
Haskell 2010
Language Report

Simon Marlow
(editor)

Copyright notice.

The authors and publisher intend this Report to belong to the entire Haskell community, and grant permission
to copy and distribute it for any purpose, provided that it is reproduced in its entirety, including this Notice.
Modified versions of this Report may also be copied and distributed for any purpose, provided that the mod-
ified version is clearly presented as such, and that it does not claim to be a definition of the language Haskell
2010.

Contents

I The Haskell 2010 Language 1

1 Introduction 3

1.1 Program Structure . 3

1.2 The Haskell Kernel . 4

1.3 Values and Types . 4

1.4 Namespaces . 4

2 Lexical Structure 7

2.1 Notational Conventions . 7

2.2 Lexical Program Structure . 8

2.3 Comments . 9

2.4 Identifiers and Operators . 9

2.5 Numeric Literals . 11

2.6 Character and String Literals . 11

2.7 Layout . 12

3 Expressions 15

3.1 Errors . 16

3.2 Variables, Constructors, Operators, and Literals . 17

3.3 Curried Applications and Lambda Abstractions . 18

3.4 Operator Applications . 18

3.5 Sections . 19

i

ii CONTENTS

3.6 Conditionals . 19

3.7 Lists . 20

3.8 Tuples . 20

3.9 Unit Expressions and Parenthesized Expressions . 21

3.10 Arithmetic Sequences . 21

3.11 List Comprehensions . 21

3.12 Let Expressions . 22

3.13 Case Expressions . 23

3.14 Do Expressions . 25

3.15 Datatypes with Field Labels . 25

3.15.1 Field Selection . 26

3.15.2 Construction Using Field Labels . 26

3.15.3 Updates Using Field Labels . 27

3.16 Expression Type-Signatures . 28

3.17 Pattern Matching . 28

3.17.1 Patterns . 28

3.17.2 Informal Semantics of Pattern Matching . 29

3.17.3 Formal Semantics of Pattern Matching . 31

4 Declarations and Bindings 35

4.1 Overview of Types and Classes . 36

4.1.1 Kinds . 37

4.1.2 Syntax of Types . 37

4.1.3 Syntax of Class Assertions and Contexts . 39

4.1.4 Semantics of Types and Classes . 39

4.2 User-Defined Datatypes . 40

4.2.1 Algebraic Datatype Declarations . 40

4.2.2 Type Synonym Declarations . 42

4.2.3 Datatype Renamings . 43

CONTENTS iii

4.3 Type Classes and Overloading . 44

4.3.1 Class Declarations . 44

4.3.2 Instance Declarations . 45

4.3.3 Derived Instances . 47

4.3.4 Ambiguous Types, and Defaults for Overloaded Numeric Operations 48

4.4 Nested Declarations . 49

4.4.1 Type Signatures . 49

4.4.2 Fixity Declarations . 50

4.4.3 Function and Pattern Bindings . 51

4.4.3.1 Function bindings . 52

4.4.3.2 Pattern bindings . 53

4.5 Static Semantics of Function and Pattern Bindings . 53

4.5.1 Dependency Analysis . 54

4.5.2 Generalization . 54

4.5.3 Context Reduction Errors . 55

4.5.4 Monomorphism . 56

4.5.5 The Monomorphism Restriction . 56

4.6 Kind Inference . 58

5 Modules 61

5.1 Module Structure . 62

5.2 Export Lists . 63

5.3 Import Declarations . 64

5.3.1 What is imported . 65

5.3.2 Qualified import . 65

5.3.3 Local aliases . 66

5.3.4 Examples . 66

5.4 Importing and Exporting Instance Declarations . 67

5.5 Name Clashes and Closure . 67

iv CONTENTS

5.5.1 Qualified names . 67

5.5.2 Name clashes . 68

5.5.3 Closure . 69

5.6 Standard Prelude . 70

5.6.1 The Prelude Module . 70

5.6.2 Shadowing Prelude Names . 70

5.7 Separate Compilation . 71

5.8 Abstract Datatypes . 71

6 Predefined Types and Classes 73

6.1 Standard Haskell Types . 73

6.1.1 Booleans . 73

6.1.2 Characters and Strings . 73

6.1.3 Lists . 74

6.1.4 Tuples . 74

6.1.5 The Unit Datatype . 74

6.1.6 Function Types . 74

6.1.7 The IO and IOError Types . 75

6.1.8 Other Types . 75

6.2 Strict Evaluation . 75

6.3 Standard Haskell Classes . 76

6.3.1 The Eq Class . 77

6.3.2 The Ord Class . 77

6.3.3 The Read and Show Classes . 77

6.3.4 The Enum Class . 79

6.3.5 The Functor Class . 80

6.3.6 The Monad Class . 80

6.3.7 The Bounded Class . 81

6.4 Numbers . 81

CONTENTS v

6.4.1 Numeric Literals . 82

6.4.2 Arithmetic and Number-Theoretic Operations . 82

6.4.3 Exponentiation and Logarithms . 84

6.4.4 Magnitude and Sign . 84

6.4.5 Trigonometric Functions . 85

6.4.6 Coercions and Component Extraction . 85

7 Basic Input/Output 87

7.1 Standard I/O Functions . 87

7.2 Sequencing I/O Operations . 89

7.3 Exception Handling in the I/O Monad . 90

8 Foreign Function Interface 91

8.1 Foreign Languages . 91

8.2 Contexts . 92

8.2.1 Cross Language Type Consistency . 92

8.3 Lexical Structure . 92

8.4 Foreign Declarations . 93

8.4.1 Calling Conventions . 93

8.4.2 Foreign Types . 94

8.4.3 Import Declarations . 95

8.4.4 Export Declarations . 96

8.5 Specification of External Entities . 96

8.5.1 Standard C Calls . 97

8.5.2 Win32 API Calls . 100

8.6 Marshalling . 100

8.7 The External C Interface . 101

9 Standard Prelude 105

9.1 Prelude PreludeList . 117

9.2 Prelude PreludeText . 123

9.3 Prelude PreludeIO . 127

vi CONTENTS

10 Syntax Reference 129

10.1 Notational Conventions . 129

10.2 Lexical Syntax . 129

10.3 Layout . 131

10.4 Literate comments . 135

10.5 Context-Free Syntax . 137

10.6 Fixity Resolution . 142

11 Specification of Derived Instances 145

11.1 Derived instances of Eq and Ord . 146

11.2 Derived instances of Enum . 146

11.3 Derived instances of Bounded . 147

11.4 Derived instances of Read and Show . 147

11.5 An Example . 149

12 Compiler Pragmas 151

12.1 Inlining . 151

12.2 Specialization . 151

12.3 Language extensions . 152

II The Haskell 2010 Libraries 153

13 Control.Monad 155

13.1 Functor and monad classes . 155

13.2 Functions . 157

13.2.1 Naming conventions . 157

13.2.2 Basic Monad functions . 157

13.2.3 Generalisations of list functions . 158

13.2.4 Conditional execution of monadic expressions . 159

13.2.5 Monadic lifting operators . 160

CONTENTS vii

14 Data.Array 161

14.1 Immutable non-strict arrays . 161

14.2 Array construction . 162

14.3 Accessing arrays . 163

14.4 Incremental array updates . 163

14.5 Derived arrays . 163

14.6 Specification . 164

15 Data.Bits 167

16 Data.Char 171

16.1 Characters and strings . 172

16.2 Character classification . 172

16.2.1 Subranges . 174

16.2.2 Unicode general categories . 174

16.3 Case conversion . 175

16.4 Single digit characters . 175

16.5 Numeric representations . 176

16.6 String representations . 176

17 Data.Complex 177

17.1 Rectangular form . 177

17.2 Polar form . 178

17.3 Conjugate . 178

17.4 Specification . 178

18 Data.Int 181

18.1 Signed integer types . 181

19 Data.Ix 185

19.1 The Ix class . 185

19.2 Deriving Instances of Ix . 186

viii CONTENTS

20 Data.List 189

20.1 Basic functions . 189

20.2 List transformations . 190

20.3 Reducing lists (folds) . 191

20.3.1 Special folds . 192

20.4 Building lists . 193

20.4.1 Scans . 193

20.4.2 Accumulating maps . 193

20.4.3 Infinite lists . 193

20.4.4 Unfolding . 194

20.5 Sublists . 194

20.5.1 Extracting sublists . 194

20.5.2 Predicates . 197

20.6 Searching lists . 197

20.6.1 Searching by equality . 197

20.6.2 Searching with a predicate . 197

20.7 Indexing lists . 198

20.8 Zipping and unzipping lists . 198

20.9 Special lists . 200

20.9.1 Functions on strings . 200

20.9.2 ”Set” operations . 201

20.9.3 Ordered lists . 202

20.10Generalized functions . 202

20.10.1 The ”By” operations . 202

20.10.1.1 User-supplied equality (replacing an Eq context) 202

20.10.1.2 User-supplied comparison (replacing an Ord context) 203

20.10.2 The ”generic” operations . 203

CONTENTS ix

21 Data.Maybe 205

21.1 The Maybe type and operations . 205

21.2 Specification . 206

22 Data.Ratio 209

22.1 Specification . 210

23 Data.Word 213

23.1 Unsigned integral types . 213

24 Foreign 217

25 Foreign.C 219

26 Foreign.C.Error 221

26.1 Haskell representations of errno values . 221

26.1.1 Common errno symbols . 222

26.1.2 Errno functions . 225

26.1.3 Guards for IO operations that may fail . 226

27 Foreign.C.String 229

27.1 C strings . 229

27.1.1 Using a locale-dependent encoding . 230

27.1.2 Using 8-bit characters . 231

27.2 C wide strings . 232

28 Foreign.C.Types 235

28.1 Representations of C types . 235

28.1.1 Integral types . 236

28.1.2 Numeric types . 242

28.1.3 Floating types . 242

28.1.4 Other types . 243

x CONTENTS

29 Foreign.ForeignPtr 245

29.1 Finalised data pointers . 245

29.1.1 Basic operations . 246

29.1.2 Low-level operations . 247

29.1.3 Allocating managed memory . 247

30 Foreign.Marshal 249

31 Foreign.Marshal.Alloc 251

31.1 Memory allocation . 251

31.1.1 Local allocation . 251

31.1.2 Dynamic allocation . 252

32 Foreign.Marshal.Array 255

32.1 Marshalling arrays . 255

32.1.1 Allocation . 255

32.1.2 Marshalling . 256

32.1.3 Combined allocation and marshalling . 256

32.1.4 Copying . 257

32.1.5 Finding the length . 257

32.1.6 Indexing . 257

33 Foreign.Marshal.Error 259

34 Foreign.Marshal.Utils 261

34.1 General marshalling utilities . 261

34.1.1 Combined allocation and marshalling . 261

34.1.2 Marshalling of Boolean values (non-zero corresponds to True) 262

34.1.3 Marshalling of Maybe values . 262

34.1.4 Marshalling lists of storable objects . 262

34.1.5 Haskellish interface to memcpy and memmove . 262

CONTENTS xi

35 Foreign.Ptr 263

35.1 Data pointers . 263

35.2 Function pointers . 264

35.3 Integral types with lossless conversion to and from pointers 265

36 Foreign.StablePtr 267

36.1 Stable references to Haskell values . 267

36.1.1 The C-side interface . 268

37 Foreign.Storable 269

38 Numeric 273

38.1 Showing . 273

38.2 Reading . 274

38.3 Miscellaneous . 275

39 System.Environment 277

40 System.Exit 279

41 System.IO 281

41.1 The IO monad . 281

41.2 Files and handles . 282

41.2.1 Standard handles . 282

41.3 Opening and closing files . 283

41.3.1 Opening files . 283

41.3.2 Closing files . 283

41.3.3 Special cases . 284

41.3.4 File locking . 284

41.4 Operations on handles . 284

41.4.1 Determining and changing the size of a file . 284

41.4.2 Detecting the end of input . 285

xii CONTENTS

41.4.3 Buffering operations . 285

41.4.4 Repositioning handles . 286

41.4.5 Handle properties . 287

41.4.6 Terminal operations . 288

41.4.7 Showing handle state . 288

41.5 Text input and output . 288

41.5.1 Text input . 288

41.5.2 Text output . 290

41.5.3 Special cases for standard input and output . 290

42 System.IO.Error 293

42.1 I/O errors . 293

42.1.1 Classifying I/O errors . 294

42.1.2 Attributes of I/O errors . 294

42.2 Types of I/O error . 295

42.3 Throwing and catching I/O errors . 295

References 297

Index 299

Preface

“Some half dozen persons have written technically on combinatory logic, and most of these,
including ourselves, have published something erroneous. Since some of our fellow sinners are
among the most careful and competent logicians on the contemporary scene, we regard this as
evidence that the subject is refractory. Thus fullness of exposition is necessary for accuracy; and
excessive condensation would be false economy here, even more than it is ordinarily.”

Haskell B. Curry and Robert Feys
in the Preface to Combinatory Logic [3], May 31, 1956

In September of 1987 a meeting was held at the conference on Functional Programming Languages and
Computer Architecture (FPCA ’87) in Portland, Oregon, to discuss an unfortunate situation in the func-
tional programming community: there had come into being more than a dozen non-strict, purely functional
programming languages, all similar in expressive power and semantic underpinnings. There was a strong
consensus at this meeting that more widespread use of this class of functional languages was being hampered
by the lack of a common language. It was decided that a committee should be formed to design such a lan-
guage, providing faster communication of new ideas, a stable foundation for real applications development,
and a vehicle through which others would be encouraged to use functional languages. This document de-
scribes the result of that (and subsequent) committee’s efforts: a purely functional programming language
called Haskell, named after the logician Haskell B. Curry whose work provides the logical basis for much of
ours.

Goals

The committee’s primary goal was to design a language that satisfied these constraints:

1. It should be suitable for teaching, research, and applications, including building large systems.

2. It should be completely described via the publication of a formal syntax and semantics.

3. It should be freely available. Anyone should be permitted to implement the language and distribute it
to whomever they please.

4. It should be based on ideas that enjoy a wide consensus.

5. It should reduce unnecessary diversity in functional programming languages.

xiii

xiv PREFACE

Haskell 2010: language and libraries

The committee intended that Haskell would serve as a basis for future research in language design, and hoped
that extensions or variants of the language would appear, incorporating experimental features.

Haskell has indeed evolved continuously since its original publication. By the middle of 1997, there had been
five versions of the language design (from Haskell 1.0 – 1.4). At the 1997 Haskell Workshop in Amsterdam,
it was decided that a stable variant of Haskell was needed; this became “Haskell 98” and was published in
February 1999. The fixing of minor bugs led to the Revised Haskell 98 Report in 2002.

At the 2005 Haskell Workshop, the consensus was that so many extensions to the official language were
widely used (and supported by multiple implementations), that it was worthwhile to define another iteration
of the language standard, essentially to codify (and legitimise) the status quo.

The Haskell Prime effort was thus conceived as a relatively conservative extension of Haskell 98, taking on
board new features only where they were well understood and widely agreed upon. It too was intended to be
a “stable” language, yet reflecting the considerable progress in research on language design in recent years.

After several years exploring the design space, it was decided that a single monolithic revision of the language
was too large a task, and the best way to make progress was to evolve the language in small incremental steps,
each revision integrating only a small number of well-understood extensions and changes. Haskell 2010 is
the first revision to be created in this way, and new revisions are expected once per year.

Extensions to Haskell 98

The most significant language changes in Haskell 2010 relative to Haskell 98 are listed here.

New language features:

• A Foreign Function Interface (FFI).

• Hierarchical module names, e.g. Data.Bool.

• Pattern guards.

Removed language features:

• The (n+ k) pattern syntax.

Haskell Resources

The Haskell web site http://haskell.org gives access to many useful resources, including:

• Online versions of the language and library definitions.

http://haskell.org

PREFACE xv

• Tutorial material on Haskell.

• Details of the Haskell mailing list.

• Implementations of Haskell.

• Contributed Haskell tools and libraries.

• Applications of Haskell.

• User-contributed wiki pages.

• News and events in the Haskell community.

You are welcome to comment on, suggest improvements to, and criticise the language or its presentation in
the report, via the Haskell mailing list, or the Haskell wiki.

Building the language

Haskell was created, and continues to be sustained, by an active community of researchers and application
programmers. Those who served on the Language and Library committees, in particular, devoted a huge
amount of time and energy to the language. Here they are, with their affiliation(s) for the relevant period:

Arvind (MIT)
Lennart Augustsson (Chalmers University)

Dave Barton (Mitre Corp)
Brian Boutel (Victoria University of Wellington)

Warren Burton (Simon Fraser University)
Manuel M T Chakravarty (University of New South Wales)

Duncan Coutts (Well-Typed LLP)
Jon Fairbairn (University of Cambridge)

Joseph Fasel (Los Alamos National Laboratory)
John Goerzen

Andy Gordon (University of Cambridge)
Maria Guzman (Yale University)

Kevin Hammond [editor] (University of Glasgow)
Bastiaan Heeren (Utrecht University)

Ralf Hinze (University of Bonn)
Paul Hudak [editor] (Yale University)

John Hughes [editor] (University of Glasgow; Chalmers University)
Thomas Johnsson (Chalmers University)

Isaac Jones (Galois, inc.)
Mark Jones (Yale University, University of Nottingham, Oregon Graduate Institute)

Dick Kieburtz (Oregon Graduate Institute)
John Launchbury (University of Glasgow; Oregon Graduate Institute; Galois, inc.)

Andres Löh (Utrecht University)
Ian Lynagh (Well-Typed LLP)

Simon Marlow [editor] (Microsoft Research)
John Meacham

Erik Meijer (Utrecht University)

xvi PREFACE

Ravi Nanavati (Bluespec, inc.)
Rishiyur Nikhil (MIT)

Henrik Nilsson (University of Nottingham)
Ross Paterson (City University, London)
John Peterson [editor] (Yale University)

Simon Peyton Jones [editor] (University of Glasgow; Microsoft Research Ltd)
Mike Reeve (Imperial College)

Alastair Reid (University of Glasgow)
Colin Runciman (University of York)

Don Stewart (Galois, inc.)
Martin Sulzmann (Informatik Consulting Systems AG)

Audrey Tang
Simon Thompson (University of Kent)

Philip Wadler [editor] (University of Glasgow)
Malcolm Wallace (University of York)

Stephanie Weirich (University of Pennsylvania)
David Wise (Indiana University)

Jonathan Young (Yale University)

Those marked [editor] served as the co-ordinating editor for one or more revisions of the language.

In addition, dozens of other people made helpful contributions, some small but many substantial. They are as
follows: Hans Aberg, Kris Aerts, Sten Anderson, Richard Bird, Tom Blenko, Stephen Blott, Duke Briscoe,
Paul Callaghan, Magnus Carlsson, Mark Carroll, Franklin Chen, Olaf Chitil, Chris Clack, Guy Cousineau,
Tony Davie, Craig Dickson, Chris Dornan, Laura Dutton, Chris Fasel, Pat Fasel, Sigbjorn Finne, Michael
Fryers, Peter Gammie, Andy Gill, Mike Gunter, Cordy Hall, Mark Hall, Thomas Hallgren, Matt Harden,
Klemens Hemm, Fergus Henderson, Dean Herington, Bob Hiromoto, Nic Holt, Ian Holyer, Randy Hudson,
Alexander Jacobson, Patrik Jansson, Robert Jeschofnik, Orjan Johansen, Simon B. Jones, Stef Joosten, Mike
Joy, Wolfram Kahl, Stefan Kahrs, Antti-Juhani Kaijanaho, Jerzy Karczmarczuk, Kent Karlsson, Martin D.
Kealey, Richard Kelsey, Siau-Cheng Khoo, Amir Kishon, Feliks Kluzniak, Jan Kort, Marcin Kowalczyk, Jose
Labra, Jeff Lewis, Mark Lillibridge, Bjorn Lisper, Sandra Loosemore, Pablo Lopez, Olaf Lubeck, Christian
Maeder, Ketil Malde, Michael Marte, Jim Mattson, John Meacham, Sergey Mechveliani, Gary Memovich,
Randy Michelsen, Rick Mohr, Andy Moran, Graeme Moss, Arthur Norman, Nick North, Chris Okasaki,
Bjarte M. Østvold, Paul Otto, Sven Panne, Dave Parrott, Larne Pekowsky, Rinus Plasmeijer, Ian Poole,
Stephen Price, John Robson, Andreas Rossberg, George Russell, Patrick Sansom, Michael Schneider, Fe-
lix Schroeter, Julian Seward, Nimish Shah, Christian Sievers, Libor Skarvada, Jan Skibinski, Lauren Smith,
Raman Sundaresh, Josef Svenningsson, Ken Takusagawa, Wolfgang Thaller, Satish Thatte, Tom Thomson,
Tommy Thorn, Dylan Thurston, Mike Thyer, Mark Tullsen, David Tweed, Pradeep Varma, Keith Wans-
brough, Tony Warnock, Michael Webber, Carl Witty, Stuart Wray, and Bonnie Yantis.

Finally, aside from the important foundational work laid by Church, Rosser, Curry, and others on the lambda
calculus, it is right to acknowledge the influence of many noteworthy programming languages developed
over the years. Although it is difficult to pinpoint the origin of many ideas, the following languages were
particularly influential: Lisp (and its modern-day incarnations Common Lisp and Scheme); Landin’s ISWIM;
APL; Backus’s FP [1]; ML and Standard ML; Hope and Hope+; Clean; Id; Gofer; Sisal; and Turner’s series
of languages culminating in Miranda1. Without these forerunners Haskell would not have been possible.

1Miranda is a trademark of Research Software Ltd.

PREFACE xvii

Simon Marlow
Cambridge, April 2010

xviii PREFACE

Part I

The Haskell 2010 Language

1

Chapter 1

Introduction

Haskell is a general purpose, purely functional programming language incorporating many recent innovations
in programming language design. Haskell provides higher-order functions, non-strict semantics, static poly-
morphic typing, user-defined algebraic datatypes, pattern-matching, list comprehensions, a module system, a
monadic I/O system, and a rich set of primitive datatypes, including lists, arrays, arbitrary and fixed precision
integers, and floating-point numbers. Haskell is both the culmination and solidification of many years of
research on non-strict functional languages.

This report defines the syntax for Haskell programs and an informal abstract semantics for the meaning
of such programs. We leave as implementation dependent the ways in which Haskell programs are to be
manipulated, interpreted, compiled, etc. This includes such issues as the nature of programming environments
and the error messages returned for undefined programs (i.e. programs that formally evaluate to ⊥).

1.1 Program Structure

In this section, we describe the abstract syntactic and semantic structure of Haskell, as well as how it relates
to the organization of the rest of the report.

1. At the topmost level a Haskell program is a set of modules, described in Chapter 5. Modules provide a
way to control namespaces and to re-use software in large programs.

2. The top level of a module consists of a collection of declarations, of which there are several kinds, all
described in Chapter 4. Declarations define things such as ordinary values, datatypes, type classes, and
fixity information.

3. At the next lower level are expressions, described in Chapter 3. An expression denotes a value and has
a static type; expressions are at the heart of Haskell programming “in the small.”

4. At the bottom level is Haskell’s lexical structure, defined in Chapter 2. The lexical structure captures
the concrete representation of Haskell programs in text files.

This report proceeds bottom-up with respect to Haskell’s syntactic structure.

3

4 CHAPTER 1. INTRODUCTION

The chapters not mentioned above are Chapter 6, which describes the standard built-in datatypes and classes
in Haskell, and Chapter 7, which discusses the I/O facility in Haskell (i.e. how Haskell programs communicate
with the outside world). Also, there are several chapters describing the Prelude, the concrete syntax, literate
programming, the specification of derived instances, and pragmas supported by most Haskell compilers.

Examples of Haskell program fragments in running text are given in typewriter font:

let x = 1
z = x+y

in z+1

“Holes” in program fragments representing arbitrary pieces of Haskell code are written in italics, as in
if e1 then e2 else e3 . Generally the italicized names are mnemonic, such as e for expressions, d for
declarations, t for types, etc.

1.2 The Haskell Kernel

Haskell has adopted many of the convenient syntactic structures that have become popular in functional pro-
gramming. In this Report, the meaning of such syntactic sugar is given by translation into simpler constructs.
If these translations are applied exhaustively, the result is a program written in a small subset of Haskell that
we call the Haskell kernel.

Although the kernel is not formally specified, it is essentially a slightly sugared variant of the lambda calculus
with a straightforward denotational semantics. The translation of each syntactic structure into the kernel is
given as the syntax is introduced. This modular design facilitates reasoning about Haskell programs and
provides useful guidelines for implementors of the language.

1.3 Values and Types

An expression evaluates to a value and has a static type. Values and types are not mixed in Haskell. However,
the type system allows user-defined datatypes of various sorts, and permits not only parametric polymorphism
(using a traditional Hindley-Milner type structure) but also ad hoc polymorphism, or overloading (using type
classes).

Errors in Haskell are semantically equivalent to ⊥ (“bottom”). Technically, they are indistinguishable from
nontermination, so the language includes no mechanism for detecting or acting upon errors. However, imple-
mentations will probably try to provide useful information about errors. See Section 3.1.

1.4 Namespaces

There are six kinds of names in Haskell: those for variables and constructors denote values; those for type
variables, type constructors, and type classes refer to entities related to the type system; and module names
refer to modules. There are two constraints on naming:

1. Names for variables and type variables are identifiers beginning with lowercase letters or underscore;
the other four kinds of names are identifiers beginning with uppercase letters.

1.4. NAMESPACES 5

2. An identifier must not be used as the name of a type constructor and a class in the same scope.

These are the only constraints; for example, Int may simultaneously be the name of a module, class, and
constructor within a single scope.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Lexical Structure

In this chapter, we describe the low-level lexical structure of Haskell. Most of the details may be skipped in
a first reading of the report.

2.1 Notational Conventions

These notational conventions are used for presenting syntax:

[pattern] optional
{pattern} zero or more repetitions
(pattern) grouping

pat1 | pat2 choice
pat〈pat′〉 difference—elements generated by pat

except those generated by pat ′

fibonacci terminal syntax in typewriter font

Because the syntax in this section describes lexical syntax, all whitespace is expressed explicitly; there is no
implicit space between juxtaposed symbols. BNF-like syntax is used throughout, with productions having
the form:

nonterm → alt1 | alt2 | . . . | altn

Care must be taken in distinguishing metalogical syntax such as | and [. . .] from concrete terminal syntax
(given in typewriter font) such as | and [...], although usually the context makes the distinction clear.

Haskell uses the Unicode [2] character set. However, source programs are currently biased toward the ASCII
character set used in earlier versions of Haskell.

This syntax depends on properties of the Unicode characters as defined by the Unicode consortium. Haskell
compilers are expected to make use of new versions of Unicode as they are made available.

7

8 CHAPTER 2. LEXICAL STRUCTURE

2.2 Lexical Program Structure

program → { lexeme | whitespace }
lexeme → qvarid | qconid | qvarsym | qconsym

| literal | special | reservedop | reservedid
literal → integer | float | char | string
special → (|) | , | ; | [|] | ` | { | }

whitespace → whitestuff {whitestuff }
whitestuff → whitechar | comment | ncomment
whitechar → newline | vertab | space | tab | uniWhite
newline → return linefeed | return | linefeed | formfeed
return → a carriage return
linefeed → a line feed
vertab → a vertical tab
formfeed → a form feed
space → a space
tab → a horizontal tab
uniWhite → any Unicode character defined as whitespace

comment → dashes [any〈symbol〉 {any}] newline
dashes → -- {-}
opencom → {-
closecom → -}
ncomment → opencom ANYseq {ncomment ANYseq} closecom
ANYseq → {ANY }〈{ANY } (opencom | closecom) {ANY }〉
ANY → graphic | whitechar
any → graphic | space | tab
graphic → small | large | symbol | digit | special | " | ’

small → ascSmall | uniSmall | _
ascSmall → a | b | . . . | z
uniSmall → any Unicode lowercase letter

large → ascLarge | uniLarge
ascLarge → A | B | . . . | Z
uniLarge → any uppercase or titlecase Unicode letter
symbol → ascSymbol | uniSymbol〈special | _ | " | ’〉

ascSymbol → ! | # | $ | % | & | * | + | . | / | < | = | > | ? | @
| \ | ˆ | | | - | ˜ | :

uniSymbol → any Unicode symbol or punctuation
digit → ascDigit | uniDigit
ascDigit → 0 | 1 | . . . | 9
uniDigit → any Unicode decimal digit
octit → 0 | 1 | . . . | 7
hexit → digit | A | . . . | F | a | . . . | f

2.3. COMMENTS 9

Lexical analysis should use the “maximal munch” rule: at each point, the longest possible lexeme satisfying
the lexeme production is read. So, although case is a reserved word, cases is not. Similarly, although =
is reserved, == and ˜= are not.

Any kind of whitespace is also a proper delimiter for lexemes.

Characters not in the category ANY are not valid in Haskell programs and should result in a lexing error.

2.3 Comments

Comments are valid whitespace.

An ordinary comment begins with a sequence of two or more consecutive dashes (e.g. --) and extends to
the following newline. The sequence of dashes must not form part of a legal lexeme. For example, “-->”
or “|--” do not begin a comment, because both of these are legal lexemes; however “--foo” does start a
comment.

