haskell’s string type,
Text, only provides codepoint-level operations. Just
as a small and very elementary example: two “Haskell
café” strings, first written with the ‘¢’ character, and
the second with the ‘e’ character followed by a combin-
ing acute accent character, are obviously have a corre-
spondence for many real-world situations. Yet they are
entirely different and unconnected things for Text and
its operations.

And even though there is text-icu library offering
proper Unicode functions, it has a form of FFI bind-
ings to C library (and that is painful, especially for
Windows users). More so, its API is very low-level and
incomplete.

Prose is a work-in-progress pure Haskell implemen-
tation of Unicode strings. Right now it’s completely
unoptimized. Implemented parts are normalization al-
gorithms and segmentation by graphemes and words.

Numerals is pure Haskell implementation of CLDR
(Common Language Data Repository, Unicode’s locale
data) numerals formatting.

Further reading

o http://lelf.lu/prose
o https://github.com/llelf/prose
o https://github.com/llelf/numerals


http://www.andres-loeh.de/lhs2tex
https://github.com/kosmikus/lhs2tex
http://github.com/dmwit/pulp
http://lelf.lu/prose
https://github.com/llelf/prose
https://github.com/llelf/numerals

7.10 Natural Language Processing

7.10.1 NLP

Report by: Eric Kow

The Haskell Natural Language Processing community
aims to make Haskell a more useful and more popular
language for NLP. The community provides a mailing
list, Wiki and hosting for source code repositories via
the Haskell community server.

The Haskell NLP community was founded in March
2009. The list is still growing slowly as people grow
increasingly interested in both natural language pro-
cessing, and in Haskell.

At the present, the mailing list is mainly used to
make announcements to the Haskell NLP community.
We hope that we will continue to expand the list and
expand our ways of making it useful to people poten-
tially using Haskell in the NLP world.

New packages

o Earley-0.8.0 (Olle Fredriksson)
This (Text.Earley) is a library consisting of two
parts:

1. Text.Earley.Grammar: An  embedded
context-free grammar (CFG) domain-specific
language (DSL) with semantic action specifica-
tion in applicative style.

An example of a typical expression grammar
working on an input tokenized into strings is
the following:

expr :: Grammar r String (Prod r String String Expr)
expr = mdo

z1 + rule $ Add <$> z1 < * namedSymbol "+" <> z2

<|>z2
<7 > "sum"

x2 < rule $ Mul <$> 12 < * namedSymbol "*" <& 13

<|>z3
<? > "product"

z3 <« rule $ Var <$> (satisfy ident <? > "identifier")
<|> namedSymbol " (" %> x1 < * namedSymbol ") "

return rl

where
ident (z: _) = isAlpha z
ident _ = False

2. Text.Earley.Parser: An implementation of (a
modification of) the Earley parsing algorithm.
To invoke the parser on the above grammar, run
e.g. (here using words as a stupid tokeniser):

fullParses $ parser expr $ words "a + b * (¢ + d )"

= ([Add (Var "a") (Mul (Var "b")
(Add (Var "c") (Var "d")))]
SReport {...}

Note that we get a list of all the possible parses
(though in this case there is only one).

58

https://github.com/ollef/Earley

Further reading

o The Haskell NLP page http://projects.haskell.org/nlp

7.10.2 Genl

Report by: Eric Kow

Genl is a surface realizer for Tree Adjoining Grammars.
Surface realization can be seen a subtask of natural
language generation (producing natural language ut-
terances, e.g., English texts, out of abstract inputs).
Genl in particular takes a Feature Based Lexicalized
Tree Adjoining Grammar and an input semantics (a
conjunction of first order terms), and produces the set
of sentences associated with the input semantics by
the grammar. It features a surface realization library,
several optimizations, batch generation mode, and a
graphical debugger written in wxHaskell. It was de-
veloped within the TALARIS project and is free soft-
ware licensed under the GNU GPL, with dual-licensing
available for commercial purposes.

Genl is now mirrored on GitHub, with its issue
tracker and wiki and homepage also hosted there. The
most recent release, Genl 0.24 (2013-09-18), allows for
custom semantic inputs, making it simpler to use Genl
in a wider variety for applications. This has recently
been joined by a companion geni-util package which
offers a rudimentary geniserver client and a reporting
tool for grammar debugging.

80e

Files last loaded

Geni Project

trees: substtest3.geni
lexicon: etc/perftest/lemmas.glex
test suite: etc/perftest/semantics-t33

Test case’ = 1, ﬂ Algorithm

@ simple
") simple-1p
TICKY

semantics: [I1:agent(el x1) 12:agent(e2 x2) 13:agent(e3 x4) 12:avertir
(e2) I1:demander(e 1) jeanix 1) marc(x5) marie{x3) 12:patient(e2 x3)
pierre(x2) pierrette(x4) se(noone] 13:souvenir(e3) 12:theme(e2 e3)
13:themel(e3 x5) I1:topiclel e2)]

7 Earley
Optimisations
@ Polarities
Extra:
| Semantic filters
" ldx acc filter

" Inspect lex ( Debug ) ( Generate |

Genl Debugger - simple edition

(I Show features

itr 56 chart sz: 56

comparisons: 1046 Start over )

Leap by... ) 56 step(s) (_Continue


https://github.com/ollef/Earley
http://projects.haskell.org/nlp

Genl is available on Hackage, and can be installed
via cabal-install, along with its GUI and HTTP server
user interfaces. For more information, please contact
us on the geni-users mailing list.

Further reading

o http://github.com/kowey/Genl

o http://projects.haskell.org/Genl

o Paper from Haskell Workshop 2006:
http://hal.inria.fr/inria-00088787 /en

o http://websympa.loria.fr/wwsympa/info/geni-users

7.11 Bioinformatics

7.11.1 ADPfusion

Christian Honer zu Siederdissen
usable, active development

Report by:
Status:

ADPfusion provides a low-level domain-specific lan-
guage (DSL) for the formulation of dynamic programs
with emphasis on computational biology and linguis-
tics. Following ideas established in algebraic dynamic
programming (ADP) a problem is separated into a
grammar defining the search space and one or more
algebras that score and select elements of the search
space. The DSL has been designed with performance
and a high level of abstraction in mind.

ADPfusion grammars are abstract over the type of
terminal and syntactic symbols. Thus it is possible to
use the same notation for problems over different in-
put types. We directly support grammars over strings,
and sets (with boundaries, if necessary). Both linear
and context-free languages are supported, where linear
languages can be asymptotically more efficient both in
time and space. ADPfusion is extendable by the user
without having to modify the core library. This allows
users of the library to support novel input types, as
well as domain-specific index structures.

As an example, consider a grammar that recognizes
palindromes. Given the non-terminal p, as well as
parsers for single characters ¢ and the empty input e,
the production rule for palindromes can be formulated
asp—cpc|e

The corresponding ADPfusion code is similar:

p(f<<chphclll g<<e...h

We need a number of combinators as “glue” and
additional evaluation functions f, g, and h. With
f e pea=p && (e = c2) scoring a candidate,
g e = True, and h xs = or zs determining if the
current substring is palindromic.

This effectively turns the grammar into a memo-
function that then yields the optimal solution via a call

59

to axiom p. Backtracking for co- and sub-optimal solu-
tions is provided as well. The backtracking machinary
is derived automatically and requires the user to only
provide a set of pretty-printing evaluation functions.

As of now, code written in ADPfusion achieves per-
formance close to hand-optimized C, and outperforms
similar approaches (Haskell-based ADP, GAPC pro-
ducing C++) thanks to stream fusion. The figure shows
running times for the Nussinov algorithm.

10

10

0.1 0.1

time (s)

0.01 0.01

0.001 0.001

0.0001 Lt 1 L 1 L L 1 1 1 U 0.0001
100 200 300 400 500 600 700 800 900 1000

input length

The entry on generalized Algebraic Dynamic Pro-
gramming provides information on the associated high-
level environment for the development of dynamic pro-
grams.

Further reading

o http://www.bioinf.uni-leipzig.de/Software /gADP
o http://hackage.haskell.org/package/ADPfusion
o http://dx.doi.org/10.1145/2364527.2364559

7.11.2 Biohaskell

Ketil Malde

Christian Hoéner zu Siederdissen, Michal J.
Gajda, Nick Ignolia, Felipe Almeida Lessa,
Dan Fornika, Maik Riechert, Ashish
Agarwal, Grant Rotskoff, Florian
Eggenhofer, Sarah Berkemer, Niklas
Hambiichen

Report by:
Participants:

AN\

Bioinformatics in Haskell is a steadily growing field,
and the Bio section on Hackage now contains 69 li-
braries and applications. The biohaskell web site co-
ordinates this effort, and provides documentation and
related information. Anybody interested in the com-
bination of Haskell and bioinformatics is encouraged


http://github.com/kowey/GenI
http://projects.haskell.org/GenI
http://hal.inria.fr/inria-00088787/en
http://websympa.loria.fr/wwsympa/info/geni-users
http://www.bioinf.uni-leipzig.de/Software/gADP
http://hackage.haskell.org/package/ADPfusion
http://dx.doi.org/10.1145/2364527.2364559
http://hackage.haskell.org/packages/archive/pkg-list.html#cat:bioinformatics
http://biohaskell.org

to sign up to the mailing list (currently by emailing
(ketil@malde.org)Ketil), and to register and document
their contributions on the http://biohaskell.org wiki.

In the summer of 2014, Sarah Berkemer was financed
by Google’s Summer of Code program to work on op-
timizing transalign. After a summer’s work, Sarah was
able to improve both space and time usage. Other
new additions are parsers by Floran Eggenhofer for
the NCBI Genbank format and for Clustal mulitiple
sequence alignments. There is also a new library for
working with EEG devices, written by Niklas Ham-
biichen and Patrick Chilton.

Further reading

http://biohaskell.org

http://blog.malde.org
http://www.bioinf.uni-leipzig.de/~choener/haskell /
https://bioinf.eva.mpg.de/biohazard/

O O O O

7.11.3 arte-ephys: Real-time electrophysiology

Report by: Greg Hale
Participants: Alex Chen
Status: work in progress

Arte-ephys is a soft real-time neural recording system
for experimental systems neuroscientists.

Our lab uses electrode arrays for brain recording in
freely moving animals, to determine how these neurons
build, remember, and use spatial maps.

We previously recorded and analyzed our data in two
separate stages. We are now building a recording sys-
tem focused on streaming instead of offline analysis,
for real-time feedback experiments. For example, we
found that activity in the brain of resting rats often
wanders back to representations of specific parts of a
recently-learned maze, and we would now like to au-
tomatically detect these events and reward the rat im-
mediately for expressing them, to see if this influences
either the speed of learning of a specific part of the
maze or the nature of later spatial information coding.

We now have a proof-of-concept that streams
recorded data from disk, performs the necessary pre-
processing, and accurately decodes neural signals in re-
altime, while drawing the results with gloss. Our next
goal is to integrate this into a sytem that streams raw
neural data during the experiment.

L]
Ll |
W
s le ol

.
158 o m
EENAaA
LA

'ﬁ

60

Further reading

o http://github.com/ImAlsoGreg/arte-ephys
o http://github.com/ImAlsoGreg/haskell-tetrode-ephys
o http://web.mit.edu/wilsonlab/html/research.html

7.12 Embedding DSLs for Low-Level

Processing
7.12.1 C)aSH
Report by: Christiaan Baaij
Participants: Jan Kuper, Arjan Boeijink, Rinse Wester

Status: actively developed

The first line of the package description on hackage is:

CXaSH (pronounced ’clash’) is a functional hard-
ware description language that borrows its syntax
and semantics from the functional programming
language Haskell.

In essence, however, it is a combination of:

o A Haskell library containing data types and func-
tions for circuit design: http://hackage.haskell.org/
package/clash-prelude.

o A compiler that transforms the Haskell code to low-
level synthesisable VHDL or SystemVerilog: http://
hackage.haskell.org/package/clash-ghc.

Of course, the compiler cannot transform arbitrary
Haskell code to hardware, but only the structural sub-
set of Haskell. This subset is vaguely described as the
semantic subset of Haskell from which a finite struc-
ture can be inferred, and hence excludes unbounded
recursion. The CAaSH compiler is thus a proper com-
piler (based on static analysis), and not an embed-
ded Domain Specific Language (DSL) such as Kansas
Lava (— 7.12.3).

CAaSH has been in active development since 2010.
Since then we have significantly improved stability,
enlarged the subset of transformable Haskell,
proved performance of the compiler, and added (Sys-
tem)Verilog generation. And, perhaps most impor-
tantly, vastly improved documentation.

ClaSH is available on Hackage, for GHC version 7.10
and higher:

im-

$ cabal update
$ cabal install clash-ghc

What’s new since last HCAR:

o ClaSH can now generate, next to VHDL-93 and
SystemVerilog-2005, Verilog-2001.

o Support for memory primitives whose content can be
initialised from a file.


mailto: ketil at malde.org
http://biohaskell.org
https://www.google-melange.com/gsoc/homepage/google/gsoc2014
http://blog.malde.org/posts/transitive-alignments.html
http://biohaskell.org/GSoC_blog
https://hackage.haskell.org/package/Genbank
https://hackage.haskell.org/package/ClustalParser
https://hackage.haskell.org/package/hemokit
https://hackage.haskell.org/package/hemokit
http://biohaskell.org
http://blog.malde.org
http://www.bioinf.uni-leipzig.de/~choener/haskell/
https://bioinf.eva.mpg.de/biohazard/
http://github.com/ImAlsoGreg/arte-ephys
http://github.com/ImAlsoGreg/haskell-tetrode-ephys
http://web.mit.edu/wilsonlab/html/research.html
http://hackage.haskell.org/package/clash-prelude
http://hackage.haskell.org/package/clash-prelude
http://hackage.haskell.org/package/clash-ghc
http://hackage.haskell.org/package/clash-ghc

Major overhaul and extension of the Vector mod-
ule. All functions in Vector are now synthesisable
to VHDL/(System)Verilog.

Development plans for CAaSH are:

Behavioural synthesis of unbounded recursion (by In-
gmar te Raa).

Use a dependently typed internal core language, so
that we can use both Haskell/GHC and Idris http://
http://www.idris-lang.org/ as front-end language for
circuit design (by Christiaan Baaij).

Further reading

http://www.clash-lang.org

7.12.2 Feldspar

Emil Axelsson
active development

Report by:
Status:

Feldspar is a domain-specific language for digital sig-
nal processing (DSP). The language is embedded in
Haskell and is currently being developed by projects
at Chalmers University of Technology (—9.6), SICS
Swedish ICT AB and Ericsson AB.