A nested comment begins with “{-” and ends with “-}”. No legal lexeme starts with “{-”; hence, for
example, “{---” starts a nested comment despite the trailing dashes.

The comment itself is not lexically analysed. Instead, the first unmatched occurrence of the string “-}”
terminates the nested comment. Nested comments may be nested to any depth: any occurrence of the string
“{-” within the nested comment starts a new nested comment, terminated by “-}”. Within a nested comment,
each “{-” is matched by a corresponding occurrence of “-}”.

In an ordinary comment, the character sequences “{-” and “-}” have no special significance, and, in a nested
comment, a sequence of dashes has no special significance.

Nested comments are also used for compiler pragmas, as explained in Chapter 12.

If some code is commented out using a nested comment, then any occurrence of {- or -} within a string or
within an end-of-line comment in that code will interfere with the nested comments.

2.4 Identifiers and Operators

varid → (small {small | large | digit | ’ })〈reservedid〉
conid → large {small | large | digit | ’ }
reservedid → case | class | data | default | deriving | do | else

| foreign | if | import | in | infix | infixl
| infixr | instance | let | module | newtype | of
| then | type | where | _

An identifier consists of a letter followed by zero or more letters, digits, underscores, and single quotes.
Identifiers are lexically distinguished into two namespaces (Section 1.4): those that begin with a lowercase
letter (variable identifiers) and those that begin with an upper-case letter (constructor identifiers). Identifiers
are case sensitive: name, naMe, and Name are three distinct identifiers (the first two are variable identifiers,
the last is a constructor identifier).

10 CHAPTER 2. LEXICAL STRUCTURE

Underscore, “_”, is treated as a lowercase letter, and can occur wherever a lowercase letter can. However, “_”
all by itself is a reserved identifier, used as wild card in patterns. Compilers that offer warnings for unused
identifiers are encouraged to suppress such warnings for identifiers beginning with underscore. This allows
programmers to use “_foo” for a parameter that they expect to be unused.

varsym → (symbol〈:〉 {symbol})〈reservedop | dashes〉
consym → (: {symbol})〈reservedop〉
reservedop → .. | : | :: | = | \ | | | <- | -> | @ | ˜ | =>

Operator symbols are formed from one or more symbol characters, as defined above, and are lexically distin-
guished into two namespaces (Section 1.4):

• An operator symbol starting with a colon is a constructor.

• An operator symbol starting with any other character is an ordinary identifier.

Notice that a colon by itself, “:”, is reserved solely for use as the Haskell list constructor; this makes its
treatment uniform with other parts of list syntax, such as “[]” and “[a,b]”.

Other than the special syntax for prefix negation, all operators are infix, although each infix operator can be
used in a section to yield partially applied operators (see Section 3.5). All of the standard infix operators are
just predefined symbols and may be rebound.

In the remainder of the report six different kinds of names will be used:

varid (variables)
conid (constructors)
tyvar → varid (type variables)
tycon → conid (type constructors)
tycls → conid (type classes)
modid → {conid .} conid (modules)

Variables and type variables are represented by identifiers beginning with small letters, and the others by
identifiers beginning with capitals; also, variables and constructors have infix forms, the other four do not.
Module names are a dot-separated sequence of conids. Namespaces are also discussed in Section 1.4.

A name may optionally be qualified in certain circumstances by prepending them with a module identifier.
This applies to variable, constructor, type constructor and type class names, but not type variables or module
names. Qualified names are discussed in detail in Chapter 5.

qvarid → [modid .] varid
qconid → [modid .] conid
qtycon → [modid .] tycon
qtycls → [modid .] tycls
qvarsym → [modid .] varsym
qconsym → [modid .] consym

2.5. NUMERIC LITERALS 11

Since a qualified name is a lexeme, no spaces are allowed between the qualifier and the name. Sample lexical
analyses are shown below.

This Lexes as this
f.g f . g (three tokens)
F.g F.g (qualified ‘g’)
f.. f .. (two tokens)
F.. F.. (qualified ‘.’)
F. F . (two tokens)

The qualifier does not change the syntactic treatment of a name; for example, Prelude.+ is an infix operator
with the same fixity as the definition of + in the Prelude (Section 4.4.2).

2.5 Numeric Literals

decimal → digit{digit}
octal → octit{octit}
hexadecimal → hexit{hexit}

integer → decimal
| 0o octal | 0O octal
| 0x hexadecimal | 0X hexadecimal

float → decimal . decimal [exponent]
| decimal exponent

exponent → (e | E) [+ | -] decimal

There are two distinct kinds of numeric literals: integer and floating. Integer literals may be given in decimal
(the default), octal (prefixed by 0o or 0O) or hexadecimal notation (prefixed by 0x or 0X). Floating literals
are always decimal. A floating literal must contain digits both before and after the decimal point; this ensures
that a decimal point cannot be mistaken for another use of the dot character. Negative numeric literals are
discussed in Section 3.4. The typing of numeric literals is discussed in Section 6.4.1.

2.6 Character and String Literals

char → ’ (graphic〈’ | \〉 | space | escape〈\&〉) ’
string → " {graphic〈" | \〉 | space | escape | gap} "
escape → \ (charesc | ascii | decimal | o octal | x hexadecimal)
charesc → a | b | f | n | r | t | v | \ | " | ’ | &
ascii → ˆcntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

cntrl → ascLarge | @ | [| \ |] | ˆ | _
gap → \ whitechar {whitechar} \

12 CHAPTER 2. LEXICAL STRUCTURE

Character literals are written between single quotes, as in ’a’, and strings between double quotes, as in
"Hello".

Escape codes may be used in characters and strings to represent special characters. Note that a single quote ’
may be used in a string, but must be escaped in a character; similarly, a double quote " may be used in a
character, but must be escaped in a string. \ must always be escaped. The category charesc also includes
portable representations for the characters “alert” (\a), “backspace” (\b), “form feed” (\f), “new line” (\n),
“carriage return” (\r), “horizontal tab” (\t), and “vertical tab” (\v).

Escape characters for the Unicode character set, including control characters such as \ˆX, are also provided.
Numeric escapes such as \137 are used to designate the character with decimal representation 137; octal
(e.g. \o137) and hexadecimal (e.g. \x37) representations are also allowed.

Consistent with the “maximal munch” rule, numeric escape characters in strings consist of all consecutive
digits and may be of arbitrary length. Similarly, the one ambiguous ASCII escape code, "\SOH", is parsed
as a string of length 1. The escape character \& is provided as a “null character” to allow strings such as
"\137\&9" and "\SO\&H" to be constructed (both of length two). Thus "\&" is equivalent to "" and the
character ’\&’ is disallowed. Further equivalences of characters are defined in Section 6.1.2.

A string may include a “gap”—two backslants enclosing white characters—which is ignored. This allows
one to write long strings on more than one line by writing a backslant at the end of one line and at the start of
the next. For example,

"Here is a backslant \\ as well as \137, \
\a numeric escape character, and \ˆX, a control character."

String literals are actually abbreviations for lists of characters (see Section 3.7).

2.7 Layout

Haskell permits the omission of the braces and semicolons used in several grammar productions, by using
layout to convey the same information. This allows both layout-sensitive and layout-insensitive styles of
coding, which can be freely mixed within one program. Because layout is not required, Haskell programs
can be straightforwardly produced by other programs.

The effect of layout on the meaning of a Haskell program can be completely specified by adding braces
and semicolons in places determined by the layout. The meaning of this augmented program is now layout
insensitive.

Informally stated, the braces and semicolons are inserted as follows. The layout (or “off-side”) rule takes
effect whenever the open brace is omitted after the keyword where, let, do, or of. When this happens,
the indentation of the next lexeme (whether or not on a new line) is remembered and the omitted open brace
is inserted (the whitespace preceding the lexeme may include comments). For each subsequent line, if it
contains only whitespace or is indented more, then the previous item is continued (nothing is inserted); if it is
indented the same amount, then a new item begins (a semicolon is inserted); and if it is indented less, then the
layout list ends (a close brace is inserted). If the indentation of the non-brace lexeme immediately following a
where, let, do or of is less than or equal to the current indentation level, then instead of starting a layout,
an empty list “{}” is inserted, and layout processing occurs for the current level (i.e. insert a semicolon or
close brace). A close brace is also inserted whenever the syntactic category containing the layout list ends;
that is, if an illegal lexeme is encountered at a point where a close brace would be legal, a close brace is

2.7. LAYOUT 13

inserted. The layout rule matches only those open braces that it has inserted; an explicit open brace must be
matched by an explicit close brace. Within these explicit open braces, no layout processing is performed for
constructs outside the braces, even if a line is indented to the left of an earlier implicit open brace.

Section 10.3 gives a more precise definition of the layout rules.

Given these rules, a single newline may actually terminate several layout lists. Also, these rules permit:

f x = let a = 1; b = 2
g y = exp2

in exp1

making a, b and g all part of the same layout list.

As an example, Figure 2.1 shows a (somewhat contrived) module and Figure 2.2 shows the result of applying
the layout rule to it. Note in particular: (a) the line beginning }};pop, where the termination of the previous
line invokes three applications of the layout rule, corresponding to the depth (3) of the nested where clauses,
(b) the close braces in the where clause nested within the tuple and case expression, inserted because
the end of the tuple was detected, and (c) the close brace at the very end, inserted because of the column 0
indentation of the end-of-file token.

14 CHAPTER 2. LEXICAL STRUCTURE

module AStack(Stack, push, pop, top, size) where
data Stack a = Empty

| MkStack a (Stack a)

push :: a -> Stack a -> Stack a
push x s = MkStack x s

size :: Stack a -> Int
size s = length (stkToLst s) where

stkToLst Empty = []
stkToLst (MkStack x s) = x:xs where xs = stkToLst s

pop :: Stack a -> (a, Stack a)
pop (MkStack x s)

= (x, case s of r -> i r where i x = x) -- (pop Empty) is an error

top :: Stack a -> a
top (MkStack x s) = x -- (top Empty) is an error

Figure 2.1: A sample program

module AStack(Stack, push, pop, top, size) where
{data Stack a = Empty

| MkStack a (Stack a)

;push :: a -> Stack a -> Stack a
;push x s = MkStack x s

;size :: Stack a -> Int
;size s = length (stkToLst s) where

{stkToLst Empty = []
;stkToLst (MkStack x s) = x:xs where {xs = stkToLst s

}};pop :: Stack a -> (a, Stack a)
;pop (MkStack x s)

= (x, case s of {r -> i r where {i x = x}}) -- (pop Empty) is an error

;top :: Stack a -> a
;top (MkStack x s) = x -- (top Empty) is an error
}

Figure 2.2: Sample program with layout expanded

Chapter 3

Expressions

In this chapter, we describe the syntax and informal semantics of Haskell expressions, including their trans-
lations into the Haskell kernel, where appropriate. Except in the case of let expressions, these translations
preserve both the static and dynamic semantics. Free variables and constructors used in these translations
always refer to entities defined by the Prelude. For example, “concatMap” used in the translation of list
comprehensions (Section 3.11) means the concatMap defined by the Prelude, regardless of whether or
not the identifier “concatMap” is in scope where the list comprehension is used, and (if it is in scope) what
it is bound to.

exp → infixexp :: [context =>] type (expression type signature)
| infixexp

infixexp → lexp qop infixexp (infix operator application)
| - infixexp (prefix negation)
| lexp

lexp → \ apat1 . . . apatn -> exp (lambda abstraction, n ≥ 1)
| let decls in exp (let expression)
| if exp [;] then exp [;] else exp (conditional)
| case exp of { alts } (case expression)
| do { stmts } (do expression)
| fexp

fexp → [fexp] aexp (function application)

aexp → qvar (variable)
| gcon (general constructor)
| literal
| (exp) (parenthesized expression)
| (exp1 , . . . , expk) (tuple, k ≥ 2)
| [exp1 , . . . , expk] (list, k ≥ 1)
| [exp1 [, exp2] .. [exp3]] (arithmetic sequence)
| [exp | qual1 , . . . , qualn] (list comprehension, n ≥ 1)
| (infixexp qop) (left section)
| (qop〈-〉 infixexp) (right section)

15

16 CHAPTER 3. EXPRESSIONS

| qcon { fbind1 , . . . , fbindn } (labeled construction, n ≥ 0)
| aexp〈qcon〉 { fbind1 , . . . , fbindn } (labeled update, n ≥ 1)

Expressions involving infix operators are disambiguated by the operator’s fixity (see Section 4.4.2). Con-
secutive unparenthesized operators with the same precedence must both be either left or right associative to
avoid a syntax error. Given an unparenthesized expression “x qop(a,i) y qop(b,j) z” (where qop(a,i) means
an operator with associativity a and precedence i), parentheses must be added around either “xqop(a,i) y”
or “y qop(b,j) z” when i = j unless a = b = l or a = b = r.

An example algorithm for resolving expressions involving infix operators is given in Section 10.6.

Negation is the only prefix operator in Haskell; it has the same precedence as the infix - operator defined in
the Prelude (see Section 4.4.2, Figure 4.1).

The grammar is ambiguous regarding the extent of lambda abstractions, let expressions, and conditionals. The
ambiguity is resolved by the meta-rule that each of these constructs extends as far to the right as possible.

Sample parses are shown below.

This Parses as
f x + g y (f x) + (g y)
- f x + y (- (f x)) + y
let { ... } in x + y let { ... } in (x + y)
z + let { ... } in x + y z + (let { ... } in (x + y))
f x y :: Int (f x y) :: Int
\ x -> a+b :: Int \ x -> ((a+b) :: Int)

For the sake of clarity, the rest of this section will assume that expressions involving infix operators have been
resolved according to the fixities of the operators.

3.1 Errors

Errors during expression evaluation, denoted by ⊥ (“bottom”), are indistinguishable by a Haskell program
from non-termination. Since Haskell is a non-strict language, all Haskell types include ⊥. That is, a value of
any type may be bound to a computation that, when demanded, results in an error. When evaluated, errors
cause immediate program termination and cannot be caught by the user. The Prelude provides two functions
to directly cause such errors:

error :: String -> a
undefined :: a

A call to error terminates execution of the program and returns an appropriate error indication to the
operating system. It should also display the string in some system-dependent manner. When undefined is
used, the error message is created by the compiler.

Translations of Haskell expressions use error and undefined to explicitly indicate where execution time
errors may occur. The actual program behavior when an error occurs is up to the implementation. The
messages passed to the error function in these translations are only suggestions; implementations may
choose to display more or less information when an error occurs.

3.2. VARIABLES, CONSTRUCTORS, OPERATORS, AND LITERALS 17

3.2 Variables, Constructors, Operators, and Literals

aexp → qvar (variable)
| gcon (general constructor)
| literal

gcon → ()
| []
| (,{,})
| qcon

var → varid | (varsym) (variable)
qvar → qvarid | (qvarsym) (qualified variable)
con → conid | (consym) (constructor)
qcon → qconid | (gconsym) (qualified constructor)
varop → varsym | `varid` (variable operator)
qvarop → qvarsym | `qvarid` (qualified variable operator)
conop → consym | `conid` (constructor operator)
qconop → gconsym | `qconid` (qualified constructor operator)
op → varop | conop (operator)
qop → qvarop | qconop (qualified operator)
gconsym → : | qconsym

Haskell provides special syntax to support infix notation. An operator is a function that can be applied using
infix syntax (Section 3.4), or partially applied using a section (Section 3.5).

An operator is either an operator symbol, such as + or $$, or is an ordinary identifier enclosed in grave
accents (backquotes), such as òp̀ . For example, instead of writing the prefix application op x y, one can
write the infix application x òp̀ y. If no fixity declaration is given for òp̀ then it defaults to highest
precedence and left associativity (see Section 4.4.2).

Dually, an operator symbol can be converted to an ordinary identifier by enclosing it in parenthe-
ses. For example, (+) x y is equivalent to x + y, and foldr (*) 1 xs is equivalent to
foldr (\x y -> x*y) 1 xs.

Special syntax is used to name some constructors for some of the built-in types, as found in the production
for gcon and literal . These are described in Section 6.1.

An integer literal represents the application of the function fromInteger to the appropriate value of type
Integer. Similarly, a floating point literal stands for an application of fromRational to a value of type
Rational (that is, Ratio Integer).

Translation: The integer literal i is equivalent to fromInteger i , where fromInteger is a
method in class Num (see Section 6.4.1).
The floating point literal f is equivalent to fromRational (n Ratio.% d), where fromRational
is a method in class Fractional and Ratio.% constructs a rational from two integers, as defined in
the Ratio library. The integers n and d are chosen so that n/d = f .

18 CHAPTER 3. EXPRESSIONS

3.3 Curried Applications and Lambda Abstractions

fexp → [fexp] aexp (function application)
lexp → \ apat1 . . . apatn -> exp (lambda abstraction, n ≥ 1)

Function application is written e1 e2 . Application associates to the left, so the parentheses may be omitted
in (f x) y. Because e1 could be a data constructor, partial applications of data constructors are allowed.

Lambda abstractions are written \ p1 . . . pn -> e , where the pi are patterns. An expression such as
\x:xs->x is syntactically incorrect; it may legally be written as \(x:xs)->x.

The set of patterns must be linear—no variable may appear more than once in the set.

Translation: The following identity holds:

\ p1 . . . pn -> e = \ x1 . . . xn -> case (x1, . . ., xn) of (p1, . . ., pn) -> e

where the xi are new identifiers.

Given this translation combined with the semantics of case expressions and pattern matching described in
Section 3.17.3, if the pattern fails to match, then the result is ⊥.

3.4 Operator Applications

infixexp → lexp qop infixexp
| - infixexp (prefix negation)
| lexp

qop → qvarop | qconop (qualified operator)

The form e1 qop e2 is the infix application of binary operator qop to expressions e1 and e2 .

The special form -e denotes prefix negation, the only prefix operator in Haskell, and is syntax for
negate (e). The binary - operator does not necessarily refer to the definition of - in the Prelude; it
may be rebound by the module system. However, unary - will always refer to the negate function defined
in the Prelude. There is no link between the local meaning of the - operator and unary negation.

Prefix negation has the same precedence as the infix operator - defined in the Prelude (see Table 4.1). Because
e1-e2 parses as an infix application of the binary operator -, one must write e1(-e2) for the alternative
parsing. Similarly, (-) is syntax for (\ x y -> x-y), as with any infix operator, and does not denote
(\ x -> -x)—one must use negate for that.

Translation: The following identities hold:

e1 op e2 = (op) e1 e2
-e = negate (e)

3.5. SECTIONS 19

3.5 Sections

aexp → (infixexp qop) (left section)
| (qop〈-〉 infixexp) (right section)

Sections are written as (op e) or (e op), where op is a binary operator and e is an expression. Sections
are a convenient syntax for partial application of binary operators.

Syntactic precedence rules apply to sections as follows. (op e) is legal if and only if (x op e) parses in
the same way as (x op (e)); and similarly for (e op). For example, (*a+b) is syntactically invalid, but
(+a*b) and (*(a+b)) are valid. Because (+) is left associative, (a+b+) is syntactically correct, but
(+a+b) is not; the latter may legally be written as (+(a+b)). As another example, the expression

(let n = 10 in n +)

is invalid because, by the let/lambda meta-rule (Section 3), the expression

(let n = 10 in n + x)

parses as

(let n = 10 in (n + x))

rather than

((let n = 10 in n) + x)

Because - is treated specially in the grammar, (- exp) is not a section, but an application of prefix negation,
as described in the preceding section. However, there is a subtract function defined in the Prelude such
that (subtract exp) is equivalent to the disallowed section. The expression (+ (- exp)) can serve the
same purpose.

Translation: The following identities hold:

(op e) = \ x -> x op e
(e op) = \ x -> e op x

where op is a binary operator, e is an expression, and x is a variable that does not occur free in e .

3.6 Conditionals

lexp → if exp [;] then exp [;] else exp

A conditional expression has the form if e1 then e2 else e3 and returns the value of e2 if the value of
e1 is True, e3 if e1 is False, and ⊥ otherwise.

20 CHAPTER 3. EXPRESSIONS

Translation: The following identity holds:

if e1 then e2 else e3 = case e1 of { True -> e2 ; False -> e3 }

where True and False are the two nullary constructors from the type Bool, as defined in the Prelude.
The type of e1 must be Bool; e2 and e3 must have the same type, which is also the type of the entire
conditional expression.

3.7 Lists

infixexp → exp1 qop exp2

aexp → [exp1 , . . . , expk] (k ≥ 1)
| gcon

gcon → []
| qcon

qcon → (gconsym)
qop → qconop
qconop → gconsym
gconsym → :

Lists are written [e1, . . ., ek], where k ≥ 1 . The list constructor is :, and the empty list is denoted [].
Standard operations on lists are given in the Prelude (see Section 6.1.3, and Chapter 9 notably Section 9.1).

Translation: The following identity holds:

[e1, . . ., ek] = e1 : (e2 : (. . . (ek : [])))

where : and [] are constructors for lists, as defined in the Prelude (see Section 6.1.3). The types
of e1 through ek must all be the same (call it t), and the type of the overall expression is [t] (see
Section 4.1.2).

The constructor “:” is reserved solely for list construction; like [], it is considered part of the language
syntax, and cannot be hidden or redefined. It is a right-associative operator, with precedence level 5 (Sec-
tion 4.4.2).

3.8 Tuples

aexp → (exp1 , . . . , expk) (k ≥ 2)
| qcon

qcon → (,{,})

Tuples are written (e1, . . ., ek), and may be of arbitrary length k ≥ 2 . The constructor for an n-tuple is
denoted by (,. . .,), where there are n − 1 commas. Thus (a,b,c) and (,,) a b c denote the same
value. Standard operations on tuples are given in the Prelude (see Section 6.1.4 and Chapter 9).

3.9. UNIT EXPRESSIONS AND PARENTHESIZED EXPRESSIONS 21

Translation: (e1, . . ., ek) for k ≥ 2 is an instance of a k -tuple as defined in the Prelude, and
requires no translation. If t1 through tk are the types of e1 through ek , respectively, then the type of the
resulting tuple is (t1, . . ., tk) (see Section 4.1.2).

3.9 Unit Expressions and Parenthesized Expressions

aexp → gcon
| (exp)

gcon → ()

The form (e) is simply a parenthesized expression, and is equivalent to e . The unit expression () has type
() (see Section 4.1.2). It is the only member of that type apart from ⊥, and can be thought of as the “nullary
tuple” (see Section 6.1.5).

Translation: (e) is equivalent to e .

3.10 Arithmetic Sequences

aexp → [exp1 [, exp2] .. [exp3]]

The arithmetic sequence [e1, e2 .. e3] denotes a list of values of type t , where each of the ei has type t ,
and t is an instance of class Enum.

Translation: Arithmetic sequences satisfy these identities:

[e1..] = enumFrom e1
[e1,e2..] = enumFromThen e1 e2
[e1..e3] = enumFromTo e1 e3
[e1,e2..e3] = enumFromThenTo e1 e2 e3

where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are class methods in
the class Enum as defined in the Prelude (see Figure 6.1).

The semantics of arithmetic sequences therefore depends entirely on the instance declaration for the type t .
See Section 6.3.4 for more details of which Prelude types are in Enum and their semantics.

3.11 List Comprehensions

aexp → [exp | qual1 , . . . , qualn] (list comprehension, n ≥ 1)
qual → pat <- exp (generator)

| let decls (local declaration)
| exp (boolean guard)

22 CHAPTER 3. EXPRESSIONS

A list comprehension has the form [e | q1, . . ., qn],n ≥ 1 , where the qi qualifiers are either

• generators of the form p <- e , where p is a pattern (see Section 3.17) of type t and e is an expression
of type [t]

• local bindings that provide new definitions for use in the generated expression e or subsequent boolean
guards and generators

• boolean guards, which are arbitrary expressions of type Bool.

Such a list comprehension returns the list of elements produced by evaluating e in the successive environ-
ments created by the nested, depth-first evaluation of the generators in the qualifier list. Binding of variables
occurs according to the normal pattern matching rules (see Section 3.17), and if a match fails then that element
of the list is simply skipped over. Thus:

[x | xs <- [[(1,2),(3,4)], [(5,4),(3,2)]],
(3,x) <- xs]

yields the list [4,2]. If a qualifier is a boolean guard, it must evaluate to True for the previous pattern
match to succeed. As usual, bindings in list comprehensions can shadow those in outer scopes; for example:

[x | x <- x, x <- x] = [z | y <- x, z <- y]

Translation: List comprehensions satisfy these identities, which may be used as a translation into the
kernel:

[e | True] = [e]
[e | q] = [e | q, True]
[e | b, Q] = if b then [e | Q] else []
[e | p <- l, Q] = let ok p = [e | Q]

ok _ = []
in concatMap ok l

[e | let decls, Q] = let decls in [e | Q]

where e ranges over expressions, p over patterns, l over list-valued expressions, b over boolean expres-
sions, decls over declaration lists, q over qualifiers, and Q over sequences of qualifiers. ok is a fresh
variable. The function concatMap, and boolean value True, are defined in the Prelude.

As indicated by the translation of list comprehensions, variables bound by let have fully polymorphic types
while those defined by <- are lambda bound and are thus monomorphic (see Section 4.5.4).

3.12 Let Expressions

lexp → let decls in exp

Let expressions have the general form let { d1 ; . . . ; dn } in e , and introduce a nested, lexically-
scoped, mutually-recursive list of declarations (let is often called letrec in other languages). The scope

3.13. CASE EXPRESSIONS 23

of the declarations is the expression e and the right hand side of the declarations. Declarations are described
in Chapter 4. Pattern bindings are matched lazily; an implicit ˜makes these patterns irrefutable. For example,

let (x,y) = undefined in e

does not cause an execution-time error until x or y is evaluated.

Translation: The dynamic semantics of the expression let { d1 ; . . . ; dn } in e0 are captured by this
translation: After removing all type signatures, each declaration di is translated into an equation of the form pi = ei ,
where pi and ei are patterns and expressions respectively, using the translation in Section 4.4.3. Once done, these
identities hold, which may be used as a translation into the kernel:

let {p1=e1; ... ; pn=en} in e0 = let (˜p1, ... ,˜pn) = (e1, ... ,en) in e0
let p = e1 in e0 = case e1 of ˜p -> e0

where no variable in p appears free in e1
let p = e1 in e0 = let p = fix (\ ˜p -> e1) in e0

where fix is the least fixpoint operator. Note the use of the irrefutable patterns ˜p. This translation does not
preserve the static semantics because the use of case precludes a fully polymorphic typing of the bound variables.
The static semantics of the bindings in a let expression are described in Section 4.4.3.

3.13 Case Expressions

lexp → case exp of { alts }
alts → alt1 ; . . . ; altn (n ≥ 1)
alt → pat -> exp [where decls]

| pat gdpat [where decls]
| (empty alternative)

gdpat → guards -> exp [gdpat]
guards → | guard1 , . . . , guardn (n ≥ 1)
guard → pat <- infixexp (pattern guard)

| let decls (local declaration)
| infixexp (boolean guard)

A case expression has the general form

case e of { p1 match1 ; . . . ; pn matchn }

where each matchi is of the general form

| gsi1 -> ei1
. . .
| gsimi

-> eimi

where declsi

(Notice that in the syntax rule for guards , the “|” is a terminal symbol, not the syntactic metasymbol for
alternation.) Each alternative pi matchi consists of a pattern pi and its matches, matchi . Each match in turn
consists of a sequence of pairs of guards gsij and bodies eij (expressions), followed by optional bindings
(declsi) that scope over all of the guards and expressions of the alternative.

A guard has one of the following forms:

24 CHAPTER 3. EXPRESSIONS

• pattern guards are of the form p <- e , where p is a pattern (see Section 3.17) of type t and e is an
expression type t1. They succeed if the expression e matches the pattern p, and introduce the bindings
of the pattern to the environment.

• local bindings are of the form let decls . They always succeed, and they introduce the names defined
in decls to the environment.

• boolean guards are arbitrary expressions of type Bool. They succeed if the expression evaluates to
True, and they do not introduce new names to the environment. A boolean guard, g , is semantically
equivalent to the pattern guard True <- g .

An alternative of the form
pat -> exp where decls

is treated as shorthand for:
pat | True -> exp
where decls

A case expression must have at least one alternative and each alternative must have at least one body. Each
body must have the same type, and the type of the whole expression is that type.

A case expression is evaluated by pattern matching the expression e against the individual alternatives. The
alternatives are tried sequentially, from top to bottom. If e matches the pattern of an alternative, then the
guarded expressions for that alternative are tried sequentially from top to bottom in the environment of the
case expression extended first by the bindings created during the matching of the pattern, and then by the
declsi in the where clause associated with that alternative.

For each guarded expression, the comma-separated guards are tried sequentially from left to right. If all of
them succeed, then the corresponding expression is evaluated in the environment extended with the bindings
introduced by the guards. That is, the bindings that are introduced by a guard (either by using a let clause or
a pattern guard) are in scope in the following guards and the corresponding expression. If any of the guards
fail, then this guarded expression fails and the next guarded expression is tried.

If none of the guarded expressions for a given alternative succeed, then matching continues with the next
alternative. If no alternative succeeds, then the result is ⊥. Pattern matching is described in Section 3.17,
with the formal semantics of case expressions in Section 3.17.3.

A note about parsing. The expression

case x of { (a,_) | let b = not a in b :: Bool -> a }

is tricky to parse correctly. It has a single unambiguous parse, namely

case x of { (a,_) | (let b = not a in b :: Bool) -> a }

However, the phrase Bool -> a is syntactically valid as a type, and parsers with limited lookahead may
incorrectly commit to this choice, and hence reject the program. Programmers are advised, therefore, to avoid
guards that end with a type signature — indeed that is why a guard contains an infixexp not an exp.

1Note that the syntax of a pattern guard is the same as that of a generator in a list comprehension. The contextual difference is that,
in a list comprehension, a pattern of type t goes with an expression of type [t].

3.14. DO EXPRESSIONS 25

3.14 Do Expressions

lexp → do { stmts } (do expression)
stmts → stmt1 . . . stmtn exp [;] (n ≥ 0)
stmt → exp ;

| pat <- exp ;
| let decls ;
| ; (empty statement)

A do expression provides a more conventional syntax for monadic programming. It allows an expression
such as

putStr "x: " >>
getLine >>= \l ->
return (words l)

to be written in a more traditional way as:

do putStr "x: "
l <- getLine
return (words l)

Translation: Do expressions satisfy these identities, which may be used as a translation into the kernel,
after eliminating empty stmts:

do {e} = e
do {e;stmts} = e >> do {stmts}
do {p <- e; stmts} = let ok p = do {stmts}

ok _ = fail "..."
in e >>= ok

do {let decls; stmts} = let decls in do {stmts}

The ellipsis "..." stands for a compiler-generated error message, passed to fail, preferably giving
some indication of the location of the pattern-match failure; the functions >>, >>=, and fail are
operations in the class Monad, as defined in the Prelude; and ok is a fresh identifier.

As indicated by the translation of do, variables bound by let have fully polymorphic types while those
defined by <- are lambda bound and are thus monomorphic.

3.15 Datatypes with Field Labels

A datatype declaration may optionally define field labels (see Section 4.2.1). These field labels can be used
to construct, select from, and update fields in a manner that is independent of the overall structure of the
datatype.

Different datatypes cannot share common field labels in the same scope. A field label can be used at most
once in a constructor. Within a datatype, however, a field label can be used in more than one constructor
provided the field has the same typing in all constructors. To illustrate the last point, consider:

26 CHAPTER 3. EXPRESSIONS

data S = S1 { x :: Int } | S2 { x :: Int } -- OK
data T = T1 { y :: Int } | T2 { y :: Bool } -- BAD

Here S is legal but T is not, because y is given inconsistent typings in the latter.

3.15.1 Field Selection

aexp → qvar

Field labels are used as selector functions. When used as a variable, a field label serves as a function that
extracts the field from an object. Selectors are top level bindings and so they may be shadowed by local
variables but cannot conflict with other top level bindings of the same name. This shadowing only affects
selector functions; in record construction (Section 3.15.2) and update (Section 3.15.3), field labels cannot be
confused with ordinary variables.

Translation: A field label f introduces a selector function defined as:

f x = case x of { C1 p11 . . . p1k -> e1 ; . . . ; Cn pn1 . . . pnk -> en }

where C1 . . . Cn are all the constructors of the datatype containing a field labeled with f , pij is y when
f labels the j th component of Ci or _ otherwise, and ei is y when some field in Ci has a label of f or
undefined otherwise.

3.15.2 Construction Using Field Labels

aexp → qcon { fbind1 , . . . , fbindn } (labeled construction, n ≥ 0)
fbind → qvar = exp

A constructor with labeled fields may be used to construct a value in which the components are specified by
name rather than by position. Unlike the braces used in declaration lists, these are not subject to layout; the
{ and } characters must be explicit. (This is also true of field updates and field patterns.) Construction using
field labels is subject to the following constraints:

• Only field labels declared with the specified constructor may be mentioned.

• A field label may not be mentioned more than once.

• Fields not mentioned are initialized to ⊥.

• A compile-time error occurs when any strict fields (fields whose declared types are prefixed by !) are
omitted during construction. Strict fields are discussed in Section 4.2.1.

The expression F {}, where F is a data constructor, is legal whether or not F was declared with record
syntax (provided F has no strict fields — see the fourth bullet above); it denotes F ⊥1 . . . ⊥n , where n is
the arity of F.

3.15. DATATYPES WITH FIELD LABELS 27

Translation: In the binding f = v , the field f labels v .

C { bs } = C (pickC
1 bs undefined) . . . (pickC

k bs undefined)

where k is the arity of C .
The auxiliary function pickC

i bs d is defined as follows:

If the i th component of a constructor C has the field label f , and if f = v appears in the
binding list bs , then pickC

i bs d is v . Otherwise, pickC
i bs d is the default value d .

3.15.3 Updates Using Field Labels

aexp → aexp〈qcon〉 { fbind1 , . . . , fbindn } (labeled update, n ≥ 1)

Values belonging to a datatype with field labels may be non-destructively updated. This creates a new value
in which the specified field values replace those in the existing value. Updates are restricted in the following
ways:

• All labels must be taken from the same datatype.

• At least one constructor must define all of the labels mentioned in the update.

• No label may be mentioned more than once.

• An execution error occurs when the value being updated does not contain all of the specified labels.

Translation: Using the prior definition of pick ,

e { bs } = case e of
C1 v1 . . . vk1 -> C1 (pickC1

1 bs v1) . . . (pickC1

k1
bs vk1)

...
Cj v1 . . . vkj -> Cj (pick

Cj

1 bs v1) . . . (pick
Cj

kj
bs vkj)

_ -> error "Update error"

where {C1 , . . . ,Cj} is the set of constructors containing all labels in bs , and ki is the arity of Ci .

Here are some examples using labeled fields:

data T = C1 {f1,f2 :: Int}
| C2 {f1 :: Int,

f3,f4 :: Char}

Expression Translation
C1 {f1 = 3} C1 3 undefined
C2 {f1 = 1, f4 = ’A’, f3 = ’B’} C2 1 ’B’ ’A’
x {f1 = 1} case x of C1 _ f2 -> C1 1 f2

C2 _ f3 f4 -> C2 1 f3 f4

The field f1 is common to both constructors in T. This example translates expressions using construc-
tors in field-label notation into equivalent expressions using the same constructors without field labels. A
compile-time error will result if no single constructor defines the set of field labels used in an update, such as
x {f2 = 1, f3 = ’x’}.

28 CHAPTER 3. EXPRESSIONS

3.16 Expression Type-Signatures

exp → exp :: [context =>] type

Expression type-signatures have the form e :: t , where e is an expression and t is a type (Section 4.1.2); they
are used to type an expression explicitly and may be used to resolve ambiguous typings due to overloading
(see Section 4.3.4). The value of the expression is just that of exp. As with normal type signatures (see
Section 4.4.1), the declared type may be more specific than the principal type derivable from exp, but it is an
error to give a type that is more general than, or not comparable to, the principal type.

Translation:

e :: t = let { v :: t; v = e } in v

3.17 Pattern Matching

Patterns appear in lambda abstractions, function definitions, pattern bindings, list comprehensions, do ex-
pressions, and case expressions. However, the first five of these ultimately translate into case expressions, so
defining the semantics of pattern matching for case expressions is sufficient.

3.17.1 Patterns

Patterns have this syntax:

pat → lpat qconop pat (infix constructor)
| lpat

lpat → apat
| - (integer | float) (negative literal)
| gcon apat1 . . . apatk (arity gcon = k , k ≥ 1)

apat → var [@ apat] (as pattern)
| gcon (arity gcon = 0)
| qcon { fpat1 , . . . , fpatk } (labeled pattern, k ≥ 0)
| literal
| _ (wildcard)
| (pat) (parenthesized pattern)
| (pat1 , . . . , patk) (tuple pattern, k ≥ 2)
| [pat1 , . . . , patk] (list pattern, k ≥ 1)
| ˜ apat (irrefutable pattern)

fpat → qvar = pat

The arity of a constructor must match the number of sub-patterns associated with it; one cannot match against
a partially-applied constructor.

All patterns must be linear —no variable may appear more than once. For example, this definition is illegal:

3.17. PATTERN MATCHING 29

f (x,x) = x -- ILLEGAL; x used twice in pattern

Patterns of the form var@pat are called as-patterns, and allow one to use var as a name for the value being
matched by pat . For example,

case e of { xs@(x:rest) -> if x==0 then rest else xs }

is equivalent to:

let { xs = e } in
case xs of { (x:rest) -> if x==0 then rest else xs }

Patterns of the form _ are wildcards and are useful when some part of a pattern is not referenced on the
right-hand-side. It is as if an identifier not used elsewhere were put in its place. For example,

case e of { [x,_,_] -> if x==0 then True else False }

is equivalent to:

case e of { [x,y,z] -> if x==0 then True else False }

3.17.2 Informal Semantics of Pattern Matching

Patterns are matched against values. Attempting to match a pattern can have one of three results: it may fail;
it may succeed, returning a binding for each variable in the pattern; or it may diverge (i.e. return ⊥). Pattern
matching proceeds from left to right, and outside to inside, according to the following rules:

1. Matching the pattern var against a value v always succeeds and binds var to v .

2. Matching the pattern ˜apat against a value v always succeeds. The free variables in apat are bound to
the appropriate values if matching apat against v would otherwise succeed, and to ⊥ if matching apat
against v fails or diverges. (Binding does not imply evaluation.)

Operationally, this means that no matching is done on a ˜apat pattern until one of the variables in apat
is used. At that point the entire pattern is matched against the value, and if the match fails or diverges,
so does the overall computation.

3. Matching the wildcard pattern _ against any value always succeeds, and no binding is done.

4. Matching the pattern con pat against a value, where con is a constructor defined by newtype, depends
on the value:

• If the value is of the form con v , then pat is matched against v .

• If the value is ⊥, then pat is matched against ⊥.

That is, constructors associated with newtype serve only to change the type of a value.

5. Matching the pattern con pat1 . . . patn against a value, where con is a constructor defined by data,
depends on the value:

30 CHAPTER 3. EXPRESSIONS

• If the value is of the form con v1 . . . vn , sub-patterns are matched left-to-right against the com-
ponents of the data value; if all matches succeed, the overall match succeeds; the first to fail or
diverge causes the overall match to fail or diverge, respectively.

• If the value is of the form con ′ v1 . . . vm , where con is a different constructor to con ′, the match
fails.

• If the value is ⊥, the match diverges.

6. Matching against a constructor using labeled fields is the same as matching ordinary constructor pat-
terns except that the fields are matched in the order they are named in the field list. All fields listed
must be declared by the constructor; fields may not be named more than once. Fields not named by the
pattern are ignored (matched against _).

7. Matching a numeric, character, or string literal pattern k against a value v succeeds if v == k , where
== is overloaded based on the type of the pattern. The match diverges if this test diverges.

The interpretation of numeric literals is exactly as described in Section 3.2; that is, the overloaded
function fromInteger or fromRational is applied to an Integer or Rational literal (resp)
to convert it to the appropriate type.

8. Matching an as-pattern var@apat against a value v is the result of matching apat against v , augmented
with the binding of var to v . If the match of apat against v fails or diverges, then so does the overall
match.

Aside from the obvious static type constraints (for example, it is a static error to match a character against a
boolean), the following static class constraints hold:

• An integer literal pattern can only be matched against a value in the class Num.

• A floating literal pattern can only be matched against a value in the class Fractional.

It is sometimes helpful to distinguish two kinds of patterns. Matching an irrefutable pattern is non-strict: the
pattern matches even if the value to be matched is ⊥. Matching a refutable pattern is strict: if the value to
be matched is ⊥ the match diverges. The irrefutable patterns are as follows: a variable, a wildcard, N apat
where N is a constructor defined by newtype and apat is irrefutable (see Section 4.2.3), var@apat where
apat is irrefutable, or of the form ˜apat (whether or not apat is irrefutable). All other patterns are refutable.

Here are some examples:

1. If the pattern [’a’,’b’] is matched against [’x’,⊥], then ’a’ fails to match against ’x’, and
the result is a failed match. But if [’a’,’b’] is matched against [⊥,’x’], then attempting to
match ’a’ against ⊥ causes the match to diverge .

2. These examples demonstrate refutable vs. irrefutable matching:

(\ ˜(x,y) -> 0) ⊥ ⇒ 0
(\ (x,y) -> 0) ⊥ ⇒ ⊥
(\ ˜[x] -> 0) [] ⇒ 0
(\ ˜[x] -> x) [] ⇒ ⊥
(\ ˜[x,˜(a,b)] -> x) [(0,1),⊥] ⇒ (0,1)
(\ ˜[x, (a,b)] -> x) [(0,1),⊥] ⇒ ⊥
(\ (x:xs) -> x:x:xs) ⊥ ⇒ ⊥
(\ ˜(x:xs) -> x:x:xs) ⊥ ⇒ ⊥:⊥:⊥

3.17. PATTERN MATCHING 31

3. Consider the following declarations:
newtype N = N Bool
data D = D !Bool

These examples illustrate the difference in pattern matching between types defined by data and
newtype:
(\ (N True) -> True) ⊥ ⇒ ⊥
(\ (D True) -> True) ⊥ ⇒ ⊥
(\ ˜(D True) -> True) ⊥ ⇒ True

Additional examples may be found in Section 4.2.3.

Top level patterns in case expressions and the set of top level patterns in function or pattern bindings may
have zero or more associated guards. See Section 3.13 for the syntax and semantics of guards.

The guard semantics have an influence on the strictness characteristics of a function or case expression. In
particular, an otherwise irrefutable pattern may be evaluated because of a guard. For example, in

f :: (Int,Int,Int) -> [Int] -> Int
f ˜(x,y,z) [a] | (a == y) = 1

both a and y will be evaluated by == in the guard.

3.17.3 Formal Semantics of Pattern Matching

The semantics of all pattern matching constructs other than case expressions are defined by giving identities
that relate those constructs to case expressions. The semantics of case expressions themselves are in turn
given as a series of identities, in Figures 3.1–3.3. Any implementation should behave so that these identities
hold; it is not expected that it will use them directly, since that would generate rather inefficient code.

In Figures 3.1–3.3: e , e ′ and ei are expressions; gi and gsi are guards and sequences of guards respecively;
p and pi are patterns; v , x , and xi are variables; K and K ′ are algebraic datatype (data) constructors
(including tuple constructors); and N is a newtype constructor.

Rule (b) matches a general source-language case expression, regardless of whether it actually includes
guards—if no guards are written, then True is substituted for the guards gsi,j in the matchi forms. Subse-
quent identities manipulate the resulting case expression into simpler and simpler forms.

Rule (h) in Figure 3.2 involves the overloaded operator ==; it is this rule that defines the meaning of pattern
matching against overloaded constants.

These identities all preserve the static semantics. Rules (d), (e), (j), and (q) use a lambda rather than a let;
this indicates that variables bound by case are monomorphically typed (Section 4.1.4).

32 CHAPTER 3. EXPRESSIONS

(a) case e of { alts } = (\v -> case v of { alts }) e
where v is a new variable

(b) case v of { p1 match1; . . . ; pn matchn }
= case v of { p1 match1 ;

_ -> . . . case v of {
pn matchn ;
_ -> error "No match" }. . .}

where each matchi has the form:
| gsi,1 -> ei,1 ; . . . ; | gsi,mi -> ei,mi where { declsi }

(c) case v of { p | gs1 -> e1 ; . . .
| gsn -> en where { decls }

_ -> e′ }
= case e′ of { y ->

case v of {
p -> let { decls } in

case () of {
() | gs1 -> e1;
_ -> . . . case () of {

() | gsn -> en;
_ -> y } . . . }

_ -> y }}
where y is a new variable

(d) case v of { ˜p -> e; _ -> e′ }
= (\x1 . . . xn -> e) (case v of { p-> x1 }) . . . (case v of { p -> xn})
where x1, . . . , xn are all the variables in p

(e) case v of { x@p -> e; _ -> e′ }
= case v of { p -> (\ x -> e) v ; _ -> e′ }

(f) case v of { _ -> e; _ -> e′ } = e

Figure 3.1: Semantics of Case Expressions, Part 1

3.17. PATTERN MATCHING 33

(g) case v of { K p1 . . . pn -> e; _ -> e′ }
= case v of {

K x1 . . . xn -> case x1 of {
p1 -> . . . case xn of { pn -> e ; _ -> e′ } . . .
_ -> e′ }

_ -> e′ }

at least one of p1, . . . , pn is not a variable; x1, . . . , xn are new variables

(h) case v of { k -> e; _ -> e′ } = if (v==k) then e else e′

where k is a numeric, character, or string literal

(i) case v of { x -> e; _ -> e′ } = case v of { x -> e }

(j) case v of { x -> e } = (\ x -> e) v

(k) case N v of { N p -> e; _ -> e′ }
= case v of { p -> e; _ -> e′ }
where N is a newtype constructor

(l) case ⊥ of { N p -> e; _ -> e′ } = case ⊥ of { p -> e }
where N is a newtype constructor

(m) case v of { K { f1 = p1 , f2 = p2 , . . . } -> e ; _ -> e′ }
= case e′ of {

y ->
case v of {
K { f1 = p1 } ->

case v of {K { f2 = p2 , . . . } -> e ; _ -> y };
_ -> y }}

where f1, f2, . . . are fields of constructor K; y is a new variable

(n) case v of { K { f = p } -> e ; _ -> e′ }
= case v of {

K p1 . . . pn -> e ; _ -> e′ }
where pi is p if f labels the ith component of K, _ otherwise

(o) case v of { K {} -> e ; _ -> e′ }
= case v of {

K _ . . . _ -> e ; _ -> e′ }
(p) case (K′ e1 . . . em) of { K x1 . . . xn -> e; _ -> e′ } = e′

where K and K′ are distinct data constructors of arity n and m, respectively

(q) case (K e1 . . . en) of { K x1 . . . xn -> e; _ -> e′ }
= (\x1 . . . xn -> e) e1 . . . en
where K is a data constructor of arity n

(r) case ⊥ of { K x1 . . . xn -> e; _ -> e′ } = ⊥
where K is a data constructor of arity n

Figure 3.2: Semantics of Case Expressions, Part 2

34 CHAPTER 3. EXPRESSIONS

(s) case () of { () | g1, . . ., gn -> e; _ -> e′ }
= case () of {

() | g1 -> . . . case () of {
() | gn -> e;
_ -> e′ } . . .

_ -> e′ }
where y is a new variable

(t) case () of { () | p <- e0 -> e; _ -> e′ }
= case e0 of { p -> e; _ -> e′ }

(u) case () of { () | let decls -> e; _ -> e′ }
= let decls in e

(v) case () of { () | e0 -> e; _ -> e′ }
= if e0 then e else e′

Figure 3.3: Semantics of Case Expressions, Part 3

Chapter 4

Declarations and Bindings

In this chapter, we describe the syntax and informal semantics of Haskell declarations.

module → module modid [exports] where body
| body

body → { impdecls ; topdecls }
| { impdecls }
| { topdecls }

topdecls → topdecl1 ; . . . ; topdecln (n ≥ 1)
topdecl → type simpletype = type

| data [context =>] simpletype [= constrs] [deriving]
| newtype [context =>] simpletype = newconstr [deriving]
| class [scontext =>] tycls tyvar [where cdecls]
| instance [scontext =>] qtycls inst [where idecls]
| default (type1 , . . . , typen) (n ≥ 0)
| foreign fdecl
| decl

decls → { decl1 ; . . . ; decln } (n ≥ 0)
decl → gendecl

| (funlhs | pat) rhs

cdecls → { cdecl1 ; . . . ; cdecln } (n ≥ 0)
cdecl → gendecl

| (funlhs | var) rhs

idecls → { idecl1 ; . . . ; idecln } (n ≥ 0)
idecl → (funlhs | var) rhs

| (empty)

gendecl → vars :: [context =>] type (type signature)
| fixity [integer] ops (fixity declaration)
| (empty declaration)

35

36 CHAPTER 4. DECLARATIONS AND BINDINGS

ops → op1 , . . . , opn (n ≥ 1)
vars → var1 , . . . , varn (n ≥ 1)
fixity → infixl | infixr | infix

The declarations in the syntactic category topdecls are only allowed at the top level of a Haskell module (see
Chapter 5), whereas decls may be used either at the top level or in nested scopes (i.e. those within a let or
where construct).

For exposition, we divide the declarations into three groups: user-defined datatypes, consisting of type,
newtype, and data declarations (Section 4.2); type classes and overloading, consisting of class,
instance, and default declarations (Section 4.3); and nested declarations, consisting of value bind-
ings, type signatures, and fixity declarations (Section 4.4).

Haskell has several primitive datatypes that are “hard-wired” (such as integers and floating-point numbers),
but most “built-in” datatypes are defined with normal Haskell code, using normal type and data declara-
tions. These “built-in” datatypes are described in detail in Section 6.1.

4.1 Overview of Types and Classes

Haskell uses a traditional Hindley-Milner polymorphic type system to provide a static type semantics [4, 6],
but the type system has been extended with type classes (or just classes) that provide a structured way to
introduce overloaded functions.

A class declaration (Section 4.3.1) introduces a new type class and the overloaded operations that must be
supported by any type that is an instance of that class. An instance declaration (Section 4.3.2) declares
that a type is an instance of a class and includes the definitions of the overloaded operations—called class
methods—instantiated on the named type.

For example, suppose we wish to overload the operations (+) and negate on types Int and Float. We
introduce a new type class called Num:

class Num a where -- simplified class declaration for Num
(+) :: a -> a -> a -- (Num is defined in the Prelude)
negate :: a -> a

This declaration may be read “a type a is an instance of the class Num if there are class methods (+) and
negate, of the given types, defined on it.”

We may then declare Int and Float to be instances of this class:

instance Num Int where -- simplified instance of Num Int
x + y = addInt x y
negate x = negateInt x

instance Num Float where -- simplified instance of Num Float
x + y = addFloat x y
negate x = negateFloat x

4.1. OVERVIEW OF TYPES AND CLASSES 37

where addInt, negateInt, addFloat, and negateFloat are assumed in this case to be primitive
functions, but in general could be any user-defined function. The first declaration above may be read “Int is
an instance of the class Num as witnessed by these definitions (i.e. class methods) for (+) and negate.”

More examples of type classes can be found in the papers by Jones [8] or Wadler and Blott [13]. The term
‘type class’ was used to describe the original Haskell 1.0 type system; ‘constructor class’ was used to describe
an extension to the original type classes. There is no longer any reason to use two different terms: in this
report, ‘type class’ includes both the original Haskell type classes and the constructor classes introduced by
Jones.

4.1.1 Kinds

To ensure that they are valid, type expressions are classified into different kinds, which take one of two
possible forms:

• The symbol ∗ represents the kind of all nullary type constructors.

• If κ1 and κ2 are kinds, then κ1 → κ2 is the kind of types that take a type of kind κ1 and return a type
of kind κ2.

Kind inference checks the validity of type expressions in a similar way that type inference checks the validity
of value expressions. However, unlike types, kinds are entirely implicit and are not a visible part of the
language. Kind inference is discussed in Section 4.6.

4.1.2 Syntax of Types

type → btype [-> type] (function type)

btype → [btype] atype (type application)

atype → gtycon
| tyvar
| (type1 , . . . , typek) (tuple type, k ≥ 2)
| [type] (list type)
| (type) (parenthesised constructor)

gtycon → qtycon
| () (unit type)
| [] (list constructor)
| (->) (function constructor)
| (,{,}) (tupling constructors)

The syntax for Haskell type expressions is given above. Just as data values are built using data constructors,
type values are built from type constructors . As with data constructors, the names of type constructors start
with uppercase letters. Unlike data constructors, infix type constructors are not allowed (other than (->)).

The main forms of type expression are as follows:

38 CHAPTER 4. DECLARATIONS AND BINDINGS

1. Type variables, written as identifiers beginning with a lowercase letter. The kind of a variable is deter-
mined implicitly by the context in which it appears.

2. Type constructors. Most type constructors are written as an identifier beginning with an uppercase
letter. For example:

• Char, Int, Integer, Float, Double and Bool are type constants with kind ∗.
• Maybe and IO are unary type constructors, and treated as types with kind ∗ → ∗.
• The declarations data T ... or newtype T ... add the type constructor T to the type

vocabulary. The kind of T is determined by kind inference.

Special syntax is provided for certain built-in type constructors:

• The trivial type is written as () and has kind ∗. It denotes the “nullary tuple” type, and has
exactly one value, also written () (see Sections 3.9 and 6.1.5).

• The function type is written as (->) and has kind ∗ → ∗ → ∗.
• The list type is written as [] and has kind ∗ → ∗.
• The tuple types are written as (,), (,,), and so on. Their kinds are ∗ → ∗ → ∗, ∗ → ∗ → ∗ →
∗, and so on.

Use of the (->) and [] constants is described in more detail below.

3. Type application. If t1 is a type of kind κ1 → κ2 and t2 is a type of kind κ1, then t1 t2 is a type
expression of kind κ2.

4. A parenthesized type, having form (t), is identical to the type t .

For example, the type expression IO a can be understood as the application of a constant, IO, to the variable
a. Since the IO type constructor has kind ∗ → ∗, it follows that both the variable a and the whole expression,
IO a, must have kind ∗. In general, a process of kind inference (see Section 4.6) is needed to determine
appropriate kinds for user-defined datatypes, type synonyms, and classes.

Special syntax is provided to allow certain type expressions to be written in a more traditional style:

1. A function type has the form t1 -> t2 , which is equivalent to the type (->) t1 t2 . Function arrows as-
sociate to the right. For example, Int -> Int -> Float means Int -> (Int -> Float).

2. A tuple type has the form (t1, . . . , tk) where k ≥ 2 , which is equivalent to the type
(,. . .,) t1 . . . tk where there are k − 1 commas between the parenthesis. It denotes the type of
k -tuples with the first component of type t1 , the second component of type t2 , and so on (see Sec-
tions 3.8 and 6.1.4).

3. A list type has the form [t], which is equivalent to the type [] t . It denotes the type of lists with
elements of type t (see Sections 3.7 and 6.1.3).

These special syntactic forms always denote the built-in type constructors for functions, tuples, and lists,
regardless of what is in scope. In a similar way, the prefix type constructors (->), [], (), (,), and so on,
always denote the built-in type constructors; they cannot be qualified, nor mentioned in import or export lists
(Chapter 5). (Hence the special production, “gtycon”, above.)

Although the list and tuple types have special syntax, their semantics is the same as the equivalent user-defined
algebraic data types.

4.1. OVERVIEW OF TYPES AND CLASSES 39

Notice that expressions and types have a consistent syntax. If ti is the type of expression or pattern ei ,
then the expressions (\ e1 -> e2), [e1], and (e1 , e2) have the types (t1 -> t2), [t1], and (t1 , t2),
respectively.

With one exception (that of the distinguished type variable in a class declaration (Section 4.3.1)), the type
variables in a Haskell type expression are all assumed to be universally quantified; there is no explicit syntax
for universal quantification [4]. For example, the type expression a -> a denotes the type ∀ a. a → a .
For clarity, however, we often write quantification explicitly when discussing the types of Haskell programs.
When we write an explicitly quantified type, the scope of the ∀ extends as far to the right as possible; for
example, ∀ a. a → a means ∀ a. (a → a).

4.1.3 Syntax of Class Assertions and Contexts

context → class
| (class1 , . . . , classn) (n ≥ 0)

class → qtycls tyvar
| qtycls (tyvar atype1 . . . atypen) (n ≥ 1)

qtycls → [modid .] tycls
tycls → conid
tyvar → varid

A class assertion has form qtycls tyvar , and indicates the membership of the type tyvar in the class qtycls .
A class identifier begins with an uppercase letter. A context consists of zero or more class assertions, and has
the general form

(C1 u1 , . . . , Cn un)

where C1 , . . . , Cn are class identifiers, and each of the u1 , . . . , un is either a type variable, or the applica-
tion of type variable to one or more types. The outer parentheses may be omitted when n = 1 . In general,
we use cx to denote a context and we write cx => t to indicate the type t restricted by the context cx . The
context cx must only contain type variables referenced in t . For convenience, we write cx => t even if the
context cx is empty, although in this case the concrete syntax contains no =>.

4.1.4 Semantics of Types and Classes

In this section, we provide informal details of the type system. (Wadler and Blott [13] and Jones [8] discuss
type and constructor classes, respectively, in more detail.)

The Haskell type system attributes a type to each expression in the program. In general, a type is of the
form ∀ u. cx ⇒ t , where u is a set of type variables u1 , . . . , un . In any such type, any of the universally-
quantified type variables ui that are free in cx must also be free in t . Furthermore, the context cx must be of
the form given above in Section 4.1.3. For example, here are some valid types:

Eq a => a -> a
(Eq a, Show a, Eq b) => [a] -> [b] -> String
(Eq (f a), Functor f) => (a -> b) -> f a -> f b -> Bool

In the third type, the constraint Eq (f a) cannot be made simpler because f is universally quantified.