The motivating application of Feldspar is telecoms
processing, but the language is intended to be useful
for DSP and numeric code in general. The aim is to
allow functions to be written in pure functional style
in order to raise the abstraction level of the code and
to enable more high-level optimizations. The current
version consists of a library of numeric and array pro-
cessing operations as well as a code generator producing
C code for running on embedded targets.

The official packages feldspar-language and feldspar-
compiler contain the language for pure computations
and its C back end, respectively.

Additionally, feldspar-io (not yet released, but fully
usable) adds an “IO-like” monad for making interac-
tive Feldspar programs and binding to external C li-
braries. Ongoing work involves using feldspar-io to
implement more high-level libraries for streaming and
interactive programs. Two examples of such libraries
are:

o feldspar-synch — a synchronous data-flow library
o zeldspar — a Ziria-like EDSL

Further reading

o Official home page: http://feldspar.github.io
o Recent paper (TFP 2015) about controlling the
signatures of generated C functions

61

7.12.3 Kansas Lava

Report by: Andrew Gill
Participants: Bowe Neuenschwander
Status: ongoing

Kansas Lava is a Domain Specific Language (DSL) for
expressing hardware descriptions of computations, and
is hosted inside the language Haskell. Kansas Lava pro-
grams are descriptions of specific hardware entities, the
connections between them, and other computational
abstractions that can compile down to these entities.
Large circuits have been successfully expressed using
Kansas Lava, and Haskell’s powerful abstraction mech-
anisms, as well as generic generative techniques, can be
applied to good effect to provide descriptions of highly
efficient circuits.

o The Fabric monad is now a Monad transformer. The
Fabric monad historically provided access to named
input/output ports, and now also provides named
variables, implemented by ports that loop back on
themselves. This additional primitive capability al-
lows for a typed state machine monad. This design
gives an elegant stratospheric pattern: purely func-
tional circuits using streams; a monad for layout over
space; and a monad for state generation, that acts
over time.

On top of the Fabric monad, we are implementing an
atomic transaction layer, which provides a BSV-like
interface, but in Haskell. An initial implementation
has been completed, and this is being reworked to
include BSV’s Ephemeral History Registers.

Further reading

http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

7.13 Games

7.13.1 The Amoeba-World game project

Alexander Granin
work in progress

Report by:
Status:

In functional programming, there is a serious problem:
there are no materials for the development of large
applications. As we know, this field is well studied
for imperative and object-oriented languages. There
are books on design, architecture, design patterns and
modeling practices. But we have no idea how this big
knowledge can be adapted to functional languages.
I'm working on a game called “The Amoeba World”.
The goal of this project is to explore approaches to
the development of large applications on Haskell. The
results of my research are some articles which will be
used to compose a book about functional design and
architecture. Currently two articles are written out of
the planned four (in Russian, but the articles will be
translated to English soon). The first highlights the is-
sue of whether the mainstream knowledge of architec-


http://http://www.idris-lang.org/
http://http://www.idris-lang.org/
http://www.clash-lang.org
http://hackage.haskell.org/package/feldspar-language
http://hackage.haskell.org/package/feldspar-compiler
http://hackage.haskell.org/package/feldspar-compiler
https://github.com/emilaxelsson/feldspar-io
https://github.com/emilaxelsson/feldspar-synch
https://github.com/koengit/zeldspar
http://feldspar.github.io
http://www.cse.chalmers.se/~emax/documents/persson2015programmable.pdf
http://www.ittc.ku.edu/csdl/fpg/Tools/KansasLava

ture is applicable to the functional paradigm and what
tools can be used for designing of architecture. It shows
that the UML is ill-suited for the functional paradigm
and the architecture is constructed using mind maps
and concept cards. The second article talks about a
low-level design of the application using the language
Haskell. It has a theoretical part named what makes a
good design, but there is also practical part describing
of the some anti-patterns in Haskell. The third article
is under development now. In it, the application design
based on properties and scenarios is researched. The
fourth article will be discussing the use of FRP.

Code of the game “The Amoeba World” should be
written well to be a good example of the design con-
cepts. These concepts are: using DSL, parsing, layer-
ing, using lenses, Inversion of Control, testing, FRP,
SDL, usefulness of monads. The overall architecture of
the game looks as follows:

l

At the moment, the game logic has been rewritten
twice. The draft of game logic is ready. A special file
format "ARF’ (Amoeba Raw File) for the game objects
is done. Parsec is used for parsing, and a custom safe
translator is written, which works on rules. Now I’'m
are working on a Application Layer. Settings loading
is done. A primitive renderer for the game world is
created. A draft game cycle and 10 event handler from
SDL subsystem is done by using Netwire FRP library.
The next objectives are to add an interaction within the
game world and then move to the execution of scenarios
on game objects.

Further reading
o https://github.com/graninas/The-Amoeba-World
o http://bit.ly/ArchitectureAndDesingInFP (in Russian)

7.13.2 EtaMOO

Rob Leslie
experimental, active development

Report by:
Status:

EtaMOO is a new, experimental MOO server imple-
mentation written in Haskell. MOOs are network ac-
cessible, multi-user, programmable, interactive systems
well suited to the construction of text-based adventure
games, conferencing systems, and other collaborative
software. The design of EtaMOO is modeled closely
after LambdaMOO, perhaps the most widely used im-
plementation of MOO to date.

62

Unlike LambdaMOQO which is a single-threaded
server, EtaMOO seeks to offer a fully multi-threaded
environment, including concurrent execution of MOO
tasks. To retain backward compatibility with the gen-
eral MOO code expectation of single-threaded seman-
tics, EtaMOO makes extensive use of software trans-
actional memory (STM) to resolve possible conflicts
among simultaneously running MOO tasks.

EtaMOO fully implements the MOO programming
language as specified for the latest version of the Lamb-
daMOO server, with the aim of offering drop-in com-
patibility. Several enhancements are also planned to be
introduced over time, such as support for 64-bit MOO
integers, Unicode MOO strings, and others.

While still under development, the current imple-
mentation supports loading a LambdaMOO-format
database from a file, receiving client (telnet) connec-
tions from the network, and executing MOO code as a
result of processing the commands received from each
connection. Soon to be implemented will be the ability
to save the changes made to the MOO object database
back to a file, at which point the server should be
largely usable.

Latest development of EtaMOO can be seen on
GitHub, with periodic releases also being made avail-
able through Hackage.

Further reading

o https://github.com /verement/etamoo
o https://hackage.haskell.org/package/EtaMOO
o https://en.wikipedia.org/wiki/MOO

7.13.3 scroll
Report by: Joey Hess
Status: stable, complete

Scroll is a roguelike game, developed in one week as an
entry in the 2015 Seven Day Roguelike Challenge.

In scroll, you're a bookworm that’s stuck on a scroll.
You have to dodge between words and use spells to
make your way down the page as the scroll is read.
Go too slow and you’ll get wound up in the scroll and
crushed.

This was my first experience with using Haskell for
game development, and I found it quite an interesting
experience, and a great crutch in such an intense coding
sprint. Strong typing and purely functional code saved
me from many late night mistakes, until I eventually
became so exhausted that String — String seemed like
a good idea. Even infinite lists found a use; one of
scroll’s levels features a reversed infinite stream of con-
sciousness based on Joyce’s Ulysses. . .

Scroll was written in continuation passing style, and
this turned out to be especially useful in developing
its magic system, with spells that did things ranging
from creating other spells, to using a quick continuation
based threading system to handle background tasks, to


https://github.com/graninas/The-Amoeba-World
http://bit.ly/ArchitectureAndDesingInFP
https://github.com/verement/etamoo
https://hackage.haskell.org/package/EtaMOO
https://en.wikipedia.org/wiki/MOO

letting the player enter the altered reality of a dream,
from which they could wake up later.

I had a great time creating a game in such a short
time with Haskell, and documenting my progress in 7
blog posts, and it’s been well received by players.

Further reading

http://joeyh.name/code/scroll/

7.13.4 Nomyx
Report by: Corentin Dupont
Status: stable, actively developed

Nomyx is a unique game where you can change the rules
of the game itself, while playing it! In fact, changing
the rules is the goal of the game. Changing a rule
is considered as a move. Of course even that can be
changed! The players can submit new rules or modify
existing ones, thus completely changing the behaviour
of the game through time. The rules are managed and
interpreted by the computer. They must be written
in the Nomyx language, based on Haskell. This is the
first complete implementation of a Nomic game on a
computer.

At the beginning, the initial rules are describing;:
How to add new rules and change existing ones. For
example a unanimity vote is necessary to have a new
rule accepted.

How to win the game. For example you win the game
if you have 5 rules accepted.

But of course even that can be changed!

A first version has been released. A match is cur-
rently on-going, join us! A lot of learning material is
available, including a video, a tutorial, a FAQ, a forum
and API documentation.

If you like Nomyx, you can help! There is a devel-
opment mailing list (check the website). The plan now
is to create a new version were knowing haskell is not
necessary to play.

Further reading

http://www.nomyx.net

63

7.13.5 Barbarossa

Nicu lonita
actively developed

Report by:
Status:

Barbarossa is a UCI chess engine written completely in
Haskell. UCI is one of 2 protocols used in the computer
chess scene to communicate between a chess GUI and
a chess engine. This way it is possible to write just the
chess engine, which then works with any chess GUI.

I started in 2009 to write a chess engine under the
name Abulafia. In 2012 I decided to rewrite the eval-
uation and search parts of the engine under the new
name, Barbarossa.

My motivation was to demonstrate that even in a
domain in which the raw speed of a program is very im-
portant, as it is in computer chess, it is possible to write
competitive software with Haskell. The speed of Bar-
barossa (measured in searched nodes per second) is still
far behind comparable engines written in C or C++.
Nevertheless Barbarossa can compete with many en-
gines - as it can be seen on the CCRL rating lists,
where is it currently listed with a strength of about
2200 ELO.

Barbarossa uses a few techniques which are well
known in the computer chess scene:

o in evaluation: material, king safety, piece mobility,
pawn structures, tapped evaluation and a few other
less important features

in search: principal variation search, transposition
table, null move pruning, killer moves, futility prun-
ing, late move reduction, internal iterative deepen-
ing.

I still have a lot of ideas which could improve the
strength of the engine, some of which address a higher
speed of the calculations, and some, new chess related
features, which may reduce the search tree.

The engine is open source and is published on github.
The last released version is Barbarossa v0.3.0 from be-
gin of October.

Further reading

o https://github.com/nionita/Barbarossa/releases
o http://www.computerchess.org.uk/ccrl /404 /

7.14 Others

7.14.1 leapseconds-announced

Report by:
Status:

Bjorn Buckwalter
stable, maintained

The leapseconds-announced library provides an easy to
use static LeapSecondTable with the leap seconds an-
nounced at library release time. It is intended as a
quick-and-dirty leap second solution for one-off anal-
yses concerned only with the past and present (i.e.


http://joeyh.name/code/scroll/
http://www.nomyx.net
https://github.com/nionita/Barbarossa/releases
http://www.computerchess.org.uk/ccrl/404/

up until the next as of yet unannounced leap second),
or for applications which can afford to be recompiled
against an updated library as often as every six months.

Version 2015 of leapseconds-announced contains all

leap seconds up to 2015-07-01. A new version will be
uploaded if/when the IERS announces a new leap sec-
ond.

Further reading

https://hackage.haskell.org/package/leapseconds-announced

7.14.2 hledger

Report by: Simon Michael
Status: ongoing development; suitable for daily use

hledger is a cross-platform program (and Haskell li-
brary) for tracking money, time, or any other com-
modity, using double-entry accounting and a simple,
editable text file format. hledger aims to be a reliable,
practical tool for daily use, and provides command-line,
curses-style, and web interfaces. It is a largely compati-
ble Haskell reimplementation of John Wiegley’s Ledger
program. hledger is released under GNU GPLv3+.

hledger’s HCAR entry was last updated in the

November 2011 report, but development has continued
steadily, with 2-3 major releases each year.

Many new features and improvements have been in-

troduced, making hledger much more useful. These
include:

o

Easier installation, using stack, system packages, or
downloadable Windows binaries.

A simpler and more robust web interface, with built-
in help, balance charts, flexible transaction entry,
and automatic browser startup

A new curses-style interface, hledger-ui, is now in-
cluded and fully supported

The command-line interface is more robust, and is
aware of terminal width, COLUMNS, and wide char-
acters

New commands: accounts, balancesheet, cashflow,
incomestatement

New  add-on  packages: ledger-autosync,
hledger-diff, hledger-interest, and
hledger-irr

hledger can now report current value based on mar-
ket prices (-V)

The journal format has become richer, supporting
more Ledger features such as balance assertions
hledger journals and reports can be exported as
CSV

hledger now reads CSV files directly, using flexible
conversion rules

The balance command can show multiple columns,
with per-period changes or ending balances

64

o Depth-limiting now interacts well with other fea-
tures, making it effective for summarising

o hledger-web’s query language is richer and is also
used by the command-line interface

o The Decimal library is used for representing amounts
exactly

o Unicode is handled correctly

o Many commands are faster
Project updates include:

o hledger.org and the docs have been refreshed a few
times, and now include many examples

o hledger’s code repo and bug tracker have moved
from darcs/darcs hub/google code to git/github

o hledger has its own IRC channel on freenode:
#hledger, with logging and commit/issue/travis no-
tifications
hledger is available from hledger.org, github, hack-

age, stackage, and is packaged for a number of

systems including Debian, Ubuntu, Gentoo, Fedora,

and NixOS. See http://hledger.org/download or http:

//hledger.org/developer-guide for guidance.
Immediate plans:

o improve docs and help,

o improve parser speed and memory efficiency,

o integrate a separate parser for Ledger files built by
John Wiegley,

o hledger-ui improvements,

o and work towards the 1.0 release.

Further reading

http://hledger.org

7.14.3 arbtt
Report by: Joachim Breitner
Status: working

The program arbtt, the automatic rule-based time
tracker, allows you to investigate how you spend your
time, without having to manually specify what you are
doing. arbtt records what windows are open and active,
and provides you with a powerful rule-based language
to afterwards categorize your work. And it comes with
documentation!