40 CHAPTER 4. DECLARATIONS AND BINDINGS

The type of an expression e depends on a type environment that gives types for the free variables in e , and a
class environment that declares which types are instances of which classes (a type becomes an instance of a
class only via the presence of an instance declaration or a deriving clause).

Types are related by a generalization preorder (specified below); the most general type, up to the equivalence
induced by the generalization preorder, that can be assigned to a particular expression (in a given environ-
ment) is called its principal type. Haskell’s extended Hindley-Milner type system can infer the principal
type of all expressions, including the proper use of overloaded class methods (although certain ambiguous
overloadings could arise, as described in Section 4.3.4). Therefore, explicit typings (called type signatures)
are usually optional (see Sections 3.16 and 4.4.1).

The type ∀ u. cx1 ⇒ t1 is more general than the type ∀ w . cx2 ⇒ t2 if and only if there is a substitution
S whose domain is u such that:

• t2 is identical to S (t1).

• Whenever cx2 holds in the class environment, S (cx1) also holds.

A value of type ∀ u. cx ⇒ t , may be instantiated at types s if and only if the context cx [s/u] holds. For
example, consider the function double:

double x = x + x

The most general type of double is ∀ a. Num a ⇒ a → a . double may be applied to values of type
Int (instantiating a to Int), since Num Int holds, because Int is an instance of the class Num. However,
double may not normally be applied to values of type Char, because Char is not normally an instance of
class Num. The user may choose to declare such an instance, in which case double may indeed be applied
to a Char.

4.2 User-Defined Datatypes

In this section, we describe algebraic datatypes (data declarations), renamed datatypes (newtype decla-
rations), and type synonyms (type declarations). These declarations may only appear at the top level of a
module.

4.2.1 Algebraic Datatype Declarations

topdecl → data [context =>] simpletype [= constrs] [deriving]

simpletype → tycon tyvar1 . . . tyvark (k ≥ 0)

constrs → constr1 | . . . | constrn (n ≥ 1)
constr → con [!] atype1 . . . [!] atypek (arity con = k , k ≥ 0)

| (btype | ! atype) conop (btype | ! atype) (infix conop)
| con { fielddecl1 , . . . , fielddecln } (n ≥ 0)

fielddecl → vars :: (type | ! atype)

deriving → deriving (dclass | (dclass1, . . . , dclassn)) (n ≥ 0)
dclass → qtycls

4.2. USER-DEFINED DATATYPES 41

The precedence for constr is the same as that for expressions—normal constructor application has higher
precedence than infix constructor application (thus a : Foo a parses as a : (Foo a)).

An algebraic datatype declaration has the form:

data cx => T u1 . . . uk = K1 t11 . . . t1k1 | · · · | Kn tn1 . . . tnkn

where cx is a context. This declaration introduces a new type constructor T with zero or more constituent
data constructors K1 , . . . , Kn . In this Report, the unqualified term “constructor” always means “data
constructor”.

The types of the data constructors are given by:

Ki :: ∀ u1 . . . uk . cxi ⇒ ti1 → · · · → tiki → (T u1 . . . uk)

where cxi is the largest subset of cx that constrains only those type variables free in the types ti1 , . . . , tiki .
The type variables u1 through uk must be distinct and may appear in cx and the tij ; it is a static error for any
other type variable to appear in cx or on the right-hand-side. The new type constant T has a kind of the form
κ1 → . . . → κk → ∗ where the kinds κi of the argument variables ui are determined by kind inference as
described in Section 4.6. This means that T may be used in type expressions with anywhere between 0 and
k arguments.

For example, the declaration

data Eq a => Set a = NilSet | ConsSet a (Set a)

introduces a type constructor Set of kind ∗ → ∗, and constructors NilSet and ConsSet with types

NilSet :: ∀ a. Set a
ConsSet :: ∀ a. Eq a ⇒ a → Set a → Set a

In the example given, the overloaded type for ConsSet ensures that ConsSet can only be applied to values
whose type is an instance of the class Eq. Pattern matching against ConsSet also gives rise to an Eq a
constraint. For example:

f (ConsSet a s) = a

the function f has inferred type Eq a => Set a -> a. The context in the data declaration has no other
effect whatsoever.

The visibility of a datatype’s constructors (i.e. the “abstractness” of the datatype) outside of the module in
which the datatype is defined is controlled by the form of the datatype’s name in the export list as described
in Section 5.8.

The optional deriving part of a data declaration has to do with derived instances, and is described in
Section 4.3.3.

Labelled Fields A data constructor of arity k creates an object with k components. These components
are normally accessed positionally as arguments to the constructor in expressions or patterns. For large
datatypes it is useful to assign field labels to the components of a data object. This allows a specific field to
be referenced independently of its location within the constructor.

42 CHAPTER 4. DECLARATIONS AND BINDINGS

A constructor definition in a data declaration may assign labels to the fields of the constructor, using the
record syntax (C { ... }). Constructors using field labels may be freely mixed with constructors without
them. A constructor with associated field labels may still be used as an ordinary constructor; features using
labels are simply a shorthand for operations using an underlying positional constructor. The arguments to the
positional constructor occur in the same order as the labeled fields. For example, the declaration

data C = F { f1,f2 :: Int, f3 :: Bool }

defines a type and constructor identical to the one produced by

data C = F Int Int Bool

Operations using field labels are described in Section 3.15. A data declaration may use the same field label
in multiple constructors as long as the typing of the field is the same in all cases after type synonym expansion.
A label cannot be shared by more than one type in scope. Field names share the top level namespace with
ordinary variables and class methods and must not conflict with other top level names in scope.

The pattern F {} matches any value built with constructor F, whether or not F was declared with record
syntax.

Strictness Flags Whenever a data constructor is applied, each argument to the constructor is evaluated if
and only if the corresponding type in the algebraic datatype declaration has a strictness flag, denoted by an
exclamation point, “!”. Lexically, “!” is an ordinary varsym not a reservedop; it has special significance
only in the context of the argument types of a data declaration.

Translation: A declaration of the form

data cx => T u1 . . . uk = . . . | K s1 . . . sn | . . .

where each si is either of the form !ti or ti , replaces every occurrence of K in an expression by

(\ x1 . . . xn -> (((K op1 x1) op2 x2) . . .) opn xn)

where opi is the non-strict apply function $ if si is of the form ti , and opi is the strict apply function $!
(see Section 6.2) if si is of the form ! ti . Pattern matching on K is not affected by strictness flags.

4.2.2 Type Synonym Declarations

topdecl → type simpletype = type
simpletype → tycon tyvar1 . . . tyvark (k ≥ 0)

A type synonym declaration introduces a new type that is equivalent to an old type. It has the form

type T u1 . . . uk = t

which introduces a new type constructor, T . The type (T t1 . . . tk) is equivalent to the type
t [t1/u1 , . . . , tk/uk]. The type variables u1 through uk must be distinct and are scoped only over t ; it
is a static error for any other type variable to appear in t . The kind of the new type constructor T is of
the form κ1 → . . . → κk → κ where the kinds κi of the arguments ui and κ of the right hand side t are
determined by kind inference as described in Section 4.6. For example, the following definition can be used
to provide an alternative way of writing the list type constructor:

4.2. USER-DEFINED DATATYPES 43

type List = []

Type constructor symbols T introduced by type synonym declarations cannot be partially applied; it is a
static error to use T without the full number of arguments.

Although recursive and mutually recursive datatypes are allowed, this is not so for type synonyms, unless an
algebraic datatype intervenes. For example,

type Rec a = [Circ a]
data Circ a = Tag [Rec a]

is allowed, whereas

type Rec a = [Circ a] -- invalid
type Circ a = [Rec a] -- invalid

is not. Similarly, type Rec a = [Rec a] is not allowed.

Type synonyms are a convenient, but strictly syntactic, mechanism to make type signatures more readable.
A synonym and its definition are completely interchangeable, except in the instance type of an instance
declaration (Section 4.3.2).

4.2.3 Datatype Renamings

topdecl → newtype [context =>] simpletype = newconstr [deriving]
newconstr → con atype

| con { var :: type }
simpletype → tycon tyvar1 . . . tyvark (k ≥ 0)

A declaration of the form
newtype cx => T u1 . . . uk = N t

introduces a new type whose representation is the same as an existing type. The type (T u1 . . . uk) renames
the datatype t . It differs from a type synonym in that it creates a distinct type that must be explicitly coerced
to or from the original type. Also, unlike type synonyms, newtype may be used to define recursive types.
The constructor N in an expression coerces a value from type t to type (T u1 . . . uk). Using N in a pattern
coerces a value from type (T u1 . . . uk) to type t . These coercions may be implemented without execution
time overhead; newtype does not change the underlying representation of an object.

New instances (see Section 4.3.2) can be defined for a type defined by newtype but may not be defined for
a type synonym. A type created by newtype differs from an algebraic datatype in that the representation of
an algebraic datatype has an extra level of indirection. This difference may make access to the representation
less efficient. The difference is reflected in different rules for pattern matching (see Section 3.17). Unlike
algebraic datatypes, the newtype constructor N is unlifted, so that N ⊥ is the same as ⊥.

The following examples clarify the differences between data (algebraic datatypes), type (type synonyms),
and newtype (renaming types.) Given the declarations

44 CHAPTER 4. DECLARATIONS AND BINDINGS

data D1 = D1 Int
data D2 = D2 !Int
type S = Int
newtype N = N Int
d1 (D1 i) = 42
d2 (D2 i) = 42
s i = 42
n (N i) = 42

the expressions (d1 ⊥), (d2 ⊥) and (d2 (D2 ⊥)) are all equivalent to⊥, whereas (n ⊥), (n (N ⊥)),
(d1 (D1 ⊥)) and (s ⊥) are all equivalent to 42. In particular, (N ⊥) is equivalent to ⊥ while (D1 ⊥)
is not equivalent to ⊥.

The optional deriving part of a newtype declaration is treated in the same way as the deriving component
of a data declaration; see Section 4.3.3.

A newtype declaration may use field-naming syntax, though of course there may only be one field. Thus:

newtype Age = Age { unAge :: Int }

brings into scope both a constructor and a de-constructor:

Age :: Int -> Age
unAge :: Age -> Int

4.3 Type Classes and Overloading

4.3.1 Class Declarations

topdecl → class [scontext =>] tycls tyvar [where cdecls]
scontext → simpleclass

| (simpleclass1 , . . . , simpleclassn) (n ≥ 0)
simpleclass → qtycls tyvar
cdecls → { cdecl1 ; . . . ; cdecln } (n ≥ 0)
cdecl → gendecl

| (funlhs | var) rhs

A class declaration introduces a new class and the operations (class methods) on it. A class declaration has
the general form:

class cx => C u where cdecls

This introduces a new class name C ; the type variable u is scoped only over the class method signatures in
the class body. The context cx specifies the superclasses of C , as described below; the only type variable that
may be referred to in cx is u .

The superclass relation must not be cyclic; i.e. it must form a directed acyclic graph.

The cdecls part of a class declaration contains three kinds of declarations:

4.3. TYPE CLASSES AND OVERLOADING 45

• The class declaration introduces new class methods vi , whose scope extends outside the class decla-
ration. The class methods of a class declaration are precisely the vi for which there is an explicit type
signature

vi :: cxi => ti

in cdecls . Class methods share the top level namespace with variable bindings and field names; they
must not conflict with other top level bindings in scope. That is, a class method can not have the same
name as a top level definition, a field name, or another class method.

The type of the top-level class method vi is:

vi :: ∀u,w. (Cu, cxi)⇒ ti

The ti must mention u; it may mention type variables w other than u , in which case the type of vi is
polymorphic in both u and w . The cxi may constrain only w ; in particular, the cxi may not constrain
u . For example:

class Foo a where
op :: Num b => a -> b -> a

Here the type of op is ∀ a, b. (Foo a, Num b) ⇒ a → b → a .

• The cdecls may also contain a fixity declaration for any of the class methods (but for no other values).
However, since class methods declare top-level values, the fixity declaration for a class method may
alternatively appear at top level, outside the class declaration.

• Lastly, the cdecls may contain a default class method for any of the vi . The default class method for
vi is used if no binding for it is given in a particular instance declaration (see Section 4.3.2). The
default method declaration is a normal value definition, except that the left hand side may only be a
variable or function definition. For example:

class Foo a where
op1, op2 :: a -> a
(op1, op2) = ...

is not permitted, because the left hand side of the default declaration is a pattern.

Other than these cases, no other declarations are permitted in cdecls .

A class declaration with no where part may be useful for combining a collection of classes into a larger
one that inherits all of the class methods in the original ones. For example:

class (Read a, Show a) => Textual a

In such a case, if a type is an instance of all superclasses, it is not automatically an instance of the sub-
class, even though the subclass has no immediate class methods. The instance declaration must be given
explicitly with no where part.

4.3.2 Instance Declarations

topdecl → instance [scontext =>] qtycls inst [where idecls]
inst → gtycon

| (gtycon tyvar1 . . . tyvark) (k ≥ 0 , tyvars distinct)
| (tyvar1 , . . . , tyvark) (k ≥ 2 , tyvars distinct)
| [tyvar]

46 CHAPTER 4. DECLARATIONS AND BINDINGS

| (tyvar1 -> tyvar2) (tyvar1 and tyvar2 distinct)
idecls → { idecl1 ; . . . ; idecln } (n ≥ 0)
idecl → (funlhs | var) rhs

| (empty)

An instance declaration introduces an instance of a class. Let

class cx => C u where { cbody }

be a class declaration. The general form of the corresponding instance declaration is:

instance cx ′ => C (T u1 . . . uk) where { d }

where k ≥ 0 . The type (T u1 . . . uk) must take the form of a type constructor T applied to simple type
variables u1 , . . . uk ; furthermore, T must not be a type synonym, and the ui must all be distinct.

This prohibits instance declarations such as:

instance C (a,a) where ...
instance C (Int,a) where ...
instance C [[a]] where ...

The declarations d may contain bindings only for the class methods of C . It is illegal to give a binding for a
class method that is not in scope, but the name under which it is in scope is immaterial; in particular, it may
be a qualified name. (This rule is identical to that used for subordinate names in export lists — Section 5.2.)
For example, this is legal, even though range is in scope only with the qualified name Data.Ix.range.

module A where
import qualified Data.Ix

instance Data.Ix.Ix T where
range = ...

The declarations may not contain any type signatures or fixity declarations, since these have already been
given in the class declaration. As in the case of default class methods (Section 4.3.1), the method declara-
tions must take the form of a variable or function definition.

If no binding is given for some class method then the corresponding default class method in the class
declaration is used (if present); if such a default does not exist then the class method of this instance is bound
to undefined and no compile-time error results.

An instance declaration that makes the type T to be an instance of class C is called a C-T instance
declaration and is subject to these static restrictions:

• A type may not be declared as an instance of a particular class more than once in the program.

• The class and type must have the same kind; this can be determined using kind inference as described
in Section 4.6.

• Assume that the type variables in the instance type (T u1 . . . uk) satisfy the constraints in the instance
context cx ′. Under this assumption, the following two conditions must also be satisfied:

4.3. TYPE CLASSES AND OVERLOADING 47

1. The constraints expressed by the superclass context cx [(T u1 . . . uk)/u] of C must be satis-
fied. In other words, T must be an instance of each of C ’s superclasses and the contexts of all
superclass instances must be implied by cx ′.

2. Any constraints on the type variables in the instance type that are required for the class method
declarations in d to be well-typed must also be satisfied.

In fact, except in pathological cases it is possible to infer from the instance declaration the most general
instance context cx ′ satisfying the above two constraints, but it is nevertheless mandatory to write an
explicit instance context.

The following example illustrates the restrictions imposed by superclass instances:

class Foo a => Bar a where ...

instance (Eq a, Show a) => Foo [a] where ...

instance Num a => Bar [a] where ...

This example is valid Haskell. Since Foo is a superclass of Bar, the second instance declaration is only valid
if [a] is an instance of Foo under the assumption Num a. The first instance declaration does indeed say
that [a] is an instance of Foo under this assumption, because Eq and Show are superclasses of Num.

If the two instance declarations instead read like this:

instance Num a => Foo [a] where ...

instance (Eq a, Show a) => Bar [a] where ...

then the program would be invalid. The second instance declaration is valid only if [a] is an instance of
Foo under the assumptions (Eq a, Show a). But this does not hold, since [a] is only an instance of
Foo under the stronger assumption Num a.

Further examples of instance declarations may be found in Chapter 9.

4.3.3 Derived Instances

As mentioned in Section 4.2.1, data and newtype declarations contain an optional deriving form. If
the form is included, then derived instance declarations are automatically generated for the datatype in each
of the named classes. These instances are subject to the same restrictions as user-defined instances. When
deriving a class C for a type T , instances for all superclasses of C must exist for T , either via an explicit
instance declaration or by including the superclass in the deriving clause.

Derived instances provide convenient commonly-used operations for user-defined datatypes. For example,
derived instances for datatypes in the class Eq define the operations == and /=, freeing the programmer from
the need to define them.

The only classes in the Prelude for which derived instances are allowed are Eq, Ord, Enum, Bounded,
Show, and Read, all mentioned in Figure 6.1. The precise details of how the derived instances are generated
for each of these classes are provided in Chapter 11, including a specification of when such derived instances
are possible. Classes defined by the standard libraries may also be derivable.

48 CHAPTER 4. DECLARATIONS AND BINDINGS

A static error results if it is not possible to derive an instance declaration over a class named in a
deriving form. For example, not all datatypes can properly support class methods in Enum. It is also
a static error to give an explicit instance declaration for a class that is also derived.

If the deriving form is omitted from a data or newtype declaration, then no instance declarations are
derived for that datatype; that is, omitting a deriving form is equivalent to including an empty deriving
form: deriving ().

4.3.4 Ambiguous Types, and Defaults for Overloaded Numeric Operations

topdecl → default (type1 , . . . , typen) (n ≥ 0)

A problem inherent with Haskell-style overloading is the possibility of an ambiguous type. For example,
using the read and show functions defined in Chapter 11, and supposing that just Int and Bool are
members of Read and Show, then the expression

let x = read "..." in show x -- invalid

is ambiguous, because the types for show and read,

show :: ∀ a. Show a ⇒ a → String
read :: ∀ a. Read a ⇒ String → a

could be satisfied by instantiating a as either Int in both cases, or Bool. Such expressions are considered
ill-typed, a static error.

We say that an expression e has an ambiguous type if, in its type ∀ u. cx ⇒ t , there is a type variable u in
u that occurs in cx but not in t . Such types are invalid.

For example, the earlier expression involving show and read has an ambiguous type since its type is
∀ a. Show a, Read a ⇒ String.

Ambiguous types can only be circumvented by input from the user. One way is through the use of expression
type-signatures as described in Section 3.16. For example, for the ambiguous expression given earlier, one
could write:

let x = read "..." in show (x::Bool)

which disambiguates the type.

Occasionally, an otherwise ambiguous expression needs to be made the same type as some variable, rather
than being given a fixed type with an expression type-signature. This is the purpose of the function
asTypeOf (Chapter 9): x ‘asTypeOf‘ y has the value of x , but x and y are forced to have the same
type. For example,

approxSqrt x = encodeFloat 1 (exponent x ‘div‘ 2) ‘asTypeOf‘ x

(See Section 6.4.6 for a description of encodeFloat and exponent.)

Ambiguities in the class Num are most common, so Haskell provides another way to resolve them—with a
default declaration:

default (t1 , . . . , tn)

where n ≥ 0 , and each ti must be a type for which Num ti holds. In situations where an ambiguous type is
discovered, an ambiguous type variable, v , is defaultable if:

4.4. NESTED DECLARATIONS 49

• v appears only in constraints of the form C v , where C is a class, and

• at least one of these classes is a numeric class, (that is, Num or a subclass of Num), and

• all of these classes are defined in the Prelude or a standard library (Figures 6.2–6.3 show the numeric
classes, and Figure 6.1 shows the classes defined in the Prelude.)

Each defaultable variable is replaced by the first type in the default list that is an instance of all the ambiguous
variable’s classes. It is a static error if no such type is found.

Only one default declaration is permitted per module, and its effect is limited to that module. If no default
declaration is given in a module then it assumed to be:

default (Integer, Double)

The empty default declaration, default (), turns off all defaults in a module.

4.4 Nested Declarations

The following declarations may be used in any declaration list, including the top level of a module.

4.4.1 Type Signatures

gendecl → vars :: [context =>] type
vars → var1 , . . ., varn (n ≥ 1)

A type signature specifies types for variables, possibly with respect to a context. A type signature has the
form:

v1 , . . . , vn :: cx => t

which is equivalent to asserting vi :: cx => t for each i from 1 to n . Each vi must have a value binding in
the same declaration list that contains the type signature; i.e. it is invalid to give a type signature for a variable
bound in an outer scope. Moreover, it is invalid to give more than one type signature for one variable, even if
the signatures are identical.

As mentioned in Section 4.1.2, every type variable appearing in a signature is universally quantified over that
signature, and hence the scope of a type variable is limited to the type signature that contains it. For example,
in the following declarations

f :: a -> a
f x = x :: a -- invalid

the a’s in the two type signatures are quite distinct. Indeed, these declarations contain a static error, since x
does not have type ∀ a. a . (The type of x is dependent on the type of f; there is currently no way in Haskell
to specify a signature for a variable with a dependent type; this is explained in Section 4.5.4.)

If a given program includes a signature for a variable f , then each use of f is treated as having the declared
type. It is a static error if the same type cannot also be inferred for the defining occurrence of f .

50 CHAPTER 4. DECLARATIONS AND BINDINGS

If a variable f is defined without providing a corresponding type signature declaration, then each use of f
outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal
type . However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within
its declaration group must have the same monomorphic type (from which the principal type is obtained by
generalization, as described in Section 4.5.2).

For example, if we define

sqr x = x*x

then the principal type is sqr :: ∀ a. Num a ⇒ a → a , which allows applications such as sqr 5 or
sqr 0.1. It is also valid to declare a more specific type, such as

sqr :: Int -> Int

but now applications such as sqr 0.1 are invalid. Type signatures such as

sqr :: (Num a, Num b) => a -> b -- invalid
sqr :: a -> a -- invalid

are invalid, as they are more general than the principal type of sqr.

Type signatures can also be used to support polymorphic recursion. The following definition is pathological,
but illustrates how a type signature can be used to specify a type more general than the one that would be
inferred:

data T a = K (T Int) (T a)
f :: T a -> a
f (K x y) = if f x == 1 then f y else undefined

If we remove the signature declaration, the type of f will be inferred as T Int -> Int due to the first
recursive call for which the argument to f is T Int. Polymorphic recursion allows the user to supply the
more general type signature, T a -> a.

4.4.2 Fixity Declarations

gendecl → fixity [integer] ops
fixity → infixl | infixr | infix
ops → op1 , . . . , opn (n ≥ 1)
op → varop | conop

A fixity declaration gives the fixity and binding precedence of one or more operators. The integer in a fixity
declaration must be in the range 0 to 9 . A fixity declaration may appear anywhere that a type signature
appears and, like a type signature, declares a property of a particular operator. Also like a type signature, a
fixity declaration can only occur in the same sequence of declarations as the declaration of the operator itself,
and at most one fixity declaration may be given for any operator. (Class methods are a minor exception; their
fixity declarations can occur either in the class declaration itself or at top level.)

There are three kinds of fixity, non-, left- and right-associativity (infix, infixl, and infixr, respec-
tively), and ten precedence levels, 0 to 9 inclusive (level 0 binds least tightly, and level 9 binds most tightly). If

4.4. NESTED DECLARATIONS 51

Prec- Left associative Non-associative Right associative
edence operators operators operators

9 !! .
8 ˆ, ˆˆ, **
7 *, /, ‘div‘,

‘mod‘, ‘rem‘, ‘quot‘
6 +, -
5 :, ++
4 ==, /=, <, <=, >, >=,

‘elem‘, ‘notElem‘
3 &&
2 ||
1 >>, >>=
0 $, $!, ‘seq‘

Table 4.1: Precedences and fixities of prelude operators

the digit is omitted, level 9 is assumed. Any operator lacking a fixity declaration is assumed to be infixl 9
(See Section 3 for more on the use of fixities). Table 4.1 lists the fixities and precedences of the operators
defined in the Prelude.

Fixity is a property of a particular entity (constructor or variable), just like its type; fixity is not a property of
that entity’s name. For example:

module Bar(op) where
infixr 7 ‘op‘
op = ...

module Foo where
import qualified Bar
infix 3 ‘op‘

a ‘op‘ b = (a ‘Bar.op‘ b) + 1

f x = let
p ‘op‘ q = (p ‘Foo.op‘ q) * 2

in ...

Here, ‘Bar.op‘ is infixr 7, ‘Foo.op‘ is infix 3, and the nested definition of op in f’s right-hand
side has the default fixity of infixl 9. (It would also be possible to give a fixity to the nested definition of
‘op‘ with a nested fixity declaration.)

4.4.3 Function and Pattern Bindings

decl → (funlhs | pat) rhs

funlhs → var apat { apat }
| pat varop pat

52 CHAPTER 4. DECLARATIONS AND BINDINGS

| (funlhs) apat { apat }

rhs → = exp [where decls]
| gdrhs [where decls]

gdrhs → guards = exp [gdrhs]

guards → | guard1 , . . . , guardn (n ≥ 1)

guard → pat <- infixexp (pattern guard)
| let decls (local declaration)
| infixexp (boolean guard)

We distinguish two cases within this syntax: a pattern binding occurs when the left hand side is a pat ;
otherwise, the binding is called a function binding. Either binding may appear at the top-level of a module or
within a where or let construct.

4.4.3.1 Function bindings

A function binding binds a variable to a function value. The general form of a function binding for variable
x is:

x p11 . . . p1k match1

. . .
x pn1 . . . pnk matchn

where each pij is a pattern, and where each matchi is of the general form:

= ei where { declsi }

or
| gsi1 = ei1
. . .
| gsimi

= eimi

where { declsi }

and where n ≥ 1 , 1 ≤ i ≤ n , mi ≥ 1 . The former is treated as shorthand for a particular case of the latter,
namely:

| True = ei where { declsi }

Note that all clauses defining a function must be contiguous, and the number of patterns in each clause must
be the same. The set of patterns corresponding to each match must be linear—no variable is allowed to
appear more than once in the entire set.

Alternative syntax is provided for binding functional values to infix operators. For example, these three
function definitions are all equivalent:

plus x y z = x+y+z
x ‘plus‘ y = \ z -> x+y+z
(x ‘plus‘ y) z = x+y+z

4.5. STATIC SEMANTICS OF FUNCTION AND PATTERN BINDINGS 53

Note that fixity resolution applies to the infix variants of the function binding in the same way as for expres-
sions (Section 10.6). Applying fixity resolution to the left side of the equals in a function binding must leave
the varop being defined at the top level. For example, if we are defining a new operator ## with precedence
6, then this definition would be illegal:

a ## b : xs = exp

because : has precedence 5, so the left hand side resolves to (a ## x) : xs, and this cannot be a pattern
binding because (a ## x) is not a valid pattern.

Translation: The general binding form for functions is semantically equivalent to the equation
(i.e. simple pattern binding):

x = \ x1 . . . xk -> case (x1, . . ., xk) of (p11 , . . . , p1k) match1

. . .
(pn1 , . . . , pnk) matchn

where the xi are new identifiers.

4.4.3.2 Pattern bindings

A pattern binding binds variables to values. A simple pattern binding has form p = e . The pattern p is
matched “lazily” as an irrefutable pattern, as if there were an implicit ˜ in front of it. See the translation in
Section 3.12.

The general form of a pattern binding is p match , where a match is the same structure as for function
bindings above; in other words, a pattern binding is:

p | gs1 = e1
| gs2 = e2
. . .

| gsm = em
where { decls }

Translation: The pattern binding above is semantically equivalent to this simple pattern binding:

p = let decls in
case () of
() | gs1 -> e1

| gs2 -> e2
. . .

| gsm -> em
_ -> error "Unmatched pattern"

4.5 Static Semantics of Function and Pattern Bindings

The static semantics of the function and pattern bindings of a let expression or where clause are discussed
in this section.

54 CHAPTER 4. DECLARATIONS AND BINDINGS

4.5.1 Dependency Analysis

In general the static semantics are given by applying the normal Hindley-Milner inference rules. In order to
increase polymorphism, these rules are applied to groups of bindings identified by a dependency analysis.

A binding b1 depends on a binding b2 in the same list of declarations if either

1. b1 contains a free identifier that has no type signature and is bound by b2 , or

2. b1 depends on a binding that depends on b2 .

A declaration group is a minimal set of mutually dependent bindings. Hindley-Milner type inference is
applied to each declaration group in dependency order. The order of declarations in where/let constructs
is irrelevant.

4.5.2 Generalization

The Hindley-Milner type system assigns types to a let-expression in two stages:

1. The declaration groups are considered in dependency order. For each group, a type with no universal
quantification is inferred for each variable bound in the group. Then, all type variables that occur
in these types are universally quantified unless they are associated with bound variables in the type
environment; this is called generalization.

2. Finally, the body of the let-expression is typed.

For example, consider the declaration

f x = let g y = (y,y)
in ...

The type of g’s definition is a → (a, a). The generalization step attributes to g the polymorphic type
∀ a. a → (a, a), after which the typing of the “...” part can proceed.

When typing overloaded definitions, all the overloading constraints from a single declaration group are col-
lected together, to form the context for the type of each variable declared in the group. For example, in the
definition:

f x = let g1 x y = if x>y then show x else g2 y x
g2 p q = g1 q p

in ...

The types of the definitions of g1 and g2 are both a → a → String, and the accumulated constraints are
Ord a (arising from the use of >), and Show a (arising from the use of show). The type variables appearing
in this collection of constraints are called the constrained type variables.

The generalization step attributes to both g1 and g2 the type

∀ a. (Ord a, Show a) ⇒ a → a → String

4.5. STATIC SEMANTICS OF FUNCTION AND PATTERN BINDINGS 55

Notice that g2 is overloaded in the same way as g1 even though the occurrences of > and show are in the
definition of g1.

If the programmer supplies explicit type signatures for more than one variable in a declaration group, the
contexts of these signatures must be identical up to renaming of the type variables.

4.5.3 Context Reduction Errors

As mentioned in Section 4.1.4, the context of a type may constrain only a type variable, or the application
of a type variable to one or more types. Hence, types produced by generalization must be expressed in a
form in which all context constraints have be reduced to this “head normal form”. Consider, for example, the
definition:

f xs y = xs == [y]

Its type is given by

f :: Eq a => [a] -> a -> Bool

and not

f :: Eq [a] => [a] -> a -> Bool

Even though the equality is taken at the list type, the context must be simplified, using the instance declaration
for Eq on lists, before generalization. If no such instance is in scope, a static error occurs.

Here is an example that shows the need for a constraint of the form C (m t) where m is one of the type
variables being generalized; that is, where the class C applies to a type expression that is not a type variable
or a type constructor. Consider:

f :: (Monad m, Eq (m a)) => a -> m a -> Bool
f x y = return x == y

The type of return is Monad m => a -> m a; the type of (==) is Eq a => a -> a -> Bool.
The type of f should be therefore (Monad m, Eq (m a)) => a -> m a -> Bool, and the context
cannot be simplified further.

The instance declaration derived from a data type deriving clause (see Section 4.3.3) must, like any
instance declaration, have a simple context; that is, all the constraints must be of the form C a , where a is a
type variable. For example, in the type

data Apply a b = App (a b) deriving Show

the derived Show instance will produce a context Show (a b), which cannot be reduced and is not simple;
thus a static error results.

56 CHAPTER 4. DECLARATIONS AND BINDINGS

4.5.4 Monomorphism

Sometimes it is not possible to generalize over all the type variables used in the type of the definition. For
example, consider the declaration

f x = let g y z = ([x,y], z)
in ...

In an environment where x has type a , the type of g’s definition is a → b → ([a], b). The generalization
step attributes to g the type ∀ b. a → b → ([a], b); only b can be universally quantified because a
occurs in the type environment. We say that the type of g is monomorphic in the type variable a .

The effect of such monomorphism is that the first argument of all applications of g must be of a single type.
For example, it would be valid for the “...” to be

(g True, g False)

(which would, incidentally, force x to have type Bool) but invalid for it to be

(g True, g ’c’)

In general, a type ∀ u. cx ⇒ t is said to be monomorphic in the type variable a if a is free in ∀ u. cx ⇒ t .

It is worth noting that the explicit type signatures provided by Haskell are not powerful enough to express
types that include monomorphic type variables. For example, we cannot write

f x = let
g :: a -> b -> ([a],b)
g y z = ([x,y], z)

in ...

because that would claim that g was polymorphic in both a and b (Section 4.4.1). In this program, g can only
be given a type signature if its first argument is restricted to a type not involving type variables; for example

g :: Int -> b -> ([Int],b)

This signature would also cause x to have type Int.

4.5.5 The Monomorphism Restriction

Haskell places certain extra restrictions on the generalization step, beyond the standard Hindley-Milner re-
striction described above, which further reduces polymorphism in particular cases.

The monomorphism restriction depends on the binding syntax of a variable. Recall that a variable is bound
by either a function binding or a pattern binding, and that a simple pattern binding is a pattern binding in
which the pattern consists of only a single variable (Section 4.4.3).

The following two rules define the monomorphism restriction:

4.5. STATIC SEMANTICS OF FUNCTION AND PATTERN BINDINGS 57

The monomorphism restriction
Rule 1. We say that a given declaration group is unrestricted if and only if:

(a): every variable in the group is bound by a function binding or a simple pattern binding (Sec-
tion 4.4.3.2), and

(b): an explicit type signature is given for every variable in the group that is bound by simple
pattern binding.

The usual Hindley-Milner restriction on polymorphism is that only type variables that do not
occur free in the environment may be generalized. In addition, the constrained type variables of
a restricted declaration group may not be generalized in the generalization step for that group.
(Recall that a type variable is constrained if it must belong to some type class; see Section 4.5.2.)

Rule 2. Any monomorphic type variables that remain when type inference for an entire module is com-
plete, are considered ambiguous, and are resolved to particular types using the defaulting rules
(Section 4.3.4).

Motivation Rule 1 is required for two reasons, both of which are fairly subtle.

• Rule 1 prevents computations from being unexpectedly repeated. For example, genericLength is a
standard function (in library Data.List) whose type is given by

genericLength :: Num a => [b] -> a

Now consider the following expression:
let { len = genericLength xs } in (len, len)

It looks as if len should be computed only once, but without Rule 1 it might be computed twice, once
at each of two different overloadings. If the programmer does actually wish the computation to be
repeated, an explicit type signature may be added:

let { len :: Num a => a; len = genericLength xs } in (len, len)

• Rule 1 prevents ambiguity. For example, consider the declaration group
[(n,s)] = reads t

Recall that reads is a standard function whose type is given by the signature
reads :: (Read a) => String -> [(a,String)]

Without Rule 1, n would be assigned the type ∀ a. Read a ⇒ a and s the type ∀ a. Read a
⇒ String. The latter is an invalid type, because it is inherently ambiguous. It is not possible to
determine at what overloading to use s, nor can this be solved by adding a type signature for s. Hence,
when non-simple pattern bindings are used (Section 4.4.3.2), the types inferred are always monomor-
phic in their constrained type variables, irrespective of whether a type signature is provided. In this
case, both n and s are monomorphic in a .

The same constraint applies to pattern-bound functions. For example, in
(f,g) = ((+),(-))

both f and g are monomorphic regardless of any type signatures supplied for f or g.

Rule 2 is required because there is no way to enforce monomorphic use of an exported binding, except by
performing type inference on modules outside the current module. Rule 2 states that the exact types of all the
variables bound in a module must be determined by that module alone, and not by any modules that import
it.

58 CHAPTER 4. DECLARATIONS AND BINDINGS

module M1(len1) where
default(Int, Double)
len1 = genericLength "Hello"

module M2 where
import M1(len1)
len2 = (2*len1) :: Rational

When type inference on module M1 is complete, len1 has the monomorphic type Num a => a (by Rule
1). Rule 2 now states that the monomorphic type variable a is ambiguous, and must be resolved using the
defaulting rules of Section 4.3.4. Hence, len1 gets type Int, and its use in len2 is type-incorrect. (If the
above code is actually what is wanted, a type signature on len1 would solve the problem.)

This issue does not arise for nested bindings, because their entire scope is visible to the compiler.

Consequences The monomorphism rule has a number of consequences for the programmer. Anything
defined with function syntax usually generalizes as a function is expected to. Thus in

f x y = x+y

the function f may be used at any overloading in class Num. There is no danger of recomputation here.
However, the same function defined with pattern syntax:

f = \x -> \y -> x+y

requires a type signature if f is to be fully overloaded. Many functions are most naturally defined using
simple pattern bindings; the user must be careful to affix these with type signatures to retain full overloading.
The standard prelude contains many examples of this:

sum :: (Num a) => [a] -> a
sum = foldl (+) 0

Rule 1 applies to both top-level and nested definitions. Consider

module M where
len1 = genericLength "Hello"
len2 = (2*len1) :: Rational

Here, type inference finds that len1 has the monomorphic type (Num a => a); and the type variable a is
resolved to Rational when performing type inference on len2.

4.6 Kind Inference

This section describes the rules that are used to perform kind inference, i.e. to calculate a suitable kind for
each type constructor and class appearing in a given program.

The first step in the kind inference process is to arrange the set of datatype, synonym, and class definitions
into dependency groups. This can be achieved in much the same way as the dependency analysis for value
declarations that was described in Section 4.5. For example, the following program fragment includes the
definition of a datatype constructor D, a synonym S and a class C, all of which would be included in the same
dependency group:

4.6. KIND INFERENCE 59

data C a => D a = Foo (S a)
type S a = [D a]
class C a where

bar :: a -> D a -> Bool

The kinds of variables, constructors, and classes within each group are determined using standard techniques
of type inference and kind-preserving unification [8]. For example, in the definitions above, the parameter a
appears as an argument of the function constructor (->) in the type of bar and hence must have kind ∗. It
follows that both D and S must have kind ∗ → ∗ and that every instance of class C must have kind ∗.

It is possible that some parts of an inferred kind may not be fully determined by the corresponding definitions;
in such cases, a default of ∗ is assumed. For example, we could assume an arbitrary kind κ for the a parameter
in each of the following examples:

data App f a = A (f a)
data Tree a = Leaf | Fork (Tree a) (Tree a)

This would give kinds (κ → ∗) → κ → ∗ and κ → ∗ for App and Tree, respectively, for any kind κ, and
would require an extension to allow polymorphic kinds. Instead, using the default binding κ = ∗, the actual
kinds for these two constructors are (∗ → ∗)→ ∗ → ∗ and ∗ → ∗, respectively.

Defaults are applied to each dependency group without consideration of the ways in which particular type
constructor constants or classes are used in later dependency groups or elsewhere in the program. For exam-
ple, adding the following definition to those above does not influence the kind inferred for Tree (by changing
it to (∗ → ∗)→ ∗, for instance), and instead generates a static error because the kind of [], ∗ → ∗, does not
match the kind ∗ that is expected for an argument of Tree:

type FunnyTree = Tree [] -- invalid

This is important because it ensures that each constructor and class are used consistently with the same kind
whenever they are in scope.

60 CHAPTER 4. DECLARATIONS AND BINDINGS

Chapter 5

Modules

A module defines a collection of values, datatypes, type synonyms, classes, etc. (see Chapter 4), in an envi-
ronment created by a set of imports (resources brought into scope from other modules). It exports some of
these resources, making them available to other modules. We use the term entity to refer to a value, type, or
class defined in, imported into, or perhaps exported from a module.

A Haskell program is a collection of modules, one of which, by convention, must be called Main and must
export the value main. The value of the program is the value of the identifier main in module Main, which
must be a computation of type IO τ for some type τ (see Chapter 7). When the program is executed, the
computation main is performed, and its result (of type τ) is discarded.

Modules may reference other modules via explicit import declarations, each giving the name of a module
to be imported and specifying its entities to be imported. Modules may be mutually recursive.

Modules are used for name-space control, and are not first class values. A multi-module Haskell program can
be converted into a single-module program by giving each entity a unique name, changing all occurrences to
refer to the appropriate unique name, and then concatenating all the module bodies1. For example, here is a
three-module program:

module Main where
import A
import B
main = A.f >> B.f

module A where
f = ...

module B where
f = ...

It is equivalent to the following single-module program:

module Main where
main = af >> bf

1There are two minor exceptions to this statement. First, default declarations scope over a single module (Section 4.3.4). Second,
Rule 2 of the monomorphism restriction (Section 4.5.5) is affected by module boundaries.

61

62 CHAPTER 5. MODULES

af = ...

bf = ...

Because they are allowed to be mutually recursive, modules allow a program to be partitioned freely without
regard to dependencies.

A module name (lexeme modid) is a sequence of one or more identifiers beginning with capi-
tal letters, separated by dots, with no intervening spaces. For example, Data.Bool, Main and
Foreign.Marshal.Alloc are all valid module names.

modid → {conid .} conid (modules)

Module names can be thought of as being arranged in a hierarchy in which appending a new component
creates a child of the original module name. For example, the module Control.Monad.ST is a child of
the Control.Monad sub-hierarchy. This is purely a convention, however, and not part of the language
definition; in this report a modid is treated as a single identifier occupying a flat namespace.

There is one distinguished module, Prelude, which is imported into all modules by default (see Sec-
tion 5.6), plus a set of standard library modules that may be imported as required (see Part II).

5.1 Module Structure

A module defines a mutually recursive scope containing declarations for value bindings, data types, type
synonyms, classes, etc. (see Chapter 4).

module → module modid [exports] where body
| body

body → { impdecls ; topdecls }
| { impdecls }
| { topdecls }

impdecls → impdecl1 ; . . . ; impdecln (n ≥ 1)
topdecls → topdecl1 ; . . . ; topdecln (n ≥ 1)

A module begins with a header: the keyword module, the module name, and a list of entities (enclosed in
round parentheses) to be exported. The header is followed by a possibly-empty list of import declarations
(impdecls , Section 5.3) that specify modules to be imported, optionally restricting the imported bindings.
This is followed by a possibly-empty list of top-level declarations (topdecls , Chapter 4).

An abbreviated form of module, consisting only of the module body, is permitted. If this is used, the header
is assumed to be ‘module Main(main) where’. If the first lexeme in the abbreviated module is not a
{, then the layout rule applies for the top level of the module.

5.2. EXPORT LISTS 63

5.2 Export Lists

exports → (export1 , . . . , exportn [,]) (n ≥ 0)

export → qvar
| qtycon [(..) | (cname1 , . . . , cnamen)] (n ≥ 0)
| qtycls [(..) | (var1 , . . . , varn)] (n ≥ 0)
| module modid

cname → var | con

An export list identifies the entities to be exported by a module declaration. A module implementation may
only export an entity that it declares, or that it imports from some other module. If the export list is omitted,
all values, types and classes defined in the module are exported, but not those that are imported.

Entities in an export list may be named as follows:

1. A value, field name, or class method, whether declared in the module body or imported, may be named
by giving the name of the value as a qvarid , which must be in scope. Operators should be enclosed in
parentheses to turn them into qvarids.

2. An algebraic datatype T declared by a data or newtype declaration may be named in one of three
ways:

• The form T names the type but not the constructors or field names. The ability to export a type
without its constructors allows the construction of abstract datatypes (see Section 5.8).

• The form T(c1, . . .,cn), names the type and some or all of its constructors and field names.

• The abbreviated form T(..) names the type and all its constructors and field names that are
currently in scope (whether qualified or not).

In all cases, the (possibly-qualified) type constructor T must be in scope. The constructor and field
names ci in the second form are unqualified; one of these subordinate names is legal if and only if (a)
it names a constructor or field of T , and (b) the constructor or field is in scope in the module body
regardless of whether it is in scope under a qualified or unqualified name. For example, the following
is legal

module A(Mb.Maybe(Nothing, Just)) where
import qualified Data.Maybe as Mb

Data constructors cannot be named in export lists except as subordinate names, because they cannot
otherwise be distinguished from type constructors.

3. A type synonym T declared by a type declaration may be named by the form T , where T is in scope.

4. A class C with operations f1, . . . , fn declared in a class declaration may be named in one of three
ways:

• The form C names the class but not the class methods.

• The form C(f1, . . .,fn), names the class and some or all of its methods.

• The abbreviated form C(..) names the class and all its methods that are in scope (whether
qualified or not).

64 CHAPTER 5. MODULES

In all cases, C must be in scope. In the second form, one of the (unqualified) subordinate names fi is
legal if and only if (a) it names a class method of C , and (b) the class method is in scope in the module
body regardless of whether it is in scope under a qualified or unqualified name.

5. The form “module M” names the set of all entities that are in scope with both an unqualified name
“e” and a qualified name “M.e”. This set may be empty. For example:

module Queue(module Stack, enqueue, dequeue) where
import Stack
...

Here the module Queue uses the module name Stack in its export list to abbreviate all the entities
imported from Stack.

A module can name its own local definitions in its export list using its own name in the “module M”
syntax, because a local declaration brings into scope both a qualified and unqualified name (Sec-
tion 5.5.1). For example:

module Mod1(module Mod1, module Mod2) where
import Mod2
import Mod3

Here module Mod1 exports all local definitions as well as those imported from Mod2 but not those
imported from Mod3.

It is an error to use module M in an export list unless M is the module bearing the export list, or M is
imported by at least one import declaration (qualified or unqualified).

Exports lists are cumulative: the set of entities exported by an export list is the union of the entities exported
by the individual items of the list.

It makes no difference to an importing module how an entity was exported. For example, a field name f
from data type T may be exported individually (f, item (1) above); or as an explicitly-named member of its
data type (T(f), item (2)); or as an implicitly-named member (T(..), item(2)); or by exporting an entire
module (module M, item (5)).

The unqualified names of the entities exported by a module must all be distinct (within their respective
namespace). For example

module A (C.f, C.g, g, module B) where -- an invalid module
import B(f)
import qualified C(f,g)
g = f True

There are no name clashes within module A itself, but there are name clashes in the export list between C.g
and g (assuming C.g and g are different entities – remember, modules can import each other recursively),
and between module B and C.f (assuming B.f and C.f are different entities).

5.3 Import Declarations

impdecl → import [qualified] modid [as modid] [impspec]
| (empty declaration)

impspec → (import1 , . . . , importn [,]) (n ≥ 0)
| hiding (import1 , . . . , importn [,]) (n ≥ 0)

5.3. IMPORT DECLARATIONS 65

import → var
| tycon [(..) | (cname1 , . . . , cnamen)] (n ≥ 0)
| tycls [(..) | (var1 , . . . , varn)] (n ≥ 0)

cname → var | con

The entities exported by a module may be brought into scope in another module with an import declaration
at the beginning of the module. The import declaration names the module to be imported and optionally
specifies the entities to be imported. A single module may be imported by more than one import declara-
tion. Imported names serve as top level declarations: they scope over the entire body of the module but may
be shadowed by local non-top-level bindings.

The effect of multiple import declarations is strictly cumulative: an entity is in scope if it is imported by
any of the import declarations in a module. The ordering of import declarations is irrelevant.

Lexically, the terminal symbols “as”, “qualified” and “hiding” are each a varid rather than a
reservedid . They have special significance only in the context of an import declaration; they may also
be used as variables.

5.3.1 What is imported

Exactly which entities are to be imported can be specified in one of the following three ways:

1. The imported entities can be specified explicitly by listing them in parentheses. Items in the list have
the same form as those in export lists, except qualifiers are not permitted and the ‘module modid ’
entity is not permitted. When the (..) form of import is used for a type or class, the (..) refers to
all of the constructors, methods, or field names exported from the module.

The list must name only entities exported by the imported module. The list may be empty, in which
case nothing except the instances is imported.

2. Entities can be excluded by using the form hiding(import1 , . . . , importn), which specifies that
all entities exported by the named module should be imported except for those named in the list. Data
constructors may be named directly in hiding lists without being prefixed by the associated type. Thus,
in

import M hiding (C)

any constructor, class, or type named C is excluded. In contrast, using C in an import list names only a
class or type.

It is an error to hide an entity that is not, in fact, exported by the imported module.

3. Finally, if impspec is omitted then all the entities exported by the specified module are imported.

5.3.2 Qualified import

For each entity imported under the rules of Section 5.3.1, the top-level environment is extended. If the import
declaration used the qualified keyword, only the qualified name of the entity is brought into scope. If the
qualified keyword is omitted, then both the qualified and unqualified name of the entity is brought into
scope. Section 5.5.1 describes qualified names in more detail.

66 CHAPTER 5. MODULES

The qualifier on the imported name is either the name of the imported module, or the local alias given in the
as clause (Section 5.3.3) on the import statement. Hence, the qualifier is not necessarily the name of the
module in which the entity was originally declared.

The ability to exclude the unqualified names allows full programmer control of the unqualified namespace: a
locally defined entity can share the same name as a qualified import:

module Ring where
import qualified Prelude -- All Prelude names must be qualified
import Data.List(nub)

l1 + l2 = l1 Prelude.++ l2 -- This + differs from the one in the Prelude
l1 * l2 = nub (l1 + l2) -- This * differs from the one in the Prelude

succ = (Prelude.+ 1)

5.3.3 Local aliases

Imported modules may be assigned a local alias in the importing module using the as clause. For example,
in

import qualified VeryLongModuleName as C

entities must be referenced using ‘C.’ as a qualifier instead of ‘VeryLongModuleName.’. This also allows
a different module to be substituted for VeryLongModuleName without changing the qualifiers used for
the imported module. It is legal for more than one module in scope to use the same qualifier, provided that
all names can still be resolved unambiguously. For example:

module M where
import qualified Foo as A
import qualified Baz as A
x = A.f

This module is legal provided only that Foo and Baz do not both export f.

An as clause may also be used on an un-qualified import statement:

import Foo as A(f)

This declaration brings into scope f and A.f.

5.3.4 Examples

To clarify the above import rules, suppose the module A exports x and y. Then this table shows what names
are brought into scope by the specified import statement:

5.4. IMPORTING AND EXPORTING INSTANCE DECLARATIONS 67

Import declaration Names brought into scope
import A x, y, A.x, A.y
import A() (nothing)
import A(x) x, A.x
import qualified A A.x, A.y
import qualified A() (nothing)
import qualified A(x) A.x
import A hiding () x, y, A.x, A.y
import A hiding (x) y, A.y
import qualified A hiding () A.x, A.y
import qualified A hiding (x) A.y
import A as B x, y, B.x, B.y
import A as B(x) x, B.x
import qualified A as B B.x, B.y

In all cases, all instance declarations in scope in module A are imported (Section 5.4).

5.4 Importing and Exporting Instance Declarations

Instance declarations cannot be explicitly named on import or export lists. All instances in scope within
a module are always exported and any import brings all instances in from the imported module. Thus, an
instance declaration is in scope if and only if a chain of import declarations leads to the module containing
the instance declaration.

For example, import M() does not bring any new names in scope from module M, but does bring in any
instances visible in M. A module whose only purpose is to provide instance declarations can have an empty
export list. For example

module MyInstances() where
instance Show (a -> b) where
show fn = "<<function>>"

instance Show (IO a) where
show io = "<<IO action>>"

5.5 Name Clashes and Closure

5.5.1 Qualified names

A qualified name is written as modid.name (Section 2.4). A qualified name is brought into scope:

• By a top level declaration. A top-level declaration brings into scope both the unqualified and the
qualified name of the entity being defined. Thus:

module M where
f x = ...
g x = M.f x x

68 CHAPTER 5. MODULES

is legal. The defining occurrence must mention the unqualified name; therefore, it is illegal to write
module M where
M.f x = ... -- ILLEGAL
g x = let M.y = x+1 in ... -- ILLEGAL

• By an import declaration. An import declaration, whether qualified or not, always brings into
scope the qualified name of the imported entity (Section 5.3). This allows a qualified import to be
replaced with an unqualified one without forcing changes in the references to the imported names.

5.5.2 Name clashes

If a module contains a bound occurrence of a name, such as f or A.f, it must be possible unambiguously to
resolve which entity is thereby referred to; that is, there must be only one binding for f or A.f respectively.

It is not an error for there to exist names that cannot be so resolved, provided that the program does not
mention those names. For example:

module A where
import B
import C
tup = (b, c, d, x)

module B(d, b, x, y) where
import D
x = ...
y = ...
b = ...

module C(d, c, x, y) where
import D
x = ...
y = ...
c = ...

module D(d) where
d = ...

Consider the definition of tup.

• The references to b and c can be unambiguously resolved to b declared in B, and c declared in C
respectively.

• The reference to d is unambiguously resolved to d declared in D. In this case the same entity is brought
into scope by two routes (the import of B and the import of C), and can be referred to in A by the names
d, B.d, and C.d.

• The reference to x is ambiguous: it could mean x declared in B, or x declared in C. The ambiguity
could be fixed by replacing the reference to x by B.x or C.x.

• There is no reference to y, so it is not erroneous that distinct entities called y are exported by both B
and C. An error is only reported if y is actually mentioned.

5.5. NAME CLASHES AND CLOSURE 69

The name occurring in a type signature or fixity declarations is always unqualified, and unambiguously refers
to another declaration in the same declaration list (except that the fixity declaration for a class method can
occur at top level — Section 4.4.2). For example, the following module is legal:

module F where

sin :: Float -> Float
sin x = (x::Float)

f x = Prelude.sin (F.sin x)

The local declaration for sin is legal, even though the Prelude function sin is implicitly in scope. The
references to Prelude.sin and F.sin must both be qualified to make it unambiguous which sin is
meant. However, the unqualified name sin in the type signature in the first line of F unambiguously refers
to the local declaration for sin.

5.5.3 Closure

Every module in a Haskell program must be closed. That is, every name explicitly mentioned by the source
code must be either defined locally or imported from another module. However, entities that the compiler
requires for type checking or other compile time analysis need not be imported if they are not mentioned by
name. The Haskell compilation system is responsible for finding any information needed for compilation
without the help of the programmer. That is, the import of a variable x does not require that the datatypes
and classes in the signature of x be brought into the module along with x unless these entities are referenced
by name in the user program. The Haskell system silently imports any information that must accompany
an entity for type checking or any other purposes. Such entities need not even be explicitly exported: the
following program is valid even though T does not escape M1:

module M1(x) where
data T = T
x = T

module M2 where
import M1(x)
y = x

In this example, there is no way to supply an explicit type signature for y since T is not in scope. Whether or
not T is explicitly exported, module M2 knows enough about T to correctly type check the program.

The type of an exported entity is unaffected by non-exported type synonyms. For example, in

module M(x) where
type T = Int
x :: T
x = 1

the type of x is both T and Int; these are interchangeable even when T is not in scope. That is, the definition
of T is available to any module that encounters it whether or not the name T is in scope. The only reason to
export T is to allow other modules to refer it by name; the type checker finds the definition of T if needed
whether or not it is exported.

70 CHAPTER 5. MODULES

5.6 Standard Prelude

Many of the features of Haskell are defined in Haskell itself as a library of standard datatypes, classes, and
functions, called the “Standard Prelude.” In Haskell, the Prelude is contained in the module Prelude.
There are also many predefined library modules, which provide less frequently used functions and types.
For example, complex numbers, arrays, and most of the input/output are all part of the standard libraries.
These are defined in Part II. Separating libraries from the Prelude has the advantage of reducing the size and
complexity of the Prelude, allowing it to be more easily assimilated, and increasing the space of useful names
available to the programmer.

Prelude and library modules differ from other modules in that their semantics (but not their implementation)
are a fixed part of the Haskell language definition. This means, for example, that a compiler may optimize
calls to functions in the Prelude without consulting the source code of the Prelude.

5.6.1 The Prelude Module

The Prelude module is imported automatically into all modules as if by the statement
‘import Prelude’, if and only if it is not imported with an explicit import declaration. This provi-
sion for explicit import allows entities defined in the Prelude to be selectively imported, just like those from
any other module.

The semantics of the entities in Prelude is specified by a reference implementation of Prelude written in
Haskell, given in Chapter 9. Some datatypes (such as Int) and functions (such as Int addition) cannot be
specified directly in Haskell. Since the treatment of such entities depends on the implementation, they are not
formally defined in Chapter 9. The implementation of Prelude is also incomplete in its treatment of tuples:
there should be an infinite family of tuples and their instance declarations, but the implementation only gives
a scheme.

Chapter 9 defines the module Prelude using several other modules: PreludeList, PreludeIO, and so
on. These modules are not part of Haskell 98, and they cannot be imported separately. They are simply there
to help explain the structure of the Prelude module; they should be considered part of its implementation,
not part of the language definition.

5.6.2 Shadowing Prelude Names

The rules about the Prelude have been cast so that it is possible to use Prelude names for nonstandard pur-
poses; however, every module that does so must have an import declaration that makes this nonstandard
usage explicit. For example:

module A(null, nonNull) where
import Prelude hiding(null)
null, nonNull :: Int -> Bool
null x = x == 0
nonNull x = not (null x)

Module A redefines null, and contains an unqualified reference to null on the right hand side of nonNull.
The latter would be ambiguous without the hiding(null) on the import Prelude statement. Every
module that imports A unqualified, and then makes an unqualified reference to null must also resolve the
ambiguous use of null just as A does. Thus there is little danger of accidentally shadowing Prelude names.

5.7. SEPARATE COMPILATION 71

It is possible to construct and use a different module to serve in place of the Prelude. Other than the fact that
it is implicitly imported, the Prelude is an ordinary Haskell module; it is special only in that some objects in
the Prelude are referenced by special syntactic constructs. Redefining names used by the Prelude does not
affect the meaning of these special constructs. For example, in

module B where
import Prelude()
import MyPrelude
f x = (x,x)
g x = (,) x x
h x = [x] ++ []

the explicit import Prelude() declaration prevents the automatic import of Prelude, while the dec-
laration import MyPrelude brings the non-standard prelude into scope. The special syntax for tuples
(such as (x,x) and (,)) and lists (such as [x] and []) continues to refer to the tuples and lists defined by
the standard Prelude; there is no way to redefine the meaning of [x], for example, in terms of a different
implementation of lists. On the other hand, the use of ++ is not special syntax, so it refers to ++ imported
from MyPrelude.