Further reading

o http://arbtt.nomeata.de/

o http://www.joachim-breitner.de/blog/archives/
336- The-Automatic-Rule-Based- Time-Tracker.html

o http://arbtt.nomeata.de/doc/users_guide/


https://hackage.haskell.org/package/leapseconds-announced
hledger.org
hledger.org
http://hledger.org/download
http://hledger.org/developer-guide
http://hledger.org/developer-guide
http://hledger.org
http://arbtt.nomeata.de/
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://www.joachim-breitner.de/blog/archives/336-The-Automatic-Rule-Based-Time-Tracker.html
http://arbtt.nomeata.de/doc/users_guide/

7.14.4 Hoodle

lan-Woo Kim
Actively Developing

Report by:

Status:
Hoodle is a pen-notetaking programing written in
haskell using Gtk2hs. The name Hoodle is from Haskell
+ doodle.

hoodle-shot2.hdl
L=

o e

8 7| T

[ T

1)

1

{Hello there

This project first started as making a haskell clone
of Xournal, a notetaking program developed in C. But
now Hoodle has more unique features, as well as basic
pen notetaking function. Pen input is directly fed into
from X11 events, which has sub-pixel level accuracy
for the case of wacom tablets. Therefore, the resultant
pen strokes are much smoother than other similar open-
source programs such as Jarnal and Gournal.

Hoodle can be used for annotation on PDF files, and
also supports importing images of PNG, JPG and SVG
types, and exporting Hoodle documents to PDF. One
of the most interesting features is “linking”: each Hoo-
dle document can be linked with each other by simple
drag-and-drop operations. Then, the user can navi-
gate linked Hoodle documents as we do in web browser.
Another interesting feature is that one can edit a doc-
ument in split views, so that a long Hoodle document
can be easily edited. Hoodle can embed X TEXtexts and
the embedded text can be edited via network.

GUI programming is in general tightly tied into a
GUI framework. Since most frameworks rely on call-
backs for event processing, program logic is likely to be
scattered in many callback functions. We cure this sit-
uation by using coroutines. In haskell, coroutine can be
implemented in a straightforward way without relying
on specific language feature. This abstraction enable us
to reason through the program logic itself, not through
an inverted logic in a GUI framework.

Hoodle is being very actively developed as an open-
source project hosted on Github. The released versions
are located on Hackage, and it can be installed by sim-
ple cabal install. On Linux, OS X, and Windows sys-
tems with Gtk2hs and Poppler, Hoodle can be installed
without problems. Recently, it is packaged for NixOS.
Making a Hoodle binary package for other linux distri-
butions, OS X and window is planned.

65

The development focus as of now is to have more flex-
ible link features (link to arbitrary position of a doc-
ument) and an internal database for document man-
agement. Hoodle manages documents with a unique
UUID, but it does not have a good internal database
yet. This feature can also be extended to saving Hoo-
dle documents in cloud storage in a consistent way.
Refining rendering with appropriate GPU acceleration
is also planned. In the long run, we plan to support
mobile platforms.

Further reading

http://ianwookim.org/hoodle

7.14.5 Reffit
Report by: Greg Hale
Status: work in progress

@Reffit! (Alpha)

<
] |

reffit.com

Reversed theta sequences of hippocampal cell assemblies during | ¢,
backward travel co
Anne Cel, Gabrelle Girardeau, Célne Drieu, Karm €1 Kanbi, M

Multiple Neural Mechanisms of Decision Making and Their
Competition under Changing Risk Pressure
is Koling, Marco Wittmann, Mattvew . Rushwort

NO
Ro
co

Dopamine D2 Receptors Regulate the Anatomical and Functional
Balance of Basal Ganglia Circuitry c
Maxime Gazorla, Feranda Deln
Chuhma, Stephen Rayport. Susanne

0. Muh E
E. Ahmar, Holly Moore, Christoph Kellendonk.

Social reward requires coordinated activity of nucleus accumbens [
oxytocin and serotonin
Ayeh Darnishzadeh, Kee Wi Huang, RobertC. Malenka

Cellular machanisms of hrain state.denandent aain modulation in

Reffit is a Snap website for collecting and organizing
short comments on peer reviewed papers, blog posts,
and videotaped talks. We hope to attract a community
and foster a culture of open discussion of papers, with
a lighthearted attitude, informality, and gamification.

Further reading

o http://reffit.com

o http://github.com/ImAlsoGreg/reffit
7.14.6 Laborantin

Lucas DiCioccio
Working, development for new features

Report by:
Status:

Conducting scientific experiments is hard. Laborantin
is a DSL to run and analyze scientific experiments.
Laborantin is well-suited for experiments that you can
run offline such as benchmarks with many parameters.

Laborantin encourages users to express experiments
parameters, experiment results, as well as execution,
startup, and teardown procedures in a methodical man-
ner. For instance, the following snippet defines a net-
work ‘ping’ experiment with a destination and packet-
size parameters.


http://ianwookim.org/hoodle
http://reffit.com
http://github.com/ImAlsoGreg/reffit

ping = scenario "ping" $ do
describe "ping to a remote server"
parameter "destination" $ do
describe "a destination server (host or ip)"
values [str "example.com", str "dicioccio.fr"]
parameter "packet-size" $ do
describe "packet size in bytes"
values [num 50, num 1500]
run $ do
(StringParam srv) <- param "destination"
(NumberParam ps) <- param "packet-size"
1iftI0 (execPing srv ps) >>= writeResult "ping.out"

execPing :: Text -> Rational -> IO (Text)
execPing host pktSz =
let args = [ "-c", "10"

, "-s" , show (round pktSz) , T.unpack host]
in fmap T.pack (readProcess "ping" args "")

Laborantin also lets users express dependencies be-
tween experiments. Laborantin is designed to allow
multiple backend (where to run and store experiments)
and multiple frontends (how a user interacts with Lab-
orantin). The current backend stores experiment re-
sults on the filesystem and provides a command line
frontend.

Contributions are welcome. In the future, we plan
to enrich Laborantin with helper modules for common
tasks such as starting and collecting outputs of remote
processes, reformatting results, and generating plots
(e.g., with Diagrams). Laborantin would also bene-
fit from new backends (e.g., to store results in an SQL
database or HDFS) and new frontends (e.g., an inte-
gration in IHaskell).

Further reading

o Hackage page:
http://hackage.haskell.org/package/laborantin-hs

o Example of web-benchmarks: https:
//github.com /lucasdicioccio/laborantin-bench-web

7.14.7 Transient

Alberto Gémez Corona
active development

Report by:
Status:

Transient is a monad with batteries included that
bringing the power of high level effects in order to re-
duce the learning curve and make haskell programmer
productive. Effects include event handling/reactive,
backtracking, extensible state, indetermism, concur-
rency, parallelism, thread control and distributed com-
puting. It is possible to create combinators that permit
newcomers to program at a higher level, that was not
previously possible.

The impedance mismatch between specifications and
programming comes from the fact that the technical
requirements manage similar concepts than program-
ming, but at a higher level: For example: this speci-
fication description: "the query processor will send re-
quest for each data source and filter the results accord-
ing with the provided function"

66

A specification like this is described as a sequence of
steps, as if the functionality were a single process, but
really it may involve many threads, synchronizations,
event handling, working with network nodes, possibly
undoing actions under some conditions, stopping under
some other condition etc.

Transient permits to write a monadic sequence that
express this requirement with a one-to-one correspon-
dence, since these effects are included and are man-
aged automatically by a single monad. In particular
a monadic or applicative expression in Transient may
receive events in the middle of the sequence and may
dispatch threads for these events and yet externally it
is a single expression. Now It can also perform cloud
computing in the same way.

Transient uses a different way to produce effects: A
transient statement can access his own expression an
his own continuation. Therefore it can re-execute them
when some asynchronous input is received. Or this
continuation can be stored in the state, so that other
statements can make use of them later, so combinations
of statements can edit the execution flow to produce
effects.

Althoug it may be functionally equivalent to delim-
ited continuations, in transient is more easy to program
discrete effects and create powerful primitives that can
be composed to create programs that are easier to un-
derstand without resorting to the ubiquous use of the
all-powerful unrestricted ”callCC” For example, with
some primitives like "async” the Applicative operators
can be used for concurrency and the alternative opera-
tor can be used for parallelism. the same operators can
be used under distributed computing when combined
with "runAt”

What is new in Transient is the addition of
some primitives for publish-suscribe events[4], paral-
lel non-determinism[6], logging, distributed comput-
ing[5], streaming, distributed streaming and beginning
a mapReduce functionality with datasets in the stlyle
of Apache spark][7]

Future work:

Transient will be the base of a haskell embedded gen-
eral purpose language that implement a cloud comput-
ing architecture where MFlow and hplayground will be
the user interface.

Further reading

o Transient GIT repository https://github.com/agocorona/transient
o An EDSL for Hard-working IT programmers
https:/ /www.fpcomplete.com /user/agocorona/EDSL-for- hard-working- I T- programmers
o The hardworking programmer II: practical backtracking to undo actions
https://www.fpcomplete.com /user/agocorona/
the- hardworking- programmer-ii- practical- backtracking- to- undo- actions
o Publish-suscribe variables
https:/ /www.fpcomplete.com /user/agocorona/publish-subscribe- variables- transient- effects-v
o Moving processes between nodes https:
/ /www.fpcomplete.com/user/agocorona/moving- haskell- processes- between- nodes- transient- effects-iv
o Parallel non-determinism
https: / /www fpcomplete.com /user/agocorona/beautiful- parallel- non- determinism- transient- effects-iii
o streamimg, distributed streaming, mapReduce with distributed datasets
https://www.fpcomplete.com /user/agocorona,/
estimation-of- using- distributed- computing- streaming- transient- effects-vi- 1


http://hackage.haskell.org/package/laborantin-hs
https://github.com/lucasdicioccio/laborantin-bench-web
https://github.com/lucasdicioccio/laborantin-bench-web
https://github.com/agocorona/transient
https://www.fpcomplete.com/user/agocorona/EDSL-for-hard-working-IT-programmers
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/the-hardworking-programmer-ii-practical-backtracking-to-undo-actions
https://www.fpcomplete.com/user/agocorona/publish-subscribe-variables-transient-effects-v
https://www.fpcomplete.com/user/agocorona/moving-haskell-processes-between-nodes-transient-effects-iv
https://www.fpcomplete.com/user/agocorona/moving-haskell-processes-between-nodes-transient-effects-iv
https://www.fpcomplete.com/user/agocorona/beautiful-parallel-non-determinism-transient-effects-iii
https://www.fpcomplete.com/user/agocorona/estimation-of-using-distributed-computing-streaming-transient-effects-vi-1
https://www.fpcomplete.com/user/agocorona/estimation-of-using-distributed-computing-streaming-transient-effects-vi-1

7.14.8 tttool
Report by: Joachim Breitner
Status: active development

The Ravensburger Tiptoi® pen is an interactive toy
for kids aged 4 to 10 that uses OiD technology to react
when pointed at the objects on Ravensburger’s Tip-
toi books, games, puzzles and other toys. The are
programmed via binary files in a proprietary, undoc-
umented data format.

We have reverse engineered the format, and created
a tool to analze these files and generate your own.
This program, called tttool, is implemented in Haskell,
which turned out to be a good choice: Thanks to
Haskell’s platform independence, we can easily serve
users on Linux, Windows and OS X.

The implementation makes use of some nice Haskell
idoms such as a monad that, while parsing a binary, cre-
ates a hierarchical description of it and a writer monad
that uses lazyness and MonadFix to reference positions
in the file “before” these are determined.

Further reading

o https://github.com/entropia/tip-toi-reveng

o http://tttool.entropia.de/ (in German)

o http://funktionale-programmierung.de/2015/04/15/
monaden-reverse-engineering.html (in German)

7.14.9 gipeda
Report by: Joachim Breitner
Status: active development

Gipeda is a a tool that presents data from your pro-
gram’s benchmark suite (or any other source), with nice
tables and shiny graphs. Its name is an abbreviation
for “Git performance dashboard” and highlights that it
is aware of git, with its DAG of commits.

Gipeda powers the GHC performance dashboard at
http://perf.haskell.org, but it builds on shake and cre-
ates static files, so that hosting a gipeda site is easily
possible. Also, it is useful not only for benchmarks:
The author uses it to track the progress of his thesis,
measured in area covered by the ink.

Further reading

https://github.com/nomeata/gipeda

7.14.10 Octohat (Stack Builders)

Stack Builders
Juan Carlos Paucar, Sebastian Estrella,
Juan Pablo Santos

Working, well-tested minimal wrapper
around GitHub's API

Report by:
Participants:

Status:

Octohat is a comprehensively test-covered Haskell li-
brary that wraps GitHub’s API. While we have used
it successfully in an open-source project to automate
granting access control to servers, it is in very early
development, and it only covers a small portion of
GitHub’s API.

Octohat is available on Hackage, and the source code
can be found on GitHub.

We have already received some contributions from
the community for Octohat, and we are looking forward
to more contributions in the future.

Further reading

o https://github.com /stackbuilders/octohat
o Octohat announcement
o Octohat update

7.14.11 git-annex

Joey Hess
stable, actively developed

Report by:
Status:

git-annex allows managing files with git, without check-
ing the file contents into git. While that may seem
paradoxical, it is useful when dealing with files larger
than git can currently easily handle, whether due to
limitations in memory, time, or disk space.

As well as integrating with the git command-line
tools, git-annex includes a graphical app which can be
used to keep a folder synchronized between computers.
This is implemented as a local webapp using yesod and
warp.

git-annex runs on Linux, OSX and other Unixes, and
has been ported to Windows. There is also an incom-
plete but somewhat usable port to Android.

Five years into its development, git-annex has a wide
user community. It is being used by organizations for
purposes as varied as keeping remote Brazilian com-
munities in touch and managing Neurological imaging
data. It is available in a number of Linux distributions,
in OSX Homebrew, and is one of the most downloaded
utilities on Hackage. It was my first Haskell program.


https://github.com/entropia/tip-toi-reveng
http://tttool.entropia.de/
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html
http://funktionale-programmierung.de/2015/04/15/monaden-reverse-engineering.html
http://perf.haskell.org
https://github.com/nomeata/gipeda
https://hackage.haskell.org/package/openssh-github-keys
https://hackage.haskell.org/package/openssh-github-keys
http://hackage.haskell.org/package/octohat
https://github.com/stackbuilders/octohat
https://github.com/stackbuilders/octohat
http://www.stackbuilders.com/news/announcing-octohat-a-new-haskell-wrapper-for-github-s-api
http://www.stackbuilders.com/news/new-octohat-release

Dashboard  Configu

git-annex

€& Syncing with
gnu_lib_tmp

¥ synced with
gnu_lib_tmp

Transfers
Camera/IMG_20130506_175933.jpg - gnu_lib_tmp

Camera/IMG_20130506_175932.jpg - gnu_lib_tmp

At this point, my goals for git-annex are to continue
to improve its foundations, while at the same time keep-
ing up with the constant flood of suggestions from its
user community, which range from adding support for
storing files on more cloud storage platforms (around
20 are already supported), to improving its usability for
new and non technically inclined users, to scaling bet-
ter to support Big Data, to improving its support for
creating metadata driven views of files in a git reposi-
tory.