It is not possible, however, to hide instance declarations in the Prelude. For example, one cannot define
a new instance for Show Char.

5.7 Separate Compilation

Depending on the Haskell implementation used, separate compilation of mutually recursive modules may
require that imported modules contain additional information so that they may be referenced before they are
compiled. Explicit type signatures for all exported values may be necessary to deal with mutual recursion.
The precise details of separate compilation are not defined by this report.

5.8 Abstract Datatypes

The ability to export a datatype without its constructors allows the construction of abstract datatypes (ADTs).
For example, an ADT for stacks could be defined as:

module Stack(StkType, push, pop, empty) where
data StkType a = EmptyStk | Stk a (StkType a)
push x s = Stk x s
pop (Stk _ s) = s
empty = EmptyStk

Modules importing Stack cannot construct values of type StkType because they do not have access to the
constructors of the type. Instead, they must use push, pop, and empty to construct such values.

It is also possible to build an ADT on top of an existing type by using a newtype declaration. For example,
stacks can be defined with lists:

module Stack(StkType, push, pop, empty) where
newtype StkType a = Stk [a]
push x (Stk s) = Stk (x:s)
pop (Stk (_:s)) = Stk s
empty = Stk []

72 CHAPTER 5. MODULES

Chapter 6

Predefined Types and Classes

The Haskell Prelude contains predefined classes, types, and functions that are implicitly imported into every
Haskell program. In this chapter, we describe the types and classes found in the Prelude. Most functions
are not described in detail here as they can easily be understood from their definitions as given in Chapter 9.
Other predefined types such as arrays, complex numbers, and rationals are defined in Part II.

6.1 Standard Haskell Types

These types are defined by the Haskell Prelude. Numeric types are described in Section 6.4. When appro-
priate, the Haskell definition of the type is given. Some definitions may not be completely valid on syntactic
grounds but they faithfully convey the meaning of the underlying type.

6.1.1 Booleans

data Bool = False | True deriving
(Read, Show, Eq, Ord, Enum, Bounded)

The boolean type Bool is an enumeration. The basic boolean functions are && (and), || (or), and not. The
name otherwise is defined as True to make guarded expressions more readable.

6.1.2 Characters and Strings

The character type Char is an enumeration whose values represent Unicode characters [2]. The lexical
syntax for characters is defined in Section 2.6; character literals are nullary constructors in the datatype
Char. Type Char is an instance of the classes Read, Show, Eq, Ord, Enum, and Bounded. The toEnum
and fromEnum functions, standard functions from class Enum, map characters to and from the Int type.

Note that ASCII control characters each have several representations in character literals: numeric escapes,
ASCII mnemonic escapes, and the \ˆX notation. In addition, there are the following equivalences: \a and
\BEL, \b and \BS, \f and \FF, \r and \CR, \t and \HT, \v and \VT, and \n and \LF.

A string is a list of characters:

73

74 CHAPTER 6. PREDEFINED TYPES AND CLASSES

type String = [Char]

Strings may be abbreviated using the lexical syntax described in Section 2.6. For example, "A string"
abbreviates

[’A’,’ ’,’s’,’t’,’r’, ’i’,’n’,’g’]

6.1.3 Lists

data [a] = [] | a : [a] deriving (Eq, Ord)

Lists are an algebraic datatype of two constructors, although with special syntax, as described in Section 3.7.
The first constructor is the null list, written ‘[]’ (“nil”), and the second is ‘:’ (“cons”). The module
PreludeList (see Section 9.1) defines many standard list functions. Arithmetic sequences and list com-
prehensions, two convenient syntaxes for special kinds of lists, are described in Sections 3.10 and 3.11,
respectively. Lists are an instance of classes Read, Show, Eq, Ord, Monad, Functor, and MonadPlus.

6.1.4 Tuples

Tuples are algebraic datatypes with special syntax, as defined in Section 3.8. Each tuple type has a single
constructor. All tuples are instances of Eq, Ord, Bounded, Read, and Show (provided, of course, that all
their component types are).

There is no upper bound on the size of a tuple, but some Haskell implementations may restrict the size of
tuples, and limit the instances associated with larger tuples. However, every Haskell implementation must
support tuples up to size 15, together with the instances for Eq, Ord, Bounded, Read, and Show. The
Prelude and libraries define tuple functions such as zip for tuples up to a size of 7.

The constructor for a tuple is written by omitting the expressions surrounding the commas; thus (x,y) and
(,) x y produce the same value. The same holds for tuple type constructors; thus, (Int,Bool,Int)
and (,,) Int Bool Int denote the same type.

The following functions are defined for pairs (2-tuples): fst, snd, curry, and uncurry. Similar func-
tions are not predefined for larger tuples.

6.1.5 The Unit Datatype

data () = () deriving (Eq, Ord, Bounded, Enum, Read, Show)

The unit datatype () has one non-⊥ member, the nullary constructor (). See also Section 3.9.

6.1.6 Function Types

Functions are an abstract type: no constructors directly create functional values. The following simple func-
tions are found in the Prelude: id, const, (.), flip, ($), and until.

6.2. STRICT EVALUATION 75

6.1.7 The IO and IOError Types

The IO type serves as a tag for operations (actions) that interact with the outside world. The IO type is
abstract: no constructors are visible to the user. IO is an instance of the Monad and Functor classes.
Chapter 7 describes I/O operations.

IOError is an abstract type representing errors raised by I/O operations. It is an instance of Show and Eq.
Values of this type are constructed by the various I/O functions and are not presented in any further detail
in this report. The Prelude contains a few I/O functions (defined in Section 9.3), and Part II contains many
more.

6.1.8 Other Types

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)
data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)
data Ordering = LT | EQ | GT deriving

(Eq, Ord, Bounded, Enum, Read, Show)

The Maybe type is an instance of classes Functor, Monad, and MonadPlus. The Ordering type is
used by compare in the class Ord. The functions maybe and either are found in the Prelude.

6.2 Strict Evaluation

Function application in Haskell is non-strict; that is, a function argument is evaluated only when required.
Sometimes it is desirable to force the evaluation of a value, using the seq function:

seq :: a -> b -> b

The function seq is defined by the equations:

seq ⊥ b = ⊥
seq a b = b, if a 6= ⊥

seq is usually introduced to improve performance by avoiding unneeded laziness. Strict datatypes (see
Section 4.2.1) are defined in terms of the $! operator. However, the provision of seq has important semantic
consequences, because it is available at every type. As a consequence, ⊥ is not the same as \x -> ⊥,
since seq can be used to distinguish them. For the same reason, the existence of seq weakens Haskell’s
parametricity properties.

The operator $! is strict (call-by-value) application, and is defined in terms of seq. The Prelude also defines
the $ operator to perform non-strict application.

infixr 0 $, $!
($), ($!) :: (a -> b) -> a -> b
f $ x = f x
f $! x = x ‘seq‘ f x

The non-strict application operator $ may appear redundant, since ordinary application (f x) means the
same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows paren-
theses to be omitted; for example:

76 CHAPTER 6. PREDEFINED TYPES AND CLASSES

Eq
All except IO, (->)

Ord
All except (->)

IO, IOError

Num
Int, Integer,

Float, Double

Show
All except

IO, (->)

Real
Int, Integer,

Float, Double

Fractional
Float, Double

Enum
(), Bool, Char, Ordering,

Int, Integer, Float,

Double

RealFrac
Float, Double

Floating
Float, Double

Integral
Int, Integer

RealFloat
Float, Double

Read
All except

IO, (->)

Bounded
Int, Char, Bool, ()

Ordering, tuples

Monad
IO, [], Maybe

Functor
IO, [], Maybe

Figure 6.1: Standard Haskell Classes

f $ g $ h x = f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

6.3 Standard Haskell Classes

Figure 6.1 shows the hierarchy of Haskell classes defined in the Prelude and the Prelude types that are in-
stances of these classes.

Default class method declarations (Section 4.3) are provided for many of the methods in standard classes. A
comment with each class declaration in Chapter 9 specifies the smallest collection of method definitions
that, together with the default declarations, provide a reasonable definition for all the class methods. If there
is no such comment, then all class methods must be given to fully specify an instance.

6.3. STANDARD HASKELL CLASSES 77

6.3.1 The Eq Class

class Eq a where
(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)
x == y = not (x /= y)

The Eq class provides equality (==) and inequality (/=) methods. All basic datatypes except for functions
and IO are instances of this class. Instances of Eq can be derived for any user-defined datatype whose
constituents are also instances of Eq.

This declaration gives default method declarations for both /= and ==, each being defined in terms of the
other. If an instance declaration for Eq defines neither == nor /=, then both will loop. If one is defined,
the default method for the other will make use of the one that is defined. If both are defined, neither default
method is used.

6.3.2 The Ord Class

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

compare x y | x == y = EQ
| x <= y = LT
| otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT

-- Note that (min x y, max x y) = (x,y) or (y,x)
max x y | x <= y = y

| otherwise = x
min x y | x <= y = x

| otherwise = y

The Ord class is used for totally ordered datatypes. All basic datatypes except for functions, IO, and
IOError, are instances of this class. Instances of Ord can be derived for any user-defined datatype whose
constituent types are in Ord. The declared order of the constructors in the data declaration determines the
ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the
precise ordering of two objects.

The default declarations allow a user to create an Ord instance either with a type-specific compare function
or with type-specific == and <= functions.

6.3.3 The Read and Show Classes

type ReadS a = String -> [(a,String)]

78 CHAPTER 6. PREDEFINED TYPES AND CLASSES

type ShowS = String -> String

class Read a where
readsPrec :: Int -> ReadS a
readList :: ReadS [a]
-- ... default decl for readList given in Prelude

class Show a where
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList :: [a] -> ShowS

showsPrec _ x s = show x ++ s
show x = showsPrec 0 x ""
-- ... default decl for showList given in Prelude

The Read and Show classes are used to convert values to or from strings. The Int argument to showsPrec
and readsPrec gives the operator precedence of the enclosing context (see Section 11.4).

showsPrec and showList return a String-to-String function, to allow constant-time concatenation
of its results using function composition. A specialised variant, show, is also provided, which uses prece-
dence context zero, and returns an ordinary String. The method showList is provided to allow the
programmer to give a specialised way of showing lists of values. This is particularly useful for the Char
type, where values of type String should be shown in double quotes, rather than between square brackets.

Derived instances of Read and Show replicate the style in which a constructor is declared: infix constructors
and field names are used on input and output. Strings produced by showsPrec are usually readable by
readsPrec.

All Prelude types, except function types and IO types, are instances of Show and Read. (If desired,
a programmer can easily make functions and IO types into (vacuous) instances of Show, by providing an
instance declaration.)

For convenience, the Prelude provides the following auxiliary functions:

reads :: (Read a) => ReadS a
reads = readsPrec 0

shows :: (Show a) => a -> ShowS
shows = showsPrec 0

read :: (Read a) => String -> a
read s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> x
[] -> error "PreludeText.read: no parse"
_ -> error "PreludeText.read: ambiguous parse"

shows and reads use a default precedence of 0. The read function reads input from a string, which must
be completely consumed by the input process.

The function lex :: ReadS String, used by read, is also part of the Prelude. It reads a single lexeme
from the input, discarding initial white space, and returning the characters that constitute the lexeme. If the
input string contains only white space, lex returns a single successful “lexeme” consisting of the empty
string. (Thus lex "" = [("","")].) If there is no legal lexeme at the beginning of the input string, lex
fails (i.e. returns []).

6.3. STANDARD HASKELL CLASSES 79

6.3.4 The Enum Class

class Enum a where
succ, pred :: a -> a
toEnum :: Int -> a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,n’..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’..m]

-- Default declarations given in Prelude

Class Enum defines operations on sequentially ordered types. The functions succ and pred return the
successor and predecessor, respectively, of a value. The functions fromEnum and toEnum map values from
a type in Enum to and from Int. The enumFrom... methods are used when translating arithmetic sequences
(Section 3.10).

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields); see
Chapter 11.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

• The calls succ maxBound and pred minBound should result in a runtime error.

• fromEnum and toEnum should give a runtime error if the result value is not representable in the
result type. For example, toEnum 7 :: Bool is an error.

• enumFrom and enumFromThen should be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound

| otherwise = minBound

The following Prelude types are instances of Enum:

• Enumeration types: (), Bool, and Ordering. The semantics of these instances is given by Chap-
ter 11. For example, [LT ..] is the list [LT,EQ,GT].

• Char: the instance is given in Chapter 9, based on the primitive functions that convert between a
Char and an Int. For example, enumFromTo ’a’ ’z’ denotes the list of lowercase letters in
alphabetical order.

• Numeric types: Int, Integer, Float, Double. The semantics of these instances is given next.

For all four numeric types, succ adds 1, and pred subtracts 1. The conversions fromEnum and toEnum
convert between the type and Int. In the case of Float and Double, the digits after the decimal point may
be lost. It is implementation-dependent what fromEnum returns when applied to a value that is too large to
fit in an Int.

For the types Int and Integer, the enumeration functions have the following meaning:

80 CHAPTER 6. PREDEFINED TYPES AND CLASSES

• The sequence enumFrom e1 is the list [e1,e1 + 1,e1 + 2, . . .].

• The sequence enumFromThen e1 e2 is the list [e1,e1 + i,e1 + 2i, . . .], where the increment, i ,
is e2 − e1 . The increment may be zero or negative. If the increment is zero, all the list elements are
the same.

• The sequence enumFromTo e1 e3 is the list [e1,e1 + 1,e1 + 2, . . . e3]. The list is empty if
e1 > e3 .

• The sequence enumFromThenTo e1 e2 e3 is the list [e1,e1 + i,e1 + 2i, . . . e3], where the in-
crement, i , is e2 − e1 . If the increment is positive or zero, the list terminates when the next element
would be greater than e3 ; the list is empty if e1 > e3 . If the increment is negative, the list terminates
when the next element would be less than e3 ; the list is empty if e1 < e3 .

For Float and Double, the semantics of the enumFrom family is given by the rules for Int above, except
that the list terminates when the elements become greater than e3 + i/2 for positive increment i , or when
they become less than e3 + i/2 for negative i .

For all four of these Prelude numeric types, all of the enumFrom family of functions are strict in all their
arguments.

6.3.5 The Functor Class

class Functor f where
fmap :: (a -> b) -> f a -> f b

The Functor class is used for types that can be mapped over. Lists, IO, and Maybe are in this class.

Instances of Functor should satisfy the following laws:

fmap id = id
fmap (f . g) = fmap f . fmap g

All instances of Functor defined in the Prelude satisfy these laws.

6.3.6 The Monad Class

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

m >> k = m >>= _ -> k
fail s = error s

The Monad class defines the basic operations over a monad. See Chapter 7 for more information about
monads.

“do” expressions provide a convenient syntax for writing monadic expressions (see Section 3.14). The fail
method is invoked on pattern-match failure in a do expression.

6.4. NUMBERS 81

In the Prelude, lists, Maybe, and IO are all instances of Monad. The failmethod for lists returns the empty
list [], for Maybe returns Nothing, and for IO raises a user exception in the IO monad (see Section 7.3).

Instances of Monad should satisfy the following laws:

return a >>= k = k a
m >>= return = m
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

Instances of both Monad and Functor should additionally satisfy the law:

fmap f xs = xs >>= return . f

All instances of Monad defined in the Prelude satisfy these laws.

The Prelude provides the following auxiliary functions:

sequence :: Monad m => [m a] -> m [a]
sequence_ :: Monad m => [m a] -> m ()
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
(=<<) :: Monad m => (a -> m b) -> m a -> m b

6.3.7 The Bounded Class

class Bounded a where
minBound, maxBound :: a

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded
since types that are not totally ordered may also have upper and lower bounds. The types Int, Char,
Bool, (), Ordering, and all tuples are instances of Bounded. The Bounded class may be derived for
any enumeration type; minBound is the first constructor listed in the data declaration and maxBound
is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in
Bounded.

6.4 Numbers

Haskell provides several kinds of numbers; the numeric types and the operations upon them have been heavily
influenced by Common Lisp and Scheme. Numeric function names and operators are usually overloaded,
using several type classes with an inclusion relation shown in Figure 6.1. The class Num of numeric types is a
subclass of Eq, since all numbers may be compared for equality; its subclass Real is also a subclass of Ord,
since the other comparison operations apply to all but complex numbers (defined in the Complex library).
The class Integral contains integers of both limited and unlimited range; the class Fractional contains
all non-integral types; and the class Floating contains all floating-point types, both real and complex.

The Prelude defines only the most basic numeric types: fixed sized integers (Int), arbitrary precision integers
(Integer), single precision floating (Float), and double precision floating (Double). Other numeric
types such as rationals and complex numbers are defined in libraries. In particular, the type Rational is a
ratio of two Integer values, as defined in the Ratio library.

82 CHAPTER 6. PREDEFINED TYPES AND CLASSES

Type Class Description
Integer Integral Arbitrary-precision integers
Int Integral Fixed-precision integers
(Integral a) => Ratio a RealFrac Rational numbers
Float RealFloat Real floating-point, single precision
Double RealFloat Real floating-point, double precision
(RealFloat a) => Complex a Floating Complex floating-point

Table 6.1: Standard Numeric Types

The default floating point operations defined by the Haskell Prelude do not conform to current language in-
dependent arithmetic (LIA) standards. These standards require considerably more complexity in the numeric
structure and have thus been relegated to a library. Some, but not all, aspects of the IEEE floating point
standard have been accounted for in Prelude class RealFloat.

The standard numeric types are listed in Table 6.1. The finite-precision integer type Int covers at least
the range [− 2 29 , 2 29 − 1]. As Int is an instance of the Bounded class, maxBound and minBound
can be used to determine the exact Int range defined by an implementation. Float is implementation-
defined; it is desirable that this type be at least equal in range and precision to the IEEE single-precision
type. Similarly, Double should cover IEEE double-precision. The results of exceptional conditions (such as
overflow or underflow) on the fixed-precision numeric types are undefined; an implementation may choose
error (⊥, semantically), a truncated value, or a special value such as infinity, indefinite, etc.

The standard numeric classes and other numeric functions defined in the Prelude are shown in Figures 6.2–
6.3. Figure 6.1 shows the class dependencies and built-in types that are instances of the numeric classes.

6.4.1 Numeric Literals

The syntax of numeric literals is given in Section 2.5. An integer literal represents the application of the
function fromInteger to the appropriate value of type Integer. Similarly, a floating literal stands for
an application of fromRational to a value of type Rational (that is, Ratio Integer). Given the
typings:

fromInteger :: (Num a) => Integer -> a
fromRational :: (Fractional a) => Rational -> a

integer and floating literals have the typings (Num a) => a and (Fractional a) => a, respectively.
Numeric literals are defined in this indirect way so that they may be interpreted as values of any appropriate
numeric type. See Section 4.3.4 for a discussion of overloading ambiguity.

6.4.2 Arithmetic and Number-Theoretic Operations

The infix class methods (+), (*), (-), and the unary function negate (which can also be written as a
prefix minus sign; see section 3.4) apply to all numbers. The class methods quot, rem, div, and mod apply
only to integral numbers, while the class method (/) applies only to fractional ones. The quot, rem, div,
and mod class methods satisfy these laws if y is non-zero:

6.4. NUMBERS 83

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem, div, mod :: a -> a -> a
quotRem, divMod :: a -> a -> (a,a)
toInteger :: a -> Integer

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a

class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a

Figure 6.2: Standard Numeric Classes and Related Operations, Part 1

(x ‘quot‘ y)*y + (x ‘rem‘ y) == x
(x ‘div‘ y)*y + (x ‘mod‘ y) == x

‘quot‘ is integer division truncated toward zero, while the result of ‘div‘ is truncated toward negative
infinity. The quotRem class method takes a dividend and a divisor as arguments and returns a (quotient,
remainder) pair; divMod is defined similarly:

quotRem x y = (x ‘quot‘ y, x ‘rem‘ y)
divMod x y = (x ‘div‘ y, x ‘mod‘ y)

Also available on integral numbers are the even and odd predicates:

even x = x ‘rem‘ 2 == 0
odd = not . even

Finally, there are the greatest common divisor and least common multiple functions. gcd x y is the great-
est (positive) integer that divides both x and y ; for example gcd (-3) 6 = 3, gcd (-3) (-6) = 3,
gcd 0 4 = 4. gcd 0 0 raises a runtime error.

lcm x y is the smallest positive integer that both x and y divide.

84 CHAPTER 6. PREDEFINED TYPES AND CLASSES

class (Real a, Fractional a) => RealFrac a where
properFraction :: (Integral b) => a -> (b,a)
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a -> b

class (RealFrac a, Floating a) => RealFloat a where
floatRadix :: a -> Integer
floatDigits :: a -> Int
floatRange :: a -> (Int,Int)
decodeFloat :: a -> (Integer,Int)
encodeFloat :: Integer -> Int -> a
exponent :: a -> Int
significand :: a -> a
scaleFloat :: Int -> a -> a
isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE

:: a -> Bool
atan2 :: a -> a -> a

gcd, lcm :: (Integral a) => a -> a-> a
(ˆ) :: (Num a, Integral b) => a -> b -> a
(ˆˆ) :: (Fractional a, Integral b) => a -> b -> a

fromIntegral :: (Integral a, Num b) => a -> b
realToFrac :: (Real a, Fractional b) => a -> b

Figure 6.3: Standard Numeric Classes and Related Operations, Part 2

6.4.3 Exponentiation and Logarithms

The one-argument exponential function exp and the logarithm function log act on floating-point numbers
and use base e . logBase a x returns the logarithm of x in base a . sqrt returns the principal square root
of a floating-point number. There are three two-argument exponentiation operations: (ˆ) raises any number
to a nonnegative integer power, (ˆˆ) raises a fractional number to any integer power, and (**) takes two
floating-point arguments. The value of xˆ0 or xˆˆ0 is 1 for any x , including zero; 0**y is 1 if y is 1, and
0 otherwise.

6.4.4 Magnitude and Sign

A number has a magnitude and a sign. The functions abs and signum apply to any number and satisfy the
law:

abs x * signum x == x

For real numbers, these functions are defined by:

abs x | x >= 0 = x
| x < 0 = -x

signum x | x > 0 = 1

6.4. NUMBERS 85

| x == 0 = 0
| x < 0 = -1

6.4.5 Trigonometric Functions

Class Floating provides the circular and hyperbolic sine, cosine, and tangent functions and their inverses.
Default implementations of tan, tanh, logBase, **, and sqrt are provided, but implementors are free
to provide more accurate implementations.

Class RealFloat provides a version of arctangent taking two real floating-point arguments. For real float-
ing x and y , atan2 y x computes the angle (from the positive x-axis) of the vector from the origin to the
point (x , y). atan2 y x returns a value in the range [-pi, pi]. It follows the Common Lisp semantics
for the origin when signed zeroes are supported. atan2 y 1, with y in a type that is RealFloat, should
return the same value as atan y . A default definition of atan2 is provided, but implementors can provide
a more accurate implementation.

The precise definition of the above functions is as in Common Lisp, which in turn follows Penfield’s proposal
for APL [12]. See these references for discussions of branch cuts, discontinuities, and implementation.

6.4.6 Coercions and Component Extraction

The ceiling, floor, truncate, and round functions each take a real fractional argument and return
an integral result. ceiling x returns the least integer not less than x , and floor x , the greatest integer not
greater than x . truncate x yields the integer nearest x between 0 and x , inclusive. round x returns the
nearest integer to x , the even integer if x is equidistant between two integers.

The function properFraction takes a real fractional number x and returns a pair (n, f) such that
x = n + f , and: n is an integral number with the same sign as x ; and f is a fraction f with the same
type and sign as x , and with absolute value less than 1. The ceiling, floor, truncate, and round
functions can be defined in terms of properFraction.

Two functions convert numbers to type Rational: toRational returns the rational equivalent of its real
argument with full precision; approxRational takes two real fractional arguments x and ε and returns
the simplest rational number within ε of x , where a rational p/q in reduced form is simpler than another p′/q′

if |p| ≤ |p′| and q ≤ q′. Every real interval contains a unique simplest rational; in particular, note that 0/1 is
the simplest rational of all.

The class methods of class RealFloat allow efficient, machine-independent access to the components
of a floating-point number. The functions floatRadix, floatDigits, and floatRange give the
parameters of a floating-point type: the radix of the representation, the number of digits of this radix in
the significand, and the lowest and highest values the exponent may assume, respectively. The function
decodeFloat applied to a real floating-point number returns the significand expressed as an Integer
and an appropriately scaled exponent (an Int). If decodeFloat x yields (m,n), then x is equal in
value to mbn , where b is the floating-point radix, and furthermore, either m and n are both zero or else
bd−1 ≤ |m| < bd , where d is the value of floatDigits x. encodeFloat performs the inverse of
this transformation. The functions significand and exponent together provide the same information
as decodeFloat, but rather than an Integer, significand x yields a value of the same type as x,
scaled to lie in the open interval (−1 , 1). exponent 0 is zero. scaleFloat multiplies a floating-point
number by an integer power of the radix.

86 CHAPTER 6. PREDEFINED TYPES AND CLASSES

The functions isNaN, isInfinite, isDenormalized, isNegativeZero, and isIEEE all support
numbers represented using the IEEE standard. For non-IEEE floating point numbers, these may all return
false.

Also available are the following coercion functions:

fromIntegral :: (Integral a, Num b) => a -> b
realToFrac :: (Real a, Fractional b) => a -> b

Chapter 7

Basic Input/Output

The I/O system in Haskell is purely functional, yet has all of the expressive power found in conventional
programming languages. To achieve this, Haskell uses a monad to integrate I/O operations into a purely
functional context.

The I/O monad used by Haskell mediates between the values natural to a functional language and the actions
that characterize I/O operations and imperative programming in general. The order of evaluation of expres-
sions in Haskell is constrained only by data dependencies; an implementation has a great deal of freedom in
choosing this order. Actions, however, must be ordered in a well-defined manner for program execution –
and I/O in particular – to be meaningful. Haskell’s I/O monad provides the user with a way to specify the
sequential chaining of actions, and an implementation is obliged to preserve this order.

The term monad comes from a branch of mathematics known as category theory. From the perspective of a
Haskell programmer, however, it is best to think of a monad as an abstract datatype. In the case of the I/O
monad, the abstract values are the actions mentioned above. Some operations are primitive actions, corre-
sponding to conventional I/O operations. Special operations (methods in the class Monad, see Section 6.3.6)
sequentially compose actions, corresponding to sequencing operators (such as the semicolon) in imperative
languages.

7.1 Standard I/O Functions

Although Haskell provides fairly sophisticated I/O facilities, as defined in the IO library, it is possible to
write many Haskell programs using only the few simple functions that are exported from the Prelude, and
which are described in this section.

All I/O functions defined here are character oriented. The treatment of the newline character will vary on
different systems. For example, two characters of input, return and linefeed, may read as a single newline
character. These functions cannot be used portably for binary I/O.

In the following, recall that String is a synonym for [Char] (Section 6.1.2).

Output Functions These functions write to the standard output device (this is normally the user’s terminal).

87

88 CHAPTER 7. BASIC INPUT/OUTPUT

putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO () -- adds a newline
print :: Show a => a -> IO ()

The print function outputs a value of any printable type to the standard output device. Printable types are
those that are instances of class Show; print converts values to strings for output using the show operation
and adds a newline.

For example, a program to print the first 20 integers and their powers of 2 could be written as:

main = print ([(n, 2ˆn) | n <- [0..19]])

Input Functions These functions read input from the standard input device (normally the user’s terminal).

getChar :: IO Char
getLine :: IO String
getContents :: IO String
interact :: (String -> String) -> IO ()
readIO :: Read a => String -> IO a
readLn :: Read a => IO a

The getChar operation raises an exception (Section 7.3) on end-of-file; a predicate isEOFError that
identifies this exception is defined in the IO library. The getLine operation raises an exception under the
same circumstances as hGetLine, defined the IO library.

The getContents operation returns all user input as a single string, which is read lazily as it is needed.
The interact function takes a function of type String->String as its argument. The entire input from
the standard input device is passed to this function as its argument, and the resulting string is output on the
standard output device.

Typically, the read operation from class Read is used to convert the string to a value. The readIO function
is similar to read except that it signals parse failure to the I/O monad instead of terminating the program.
The readLn function combines getLine and readIO.

The following program simply removes all non-ASCII characters from its standard input and echoes the result
on its standard output. (The isAscii function is defined in a library.)

main = interact (filter isAscii)

Files These functions operate on files of characters. Files are named by strings using some implementation-
specific method to resolve strings as file names.

The writeFile and appendFile functions write or append the string, their second argument, to the file,
their first argument. The readFile function reads a file and returns the contents of the file as a string. The
file is read lazily, on demand, as with getContents.

type FilePath = String

writeFile :: FilePath -> String -> IO ()
appendFile :: FilePath -> String -> IO ()
readFile :: FilePath -> IO String

7.2. SEQUENCING I/O OPERATIONS 89

Note that writeFile and appendFile write a literal string to a file. To write a value of any printable
type, as with print, use the show function to convert the value to a string first.

main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])

7.2 Sequencing I/O Operations

The type constructor IO is an instance of the Monad class. The two monadic binding functions, methods in
the Monad class, are used to compose a series of I/O operations. The >> function is used where the result of
the first operation is uninteresting, for example when it is (). The >>= operation passes the result of the first
operation as an argument to the second operation.