At some point I’d also like to split off any one of a
half-dozen general-purpose Haskell libraries that have
grown up inside the git-annex source tree.

Further reading

http://git-annex.branchable.com/

7.14.12 openssh-github-keys (Stack Builders)

Report by: Stack Builders
Participants: Justin Leitgeb
Status: A library to automatically manage SSH

access to servers using GitHub teams

It is common to control access to a Linux server by
changing public keys listed in the authorized_keys
file. Instead of modifying this file to grant and revoke
access, a relatively new feature of OpenSSH allows the
accepted public keys to be pulled from standard output
of a command.

This package acts as a bridge between the OpenSSH
daemon and GitHub so that you can manage access
to servers by simply changing a GitHub Team, in-
stead of manually modifying the authorized_keys file.
This package uses the Octohat wrapper library for the
GitHub API which we recently released.

openssh-github-keys is still experimental, but we are
using it on a couple of internal servers for testing pur-
poses. It is available on Hackage and contributions and
bug reports are welcome in the GitHub repository.

While we don’t have immediate plans to put openssh-
github-keys into heavier production use, we are inter-
ested in seeing if community members and system ad-
ministrators find it useful for managing server access.

Further reading

https://github.com/stackbuilders/openssh-github-keys

68

7.14.13 propellor

Report by:
Status:

Joey Hess
actively developed

Propellor is a configuration management system for
Linux that is configured using Haskell. It fills a simi-
lar role as Puppet, Chef, or Ansible, but using Haskell
instead of the ad-hoc configuration language typical of
such software. Propellor is somewhat inspired by the
functional configuration management of NixOS.

A simple configuration of a web server in Propellor
looks like this:

webServer :: Host
webServer = host "webserver.example.com"
& ipvj "93.184.216.34"
& staticSiteDeployedTo " /var /www"
‘requires‘ Apt.serviceInstalledRunning "apache2"
‘onChange‘ Apache.reloaded

staticSiteDeployedTo :: FilePath — Property Nolnfo

There have been many benefits to using Haskell for
configuring and building Propellor, but the most strik-
ing are the many ways that the type system can be
used to help ensure that Propellor deploys correct and
consistent systems. Beyond typical static type bene-
fits, GADTs and type families have proven useful. For
details, see http://propellor.branchable.com/posts/

An eventual goal is for Propellor to use type level
programming to detect at compile time when a host has
eg, multiple servers configured that would fight over the
same port. Moving system administration toward using
types to prove correctness properties of the system.

Another exciting possibility is using Propellor to not
only configure existing Linux systems, but to manage
their entire installation process. This has already been
prototyped in a surprisingly small amount of added
code (under 200 lines), which can replace arbitrary
Linux systems with clean re-installs described entirely
by Propellor’s config.hs.

Further reading

http://propellor.branchable.com/

7.14.14 dimensional: Statically Checked Physical
Dimensions

Report by: Douglas McClean
Participants: Bjorn Buckwalter, Alberto Valverde

GonzAjlez
Status: active

Dimensional is a library providing data types for per-
forming arithmetic with physical quantities and units.
Information about the physical dimensions of the quan-
tities/units is embedded in their types, and the validity


http://git-annex.branchable.com/
http://hackage.haskell.org/package/octohat
http://hackage.haskell.org/package/openssh-github-keys
https://github.com/stackbuilders/openssh-github-keys
https://github.com/stackbuilders/openssh-github-keys
http://propellor.branchable.com/

of operations is verified by the type checker at compile
time. The boxing and unboxing of numerical values as
quantities is done by multiplication and division with
units. The library is designed to, as far as is practical,
enforce/encourage best practices of unit usage within
the frame of the SI. Example:

d :: Fractional a = Time a — Length a
dt=a/_2x%t" pos2
where a = 9.82 %™ (meter / second " pos2)

We are pleased to announce the release of dimen-
sional 1.0, based on the prototype dimensional-dk im-
plementation. Using data kinds and closed type fami-
lies, the new version includes improved Haddock doc-
umentation, unit names with many options for pretty-
printing, exact conversion factors between units (even
between degrees and radians!), types for manipulating
units and quantities whose dimensions are not known
statically, and support for unboxed vectors.

New users with access to GHC 7.8 or later are
strongly encouraged to use dimensional 1.0.

The “classic” dimensional library as released in 2006
is based on multi-parameter type classes and functional
dependencies. It is stable with units being added on
an as-needed basis. The primary documentation is the
literate Haskell source code. Any future maintenance
releases will have version numbers < 1.0.

The dimensional-tf library released in January 2012
a port of dimensional using type families will continue
to be supported but is not recommended for new de-
velopment.

Further reading

https://github.com/bjornbm /dimensional-dk

7.14.15 igrf: The International Geomagnetic
Reference Field

Douglas McClean
active

Report by:
Status:

The igrf library provides a Haskell implementation of
the International Geomagnetic Reference Field, includ-
ing the latest released model values.

Upcoming development efforts include a parser for
the model files as released by the TAGA and a
dimensionally-typed interface using the dimensional li-
brary.

Further reading

https://github.com/dmcclean/igrf

69

7.14.16 The Incredible Proof Machine

Joachim Breitner
active development

Report by:
Status:

The Incredible Proof Machine is a visual interactive
theorem prover: Create proofs of theorems in proposi-
tional, predicate or other, custom defined logics simply
by placing blocks on a canvas and connecting them.
You can think of it as Simulink mangled by the Curry-
Howard isomorphism.

It is also an addictive and puzzling game, I have been
told.

The Incredible Proof Machine runs completely in
your browser. While the Ui is (unfortunately) boring
standard JavaScript code with a spagetthi flavor, all
the logical heavy lifting is done with Haskell, and com-
piled using GHCJS.

Further reading

o http://incredible.nomeata.de The Incredible Proof
Machine

o https://github.com/nomeata/incredible Source Code

o http://www.joachim-breitner.de/blog/682-The_
Incredible_Proof__Machine Announcement blog post


https://github.com/bjornbm/dimensional-dk
https://github.com/dmcclean/igrf
http://incredible.nomeata.de
https://github.com/nomeata/incredible
http://www.joachim-breitner.de/blog/682-The_Incredible_Proof_Machine
http://www.joachim-breitner.de/blog/682-The_Incredible_Proof_Machine

8 Commercial Users

8.1 Well-Typed LLP

Andres Loh
Duncan Coutts, Adam Gundry

Report by:
Participants:

Well-Typed is a Haskell services company. We pro-
vide commercial support for Haskell as a development
platform, including consulting services, training, and
bespoke software development. For more information,
please take a look at our website or drop us an e-mail
at (info@well-typed.com).

We have been working on a large number of different
projects for various clients, most of which are unfortu-
nately not publically visible.

Ben Gamari and Austin Seipp have been helping
with GHC (— 3.1).Adam Gundry is still trying to make
overloaded record fields a reality.

On behalf of the Industrial Haskell Group (IHG),
Duncan Coutts and Edsko de Vries have been working
on Hackage security, which is currently in beta (see link
below).

Duncan has also been working on an
proved implementation of the binary package, called
binary-serialise-cbor, which is now in production
at one of our clients where it has dramatically improved
performance and reduced memory use. It is still ex-
perimental, however, and currently available only on
Github (link below).

Edsko de Vries and Andres Loh have been developing
and improving generics-sop, a generic programming
library based on n-ary sums of products (— 7.5.4).

Andres has also helped with the development of the
Haskell Servant web framework, culminating in a better
approach to routing, to be included in the next release,
and a paper at this year’s Workshop on Generic Pro-
gramming (link below).

We have been organizing various Haskell courses,
mostly with the help of Skills Matter, in London and
New York. We also helpd to organize the fourth Haskell
eXchange in London in October, the first time span-
ning two days and two tracks, and directly followed
by an infrastructure-themed Haskell Hackathon. We're
happy that we had so many great speakers and partic-
ipants. The videos are available online (link below).
Registration for the Haskell eXchange 2016 is already
open. If you're interested in speaking, please contact
us (or Andres, specifically).

Our course dates for 2016 will be published within
the next few weeks. We are always open to suggestions
for extra locations and dates and on-demand courses.

im-

70

We are also always looking for new clients and
projects, so if you have something we could help you
with, or even would just like to tell us about your use
of Haskell, please just drop us an e-mail.

Further reading

o Company page: http://www.well-typed.com

Blog: http://blog.well-typed.com/

o Hackage security beta announcement: http://www.
well-typed.com/blog/2015/08/hackage-security-beta/
binary-serialise-cbor package:
https://github.com /well-typed /binary-serialise-cbor/
generics-sop package:
https://hackage.haskell.org/package/generics-sop/
Paper and links on Servant:
http://www.andres-loeh.de/Servant/

Haskell eXchange 2015 (including videos):
https://skillsmatter.com /conferences/
7069-haskell-exchange-2015

Haskell eXchange 2016 (registration):
https://skillsmatter.com/conferences/
7276-haskell-exchange-2016

Training page:
http://www.well-typed.com /services_ training

Skills Matter Haskell course overview:
https://skillsmatter.com/explore?content=
courses&location=&q=Haskell

[}

8.2 Bluespec Tools for Design of Complex
Chips and Hardware Accelerators

Report by:
Status:

Rishiyur Nikhil
Commercial product; free for academia

Bluespec, Inc. provides an industrial-strength language
(BSV) and tools for high-level hardware design. Com-
ponents designed with these are shipping in some com-
mercial smartphones and tablets today.

BSV is used for all aspects of ASIC and FPGA de-
sign — specification, synthesis, modeling, and verifi-
cation. Digital circuits are described using a nota-
tion with Haskell semantics, including algebraic types,
polymorphism, type classes, higher-order functions and
monadic elaboration. Strong static checking is also
used to support discipline for multiple clock-domains
and gated clocks. The dynamic semantics of a such
circuits are described using Term Rewriting Systems
(which are essentially atomic state transitions). BSV
is applicable to all kinds of hardware systems, from al-
gorithmic “datapath” blocks to complex control blocks
such as processors, DMAs, interconnects, and caches,
and to complete SoCs (Systems on a Chip).


mailto: info at well-typed.com
http://www.well-typed.com
http://blog.well-typed.com/
http://www.well-typed.com/blog/2015/08/hackage-security-beta/
http://www.well-typed.com/blog/2015/08/hackage-security-beta/
https://github.com/well-typed/binary-serialise-cbor/
https://hackage.haskell.org/package/generics-sop/
http://www.andres-loeh.de/Servant/
https://skillsmatter.com/conferences/7069-haskell-exchange-2015
https://skillsmatter.com/conferences/7069-haskell-exchange-2015
https://skillsmatter.com/conferences/7276-haskell-exchange-2016
https://skillsmatter.com/conferences/7276-haskell-exchange-2016
http://www.well-typed.com/services_training
https://skillsmatter.com/explore?content=courses&location=&q=Haskell
https://skillsmatter.com/explore?content=courses&location=&q=Haskell

Perhaps uniquely among hardware-design languages,
BSV’s rewrite rules enable design-by-refinement, where
an initial executable approximate design is systemati-
cally transformed into a quality implementation by suc-
cessively adding functionality and architectural detail.

Before synthesizing to hardare, a circuit description
can be executed and debugged in Bluesim, a fast simu-
lation tool. Then, the bsc tool compiles BSV into high-
quality Verilog, which is then further synthesized into
netlists for ASICs and FPGAs using standard synthesis
tools. There are extensive libraries and infrastructure
components to make it easy to build FPGA-based ac-
celerators for compute-intensive software.

Bluespec also provides implementations and develop-
ment environments for CPUs based on the U.C. Berke-
ley RISC-V instruction set (www.riscv.org).

Status and availability

BSV tools have been available since 2004, both com-
mercially and free for academic teaching and research.
It is used in a several leading universities (incl. MIT,
U.Cambridge, and IIT Chennai) for computer architec-
ture research.

Further reading

o Types, Functional Programming and Atomic
Transactions in Hardware Design, R.S. Nikhil, in In
Search of Elegance in the Theory and Practice of
Computation, Essays dedicated to Peter Buneman
(Festschrift), Springer-Verlag Lecture Notes in
Computer Science, LNCS 8000, pp.418-431, 2013.
Abstraction in Hardware System Design, R.S.
Nikhil, in Communications of the ACM, 54:10,
October 2011, pp. 36-44.

BSV by Example, R.S. Nikhil and K. Czeck, 2010,
book available on Amazon.com (or free PDF from
Bluespec, Inc.)
http://bluespec.com/SmallExamples/index.html:
from BSV by Example.

http:
//www.cl.cam.ac.uk/~swm11/examples/bluespec/:
Simon Moore’s BSV examples (U. Cambridge).
http://csg.csail.mit.edu/6.375: Complex Digital
Systems, MIT courseware.

8.3 Haskell in the industry in Munich

Report by: Haskell Consultancy Munich

Haskell is used by several companies specializing in
the development of reliable software and hardware, for
example for the automotive industry in Munich. It
is also in use by the developers of medical software
which needs assure the integrity of data processing al-
gorithms. It is also used by new media and internet
companies. You may contact the author of this report
({haskell.consultancy@gmail.com)) for details.

71

Haskell at Google Munich

Google is using Haskell in Ganeti (http://code.
google.com/p/ganeti/), a tool for managing clusters of
virtual servers built on top of Xen and KVM. There is
a mailing list (http://groups.google.com/group/ganeti)
which is the official contact to the team.

There are lots of presentations about Ganeti online
(http://downloads.ganeti.org/presentations/), and some
of them are accompanied by videos to be found with a
quick search on the internet.

Energy Flow Analysis — Ingenieurbiiro Guttenberg
& Hordegen

INGENIEURBURO

Py

GUTTENBERG
& HORDEGEN

The Engineering Office provides services and tools
to companies designing and operating smart systems
with energy management: Smart Grids, Smart Houses,
Smart Production, and so on. Smart systems are com-
plex: efficiency is only one aspect in a challenging sys-
tem design. We want to make measurement and opti-
misation of overall system efficiency as comfortable and
easy as possible. The objective is to provide support
in choosing between system functionality, performance,
safety, and reliability as well as energy efficiency. We
provide a support service for the whole development
chain, starting with specification, through system de-
sign and simulation to system implementation and val-
idation. The advantage of our approach is that we
can directly model, investigate and optimise energy
flow. This opens new possibilities, such as better op-
timisation of efficiency, operation, and design for local
grids containing electrochemical storage, thermal stor-
age, heat pumps, block heat and power units and so
on.


http://bluespec.com/SmallExamples/index.html
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://www.cl.cam.ac.uk/~swm11/examples/bluespec/
http://csg.csail.mit.edu/6.375
mailto: haskell.consultancy at gmail.com
http://code.google.com/p/ganeti/
http://code.google.com/p/ganeti/
http://groups.google.com/group/ganeti
http://downloads.ganeti.org/presentations/

Since it combines good performance and paralleliza-
tion features while providing a very high level of assur-
ance, we have chosen to execute our technology with
Haskell.