(>>=) :: IO a -> (a -> IO b) -> IO b
(>>) :: IO a -> IO b -> IO b

For example,

main = readFile "input-file" >>= \ s ->
writeFile "output-file" (filter isAscii s) >>
putStr "Filtering successful\n"

is similar to the previous example using interact, but takes its input from "input-file" and writes
its output to "output-file". A message is printed on the standard output before the program completes.

The do notation allows programming in a more imperative syntactic style. A slightly more elaborate version
of the previous example would be:

main = do
putStr "Input file: "
ifile <- getLine
putStr "Output file: "
ofile <- getLine
s <- readFile ifile
writeFile ofile (filter isAscii s)
putStr "Filtering successful\n"

The return function is used to define the result of an I/O operation. For example, getLine is defined in
terms of getChar, using return to define the result:

getLine :: IO String
getLine = do c <- getChar

if c == ’\n’ then return ""
else do s <- getLine

return (c:s)

90 CHAPTER 7. BASIC INPUT/OUTPUT

7.3 Exception Handling in the I/O Monad

The I/O monad includes a simple exception handling system. Any I/O operation may raise an exception
instead of returning a result.

Exceptions in the I/O monad are represented by values of type IOError. This is an abstract type: its
constructors are hidden from the user. The IO library defines functions that construct and examine IOError
values. The only Prelude function that creates an IOError value is userError. User error values include
a string describing the error.

userError :: String -> IOError

Exceptions are raised and caught using the following functions:

ioError :: IOError -> IO a
catch :: IO a -> (IOError -> IO a) -> IO a

The ioError function raises an exception; the catch function establishes a handler that receives any
exception raised in the action protected by catch. An exception is caught by the most recent handler
established by catch. These handlers are not selective: all exceptions are caught. Exception propagation
must be explicitly provided in a handler by re-raising any unwanted exceptions. For example, in

f = catch g (\e -> if IO.isEOFError e then return [] else ioError e)

the function f returns [] when an end-of-file exception occurs in g; otherwise, the exception is propagated
to the next outer handler. The isEOFError function is part of IO library.

When an exception propagates outside the main program, the Haskell system prints the associated IOError
value and exits the program.

The fail method of the IO instance of the Monad class (Section 6.3.6) raises a userError, thus:

instance Monad IO where
...bindings for return, (>>=), (>>)

fail s = ioError (userError s)

The exceptions raised by the I/O functions in the Prelude are defined in Chapter 42.

Chapter 8

Foreign Function Interface

The Foreign Function Interface (FFI) has two purposes: it enables (1) to describe in Haskell the interface to
foreign language functionality and (2) to use from foreign code Haskell routines. More generally, its aim is
to support the implementation of programs in a mixture of Haskell and other languages such that the source
code is portable across different implementations of Haskell and non-Haskell systems as well as independent
of the architecture and operating system.

8.1 Foreign Languages

The Haskell FFI currently only specifies the interaction between Haskell code and foreign code that follows
the C calling convention. However, the design of the FFI is such that it enables the modular extension of
the present definition to include the calling conventions of other programming languages, such as C++ and
Java. A precise definition of the support for those languages is expected to be included in later versions
of the language. The second major omission is the definition of the interaction with multithreading in the
foreign language and, in particular, the treatment of thread-local state, and so these details are currently
implementation-defined.

The core of the present specification is independent of the foreign language that is used in conjunction with
Haskell. However, there are two areas where FFI specifications must become language specific: (1) the
specification of external names and (2) the marshalling of the basic types of a foreign language. As an
example of the former, consider that in C [9] a simple identifier is sufficient to identify an object, while
Java [5], in general, requires a qualified name in conjunction with argument and result types to resolve
possible overloading. Regarding the second point, consider that many languages do not specify the exact
representation of some basic types. For example the type int in C may be 16, 32, or 64 bits wide. Similarly,
Haskell guarantees only that Int covers at least the range [−229, 229−1] (Section 6.4). As a consequence, to
reliably represent values of C’s int in Haskell, we have to introduce a new type CInt, which is guaranteed
to match the representation of int.

The specification of external names, dependent on a calling convention, is described in Section 8.5, whereas
the marshalling of the basic types in dependence on a foreign language is described in Section 8.6.

91

92 CHAPTER 8. FOREIGN FUNCTION INTERFACE

8.2 Contexts

For a given Haskell system, we define the Haskell context to be the execution context of the abstract machine
on which the Haskell system is based. This includes the heap, stacks, and the registers of the abstract machine
and their mapping onto a concrete architecture. We call any other execution context an external context.
Generally, we cannot assume any compatibility between the data formats and calling conventions between
the Haskell context and a given external context, except where Haskell explicitly prescribes a specific data
format.

The principal goal of a foreign function interface is to provide a programmable interface between the Haskell
context and external contexts. As a result Haskell threads can access data in external contexts and invoke
functions that are executed in an external context as well as vice versa. In the rest of this definition, external
contexts are usually identified by a calling convention.

8.2.1 Cross Language Type Consistency

Given that many external languages support static types, the question arises whether the consistency of Has-
kell types with the types of the external language can be enforced for foreign functions. Unfortunately, this
is, in general, not possible without a significant investment on the part of the implementor of the Haskell
system (i.e., without implementing a dedicated type checker). For example, in the case of the C calling con-
vention, the only other approach would be to generate a C prototype from the Haskell type and leave it to
the C compiler to match this prototype with the prototype that is specified in a C header file for the imported
function. However, the Haskell type is lacking some information that would be required to pursue this route.
In particular, the Haskell type does not contain any information as to when const modifiers have to be
emitted.

As a consequence, this definition does not require the Haskell system to check consistency with foreign types.
Nevertheless, Haskell systems are encouraged to provide any cross language consistency checks that can be
implemented with reasonable effort.

8.3 Lexical Structure

The FFI reserves a single keyword foreign, and a set of special identifiers. The latter have a special
meaning only within foreign declarations, but may be used as ordinary identifiers elsewhere.

The special identifiers ccall, cplusplus, dotnet, jvm, and stdcall are defined to denote calling
conventions. However, a concrete implementation of the FFI is free to support additional, system-specific
calling conventions whose name is not explicitly listed here.

To refer to objects of an external C context, we introduce the following phrases:

chname → {chchar} . h (C header filename)
cid → letter {letter | ascDigit} (C identifier)
chchar → letter | ascSymbol〈&〉
letter → ascSmall | ascLarge | _

The range of lexemes that are admissible for chname is a subset of those permitted as arguments to the
#include directive in C. In particular, a file name chname must end in the suffix .h. The lexemes produced
by cid coincide with those allowed as C identifiers, as specified in [9].

8.4. FOREIGN DECLARATIONS 93

8.4 Foreign Declarations

The syntax of foreign declarations is as follows:

topdecl → foreign fdecl
fdecl → import callconv [safety] impent var :: ftype (define variable)

| export callconv expent var :: ftype (expose variable)
callconv → ccall | stdcall | cplusplus (calling convention)

| jvm | dotnet
| system-specific calling conventions

impent → [string]
expent → [string]
safety → unsafe | safe

There are two flavours of foreign declarations: import and export declarations. An import declaration makes
an external entity, i.e., a function or memory location defined in an external context, available in the Haskell
context. Conversely, an export declaration defines a function of the Haskell context as an external entity in
an external context. Consequently, the two types of declarations differ in that an import declaration defines a
new variable, whereas an export declaration uses a variable that is already defined in the Haskell module.

The external context that contains the external entity is determined by the calling convention given in the
foreign declaration. Consequently, the exact form of the specification of the external entity is dependent on
both the calling convention and on whether it appears in an import declaration (as impent) or in an export
declaration (as expent). To provide syntactic uniformity in the presence of different calling conventions, it
is guaranteed that the description of an external entity lexically appears as a Haskell string lexeme. The only
exception is where this string would be the empty string (i.e., be of the form ""); in this case, the string may
be omitted in its entirety.

8.4.1 Calling Conventions

The binary interface to an external entity on a given architecture is determined by a calling convention. It
often depends on the programming language in which the external entity is implemented, but usually is more
dependent on the system for which the external entity has been compiled.

As an example of how the calling convention is dominated by the system rather than the programming lan-
guage, consider that an entity compiled to byte code for the Java Virtual Machine (JVM) [11] needs to be
invoked by the rules of the JVM rather than that of the source language in which it is implemented (the entity
might be implemented in Oberon, for example).

Any implementation of the Haskell FFI must at least implement the C calling convention denoted by ccall.
All other calling conventions are optional. Generally, the set of calling conventions is open, i.e., individ-
ual implementations may elect to support additional calling conventions. In addition to ccall, Table 8.1
specifies a range of identifiers for common calling conventions. Implementations need not implement all of
these conventions, but if any is implemented, it must use the listed name. For any other calling convention,
implementations are free to choose a suitable name.

Only the semantics of the calling conventions ccall and stdcall are defined herein; more calling con-
ventions may be added in future versions of Haskell.

94 CHAPTER 8. FOREIGN FUNCTION INTERFACE

Identifier Represented calling convention
ccall Calling convention of the standard C compiler on a system
cplusplus Calling convention of the standard C++ compiler on a system
dotnet Calling convention of the .NET platform
jvm Calling convention of the Java Virtual Machine
stdcall Calling convention of the Win32 API (matches Pascal conventions)

Table 8.1: Calling conventions

It should be noted that the code generated by a Haskell system to implement a particular calling convention
may vary widely with the target code of that system. For example, the calling convention jvm will be trivial
to implement for a Haskell compiler generating Java code, whereas for a Haskell compiler generating C code,
the Java Native Interface (JNI) [10] has to be targeted.

8.4.2 Foreign Types

The following types constitute the set of basic foreign types:

• Char, Int, Double, Float, and Bool as exported by the Haskell Prelude as well as

• Int8, Int16, Int32, Int64, Word8, Word16, Word32, Word64, Ptr a, FunPtr a, and
StablePtr a, for any type a, as exported by Foreign (Section 24).

A Haskell system that implements the FFI needs to be able to pass these types between the Haskell and the
external context as function arguments and results.

Foreign types are produced according to the following grammar:

ftype → frtype
| fatype -> ftype

frtype → fatype
| ()

fatype → qtycon atype1 . . . atypek (k ≥ 0)

A foreign type is the Haskell type of an external entity. Only a subset of Haskell’s types are permissible as
foreign types, as only a restricted set of types can be canonically transferred between the Haskell context and
an external context. A foreign type has the form

at1 -> · · · -> atn -> rt

where n ≥ 0. It implies that the arity of the external entity is n.

External functions are strict in all arguments.

Marshallable foreign types. The argument types ati produced by fatype must be marshallable foreign
types; that is, either

8.4. FOREIGN DECLARATIONS 95

• a basic foreign type,

• a type synonym that expands to a marshallable foreign type,

• a type T t ′1 . . . t ′n where T is defined by a newtype declaration

newtype T a1 . . . an = N t

and

– the constructor N is visible where T is used,

– t [t ′1/a1 ..t
′
n/an] is a marshallable foreign type

Consequently, in order for a type defined by newtype to be used in a foreign declaration outside of
the module that defines it, the type must not be exported abstractly. The module Foreign.C.Types that
defines the Haskell equivalents for C types follows this convention; see Chapter 28.

Marshallable foreign result types. The result type rt produced by frtype must be a marshallable foreign
result type; that is, either

• the type (),

• a type matching Prelude.IO t, where t is a marshallable foreign type or (),

• a basic foreign type,

• a type synonym that expands to marshallable foreign result type,

• a type T t ′1 . . . t ′n where T is defined by a newtype declaration

newtype T a1 . . . an = N t

and

– the constructor N is visible where T is used,

– t [t ′1/a1 ..t
′
n/an] is a marshallable foreign result type

8.4.3 Import Declarations

Generally, an import declaration has the form

foreign import c e v :: t

which declares the variable v of type t to be defined externally. Moreover, it specifies that v is evaluated
by executing the external entity identified by the string e using calling convention c. The precise form of
e depends on the calling convention and is detailed in Section 8.5. If a variable v is defined by an import
declaration, no other top-level declaration for v is allowed in the same module. For example, the declaration

foreign import ccall "string.h strlen"
cstrlen :: Ptr CChar -> IO CSize

96 CHAPTER 8. FOREIGN FUNCTION INTERFACE

introduces the function cstrlen, which invokes the external function strlen using the standard C calling
convention. Some external entities can be imported as pure functions; for example,

foreign import ccall "math.h sin"
sin :: CDouble -> CDouble.

Such a declaration asserts that the external entity is a true function; i.e., when applied to the same argument
values, it always produces the same result.

Whether a particular form of external entity places a constraint on the Haskell type with which it can be
imported is defined in Section 8.5. Although, some forms of external entities restrict the set of Haskell types
that are permissible, the system can generally not guarantee the consistency between the Haskell type given
in an import declaration and the argument and result types of the external entity. It is the responsibility of the
programmer to ensure this consistency.

Optionally, an import declaration can specify, after the calling convention, the safety level that should be used
when invoking an external entity. A safe call is less efficient, but guarantees to leave the Haskell system in a
state that allows callbacks from the external code. In contrast, an unsafe call, while carrying less overhead,
must not trigger a callback into the Haskell system. If it does, the system behaviour is undefined. The default
for an invocation is to be safe. Note that a callback into the Haskell system implies that a garbage collection
might be triggered after an external entity was called, but before this call returns. Consequently, objects other
than stable pointers (cf. Section 36) may be moved or garbage collected by the storage manager.

8.4.4 Export Declarations

The general form of export declarations is

foreign export c e v :: t

Such a declaration enables external access to v, which may be a value, field name, or class method that is
declared on the top-level of the same module or imported. Moreover, the Haskell system defines the external
entity described by the string e, which may be used by external code using the calling convention c; an
external invocation of the external entity e is translated into evaluation of v. The type t must be an instance
of the type of v. For example, we may have

foreign export ccall "addInt" (+) :: Int -> Int -> Int
foreign export ccall "addFloat" (+) :: Float -> Float -> Float

If an evaluation triggered by an external invocation of an exported Haskell value returns with an exception,
the system behaviour is undefined. Thus, Haskell exceptions have to be caught within Haskell and explicitly
marshalled to the foreign code.

8.5 Specification of External Entities

Each foreign declaration has to specify the external entity that is accessed or provided by that declaration.
The syntax and semantics of the notation that is required to uniquely determine an external entity depends
heavily on the calling convention by which this entity is accessed. For example, for the calling convention
ccall, a global label is sufficient. However, to uniquely identify a method in the calling convention jvm,

8.5. SPECIFICATION OF EXTERNAL ENTITIES 97

type information has to be provided. For the latter, there is a choice between the Java source-level syntax
of types and the syntax expected by JNI—but, clearly, the syntax of the specification of an external entity
depends on the calling convention and may be non-trivial.

Consequently, the FFI does not fix a general syntax for denoting external entities, but requires both impent
and expent to take the form of a Haskell string literal. The formation rules for the values of these strings
depend on the calling convention and a Haskell system implementing a particular calling convention will
have to parse these strings in accordance with the calling convention.

Defining impent and expent to take the form of a string implies that all information that is needed to stati-
cally analyse the Haskell program is separated from the information needed to generate the code interacting
with the foreign language. This is, in particular, helpful for tools processing Haskell source code. When
ignoring the entity information provided by impent or expent , foreign import and export declarations are
still sufficient to infer identifier definition and use information as well as type information.

For more complex calling conventions, there is a choice between the user-level syntax for identifying entities
(e.g., Java or C++) and the system-level syntax (e.g., the type syntax of JNI or mangled C++, respectively).
If such a choice exists, the user-level syntax is preferred. Not only because it is more user friendly, but
also because the system-level syntax may not be entirely independent of the particular implementation of the
foreign language.

The following defines the syntax for specifying external entities and their semantics for the calling conven-
tions ccall and stdcall. Other calling conventions from Table 8.1 are expected to be defined in future
versions of Haskell.

8.5.1 Standard C Calls

The following defines the structure of external entities for foreign declarations under the ccall calling
convention for both import and export declarations separately. Afterwards additional constraints on the type
of foreign functions are defined.

The FFI covers only access to C functions and global variables. There are no mechanisms to access other
entities of C programs. In particular, there is no support for accessing pre-processor symbols from Haskell,
which includes #defined constants. Access from Haskell to such entities is the domain of language-specific
tools, which provide added convenience over the plain FFI as defined here.

Import Declarations For import declarations, the syntax for the specification of external entities under the
ccall calling convention is as follows:

impent → " [static] [chname] [&] [cid] " (static function or address)
| " dynamic " (stub factory importing addresses)
| " wrapper " (stub factory exporting thunks)

The first alternative either imports a static function cid or, if & precedes the identifier, a static address. If cid
is omitted, it defaults to the name of the imported Haskell variable. The optional filename chname specifies
a C header file, where the intended meaning is that the header file declares the C entity identified by cid . In
particular, when the Haskell system compiles Haskell to C code, the directive

#include "chname"

98 CHAPTER 8. FOREIGN FUNCTION INTERFACE

needs to be placed into any generated C file that refers to the foreign entity before the first occurrence of that
entity in the generated C file.

The second and third alternative, identified by the keywords dynamic and wrapper, respectively, import
stub functions that have to be generated by the Haskell system. In the case of dynamic, the stub converts
C function pointers into Haskell functions; and conversely, in the case of wrapper, the stub converts Has-
kell thunks to C function pointers. If neither of the specifiers static, dynamic, or wrapper is given,
static is assumed. The specifier static is nevertheless needed to import C routines that are named
dynamic or wrapper.

It should be noted that a static foreign declaration that does not import an address (i.e., where & is not used in
the specification of the external entity) always refers to a C function, even if the Haskell type is non-functional.
For example,

foreign import ccall foo :: CInt

refers to a pure C function foo with no arguments that returns an integer value. Similarly, if the type is
IO CInt, the declaration refers to an impure nullary function. If a Haskell program needs to access a C
variable bar of integer type,

foreign import ccall "&" bar :: Ptr CInt

must be used to obtain a pointer referring to the variable. The variable can be read and updated using the
routines provided by the module Foreign.Storable (cf. Section 37).

Export Declarations External entities in ccall export declarations are of the form

expent → " [cid] "

The optional C identifier cid defines the external name by which the exported Haskell variable is accessible
in C. If it is omitted, the external name defaults to the name of the exported Haskell variable.

Constraints on Foreign Function Types In the case of import declaration, there are, depending on the
kind of import declaration, constraints regarding the admissible Haskell type that the variable defined in the
import may have. These constraints are specified in the following.

Static Functions. A static function can be of any foreign type; in particular, the result type may or may not
be in the IO monad. If a function that is not pure is not imported in the IO monad, the system behaviour
is undefined. Generally, no check for consistency with the C type of the imported label is performed.

As an example, consider
foreign import ccall "static stdlib.h"

system :: Ptr CChar -> IO CInt

This declaration imports the system() function whose prototype is available from stdlib.h.

Static addresses. The type of an imported address is constrained to be of the form Ptr a or FunPtr a,
where a can be any type.

As an example, consider

8.5. SPECIFICATION OF EXTERNAL ENTITIES 99

foreign import ccall "errno.h &errno" errno :: Ptr CInt

It imports the address of the variable errno, which is of the C type int.

Dynamic import. The type of a dynamic stub has to be of the form (FunPtr ft) -> ft, where ft may be
any foreign type.

As an example, consider
foreign import ccall "dynamic"
mkFun :: FunPtr (CInt -> IO ()) -> (CInt -> IO ())

The stub factory mkFun converts any pointer to a C function that gets an integer value as its only
argument and does not have a return value into a corresponding Haskell function.

Dynamic wrapper. The type of a wrapper stub has to be of the form ft -> IO (FunPtr ft), where ft
may be any foreign type.

As an example, consider
foreign import ccall "wrapper"
mkCallback :: IO () -> IO (FunPtr (IO ()))

The stub factory mkCallback turns any Haskell computation of type IO () into a C function pointer
that can be passed to C routines, which can call back into the Haskell context by invoking the referenced
function.

Specification of Header Files A C header specified in an import declaration is always included by
#include "chname". There is no explicit support for #include <chname> style inclusion. The
ISO C99 [7] standard guarantees that any search path that would be used for a #include <chname> is
also used for #include "chname" and it is guaranteed that these paths are searched after all paths that
are unique to #include "chname". Furthermore, we require that chname ends in .h to make parsing of
the specification of external entities unambiguous.

The specification of include files has been kept to a minimum on purpose. Libraries often require a multitude
of include directives, some of which may be system-dependent. Any design that attempts to cover all possible
configurations would introduce significant complexity. Moreover, in the current design, a custom include file
can be specified that uses the standard C preprocessor features to include all relevant headers.

Header files have no impact on the semantics of a foreign call, and whether an implementation uses the
header file or not is implementation-defined. However, as some implementations may require a header file
that supplies a correct prototype for external functions in order to generate correct code, portable FFI code
must include suitable header files.

C Argument Promotion The argument passing conventions of C are dependent on whether a function pro-
totype for the called functions is in scope at a call site. In particular, if no function prototype is in scope,
default argument promotion is applied to integral and floating types. In general, it cannot be expected from a
Haskell system that it is aware of whether a given C function was compiled with or without a function proto-
type being in scope. For the sake of portability, we thus require that a Haskell system generally implements
calls to C functions as well as C stubs for Haskell functions as if a function prototype for the called function
is in scope.

This convention implies that the onus for ensuring the match between C and Haskell code is placed on the
FFI user. In particular, when a C function that was compiled without a prototype is called from Haskell, the
Haskell signature at the corresponding foreign import declaration must use the types after argument
promotion. For example, consider the following C function definition, which lacks a prototype:

100 CHAPTER 8. FOREIGN FUNCTION INTERFACE

void foo (a)
float a;
{
...

}

The lack of a prototype implies that a C compiler will apply default argument promotion to the param-
eter a, and thus, foo will expect to receive a value of type double, not float. Hence, the correct
foreign import declaration is

foreign import ccall foo :: Double -> IO ()

In contrast, a C function compiled with the prototype

void foo (float a);

requires

foreign import ccall foo :: Float -> IO ()

A similar situation arises in the case of foreign export declarations that use types that would be altered
under the C default argument promotion rules. When calling such Haskell functions from C, a function pro-
totype matching the signature provided in the foreign export declaration must be in scope; otherwise,
the C compiler will erroneously apply the promotion rules to all function arguments.

Note that for a C function defined to accept a variable number of arguments, all arguments beyond the
explicitly typed arguments suffer argument promotion. However, because C permits the calling convention to
be different for such functions, a Haskell system will, in general, not be able to make use of variable argument
functions. Hence, their use is deprecated in portable code.

8.5.2 Win32 API Calls

The specification of external entities under the stdcall calling convention is identical to that for standard
C calls. The two calling conventions only differ in the generated code.

8.6 Marshalling

In addition to the language extension discussed in previous sections, the FFI includes a set of standard li-
braries, which ease portable use of foreign functions as well as marshalling of compound structures. Gener-
ally, the marshalling of Haskell structures into a foreign representation and vice versa can be implemented in
either Haskell or the foreign language. At least where the foreign language is at a significantly lower level,
e.g. C, there are good reasons for doing the marshalling in Haskell:

• Haskell’s lazy evaluation strategy would require any foreign code that attempts to access Haskell struc-
tures to force the evaluation of these structures before accessing them. This would lead to complicated
code in the foreign language, but does not need any extra consideration when coding the marshalling
in Haskell.

8.7. THE EXTERNAL C INTERFACE 101

C symbol Haskell symbol Constraint on concrete C type
HsChar Char integral type
HsInt Int signed integral type, ≥ 30 bit
HsInt8 Int8 signed integral type, 8 bit; int8_t if available
HsInt16 Int16 signed integral type, 16 bit; int16_t if available
HsInt32 Int32 signed integral type, 32 bit; int32_t if available
HsInt64 Int64 signed integral type, 64 bit; int64_t if available
HsWord8 Word8 unsigned integral type, 8 bit; uint8_t if available
HsWord16 Word16 unsigned integral type, 16 bit; uint16_t if available
HsWord32 Word32 unsigned integral type, 32 bit; uint32_t if available
HsWord64 Word64 unsigned integral type, 64 bit; uint64_t if available
HsFloat Float floating point type
HsDouble Double floating point type
HsBool Bool int
HsPtr Ptr a (void *)
HsFunPtr FunPtr a (void (*)(void))
HsStablePtr StablePtr a (void *)

Table 8.2: C Interface to Basic Haskell Types

• Despite the fact that marshalling code in Haskell tends to look like C in Haskell syntax, the strong type
system still catches many errors that would otherwise lead to difficult-to-debug runtime faults.

• Direct access to Haskell heap structures from a language like C—especially, when marshalling from
C to Haskell, i.e., when Haskell structures are created—carries the risk of corrupting the heap, which
usually leads to faults that are very hard to debug.

Consequently, the Haskell FFI emphasises Haskell-side marshalling.

The interface to the marshalling libraries is provided by the module Foreign (Chapter 24) plus a language-
dependent module per supported language. In particular, the standard requires the availability of the module
Foreign.C (Chapter 25), which simplifies portable interfacing with external C code. Language-dependent
modules, such as Foreign.C, generally provide Haskell types representing the basic types of the foreign
language using a representation that is compatible with the foreign types as implemented by the default
implementation of the foreign language on the present architecture. This is especially important for languages
where the standard leaves some aspects of the implementation of basic types open. For example, in C, the
size of the various integral types is not fixed. Thus, to represent C interfaces faithfully in Haskell, for each
integral type in C, we need to have an integral type in Haskell that is guaranteed to have the same size as the
corresponding C type.

8.7 The External C Interface

Every Haskell system that implements the FFI needs to provide a C header file named HsFFI.h that defines
the C symbols listed in Tables 8.2 and 8.3. Table 8.2 table lists symbols that represent types together with the
Haskell type that they represent and any constraints that are placed on the concrete C types that implement
these symbols. When a C type HsT represents a Haskell type T, the occurrence of T in a foreign function
declaration should be matched by HsT in the corresponding C function prototype. Indeed, where the Haskell

102 CHAPTER 8. FOREIGN FUNCTION INTERFACE

CPP symbol Haskell value Description
HS_CHAR_MIN minBound :: Char
HS_CHAR_MAX maxBound :: Char
HS_INT_MIN minBound :: Int
HS_INT_MAX maxBound :: Int
HS_INT8_MIN minBound :: Int8
HS_INT8_MAX maxBound :: Int8
HS_INT16_MIN minBound :: Int16
HS_INT16_MAX maxBound :: Int16
HS_INT32_MIN minBound :: Int32
HS_INT32_MAX maxBound :: Int32
HS_INT64_MIN minBound :: Int64
HS_INT64_MAX maxBound :: Int64
HS_WORD8_MAX maxBound :: Word8
HS_WORD16_MAX maxBound :: Word16
HS_WORD32_MAX maxBound :: Word32
HS_WORD64_MAX maxBound :: Word64
HS_FLOAT_RADIX floatRadix :: Float
HS_FLOAT_ROUND n/a rounding style as per [7]
HS_FLOAT_EPSILON n/a difference between 1 and the least

value greater than 1 as per [7]
HS_DOUBLE_EPSILON n/a (as above)
HS_FLOAT_DIG n/a number of decimal digits as

per [7]
HS_DOUBLE_DIG n/a (as above)
HS_FLOAT_MANT_DIG floatDigits :: Float
HS_DOUBLE_MANT_DIG floatDigits :: Double
HS_FLOAT_MIN n/a minimum floating point number

as per [7]
HS_DOUBLE_MIN n/a (as above)
HS_FLOAT_MIN_EXP fst . floatRange :: Float
HS_DOUBLE_MIN_EXP fst . floatRange :: Double
HS_FLOAT_MIN_10_EXP n/a minimum decimal exponent as

per [7]
HS_DOUBLE_MIN_10_EXP n/a (as above)
HS_FLOAT_MAX n/a maximum floating point number

as per [7]
HS_DOUBLE_MAX n/a (as above)
HS_FLOAT_MAX_EXP snd . floatRange :: Float
HS_DOUBLE_MAX_EXP snd . floatRange :: Double
HS_FLOAT_MAX_10_EXP n/a maximum decimal exponent as

per [7]
HS_DOUBLE_MAX_10_EXP n/a (as above)
HS_BOOL_FALSE False
HS_BOOL_TRUE True

Table 8.3: C Interface to Range and Precision of Basic Types

8.7. THE EXTERNAL C INTERFACE 103

system translates Haskell to C code that invokes foreign imported C routines, such prototypes need to
be provided and included via the header that can be specified in external entity strings for foreign C functions
(cf. Section 8.5.1); otherwise, the system behaviour is undefined. It is guaranteed that the Haskell value
nullPtr is mapped to (HsPtr) NULL in C and nullFunPtr is mapped to (HsFunPtr) NULL and
vice versa.