For more information, please visit http://www.
energiefluss.info. There is an introductory document
to the services provided (http://energiefluss.info/img/
profile_gh.pdf).

Informatik Consulting Systems AG

ICS AG (http://ics-ag.de), with 11 offices in Germany,
use Haskell for their software, as it is a good fit for
their domain, which is simulation, safety, and business-
critical systems. It affords ICS a competitive edge
over the market. Industries ICS work with include ad-
vanced technologies, automotive, industrial solutions,
and transportation and they have an impressive list of
customers (http://ics-ag.de/kunden.html).

Haskell Consultancy Munich

The author of this report runs a Haskell consultancy.
Established in 2008, the business provides full-stack
support for industries ranging from finance and me-
dia to medical and electronics design and automation,
with a permanent focus on functional programming.
We have a strong background in statistics and oper-
ations research. The current trend in the industry is
the migration of monolithic legacy software in C, C#,
Python, Java, or PHP towards a functional, service-
oriented architecture, with on-site training of person-
nel in the new programming paradigm. Another trend
is design of hard realtime applications for industrial
use. Further information can be requested via email
((haskell.consultancy@gmail.com)).

Funktionale Programmierung — Dr. Heinrich
Hordegen

p3

Funktionale Programmierung - Dr. Heinrich Hoérde-
gen (http://funktional.info) is a Haskell and functional
programming software consultancy located in Munich.

Dr. Hordegen has a lot of experience in software en-
gineering and has been an advocate of functional pro-
gramming since 2005. It follows that during his doc-
toral thesis at the LORIA (http://www.loria.fr) he was
able to design and implement compiler modules for the
AVISPA project (http://www.avispa-project.org/) using
OCaml.

Dr. Hordegen has been using Haskell as his main
technology to implement robust and reliable soft-
ware since 2009. In his role co-founder and CTO of
Ingenieurbiiro Guttenberg & Hordegen (http://www.

FUNKTIONALE
PROGRAMMIERUNG

72

energiefluss.info) he leads the development of propri-
etary software for energy flow analysis. This complex
system is comprised of 50000 lines of code, distributed
into 130 modules.

Some of Dr. Hordegen’s favourite things about
Haskell are algebraic data types, which simplify sym-
bolic computation, the amazing speed Haskell can pro-
vide during number crunching, the powerful paralleliza-
tion capabilities Haskell provides, and finally Cloud
Haskell, which lets you easily distribute computations
onto whole clusters.

Dr. Hoérdegen’s consultancy sponsors and organizes
the Haskell Meetup (http://www.haskell-munich.de/)
and supports the Haskell community as a whole.

codecentric AG
N

codecentric

Here at codecentric (https://www.codecentric.de/),
we believe that more than ever it’s important to keep
our tools sharp in order to provide real value to our
customers. The best way to do this is to provide soft-
ware expertise and an environment in which people can
freely express their ideas and develop their skills. One
of the results is codecentric Data Lab, where mathe-
maticians, data scientists and software developers join
forces to live up to the big data hype. Another is
the Functional Institute (http://clojureworkshop.com/),
which helps to spread the word about functional pro-
gramming with Clojure and Haskell.

We provide services in functional programming in
Clojure and Haskell as well as services for Big Data
projects, ranging from project support and knowledge
sharing to bespoke software development and project
management. We are over 200 employees strong in 10
offices around Germany and Europe. You may contact
Alex Petrov ((alex.petrov@codecentric.de)) with any en-
quiries.

8.4 Better

Report by: Carl Baatz

Better provides a platform for delivering adaptive on-
line training to students and employees.

Companies and universities work with us to develop
courses which are capable of adapting to individual
learners. This adaptivity is based on evidence we col-
lect about the learner’s understanding of the course ma-
terial (primarily by means of frequent light-weight as-
sessments). These courses run on our platform, which
exposes a (mobile-compatible) web interface to learn-
ers. The platform also generates course statistics so
that managers/teachers can monitor the progress of the
class taking the course and evaluate its effectiveness.

The backend is entirely written in Haskell. We use
the snap web framework and we have a storage layer


http://www.energiefluss.info
http://www.energiefluss.info
http://energiefluss.info/img/profile_gh.pdf
http://energiefluss.info/img/profile_gh.pdf
http://ics-ag.de
http://ics-ag.de/kunden.html
mailto: haskell.consultancy at gmail.com
http://funktional.info
http://www.loria.fr
http://www.avispa-project.org/
http://www.energiefluss.info
http://www.energiefluss.info
http://www.haskell-munich.de/
https://www.codecentric.de/
http://clojureworkshop.com/
mailto: alex.petrov at codecentric.de

written on top of postgres-simple which abstracts
data retrieval, modification, and versioning. The choice
of language has worked out well for us: as well as the joy
of writing Haskell for a living, we get straightforward
deployment and extensive server monitoring courtesy
of ekg. Using GHC’s profiling capabilities, we have
also managed to squeeze some impressive performance
out of our deployment.

The application-specific logic is all written in Haskell,
as is most of the view layer. As much rendering as pos-
sible is performed on the backend using blaze-html,
and the results are sent to a fairly thin single-page
web application written in Typescript (which, while
not perfect, brings some invaluable static analysis to
our front-end codebase).

The company is based in Zurich, and the majority of
the engineering team are Haskellers. We enjoy a high
level of involvement with the Zurich Haskell commu-
nity and are delighted to be able to host the monthly
HaskellerZ user group meetups and the yearly ZuriHac
hackathon.

8.5 Keera Studios LTD

Report by: lvan Perez

Keera Studios Ltd. is a game development studio
that uses Haskell to create mobile and desktop games.
We have published Magic Cookies!, the first commercial
game for Android written in Haskell, now available on
Google Play™ (https://goo.gl/cM1tD8).

We have also shown a breakout-like game running on
a Android tablet (http://goo.gl/53pK2x), using hard-
ware acceleration and parallelism. The desktop version
of this game additionally supports Nintendo Wiimotes
and Kinect. This proves that Haskell truly is viable op-
tion for professional game development, both for mobile
and for desktop. A new game is currently being devel-
oped for Android and iOS.

LEVEL
46

 COUNT: 40

In order to provide more reliable code for our clients,
we have developed a battery of small Haskell mobile
apps, each testing only one feature. We have dozens of
apps, covering SDL and multimedia including multi-
touch support, accelerometers, and stereoscopy (for
more realistic depth and 3D effects). Our battery also
includes apps that communicate with Java via C/C++,
used for Facebook/Twitter status sharing, to save game
preferences using Android’s built-in Shared Preferences
storage system, or to create Android widgets. We have
also started the Haskell Game Programming project
http://git.io/vIxtJ, which contains documentation and
multiple examples of multimedia, access to gaming
hardware, physics and game concepts. We continue
to participate in Haskell meetings and engaging in the
community, with a recent talk on Game Programming
at the Haskell eXchange 2015.

We have developed GALE, a DSL for graphic adven-
tures, together with an engine and a basic IDE that al-
lows non-programmers to create their own 2D graphic
adventure games without any knowledge of program-
ming. Supported features include multiple charac-
ter states and animations, multiple scenes and lay-
ers, movement bitmasks (used for shortest-path cal-
culation), luggage, conversations, sound effects, back-
ground music, and a customizable UI. The IDE takes
care of asset management, generating a fully portable
game with all the necessary files. The engine is multi-
platform, working seamlessly on Linux, Windows and
Android. We are continue beta-testing GALE games
on Google Play.

We have released Keera Hails, the reactive library
we use for desktop GUI applications, as Open Source
(http://git.io/vTvXg). Keera Hails is being actively
developed and provides integration with Gtk+, net-
work sockets, files, FRP Yampa signal functions and
other external resources. Experimental integration
with wxWidgets and Qt is also available, and newer
versions include partial backends for Android (using
Android’s default widget system, communicating via
FFI) and HTML DOM (via GHCJS). We are work-
ing on providing complete backends for all major GUI
toolkits and platforms. Recent updates to our project
are geared towards adding documentation, tests and
benchmarks, in order to facilitate using, understanding

73


https://goo.gl/cM1tD8
http://goo.gl/53pK2x
http://git.io/vlxtJ
http://git.io/vTvXg

and extending the framework and guaranteeing a high
level of quality.

Apart from implementing a simple yet powerful form
of reactivity, Keera Hails addresses common prob-
lems in Model-View-Controller, providing an applica-
tion skeleton with a scalable architecture and thread-
safe access to the application’s internal model. Accom-
panying libraries feature standarised solutions for com-
mon features such as configuation files and internation-
alisation. We have used this framework in commercial
applications (including but not limited to GALE IDE),
and in the Open-Source posture monitor Keera Posture
(http://git.io/vTvXy). Links to these applications, ex-
amples, demos and papers, including a recent paper on
Reactive Values and Relations presented at the Haskell
Symposium 2015, are available on our website.

We are committed to using Haskell for all our
operations. For games we often opt for the Ar-
rowized Functional Reactive Programming Domain-
Specific Language Yampa (http://git.io/vTvxQ) or for
Keera GALE. For desktop GUI applications we use our
own Keera Hails (http://git.io/vIvXg). To create web
applications and internal support tools we use Yesod,
and continue developing our project management, is-
sue tracking and invoicing web application to facilitate
communication with our clients.

Screenshots,  videos and details are pub-
lished regularly on our Facebook  page
(https://www.facebook.com /keerastudios) and on

our company website (http://www.keera.co.uk). If
you want to use Haskell in your next game, desktop or
web application, or to receive more information, please
contact us at .

74

8.6 plaimi

Alexander Berntsen

Report by:

plaimi’s expertise lies in identifying problems, re-
searching how to solve them, and developing the neces-
sary software solutions. We have a principled approach
to R&D with emphasis on correctness.

Haskell is one of our primary tools in aiming for cor-
rectness. We use it for all of our in-house development,
and frequently contribute upstream to the free soft-
ware libraries we use, as well as to the Gentoo Haskell
project, being Gentoo users.

All of our own software is also free software. We
are commited to free software and copyleft. We are
opposed to academic paywalls, patents, and other anti-
social activites, that makes information difficult to ob-
tain and share. We exclusively develop free software,
and our research is freely available under a copyleft li-
cence, Creative Commons Attribution-ShareAlike.

We are a group of hackers. What this means is that
we value the notion of playful cleverness. We enjoy
working on challenging problems and finding elegant
solutions to them, having lots of fun in the process. Our
strong work morale and prinicpled ethics framework
result in software that emphasises correctness and aims
to liberate and empower users.

Our website is https://secure.plaimi.net/. We are
currently looking for work. Do you have any? Get
in touch! We’d love to collaborate with you on your
projects or our projects, as well as define entirely new
projects.


http://git.io/vTvXy
http://git.io/vTvxQ
http://git.io/vTvXg
https://www.facebook.com/keerastudios
http://www.keera.co.uk
mailto:keera\protect \unhbox \voidb@x \hbox {\protect \protect \protect \edef T1{T1}\let \enc@update \relax \protect \edef lmr{lmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \T1/lmr/m/n/10 {\T1/lmr/m/n/10 }\T1/lmr/m/n/10 \size@update \enc@update \par@update \ignorespaces \relax \protect \relax \protect \edef lmr{lmtt}\protect \xdef \T1/lmr/m/n/10 {\T1/lmr/m/n/10 }\T1/lmr/m/n/10 \size@update \enc@update \par@update keera\char 46{}co\char 46{}uk\char 125{}\char 123{}keera}keera.co.uk
https://secure.plaimi.net/

8.7 Stack Builders

Stack Builders
software consultancy

¢ Stack Builders

Stack Builders is an international Haskell and Ruby
agile software consultancy with offices in New York,
United States, and Quito, Ecuador.

In addition to our Haskell software consultancy ser-
vices, we are actively involved with the Haskell com-
munity:

o We organize Quito Lambda, a monthly meetup
about functional programming in Quito, Ecuador.
We maintain several packages in Hackage includ-
ing hapistrano, inflections, octohat, openssh-github-
keys, and twitter-feed.

We talk about Haskell at universities and events such
as Lambda Days and BarCamp Rochester.

We write blog posts and tutorials about Haskell.
For more information, take a look at our website or
get in touch with us at info@stackbuilders.com.

Report by:
Status:

Further reading

http://www.stackbuilders.com/

8.8 Optimal Computational Algorithms,

Inc.
Report by: Christopher Anand

s mNN— )\ \

/ ;’. f’/ _r"’ / ‘\.\\ /; \\ﬁ ~ - \ ‘ \ \‘

I I { \ I| \ |
R / ,'5\] /)] )
VLA T / / )

\\ \_\\Qk_ ./ ,/;_‘:\ _,.:-i\\"y {// i

A\ N\ ,_\\‘ gori 4

OCA develops high-performance, high-assurance
mathematical software using Coconut (COde CON-
structing User Tool), a hierarchy of DSLs embedded
in Haskell, which were originally developed at McMas-
ter University. The DSLs encode declarative assembly
language, symbolic linear algebra, and algebraic trans-
formations. Accompanying tools include interpreters,
simulators, instruction schedulers, code transformers
(both rule-based and ad-hoc) and graph and schedule
visualizers.

To date, Coconut math function libraries have been
developed for five commercial architectures. Taking
advantage of Cocont’s symbolic code generation, soft-
ware for reconstructing multi-coil Magnetic Resonance
Images was generated from a high-level mathematical

0]

specification. The implementation makes full use of
dual-CPUs, multiple cores and SIMD parallelism, and
is licensed to a multi-national company. The specifica-
tion is transformed using rules for symbolic differenti-
ation, algebraic simplification and parallelization. The
soundness of the generated parallelization can be veri-
fied in linear time (measured with respect to program
size).

Further reading

o http://www.cas.mcmaster.ca/~kahl /Publications/
TR/Anand-Kahl-2007a_DSL/
http://www.cas.mcmaster.ca/~anand/papers/
AnandKahlIThaller2006.pdf
http://www.cas.mcmaster.ca/sqrl/papers/
SQRLreport50.pdf
o https://macsphere.mcmaster.ca/handle/11375/10755
o http://www.cas.mcmaster.ca/~anand/papers/
CAS-14-05-CA.pdf

8.9 Snowdrift.coop

Report by: Bryan Richter
Participants: Aaron Wolf et al.
Status: Work in progress

G snowdrift.coop

Snowdrift.coop is a web platform for funding and
supporting free/libre/open projects. We are tackling
the ‘snowdrift dilemma’ that limits contributions to
non-rivalrous goods such as open-source software. The
organization is a non-profit multi-stakeholder cooper-
ative, and all code is available under OSI- and FSF-
approved licenses. Haskell is our primary programming
language, and we welcome any interested contributors
to help us accelerate our progress.

In our current work we have recently focused on three
main areas: 1) opening the project to greater participa-
tion through code refactoring and tool development, 2)
firming up the co-op governance structure, and 3) cre-
ating a comprehensive design framework for the web-
site. There is also plenty of ongoing feature develop-
ment on various aspects of the live site.

One notable contribution Snowdrift has made to the
Haskell ecosystem is a thorough ‘getting started’ ex-
perience for beginners, from text editor suggestions to
introductions to git. As part of that effort, we have de-
veloped a foolproof build process, with a tip of our hats
to the new tool stack, and have developed a database
initialization tool and various Yesod integrations with
ghci and text editors. Interested contributors will find
many opportunities for progress in this area.

The funding mechanism is not yet functional but pro-
gressing. Once functional, Snowdrift.coop itself will be


mailto:info@stackbuilders.com
http://www.stackbuilders.com/
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Anand-Kahl-2007a_DSL/
http://www.cas.mcmaster.ca/~kahl/Publications/TR/Anand-Kahl-2007a_DSL/
http://www.cas.mcmaster.ca/~anand/papers/AnandKahlThaller2006.pdf
http://www.cas.mcmaster.ca/~anand/papers/AnandKahlThaller2006.pdf
http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport50.pdf
http://www.cas.mcmaster.ca/sqrl/papers/SQRLreport50.pdf
https://macsphere.mcmaster.ca/handle/11375/10755
http://www.cas.mcmaster.ca/~anand/papers/CAS-14-05-CA.pdf
http://www.cas.mcmaster.ca/~anand/papers/CAS-14-05-CA.pdf

a supported project, and should prove to be an ex-
cellent test-case for the adoption and success of the
concept. In the meanwhile, we are actively looking
for ways to improve both productivity and opportu-
nities for our distributed team of volunteers. Expe-
rienced Haskellers are invited to mentor volunteers,
take ownership of component libraries, and provide
opinions and insights. New Haskellers—not to men-
tion designers, writers, economists, legal professionals,
or anyone else philosophically inclined to our mission
of freeing the commons—are especially welcome; we
pride ourselves on being inclusive and approachable by
(non-)programmers at any level of technical sophistica-
tion!

Further reading

o https://snowdrift.coop (main site, with many
resources)

o https://lists.snowdrift.coop (mailing lists)

o https://git.gnu.io/snowdrift (code repository)

76


https://snowdrift.coop
https://lists.snowdrift.coop
https://git.gnu.io/snowdrift

9 Research and User Groups

9.1 Haskell at E6tvos Lorand University
(ELTE), Budapest

Report by: PALI Gabor Janos
Status: ongoing
Education

There are many different courses on functional pro-

gramming — mostly taught in Haskell — at Eo&tvos

Lorand University, Faculty of Informatics. Currently,

we are offering the following courses in that regard:

o Functional programming for first-year Hungarian un-
dergraduates in Software Technology and second-
year Hungarian teacher of informatics students, both
as part of their official curriculum.

o An additional semester on functional programming
with Haskell for bachelor’s students, where many of
the advanced concepts are featured, such as algebraic
data types, type classes, functors, monads and their
use. This is an optional course for Hungarian under-
graduate and master’s students, supported by the
Eo6tvos Jozsef Collegium.

o Functional programming for Hungarian and foreign-
language master’s students in Software Technol-
ogy. The curriculum assumes no prior knowledge
on the subject in the beginning, then through teach-
ing the basics, it gradually advances to discussion
of parallel and concurrent programming, property-
based testing, purely functional data structures,
efficient I/O implementations, embedded domain-
specific languages, and reactive programming. It is
taught in both one- and two-semester formats, where
the latter employs the Clean language for the first
semester.

In addition to these, there is also a Haskell-related
course, Type Systems of Programming Languages,
taught for Hungarian master’s students in Software
Technology. This course gives a more formal intro-
duction to the basics and mechanics of type systems
applied in many statically-typed functional languages.

For teaching some of the courses mentioned above,
we have been using an interactive online evaluation
and testing system, called ActiveHs. It contains sev-
eral dozens of systematized exercises, and through that,
some of our course materials are available there in En-
glish as well.

Our homebrew online assignment management sys-
tem, "BE-AD" keeps working on for the fourth semester
starting from this September. The BE-AD system is

7

implemented almost entirely in Haskell, based on the
Snap web framework and Bootstrap. Its goal to help
the lecturers with scheduling course assignments and
tests, and it can automatically check the submitted so-
lutions as an option. It currently has over 700 users and
it provides support for 12 courses at the department, in-
cluding all that are related to functional programming.
This is still in an alpha status yet so it is not available
on Hackage as of yet, only on GitHub, but so far it has
been performing well, especially in combination with
ActiveHs.

Further reading

o Haskell course materials (in English):
http://pnyf.inf.elte.hu/fp/Index_en.xml

o Agda tutorial (in English):
http://people.inf.elte.hu/pgj/agda/tutorial /

o ActiveHs:
http://hackage.haskell.org/package/activehs

o BE-AD: http://github.com/andorp/bead

9.2 Artificial Intelligence and Software
Technology at Goethe-University
Frankfurt

David Sabel
Manfred Schmidt-SchauB3

Report by:
Participants:

Semantics of Functional Programming Lan-
guages. Extended call-by-need lambda calculi model
the semantics of Haskell. We analyze the semantics
of those calculi with a special focus on the correct-
ness of program analyses and program transformations.
Our results include the correctness of strictness analy-
sis by abstract reduction, results on the equivalence of
the call-by-name and call-by-need semantics, correct-
ness of program transformations, and investigations on
the conservativity of language extensions. In recent
research we analyzed the question whether program
transformations are optimizations, i.e. whether they
improve the time resource behavior. We showed that
common subexpression elimination is an improvement
and we also showed that our notion of improvement
is (asymptotically) resource equivalent to the improve-
ment theory developed by Moran & Sands. Ongoing
work is to enhance the techniques to (preferably au-
tomatically) verify that program transformations are
improvements.

We also use Haskell to develop automated tools to
show correctness of program transformations, where


http://pnyf.inf.elte.hu/fp/Index_en.xml
http://people.inf.elte.hu/pgj/agda/tutorial/
http://hackage.haskell.org/package/activehs
http://github.com/andorp/bead

the method is syntax-oriented and computes so-called
forking and commuting diagrams by a combination of
several unification algorithms. Also automated termi-
nation provers for term rewrite systems are used in a
part of the automation. Future research goals are to
automate correctness proofs of program translations as
they appear in compilers.

Concurrency. We analyzed a higher-order func-
tional language with concurrent threads, monadic 10,
MVars and concurrent futures which models Concur-
rent Haskell. We proved correctness of program trans-
formations, correctness of an abstract machine, and we
proved that this language conservatively extends the
purely functional core of Haskell. In a similar pro-
gram calculus we proved correctness of a highly concur-
rent implementation of Software Transactional Memory
(STM) and developed an alternative implementation of
STM Haskell which performs quite early conflict detec-
tion.

Grammar based compression. This research
topic focuses on algorithms on grammar compressed
data like strings, matrices, and terms. Our goal is to
reconstruct known algorithms on uncompressed data
for their use on grammars without prior decompression.
We implemented several algorithms as a Haskell library
including efficient algorithms for fully compressed pat-
tern matching.

Cycle Rewriting. Cycle rewrite systems perform
string rewriting on cycles — a cycle is a string where
start and end are connected. Recently, we developed
techniques to prove termination of cycle rewrite sys-
tems. A tool (called cycsrs) was implemented in Haskell
to combine several termination and nontermination
techniques and tools to automatically prove cycle ter-
mination. The tool participated in 2015 edition of the
Termination Competition.

Further reading

http://www.ki.informatik.uni-frankfurt.de/research/
HCAR.html

9.3 Functional Programming at the
University of Kent

Report by: Olaf Chitil

The Functional Programming group at Kent is a sub-
group of the Programming Languages and Systems
Group of the School of Computing. We are a group
of staff and students with shared interests in functional
programming. While our work is not limited to Haskell,
we use for example also Erlang and ML, Haskell pro-
vides a major focus and common language for teaching
and research.

78

Our members pursue a variety of Haskell-related
projects, several of which are reported in other sec-
tions of this report. Stephen Adams is working on
advanced refactoring of Haskell programs, extending
HaRe. Andreas Reuleaux is building a refactoring
tool for a dependently typed functional language in
Haskell. Maarten Faddegon is working on making trac-
ing for Haskell practical and easy to use by building
the lightweight tracer and debugger Hoed. Olaf Chi-
til is also working on tracing, including the further
development of the Haskell tracer Hat, and on type
error debugging. Meng Wang is working on lenses,
bidirectional transformation and property-based test-
ing (QuickCheck). Scott Owens is working on verified
compilers for the (strict) functional language CakeML.
Colin Runciman from the University of York visited the
PLAS group from April to September 2015. In partic-
ular he and Stefan Kahrs worked on minimising regular
expressions, implemented in Haskell.

We are always looking for more PhD students. We
are particularly keen to recruit students interested in
programming tools for verification, tracing, refactoring,
type checking and any useful feedback for a program-
mer. The school and university have support for strong
candidates: more details at http://www.cs.kent.ac.uk/
pg or contact any of us individually by email.

We are also keen to attract researchers to Kent
to work with us. There are many opportunities
for research funding that could be taken up at
Kent, as shown in the website http://www.kent.ac.uk/
researchservices/sciences/fellowships/index.html. Please
let us know if you’re interested in applying for one of
these, and we’ll be happy to work with you on this.

Finally, if you would like to visit Kent, either to give
a seminar if you’re passing through London or the UK,
or to stay for a longer period, please let us know.

Further reading

o PLAS group:
http://www.cs.kent.ac.uk/research/groups/plas/

o Kazutaka Matsuda and Meng Wang: Applicative
Bidirectional Programming with Lenses. ICFP
2015. https://kar.kent.ac.uk/49084/

o Maarten Faddegon and Olaf Chitil: Algorithmic
Debugging of Real-World Haskell Programs:
Deriving Dependencies from the Cost Centre Stack.
PLDI 2015. https://kar.kent.ac.uk/49003/

o Haskell: the craft of functional programming:
http://www.haskellcraft.com

o Refactoring Functional Programs: http:
//www.cs.kent.ac.uk/research/groups/plas/hare.html

o Hoed, a lightweight Haskell tracer and debugger:
https://github.com/MaartenFaddegon /Hoed

o Hat, the Haskell Tracer:
http://projects.haskell.org/hat/

o CakeML, a verification friendly dialect of SML:
https://cakeml.org


http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.ki.informatik.uni-frankfurt.de/research/HCAR.html
http://www.cs.kent.ac.uk/pg
http://www.cs.kent.ac.uk/pg
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.kent.ac.uk/researchservices/sciences/fellowships/index.html
http://www.cs.kent.ac.uk/research/groups/plas/
https://kar.kent.ac.uk/49084/
https://kar.kent.ac.uk/49003/
http://www.haskellcraft.com
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
http://www.cs.kent.ac.uk/research/groups/plas/hare.html
https://github.com/MaartenFaddegon/Hoed
http://projects.haskell.org/hat/
https://cakeml.org

o Heat, an IDE for learning Haskell:
http://www.cs.kent.ac.uk/projects/heat/

9.4 Haskell at KU Leuven, Belgium

Report by: Tom Schrijvers

Functional Programming, and Haskell in particular, is
an active topic of research and teaching in the Declar-
ative Languages & Systems group of KU Leuven, Bel-
gium.

Teaching Haskell is an integral part of the curricu-
lum for both informatics bachelors and masters of en-
gineering in computer science. In addition, we offer
and supervise a range of Haskell-related master thesis
topics.

Research We actively pursue various Haskell-related
lines of research. Some recent and ongoing work:

Steven Keuchel works on InBound, a Haskell-
like DSL for specifying abstract syntax trees with
binders.

George Karachlias works on extending GHC’s pat-
tern match checker to deal with GADTS, in collab-
oration with Dimitrios Vytiniotis and Simon Peyton
Jones.

Alexander Vandenbroucke extends the nondetermin-
ism monad with tabulation, a form of memoization
“on steroids” from logic programming.

With Nicolas Wu we have recently worked on fusion
for free monads to obtain efficient algebraic effect
handlers. See our forthcoming MPC 2015 paper.
With Mauro Jaskelioff and Exequiel Rivas we launch
a new slogan:

o

Nondeterminism monads are just near-
semirings in the category of endofunctors,
what’s the problem?

See our forthcoming paper at PPDP 2015.

Leuven Haskell User Group We host the Leuven
Haskell User Group, which has held its first meet-
ing on March 3, 2015. The group meets roughly
every other week and combines formal presentations
with informal discussion. For more information: http:
//groups.google.com /forum /#!forum /leuven-haskell

Further reading

http://people.cs.kuleuven.be /~tom.schrijvers/Research/

79

9.5 fp-syd: Functional Programming in
Sydney, Australia

Report by:
Participants:

Erik de Castro Lopo
Ben Lippmeier, Shane Stephens, and
others

We are a seminar and social group for people in Syd-
ney, Australia, interested in Functional Programming
and related fields. Members of the group include users
of Haskell, Ocaml, LISP, Scala, F#, Scheme and others.
We have 10 meetings per year (Feb-Nov) and meet on
the fourth Wednesday of each month. We regularly get
40-50 attendees, with a 70/30 industry/research split.
Talks this year have included material on compilers,
theorem proving, type systems, Haskell web program-
ming, dynamic programming, Scala and more. We usu-
ally have about 90 mins of talks, starting at 6:30pm.
All welcome.

Further reading

o http://groups.google.com/group/fp-syd
o http://fp-syd.ouroborus.net/
o http://fp-syd.ouroborus.net /wiki/Past/2015

9.6 Functional Programming at Chalmers

Report by: Jean-Philippe Bernardy

Functional Programming is an important component
of the CSE department at Chalmers and University
of Gothenburg. In particular, Haskell has a very im-
portant place, as it is used as the vehicle for teaching
and numerous research projects. Besides functional
programming, language technology, and in particular
domain specific languages is a common aspect in our
projects. We have hosted ICFP 2014 in Gothenburg
this September.

Property-based testing. QuickCheck, developed at
Chalmers, is one of the standard tools for testing
Haskell programs. It has been ported to Erlang and
used by Ericsson, Quviq, and others. QuickCheck con-
tinues to be improved. Quickcheck-based tools and re-
lated techniques are currently being developed:
o We have shown how to successfully
QuickCheck to test polymorphic properties.

o A new exhaustive testing tool (testing-feat on Hack-
age) has been developed. It is especially suited to
generate test cases from large groups of mutually re-
cursive syntax tree types. A paper describing it was
presented at the Haskell Symposium 2012.

Testing Type Class Laws: the specification of a class
in Haskell often starts with stating, in comments, the
laws that should be satisfied by methods defined in

apply

o


http://www.cs.kent.ac.uk/projects/heat/
http://groups.google.com/forum/#!forum/leuven-haskell
http://groups.google.com/forum/#!forum/leuven-haskell
http://people.cs.kuleuven.be/~tom.schrijvers/Research/
http://groups.google.com/group/fp-syd
http://fp-syd.ouroborus.net/
http://fp-syd.ouroborus.net/wiki/Past/2015
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/FP
http://icfpconference.org/icfp2014/
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=99387
http://hackage.haskell.org/package/testing-feat
http://dl.acm.org/citation.cfm?id=2364515&CFID=114228077&CFTOKEN=91363922
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws

instances of the class, followed by the type of the
methods of the class. We have developed a library
(ClassLaws) that supports testing such class laws us-
ing QuickCheck.

Parsing: BNFC. The BNF Converter (BNFC) is a
frontend for various parser generators in various lan-
guages. BNFC is written in Haskell and is commonly
used as a frontend for the Haskell tools Alex and Happy.
BNFC has recently been extended in two directions:

o A Haskell backend, which offers incremental and par-
allel parsing capabilities, as well as the ability to
parse context-free grammars in full generality, has
been added to BNFC. The underlying concepts are
described in a paper published at ICFP 2013.
BNFC has been embedded in a library (called BNFC-
meta on Hackage) using Template-Haskell. An im-
portant aspect of BNFC-meta is that it automat-
ically provides quasi-quotes for the specified lan-
guage. This includes a powerful and flexible facility
for anti-quotation.

Parsing: Combinators. A new package for
combinator-based parsing has been released on
Hackage. The combinators are based on the paper
Parallel Parsing Processes. The technique is based on
parsing in parallel all the possibly valid alternatives.
This means that the parser never “hold onto” old
input. A try combinator is also superfluous.

Parsing: Natural languages. Grammatical Frame-
work is a declarative language for describing natural
language grammars. It is useful in various applica-
tions ranging from natural language generation, pars-
ing and translation to software localization. The frame-
work provides a library of large coverage grammars for
currently fifteen languages from which the developers
could derive smaller grammars specific for the seman-
tics of a particular application.

Generic Programming. Starting with Polytypic Pro-
gramming in 1995 there is a long history of generic pro-
gramming research at Chalmers. Recent developments
include fundamental work on parametricity. This work
has led to the development of a new kind of abstraction,
to generalize notions of erasure. This means that a new
kind of generic programming is available to the pro-
grammer. A paper describing the idea was presented
in ICFP 2013.

Our research on generic-programming is lively, as
witnessed by a constant stream of publications: Testing
Type Class Laws, Functional Enumeration of Algebraic
Types (FEAT), Testing versus proving in climate im-
pact research and Dependently-typed programming in
scientific computing — examples from economic mod-
elling. The last two are part of our effort to contribute

80

to the emerging research programme in Global Systems
Science.

Program Inversion/bidirectionalization. Program
transformation systems that generate pairs of pro-
grams that are some sort of inverses of each other. The
pairs are guaranteed to be consistent by construction
with respect to certain laws. Applications include
pretty-printing/parsing, XML transformation etc. The
work is done in collaboration with University of Tokyo
and University of Bonn.

Language-based security. SecLib is a light-weight li-
brary to provide security policies for Haskell programs.
The library provides means to preserve confidentiality
of data (i.e., secret information is not leaked) as well
as the ability to express intended releases of informa-
tion known as declassification. Besides confidentiality
policies, the library also supports another important
aspect of security: integrity of data. SecLib provides
an attractive, intuitive, and simple setting to explore
the security policies needed by real programs.

Type theory. Type theory is strongly connected to
functional programming research. Many dependently-
typed programming languages and type-based proof as-
sistants have been developed at Chalmers. The Agda
system (—4.1) is the latest in this line, and is of par-
ticular interest to Haskell programmers. While today’s
GHC incorporates much of the dependently-typed fea-
ture set, supporting plain old Haskell means a certain
amount of clunkiness. Agda provides a cleaner lan-
guage, while remaining close to Haskell syntax.

Embedded domain-specific languages. The func-
tional programming group has developed several dif-
ferent domain-specific languages embedded in Haskell.
The active ones are:

o Feldspar (— 7.12.2) is a domain-specific language
for digital signal processing (DSP).

Obsidian is a language for data-parallel program-
ming targeting GPUs.

Most recently we used Obsidian to implement an
interesting variation of counting sort that also re-
moves duplicate elements. This work was presented
at FHPC 2013.

We are also working on general methods for EDSL
development:

o Syntactic is a library that aims to support the def-
inition of EDSLs. The core of the library was pre-
sented at ICFP 2012. The paper presents a generic
model of typed abstract syntax trees in Haskell,
which can serve as a basis for a library supporting
the implementation of deeply embedded DSLs.
Names For Free. A new technique for represent-
ing names and bindings of object languages repre-
sented as Haskell data types has been developed.


http://hackage.haskell.org/package/ClassLaws
http://www.cse.chalmers.se/~bernardy/PP.pdf
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/BNFC-meta
http://hackage.haskell.org/package/parsek-1.0.0
http://hackage.haskell.org/package/parsek-1.0.0
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=254719
http://www.grammaticalframework.org/
http://www.grammaticalframework.org/
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ParaDep
http://www.cse.chalmers.se/~bernardy/CCCC.pdf
http://www.cse.chalmers.se/~bernardy/CCCC.pdf
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/ClassLaws
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/Testing-Feat
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/TestingVersusProvingInClimateImpactResearch
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/TestingVersusProvingInClimateImpactResearch
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://wiki.portal.chalmers.se/cse/pmwiki.php/FP/DTPinSciComp
http://blog.global-systems-science.eu/?author=45
http://blog.global-systems-science.eu/?author=45
http://www.cse.chalmers.se/~joels/writing/csort.pdf
http://www.cse.chalmers.se/~joels/writing/csort.pdf
http://hackage.haskell.org/package/syntactic

The essence of the technique is to represent names
using typed de Bruijn indices. The type captures ex-
actly the context where the index is valid, and hence
is as safe to use as a name. The technique was pre-
sented at Haskell Symposium 2013. We are currently
extending the technique to work for proofs as well as
programs.

o Circular Higher-Order Syntax We have also de-
veloped a light-weight method for generating names
while building an expression with binders. The
method lends itself to be used in the front end of
EDSLs based on higher-order syntax. The technique
was presented at ICFP 2013.

o Simple and Compositional Monad Reification
A method for reification of monads (compilation of
monadic embedded languages) that is both simple
and composable. The method was presented at ICFP
2013.

Automated reasoning. We are responsible for a suite
of automated-reasoning tools:

o Equinox is an automated theorem prover for pure
first-order logic with equality. Equinox actually im-
plements a hierarchy of logics, realized as a stack
of theorem provers that use abstraction refinement
to talk with each other. In the bottom sits an effi-
cient SAT solver. Paradox is a finite-domain model
finder for pure first-order logic with equality. Para-
dox is a MACE-style model finder, which means that
it translates a first-order problem into a sequence of
SAT problems, which are solved by a SAT solver.

o Infinox is an automated tool for analysing first-
order logic problems, aimed at showing finite un-
satisfiability, i.e., the absence of models with finite
domains. All three tools are developed in Haskell.

o QuickSpec generates algebraic specifications for an
API automatically, in the form of equations veri-
fied by random testing. http://www.cse.chalmers.se/
~nicsma/quickspec.pdf

o Hip (the Haskell Inductive Prover) is a new tool
to automatically prove properties about Haskell pro-
grams by using induction or co-induction. The ap-
proach taken is to compile Haskell programs to first
order theories. Induction is applied on the meta
level, and proof search is carried out by automated
theorem provers for first order logic with equality.

o On top of Hip we built HipSpec, which automat-
ically tries to find appropriate background lemmas
for properties where only doing induction is too
weak. It uses the translation and structural induc-
tion from Hip. The background lemmas are from
the equational theories built by QuickSpec. Both
the user-stated properties and those from Quick-
Spec are now tried to be proven with induction.
Conjectures proved to be theorems are added to
the theory as lemmas, to aid proving later prop-
erties which may require them. For more in-

81

formation, see http://web.student.chalmers.se/~danr/
hipspec-atx.pdfthe draft paper.

Teaching. Haskell is present in the curriculum as
early as the first year of the BSc programme. We have
four courses solely dedicated to functional program-
ming (of which three are MSc-level courses), but we also
provide courses which use Haskell for teaching other as-
pects of computer science, such the syntax and seman-
tics of programming languages, compiler construction,
data structures and parallel programming.

9.7 Functional Programming at KU

Andrew Gill
ongoing

Report by:
Status:

Functional Programming continues at KU and the
Computer Systems Design Laboratory in ITTC! The
System Level Design Group (lead by Perry Alexander)
and the Functional Programming Group (lead by An-
drew Gill) together form the core functional program-
ming initiative at KU. There are three major Haskell
projects at KU (as well as numerous smaller ones): the
GHC rewrite plugin HERMIT (— 7.3.1), the Wakarusa
Project (—5.1.2), and the Haskino Project (— 6.1.8).
All three projects are using now using the remote
monad design pattern (— 6.5.7) as a key technology.

Further reading

The Functional Programming Group: http://www.ittc.
ku.edu/csdl/fpg

9.8 Regensburg Haskell Meetup

Report by: Andres Loh

Since autumn 2014 Haskellers in Regensburg, Bavaria,
Germany have been meeting roughly once per month
to socialize and discuss Haskell-related topics.

I’'m happy to say that this meetup continues to
thrive. We typically have between 10 and 15 atten-
dees (which is really not bad if you consider the size of


http://www.cse.chalmers.se/~bernardy/NamesForFree.pdf
http://www.cse.chalmers.se/~bernardy/NamesForFree.pdf
http://www.cse.chalmers.se/~emax/documents/axelsson2013using.pdf
http://www.cse.chalmers.se/~emax/documents/axelsson2013using.pdf
http://www.cse.chalmers.se/~joels/writing/bb.pdf
http://www.cse.chalmers.se/~joels/writing/bb.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://www.cse.chalmers.se/~nicsma/quickspec.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://web.student.chalmers.se/~danr/hipspec-atx.pdf
http://www.ittc.ku.edu/csdl/fpg
http://www.ittc.ku.edu/csdl/fpg

Regensburg), and we often get visitors from Munich,
Niirnberg and Passau.

New members are always welcome, whether they are
Haskell beginners or experts. If you are living in the
area or visiting, please join! Meetings are announced
a few weeks in advance on our meetup page: http://
www.meetup.com/Regensburg-Haskell-Meetup//.

0.9 Haskell in the Munich Area

Report by: Haskell Consultancy Munich

Haskell in education

Haskell is widely used as an educational tool for both
teaching students in computer science as well as for
teaching industry programmers transitioning to func-
tional programming. It is very well suited for that and
there is a huge educational body present in Munich.

Haskell at the Ludwig-Maximilians-Universitat,
Munich

Following a limited test run last year which in-
cluded 12 people, the Institut fiir Informatik (Insti-
tute for Computer Science) has switched their Program-
ming and Modelling (http://www.tcs.ifi.Imu.de/lehre/
ss-2014/promo) course from ML to Haskell. It runs dur-
ing the summer semester and is frequented by 688 stu-
dents. It is a mandatory course for Computer Science
and Media Information Technology students as well as
many students going for degrees related to computer
science, e.g. Computer Linguistics (where lambda cal-
culus is very important) or Mathematics. The course
consists of a lecture and tutorial and is led by Prof.
Dr. Martin Hofmann and Dr. Steffen Jost. It started
on the 7th April, 2014. It is expected that 450 stu-
dents will complete the course. Notably, the course is
televised and is accessible at the LMU portal for Pro-
gramming and Modelling (https://videoonline.edu.Imu.
de/de/sommersemester-2014/5032).

Haskell is also used in Advanced Functional Program-
ming  (https://www.tcs.ifi.Imu.de/lehre/ss-2012/fun)
which runs during the winter semester and is attended
by 20-30 students. It is mandatory for Computer
Science as well as Media Information Technology
students.

82

Neither of these courses has any entry requirements,
and you may enter the university during the summer
semester, which makes them very accessible.

Any questions may be directed to Dr. Steffen Jost
((jost@tcs.ifi.Imu.de)).

Haskell at the Hochschule fiir angewandte
Wissenschaften Miinchen (Academy for applied
sciences Munich)

Haskell is taught in two courses at the College:
Functional Programming and Compiler Design. Both
courses consist of lectures and labs. Prof. Dr. Oliver
Braun has brought Haskell to the school and has been
using it during the last year for both courses; before
that he taught Haskell at FH Schmalkalden Thiiringen
(http://www.fh-schmalkalden.de/) for 3.5 years.

Compiler  Design  (http://ob.cs.hm.edu/lectures/
compiler) is a compulsory course taught, depending
on the group, using Haskell, Scheme, or Java. The
Haskell version is frequented by over 40 students. Part
of the note depends on a compiler authored in Haskell.

Functional ~ Programming  (http://ob.cs.hm.edu/
lectures/fun) is a new, non-compulsory course attended
by 20 students, taught with Haskell. The grade de-
pends among others on an exam in Haskell knowledge
and a project authored in Haskell with the Yesod web
framework. It is taught with Learn You a Haskell
and teaches practical skills such as Cabal, Haddock,
QuickCheck, HUnit, Git, and Yesod. The school
department’s website itself is in Snap.

Dr. Oliver Braun has started using Haskell in 1997,
when it became the first programming language he’s
used during his studies. He has later used Haskell dur-
ing his thesis and afterwards his dissertation. He finds
Haskell great for teaching. Oliver Braun can be reached
via email ({(ob@cs.hm.edu)).

Haskell as a teaching tool in the industry

Haskell is used in Munich to teach functional program-
ming to industrial programmers. Since it uses the same
basic programming model, it can also be used as a sim-
ple learning tool to introduce people to Scala. That is
because both are based on System F and Haskell has a
very clean, minimal implementation of it. It has been
successfully used to teach a team of 10 PHP program-
mers the basics of functional programming and Scala
and, together with other educational tools, get them


http://www.meetup.com/Regensburg-Haskell-Meetup/
http://www.meetup.com/Regensburg-Haskell-Meetup/
http://www.tcs.ifi.lmu.de/lehre/ss-2014/promo
http://www.tcs.ifi.lmu.de/lehre/ss-2014/promo
https://videoonline.edu.lmu.de/de/sommersemester-2014/5032
https://videoonline.edu.lmu.de/de/sommersemester-2014/5032
https://www.tcs.ifi.lmu.de/lehre/ss-2012/fun
mailto: jost at tcs.ifi.lmu.de
http://www.fh-schmalkalden.de/
http://ob.cs.hm.edu/lectures/compiler
http://ob.cs.hm.edu/lectures/compiler
http://ob.cs.hm.edu/lectures/fun
http://ob.cs.hm.edu/lectures/fun
mailto: ob at cs.hm.edu

up and running within a couple months, during which
time the team remained productive. This approach
makes it easy for companies to switch from the likes of
PHP, Java, .NET, or C# to functional programming
(Haskell, Scala, Clojure). At the same time the project
switched to SOA (service oriented architecture) using
the Twitter scala libraries. Having understood the ba-
sics of FP in Haskell, the team could easily move onto
the more complicated task of understanding the more
unique and intricate parts of Scala that correspond to
extensions to System F while being able to understand
Scala’s syntax. You may contact the author of this
report ((haskell.consultancy@gmail.com)) for details.

Haskell community

There are several meetups dedicated to Haskell in Mu-
nich. The organizers have initiated cooperation in or-
der to build and support the local community, as well
as the community in Germany. There is something re-
lated to Haskell happening every week.

The organizers would like to establish contact with
other Haskell communities in Germany as well as the
whole world. You may write to the Haskell Hackathon
organizer ((haskell.hackathon@gmail.com)). As of 2014,
it is known that there is Haskell activity in Berlin,
Cologne (Kéln), Diisseldorf, Frankfurt am Main, Halle,
Hamburg, and Stuttgart, as well as in Austria, Switzer-
land and the Czech Republic. If you're from one of
those communities, please write us! The Munich com-
munity welcomes any new connections from other lo-
cations.

The community receives notable guests, such as:

o Reinhard Zumkeller, one of the regular contributors
to the OEIS. Reinhard likes to use Haskell for work
with integer sequences.

o Lars R. Hupel, the maintainer of scalaz. Lars teaches
with Haskell at the local university and enjoys ad-
vanced topics in type systems and category theory.

o Andres Loh, co-founder of Well-Typed LLP. Andres
always brings up very practical discussions on the
use of Haskell. For example, he has recently held a
presentation on the Par monad.

o Heiko Seeberger from . Heiko is interested in all sorts
of functional programming and loves Haskell for its
simplicity and consistency.

o many others which the author of this report could
not reach for comment before the publication due to
time constraints.

The community is very lively and there are many ini-
tiatives being worked on. For example, actively popu-
larizing Haskell in the local industry, creating a network
of companies, programmers, and informational events.
The author of this report may be reached for more in-
formation ((haskell.consultancy@gmail.com)).

83

Haskell Hackathon

The Haskell Hackathon is a small meeting for people
who would like to build their Haskell skillset. People
bring their laptops and work on one of the proposed
topics together, sharing experience and teaching each
other. Topics range from very easy (if you don’t know
Haskell, you may come and the organizer will teach
you the basics one on one) through intermediate (how
to best set up the dev env, how to read the papers, how
to use important libraries) to very advanced (free ap-
plicatives, comonads). Defocus is discouraged (subjects
not related to Haskell are limited). The operating lan-
guage is German but if you speak any other language
you are welcome to join us.

The Hackathon is organized by the author of this re-
port ((haskell.consultancy@gmail.com)) and is currently
in its second year. It is frequented by the staff
and students of the local universities, industry pro-
grammers, as well as Haskell enthusiasts. You may
contact the Hackathon with any questions via email
({haskell.hackathon@gmail.com)).

We keep track of ideas we would like to explore dur-
ing the Haskell Hackathon (http://haskell-hackathon.
no-ip.org/ideen.html). Any and all new questions are
welcome!

Haskell Meetup

The Haskell Meetup, also called Haskell Stammtisch
(which directly translates to: Haskell regulars table)
is a social event for the Haskell community. It is the
original Haskell event in Munich. Everyone is welcome
(even non-Haskell programmers!). It happens once a
month, usually at Cafe Puck which is a pub in one of
the cooler parts of Munich, where the members can eat
schnitzel and drink beer while chatting about topics
ranging from Haskell itself to abstract mathematics,
industrial programming, and so on. The group is very
welcoming and they make you feel right at home. The
Meetup attracts between 15 and 20 guests and there’s
a large proportion of regulars. Attendance ranges from
students, through mathematicians (notably the OEIS
has a presence), industry programmers, physicists, and
engineers. The Meetup receives international guests
and sometimes we hold lectures.

The Haskell Meetup, established 29th September
2011 by Heinrich Hoérdegen. It is sponsored by
Funktionale Programmierung Dr. Heinrich Hérdegen
(http://funktional.info) and Energy Flow Analysis —
Ingenieurbiiro Guttenberg & Hordegen (http://www.
energiefluss.info).

Munich Lambda

Munich Lambda (http://www.meetup.com/
Munich-Lambda/) was founded on Jun 28, 2013
by Alex Petrov. There have been 12 events so far,
on topics including Haskell, Clojure, and generally


mailto: haskell.consultancy at gmail.com
mailto: haskell.hackathon at gmail.com
mailto: haskell.consultancy at gmail.com
mailto: haskell.consultancy at gmail.com
mailto: haskell.hackathon at gmail.com
http://haskell-hackathon.no-ip.org/ideen.html
http://haskell-hackathon.no-ip.org/ideen.html
http://funktional.info
http://www.energiefluss.info
http://www.energiefluss.info
http://www.meetup.com/Munich-Lambda/
http://www.meetup.com/Munich-Lambda/

functional programming, as well as Emacs. Meetups
on the topic of Haskell occur every month to two
months.

Typically, the meetup begins with a short introduc-
tory round where the visitors can talk about their work
or hobbies and grab some food (provided by sponsors),
followed by couple of presentations, and topped off by
an informal discussion of relevant topics and getting
to know each other. It is a great opportunity to meet
other likeminded people who like Haskell or would like
to start out with it.

Munich Lambda is sponsored by codecentric (http:
//www.codecentric.de/) and StyleFruits (http://www.
stylefruits.de).

Mailing lists in Munich

There are two mailing lists in use: https:
//lists.fs.Imu.de/mailman/listinfo /high-order-munich
and http://mailman.common-lisp.net/cgi-bin/mailman/
listinfo/munich-lisp.

The lists are used for event announcements as well
as to continue discussions stemming from recent events.
It is usually expected that anyone subscribed to one is
also on the other, but conversations normally happen
only on one or the other. There are 59 subscribers to
high-order-munich.

There is a mail distributor for the Haskell Hackathon
(http://haskell-hackathon.no-ip.org). In order to receive
emails, send mail to the Haskell Hackathon organizer
((haskell.hackathon@gmail.com)).

ZuriHac 2014, Budapest Hackathon 2014, and the
Munich Hackathon

There is a group of people going to ZuriHac 2014
(http://www.haskell.org/haskellwiki/ZuriHac2014). We
are currently planning the logistics. If you would
like to join us, you may write to the high-order-
munich mailing list (https://lists.fs.Imu.de/mailman/
listinfo/high-order-munich). Some people going to Zuri-
Hac want to visit Munich first and will be received by
the Munich community. There will be events during
the week before ZuriHac. Boarding in Munich is inex-
pensive; the bus to Zurich is only 15 Euro and you may
travel with a group of Haskell enthusiasts. There is a
lot to see and visit in Munich. It is an easy travel des-
tination as the Munich Airport has direct connections
with most large airports in the world. Zurich is 312
kilometers (194 miles) away and no passport is neces-
sary to travel from Munich to Zurich.

In addition, there is a group going to the Bu-
dapest Hackathon (http://www.haskell.org/haskellwiki/
BudapestHackathon2014), which is a week before Zuri-
Hac. To connect those two together, both geographi-
cally and in time, a Munich Lambda event is planned
for the 4th of June in Munich. The travel is very cheap
(the bus tickets from Budapest to Munich and from

84

Munich to Zurich are on the order of 30 Euro). This
way people can attend all three, completing what has
been nicknamed the Haskell World Tour 2014. For
more information you may contact the organizer of
the Haskell Hackathon in Munich ((haskell.hackathon®©
gmail.com)). You may have fun, meet people from three
huge Haskell communities, travel together, and see the
world, all in one week!

Halle

There is a group of Haskell members going to Hal-
9 in Halle (http://www.haskell.org/pipermail/haskell/
2014-March/024115.html), which is 439 kilometers (273
miles) away. Henning Thielemann ((schlepptop@
henning-thielemann.de)), the event organizer, is in
charge of car pooling for visitors coming from all lo-
cations.

9.10 HaskellMN

Report by: Kyle Marek-Spartz
Participants: Tyler Holien
Status: ongoing

HaskellMN is a user group from Minnesota. We have
monthly meetings on the third Wednesday in downtown
Saint Paul.

Further reading

http://www.haskell.mn


http://www.codecentric.de/
http://www.codecentric.de/
http://www.stylefruits.de
http://www.stylefruits.de
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
http://mailman.common-lisp.net/cgi-bin/mailman/listinfo/munich-lisp
http://mailman.common-lisp.net/cgi-bin/mailman/listinfo/munich-lisp
http://haskell-hackathon.no-ip.org
mailto: haskell.hackathon at gmail.com
http://www.haskell.org/haskellwiki/ZuriHac2014
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
https://lists.fs.lmu.de/mailman/listinfo/high-order-munich
http://www.haskell.org/haskellwiki/BudapestHackathon2014
http://www.haskell.org/haskellwiki/BudapestHackathon2014
mailto: haskell.hackathon at gmail.com
mailto: haskell.hackathon at gmail.com
http://www.haskell.org/pipermail/haskell/2014-March/024115.html
http://www.haskell.org/pipermail/haskell/2014-March/024115.html
mailto: schlepptop at henning-thielemann.de
mailto: schlepptop at henning-thielemann.de
http://www.haskell.mn

	Community
	Haskellers

	Books, Articles, Tutorials
	Oleg's Mini Tutorials and Assorted Small Projects
	School of Haskell
	Haskell Programming from first principles, a book forall
	Learning Haskell
	Agda Tutorial

	Implementations
	The Glasgow Haskell Compiler
	Ajhc Haskell Compiler
	The Helium Compiler
	UHC, Utrecht Haskell Compiler
	Frege
	Specific Platforms
	Haskell on FreeBSD
	Debian Haskell Group
	Fedora Haskell SIG


	Related Languages and Language Design
	Agda
	MiniAgda
	Disciple

	Haskell and …
	Haskell and Parallelism
	Eden
	Wakarusa

	Haskell and the Web
	WAI
	Yesod
	Scotty
	Warp
	Mighttpd2 — Yet another Web Server
	Happstack
	Snap Framework
	MFlow
	Sunroof
	Blank Canvas
	PureScript

	Haskell and Compiler Writing
	MateVM
	UUAG


	Development Tools
	Environments
	Haskell IDE From FP Complete
	ghc-mod — Happy Haskell Programming
	haskell-ide-engine, a project for unifying IDE functionality
	HaRe — The Haskell Refactorer
	ghc-exactprint
	IHaskell: Haskell for Interactive Computing
	Haskell for Mac
	Haskino

	Code Management
	Darcs
	cab — A Maintenance Command of Haskell Cabal Packages

	Interfacing to other Languages
	java-bridge
	fficxx

	Deployment
	Cabal and Hackage
	Stackage: the Library Dependency Solution
	Haskell Cloud

	Others
	ghc-heap-view
	Hat — the Haskell Tracer
	Tasty
	Automatic type inference from JSON
	Exference
	Lentil
	The Remote Monad Design Pattern
	Hoed – The Lightweight Algorithmic Debugger for Haskell


	Libraries, Applications, Projects
	Language Features
	Conduit
	GHC type-checker plugin for kind Nat
	Dependent Haskell
	Yampa

	Education
	Holmes, Plagiarism Detection for Haskell
	Interactive Domain Reasoners

	Parsing and Transforming
	HERMIT
	Utrecht Parser Combinator Library: uu-parsinglib
	Generalized Algebraic Dynamic Programming

	Mathematics, Numerical Packages and High Performance Computing
	Rlang-QQ
	arb-fft
	hblas
	HROOT
	Numerical
	petsc-hs
	combinat

	Data Types and Data Structures
	HList — A Library for Typed Heterogeneous Collections
	Transactional Trie
	fixplate
	generics-sop

	Databases and Related Tools
	Persistent
	Groundhog
	Opaleye
	HLINQ - LINQ for Haskell

	User Interfaces
	HsQML
	Gtk2Hs
	LGtk: Lens GUI Toolkit
	threepenny-gui
	reactive-banana
	fltkhs - GUI bindings to the FLTK library
	wxHaskell

	Graphics and Audio
	vect
	diagrams
	Chordify
	csound-expression
	hmidi
	Glome

	Text and Markup Languages
	lhs2TeX
	pulp
	Unicode things

	Natural Language Processing
	NLP
	GenI

	Bioinformatics
	ADPfusion
	Biohaskell
	arte-ephys: Real-time electrophysiology

	Embedding DSLs for Low-Level Processing
	CaSH
	Feldspar
	Kansas Lava

	Games
	The Amoeba-World game project
	EtaMOO
	scroll
	Nomyx
	Barbarossa

	Others
	leapseconds-announced
	hledger
	arbtt
	Hoodle
	Reffit
	Laborantin
	Transient
	tttool
	gipeda
	Octohat (Stack Builders)
	git-annex
	openssh-github-keys (Stack Builders)
	propellor
	dimensional: Statically Checked Physical Dimensions
	igrf: The International Geomagnetic Reference Field
	The Incredible Proof Machine


	Commercial Users
	Well-Typed LLP
	Bluespec Tools for Design of Complex Chips and Hardware Accelerators
	Haskell in the industry in Munich
	Better
	Keera Studios LTD
	plaimi
	Stack Builders
	Optimal Computational Algorithms, Inc.
	Snowdrift.coop

	Research and User Groups
	Haskell at Eötvös Loránd University (ELTE), Budapest
	Artificial Intelligence and Software Technology at Goethe-University Frankfurt
	Functional Programming at the University of Kent
	Haskell at KU Leuven, Belgium
	fp-syd: Functional Programming in Sydney, Australia
	Functional Programming at Chalmers
	Functional Programming at KU
	Regensburg Haskell Meetup
	Haskell in the Munich Area
	HaskellMN