Table 8.3 contains symbols characterising the range and precision of the types from Table 8.2. Where
available, the table states the corresponding Haskell values. All C symbols, with the exception of
HS_FLOAT_ROUND are constants that are suitable for use in #if preprocessing directives. Note that there
is only one rounding style (HS_FLOAT_ROUND) and one radix (HS_FLOAT_RADIX), as this is all that is
supported by ISO C [7].

Moreover, an implementation that does not support 64 bit integral types on the C side should implement
HsInt64 and HsWord64 as a structure. In this case, the bounds HS_INT64_MIN, HS_INT64_MAX, and
HS_WORD64_MAX are undefined.

In addition, to the symbols from Table 8.2 and 8.3, the header HsFFI.h must also contain the following
prototypes:

void hs_init (int *argc, char **argv[]);
void hs_exit (void);
void hs_set_argv (int argc, char *argv[]);

void hs_perform_gc (void);

void hs_free_stable_ptr (HsStablePtr sp);
void hs_free_fun_ptr (HsFunPtr fp);

These routines are useful for mixed language programs, where the main application is implemented in a
foreign language that accesses routines implemented in Haskell. The function hs_init() initialises the
Haskell system and provides it with the available command line arguments. Upon return, the arguments
solely intended for the Haskell runtime system are removed (i.e., the values that argc and argv point to
may have changed). This function must be called during program startup before any Haskell function is
invoked; otherwise, the system behaviour is undefined. Conversely, the Haskell system is deinitialised by a
call to hs_exit(). Multiple invocations of hs_init() are permitted, provided that they are followed
by an equal number of calls to hs_exit() and that the first call to hs_exit() is after the last call to
hs_init(). In addition to nested calls to hs_init(), the Haskell system may be de-initialised with
hs_exit() and be re-initialised with hs_init() at a later point in time. This ensures that repeated
initialisation due to multiple libraries being implemented in Haskell is covered.

The Haskell system will ignore the command line arguments passed to the second and any following calls to
hs_init(). Moreover, hs_init() may be called with NULL for both argc and argv, signalling the
absence of command line arguments.

The function hs_set_argv() sets the values returned by the functions getProgName and getArgs of
the module System.Environment (Section 39). This function may only be invoked after hs_init().
Moreover, if hs_set_argv() is called at all, this call must precede the first invocation of getProgName
and getArgs. Note that the separation of hs_init() and hs_set_argv() is essential in cases where
in addition to the Haskell system other libraries that process command line arguments during initialisation
are used.

104 CHAPTER 8. FOREIGN FUNCTION INTERFACE

The function hs_perform_gc() advises the Haskell storage manager to perform a garbage collection,
where the storage manager makes an effort to releases all unreachable objects. This function must not be
invoked from C functions that are imported unsafe into Haskell code nor may it be used from a finalizer.

Finally, hs_free_stable_ptr() and hs_free_fun_ptr() are the C counterparts of the Haskell
functions freeStablePtr and freeHaskellFunPtr.

Chapter 9

Standard Prelude

In this chapter the entire Haskell Prelude is given. It constitutes a specification for the Prelude. Many of the
definitions are written with clarity rather than efficiency in mind, and it is not required that the specification
be implemented as shown here.

The default method definitions, given with class declarations, constitute a specification only of the default
method. They do not constitute a specification of the meaning of the method in all instances. To take one
particular example, the default method for enumFrom in class Enum will not work properly for types whose
range exceeds that of Int (because fromEnum cannot map all values in the type to distinct Int values).

The Prelude shown here is organized into a root module, Prelude, and three sub-modules, PreludeList,
PreludeText, and PreludeIO. This structure is purely presentational. An implementation is not re-
quired to use this organisation for the Prelude, nor are these three modules available for import separately.
Only the exports of module Prelude are significant.

Some of these modules import Library modules, such as Data.Char, Control.Monad, System.IO,
and Numeric. These modules are described fully in Part II. These imports are not, of course, part of the
specification of the Prelude. That is, an implementation is free to import more, or less, of the Library
modules, as it pleases.

Primitives that are not definable in Haskell, indicated by names starting with “prim”, are defined in a system
dependent manner in module PreludeBuiltin and are not shown here. Instance declarations that simply
bind primitives to class methods are omitted. Some of the more verbose instances with obvious functionality
have been left out for the sake of brevity.

Declarations for special types such as Integer, or () are included in the Prelude for completeness even
though the declaration may be incomplete or syntactically invalid. An ellipsis “...” is often used in places
where the remainder of a definition cannot be given in Haskell.

To reduce the occurrence of unexpected ambiguity errors, and to improve efficiency, a number of commonly-
used functions over lists use the Int type rather than using a more general numeric type, such as
Integral a or Num a. These functions are: take, drop, !!, length, splitAt, and replicate.
The more general versions are given in the Data.List library, with the prefix “generic”; for example
genericLength.

105

106 CHAPTER 9. STANDARD PRELUDE

module Prelude (
module PreludeList, module PreludeText, module PreludeIO,
Bool(False, True),
Maybe(Nothing, Just),
Either(Left, Right),
Ordering(LT, EQ, GT),
Char, String, Int, Integer, Float, Double, Rational, IO,

-- These built-in types are defined in the Prelude, but
-- are denoted by built-in syntax, and cannot legally
-- appear in an export list.
-- List type: []((:), [])
-- Tuple types: (,)((,)), (,,)((,,)), etc.
-- Trivial type: ()(())
-- Functions: (->)

Eq((==), (/=)),
Ord(compare, (<), (<=), (>=), (>), max, min),
Enum(succ, pred, toEnum, fromEnum, enumFrom, enumFromThen,

enumFromTo, enumFromThenTo),
Bounded(minBound, maxBound),
Num((+), (-), (*), negate, abs, signum, fromInteger),
Real(toRational),
Integral(quot, rem, div, mod, quotRem, divMod, toInteger),
Fractional((/), recip, fromRational),
Floating(pi, exp, log, sqrt, (**), logBase, sin, cos, tan,

asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh),
RealFrac(properFraction, truncate, round, ceiling, floor),
RealFloat(floatRadix, floatDigits, floatRange, decodeFloat,

encodeFloat, exponent, significand, scaleFloat, isNaN,
isInfinite, isDenormalized, isIEEE, isNegativeZero, atan2),

Monad((>>=), (>>), return, fail),
Functor(fmap),
mapM, mapM_, sequence, sequence_, (=<<),
maybe, either,
(&&), (||), not, otherwise,
subtract, even, odd, gcd, lcm, (ˆ), (ˆˆ),
fromIntegral, realToFrac,
fst, snd, curry, uncurry, id, const, (.), flip, ($), until,
asTypeOf, error, undefined,
seq, ($!)

) where

import PreludeBuiltin -- Contains all ‘prim’ values
import UnicodePrims(primUnicodeMaxChar) -- Unicode primitives
import PreludeList
import PreludeText
import PreludeIO
import Data.Ratio(Rational)

infixr 9 .
infixr 8 ˆ, ˆˆ, **
infixl 7 *, /, ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘
infixl 6 +, -

107

-- The (:) operator is built-in syntax, and cannot legally be given
-- a fixity declaration; but its fixity is given by:
-- infixr 5 :

infix 4 ==, /=, <, <=, >=, >
infixr 3 &&
infixr 2 ||
infixl 1 >>, >>=
infixr 1 =<<
infixr 0 $, $!, ‘seq‘

-- Standard types, classes, instances and related functions

-- Equality and Ordered classes

class Eq a where
(==), (/=) :: a -> a -> Bool

-- Minimal complete definition:
-- (==) or (/=)

x /= y = not (x == y)
x == y = not (x /= y)

class (Eq a) => Ord a where
compare :: a -> a -> Ordering
(<), (<=), (>=), (>) :: a -> a -> Bool
max, min :: a -> a -> a

-- Minimal complete definition:
-- (<=) or compare
-- Using compare can be more efficient for complex types.

compare x y
| x == y = EQ
| x <= y = LT
| otherwise = GT

x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT

-- note that (min x y, max x y) = (x,y) or (y,x)
max x y

| x <= y = y
| otherwise = x

min x y
| x <= y = x
| otherwise = y

-- Enumeration and Bounded classes

class Enum a where
succ, pred :: a -> a
toEnum :: Int -> a

108 CHAPTER 9. STANDARD PRELUDE

fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n..]
enumFromThen :: a -> a -> [a] -- [n,n’..]
enumFromTo :: a -> a -> [a] -- [n..m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’..m]

-- Minimal complete definition:
-- toEnum, fromEnum
--
-- NOTE: these default methods only make sense for types
-- that map injectively into Int using fromEnum
-- and toEnum.

succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum
enumFrom x = map toEnum [fromEnum x ..]
enumFromTo x y = map toEnum [fromEnum x .. fromEnum y]
enumFromThen x y = map toEnum [fromEnum x, fromEnum y ..]
enumFromThenTo x y z =

map toEnum [fromEnum x, fromEnum y .. fromEnum z]

class Bounded a where
minBound :: a
maxBound :: a

-- Numeric classes

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a
negate :: a -> a
abs, signum :: a -> a
fromInteger :: Integer -> a

-- Minimal complete definition:
-- All, except negate or (-)

x - y = x + negate y
negate x = 0 - x

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem :: a -> a -> a
div, mod :: a -> a -> a
quotRem, divMod :: a -> a -> (a,a)
toInteger :: a -> Integer

-- Minimal complete definition:
-- quotRem, toInteger

n ‘quot‘ d = q where (q,r) = quotRem n d
n ‘rem‘ d = r where (q,r) = quotRem n d
n ‘div‘ d = q where (q,r) = divMod n d
n ‘mod‘ d = r where (q,r) = divMod n d
divMod n d = if signum r == - signum d then (q-1, r+d) else qr

where qr@(q,r) = quotRem n d

109

class (Num a) => Fractional a where
(/) :: a -> a -> a
recip :: a -> a
fromRational :: Rational -> a

-- Minimal complete definition:
-- fromRational and (recip or (/))

recip x = 1 / x
x / y = x * recip y

class (Fractional a) => Floating a where
pi :: a
exp, log, sqrt :: a -> a
(**), logBase :: a -> a -> a
sin, cos, tan :: a -> a
asin, acos, atan :: a -> a
sinh, cosh, tanh :: a -> a
asinh, acosh, atanh :: a -> a

-- Minimal complete definition:
-- pi, exp, log, sin, cos, sinh, cosh
-- asin, acos, atan
-- asinh, acosh, atanh

x ** y = exp (log x * y)
logBase x y = log y / log x
sqrt x = x ** 0.5
tan x = sin x / cos x
tanh x = sinh x / cosh x

class (Real a, Fractional a) => RealFrac a where
properFraction :: (Integral b) => a -> (b,a)
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a -> b

-- Minimal complete definition:
-- properFraction

truncate x = m where (m,_) = properFraction x

round x = let (n,r) = properFraction x
m = if r < 0 then n - 1 else n + 1

in case signum (abs r - 0.5) of
-1 -> n
0 -> if even n then n else m
1 -> m

ceiling x = if r > 0 then n + 1 else n
where (n,r) = properFraction x

floor x = if r < 0 then n - 1 else n
where (n,r) = properFraction x

class (RealFrac a, Floating a) => RealFloat a where
floatRadix :: a -> Integer
floatDigits :: a -> Int

110 CHAPTER 9. STANDARD PRELUDE

floatRange :: a -> (Int,Int)
decodeFloat :: a -> (Integer,Int)
encodeFloat :: Integer -> Int -> a
exponent :: a -> Int
significand :: a -> a
scaleFloat :: Int -> a -> a
isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE

:: a -> Bool
atan2 :: a -> a -> a

-- Minimal complete definition:
-- All except exponent, significand,
-- scaleFloat, atan2

exponent x = if m == 0 then 0 else n + floatDigits x
where (m,n) = decodeFloat x

significand x = encodeFloat m (- floatDigits x)
where (m,_) = decodeFloat x

scaleFloat k x = encodeFloat m (n+k)
where (m,n) = decodeFloat x

atan2 y x
| x>0 = atan (y/x)
| x==0 && y>0 = pi/2
| x<0 && y>0 = pi + atan (y/x)
|(x<=0 && y<0) ||
(x<0 && isNegativeZero y) ||
(isNegativeZero x && isNegativeZero y)

= -atan2 (-y) x
| y==0 && (x<0 || isNegativeZero x)

= pi -- must be after the previous test on zero y
| x==0 && y==0 = y -- must be after the other double zero tests
| otherwise = x + y -- x or y is a NaN, return a NaN (via +)

-- Numeric functions

subtract :: (Num a) => a -> a -> a
subtract = flip (-)

even, odd :: (Integral a) => a -> Bool
even n = n ‘rem‘ 2 == 0
odd = not . even

gcd :: (Integral a) => a -> a -> a
gcd 0 0 = error "Prelude.gcd: gcd 0 0 is undefined"
gcd x y = gcd’ (abs x) (abs y)

where gcd’ x 0 = x
gcd’ x y = gcd’ y (x ‘rem‘ y)

lcm :: (Integral a) => a -> a -> a
lcm _ 0 = 0
lcm 0 _ = 0
lcm x y = abs ((x ‘quot‘ (gcd x y)) * y)

111

(ˆ) :: (Num a, Integral b) => a -> b -> a
x ˆ 0 = 1
x ˆ n | n > 0 = f x (n-1) x

where f _ 0 y = y
f x n y = g x n where

g x n | even n = g (x*x) (n ‘quot‘ 2)
| otherwise = f x (n-1) (x*y)

_ ˆ _ = error "Prelude.ˆ: negative exponent"

(ˆˆ) :: (Fractional a, Integral b) => a -> b -> a
x ˆˆ n = if n >= 0 then xˆn else recip (xˆ(-n))

fromIntegral :: (Integral a, Num b) => a -> b
fromIntegral = fromInteger . toInteger

realToFrac :: (Real a, Fractional b) => a -> b
realToFrac = fromRational . toRational

-- Monadic classes

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

-- Minimal complete definition:
-- (>>=), return

m >> k = m >>= _ -> k
fail s = error s

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

where mcons p q = p >>= \x -> q >>= \y -> return (x:y)

sequence_ :: Monad m => [m a] -> m ()
sequence_ = foldr (>>) (return ())

-- The xxxM functions take list arguments, but lift the function or
-- list element to a monad type
mapM :: Monad m => (a -> m b) -> [a] -> m [b]
mapM f as = sequence (map f as)

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
mapM_ f as = sequence_ (map f as)

(=<<) :: Monad m => (a -> m b) -> m a -> m b
f =<< x = x >>= f

112 CHAPTER 9. STANDARD PRELUDE

-- Trivial type

data () = () deriving (Eq, Ord, Enum, Bounded)
-- Not legal Haskell; for illustration only

-- Function type

-- identity function
id :: a -> a
id x = x

-- constant function
const :: a -> b -> a
const x _ = x

-- function composition
(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \ x -> f (g x)

-- flip f takes its (first) two arguments in the reverse order of f.
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x

seq :: a -> b -> b
seq = ... -- Primitive

-- right-associating infix application operators
-- (useful in continuation-passing style)
($), ($!) :: (a -> b) -> a -> b
f $ x = f x
f $! x = x ‘seq‘ f x

-- Boolean type

data Bool = False | True deriving (Eq, Ord, Enum, Read, Show, Bounded)

-- Boolean functions

(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x

not :: Bool -> Bool
not True = False
not False = True

otherwise :: Bool
otherwise = True

113

-- Character type

data Char = ... ’a’ | ’b’ ... -- Unicode values

instance Eq Char where
c == c’ = fromEnum c == fromEnum c’

instance Ord Char where
c <= c’ = fromEnum c <= fromEnum c’

instance Enum Char where
toEnum = primIntToChar
fromEnum = primCharToInt
enumFrom c = map toEnum [fromEnum c .. fromEnum (maxBound::Char)]
enumFromThen c c’ = map toEnum [fromEnum c, fromEnum c’ .. fromEnum lastChar]

where lastChar :: Char
lastChar | c’ < c = minBound

| otherwise = maxBound

instance Bounded Char where
minBound = ’\0’
maxBound = primUnicodeMaxChar

type String = [Char]

-- Maybe type

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show)

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n f Nothing = n
maybe n f (Just x) = f x

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

instance Monad Maybe where
(Just x) >>= k = k x
Nothing >>= k = Nothing
return = Just
fail s = Nothing

-- Either type

data Either a b = Left a | Right b deriving (Eq, Ord, Read, Show)

either :: (a -> c) -> (b -> c) -> Either a b -> c
either f g (Left x) = f x
either f g (Right y) = g y

114 CHAPTER 9. STANDARD PRELUDE

-- IO type

data IO a = ... -- abstract

instance Functor IO where
fmap f x = x >>= (return . f)

instance Monad IO where
(>>=) = ...
return = ...
fail s = ioError (userError s)

-- Ordering type

data Ordering = LT | EQ | GT
deriving (Eq, Ord, Enum, Read, Show, Bounded)

-- Standard numeric types. The data declarations for these types cannot
-- be expressed directly in Haskell since the constructor lists would be
-- far too large.

data Int = minBound ... -1 | 0 | 1 ... maxBound
instance Eq Int where ...
instance Ord Int where ...
instance Num Int where ...
instance Real Int where ...
instance Integral Int where ...
instance Enum Int where ...
instance Bounded Int where ...

data Integer = ... -1 | 0 | 1 ...
instance Eq Integer where ...
instance Ord Integer where ...
instance Num Integer where ...
instance Real Integer where ...
instance Integral Integer where ...
instance Enum Integer where ...

data Float
instance Eq Float where ...
instance Ord Float where ...
instance Num Float where ...
instance Real Float where ...
instance Fractional Float where ...
instance Floating Float where ...
instance RealFrac Float where ...
instance RealFloat Float where ...

data Double
instance Eq Double where ...
instance Ord Double where ...
instance Num Double where ...

115

instance Real Double where ...
instance Fractional Double where ...
instance Floating Double where ...
instance RealFrac Double where ...
instance RealFloat Double where ...

-- The Enum instances for Floats and Doubles are slightly unusual.
-- The ‘toEnum’ function truncates numbers to Int. The definitions
-- of enumFrom and enumFromThen allow floats to be used in arithmetic
-- series: [0,0.1 .. 0.95]. However, roundoff errors make these somewhat
-- dubious. This example may have either 10 or 11 elements, depending on
-- how 0.1 is represented.

instance Enum Float where
succ x = x+1
pred x = x-1
toEnum = fromIntegral
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromThen = numericEnumFromThen
enumFromTo = numericEnumFromTo
enumFromThenTo = numericEnumFromThenTo

instance Enum Double where
succ x = x+1
pred x = x-1
toEnum = fromIntegral
fromEnum = fromInteger . truncate -- may overflow
enumFrom = numericEnumFrom
enumFromThen = numericEnumFromThen
enumFromTo = numericEnumFromTo
enumFromThenTo = numericEnumFromThenTo

numericEnumFrom :: (Fractional a) => a -> [a]
numericEnumFromThen :: (Fractional a) => a -> a -> [a]
numericEnumFromTo :: (Fractional a, Ord a) => a -> a -> [a]
numericEnumFromThenTo :: (Fractional a, Ord a) => a -> a -> a -> [a]
numericEnumFrom = iterate (+1)
numericEnumFromThen n m = iterate (+(m-n)) n
numericEnumFromTo n m = takeWhile (<= m+1/2) (numericEnumFrom n)
numericEnumFromThenTo n n’ m = takeWhile p (numericEnumFromThen n n’)

where
p | n’ >= n = (<= m + (n’-n)/2)

| otherwise = (>= m + (n’-n)/2)

-- Lists

data [a] = [] | a : [a] deriving (Eq, Ord)
-- Not legal Haskell; for illustration only

instance Functor [] where
fmap = map

116 CHAPTER 9. STANDARD PRELUDE

instance Monad [] where
m >>= k = concat (map k m)
return x = [x]
fail s = []

-- Tuples

data (a,b) = (a,b) deriving (Eq, Ord, Bounded)
data (a,b,c) = (a,b,c) deriving (Eq, Ord, Bounded)

-- Not legal Haskell; for illustration only

-- component projections for pairs:
-- (NB: not provided for triples, quadruples, etc.)
fst :: (a,b) -> a
fst (x,y) = x

snd :: (a,b) -> b
snd (x,y) = y

-- curry converts an uncurried function to a curried function;
-- uncurry converts a curried function to a function on pairs.
curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> ((a, b) -> c)
uncurry f p = f (fst p) (snd p)

-- Misc functions

-- until p f yields the result of applying f until p holds.
until :: (a -> Bool) -> (a -> a) -> a -> a
until p f x

| p x = x
| otherwise = until p f (f x)

-- asTypeOf is a type-restricted version of const. It is usually used
-- as an infix operator, and its typing forces its first argument
-- (which is usually overloaded) to have the same type as the second.
asTypeOf :: a -> a -> a
asTypeOf = const

-- error stops execution and displays an error message

error :: String -> a
error = primError

-- It is expected that compilers will recognize this and insert error
-- messages that are more appropriate to the context in which undefined
-- appears.

undefined :: a
undefined = error "Prelude.undefined"

9.1. PRELUDE PRELUDELIST 117

9.1 Prelude PreludeList

-- Standard list functions

module PreludeList (
map, (++), filter, concat, concatMap,
head, last, tail, init, null, length, (!!),
foldl, foldl1, scanl, scanl1, foldr, foldr1, scanr, scanr1,
iterate, repeat, replicate, cycle,
take, drop, splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and, or,
any, all, elem, notElem, lookup,
sum, product, maximum, minimum,
zip, zip3, zipWith, zipWith3, unzip, unzip3)

where

import qualified Data.Char(isSpace)

infixl 9 !!
infixr 5 ++
infix 4 ‘elem‘, ‘notElem‘

-- Map and append
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f = concat . map f

-- head and tail extract the first element and remaining elements,
-- respectively, of a list, which must be non-empty. last and init
-- are the dual functions working from the end of a finite list,
-- rather than the beginning.

head :: [a] -> a
head (x:_) = x
head [] = error "Prelude.head: empty list"

118 CHAPTER 9. STANDARD PRELUDE

tail :: [a] -> [a]
tail (_:xs) = xs
tail [] = error "Prelude.tail: empty list"

last :: [a] -> a
last [x] = x
last (_:xs) = last xs
last [] = error "Prelude.last: empty list"

init :: [a] -> [a]
init [x] = []
init (x:xs) = x : init xs
init [] = error "Prelude.init: empty list"

null :: [a] -> Bool
null [] = True
null (_:_) = False

-- length returns the length of a finite list as an Int.
length :: [a] -> Int
length [] = 0
length (_:l) = 1 + length l

-- List index (subscript) operator, 0-origin
(!!) :: [a] -> Int -> a
xs !! n | n < 0 = error "Prelude.!!: negative index"
[] !! _ = error "Prelude.!!: index too large"
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n-1)

-- foldl, applied to a binary operator, a starting value (typically the
-- left-identity of the operator), and a list, reduces the list using
-- the binary operator, from left to right:
-- foldl f z [x1, x2, ..., xn] == (...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn
-- foldl1 is a variant that has no starting value argument, and thus must
-- be applied to non-empty lists. scanl is similar to foldl, but returns
-- a list of successive reduced values from the left:
-- scanl f z [x1, x2, ...] == [z, z ‘f‘ x1, (z ‘f‘ x1) ‘f‘ x2, ...]
-- Note that last (scanl f z xs) == foldl f z xs.
-- scanl1 is similar, again without the starting element:
-- scanl1 f [x1, x2, ...] == [x1, x1 ‘f‘ x2, ...]

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "Prelude.foldl1: empty list"

scanl :: (a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q : (case xs of

[] -> []
x:xs -> scanl f (f q x) xs)

9.1. PRELUDE PRELUDELIST 119

scanl1 :: (a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs) = scanl f x xs
scanl1 _ [] = []

-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the
-- above functions.

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr1 :: (a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "Prelude.foldr1: empty list"

scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs

where qs@(q:_) = scanr f q0 xs

scanr1 :: (a -> a -> a) -> [a] -> [a]
scanr1 f [] = []
scanr1 f [x] = [x]
scanr1 f (x:xs) = f x q : qs

where qs@(q:_) = scanr1 f xs

-- iterate f x returns an infinite list of repeated applications of f to x:
-- iterate f x == [x, f x, f (f x), ...]
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

-- repeat x is an infinite list, with x the value of every element.
repeat :: a -> [a]
repeat x = xs where xs = x:xs

-- replicate n x is a list of length n with x the value of every element
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

-- cycle ties a finite list into a circular one, or equivalently,
-- the infinite repetition of the original list. It is the identity
-- on infinite lists.

cycle :: [a] -> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs’ where xs’ = xs ++ xs’

-- take n, applied to a list xs, returns the prefix of xs of length n,
-- or xs itself if n > length xs. drop n xs returns the suffix of xs
-- after the first n elements, or [] if n > length xs. splitAt n xs
-- is equivalent to (take n xs, drop n xs).

take :: Int -> [a] -> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n-1) xs

120 CHAPTER 9. STANDARD PRELUDE

drop :: Int -> [a] -> [a]
drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n-1) xs

splitAt :: Int -> [a] -> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

-- takeWhile, applied to a predicate p and a list xs, returns the longest
-- prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs
-- returns the remaining suffix. span p xs is equivalent to
-- (takeWhile p xs, dropWhile p xs), while break p uses the negation of p.

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)

| p x = x : takeWhile p xs
| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs’)

| p x = dropWhile p xs’
| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs’)

| p x = (x:ys,zs)
| otherwise = ([],xs)

where (ys,zs) = span p xs’

break p = span (not . p)

-- lines breaks a string up into a list of strings at newline characters.
-- The resulting strings do not contain newlines. Similary, words
-- breaks a string up into a list of words, which were delimited by
-- white space. unlines and unwords are the inverse operations.
-- unlines joins lines with terminating newlines, and unwords joins
-- words with separating spaces.

lines :: String -> [String]
lines "" = []
lines s = let (l, s’) = break (== ’\n’) s

in l : case s’ of
[] -> []
(_:s’’) -> lines s’’

words :: String -> [String]
words s = case dropWhile Char.isSpace s of

"" -> []
s’ -> w : words s’’

where (w, s’’) = break Char.isSpace s’

9.1. PRELUDE PRELUDELIST 121

unlines :: [String] -> String
unlines = concatMap (++ "\n")

unwords :: [String] -> String
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ’ ’:s) ws

-- reverse xs returns the elements of xs in reverse order. xs must be finite.
reverse :: [a] -> [a]
reverse = foldl (flip (:)) []

-- and returns the conjunction of a Boolean list. For the result to be
-- True, the list must be finite; False, however, results from a False
-- value at a finite index of a finite or infinite list. or is the
-- disjunctive dual of and.
and, or :: [Bool] -> Bool
and = foldr (&&) True
or = foldr (||) False

-- Applied to a predicate and a list, any determines if any element
-- of the list satisfies the predicate. Similarly, for all.
any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

-- elem is the list membership predicate, usually written in infix form,
-- e.g., x ‘elem‘ xs. notElem is the negation.
elem, notElem :: (Eq a) => a -> [a] -> Bool
elem x = any (== x)
notElem x = all (/= x)

-- lookup key assocs looks up a key in an association list.
lookup :: (Eq a) => a -> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,y):xys)

| key == x = Just y
| otherwise = lookup key xys

-- sum and product compute the sum or product of a finite list of numbers.
sum, product :: (Num a) => [a] -> a
sum = foldl (+) 0
product = foldl (*) 1

-- maximum and minimum return the maximum or minimum value from a list,
-- which must be non-empty, finite, and of an ordered type.
maximum, minimum :: (Ord a) => [a] -> a
maximum [] = error "Prelude.maximum: empty list"
maximum xs = foldl1 max xs

minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldl1 min xs

122 CHAPTER 9. STANDARD PRELUDE

-- zip takes two lists and returns a list of corresponding pairs. If one
-- input list is short, excess elements of the longer list are discarded.
-- zip3 takes three lists and returns a list of triples. Zips for larger
-- tuples are in the List library

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (,)

zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
zip3 = zipWith3 (,,)

-- The zipWith family generalises the zip family by zipping with the
-- function given as the first argument, instead of a tupling function.
-- For example, zipWith (+) is applied to two lists to produce the list
-- of corresponding sums.

zipWith :: (a->b->c) -> [a]->[b]->[c]
zipWith z (a:as) (b:bs)

= z a b : zipWith z as bs
zipWith _ _ _ = []

zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)

= z a b c : zipWith3 z as bs cs
zipWith3 _ _ _ _ = []

-- unzip transforms a list of pairs into a pair of lists.

unzip :: [(a,b)] -> ([a],[b])
unzip = foldr (\(a,b) ˜(as,bs) -> (a:as,b:bs)) ([],[])

unzip3 :: [(a,b,c)] -> ([a],[b],[c])
unzip3 = foldr (\(a,b,c) ˜(as,bs,cs) -> (a:as,b:bs,c:cs))

([],[],[])

9.2. PRELUDE PRELUDETEXT 123

9.2 Prelude PreludeText

module PreludeText (
ReadS, ShowS,
Read(readsPrec, readList),
Show(showsPrec, show, showList),
reads, shows, read, lex,
showChar, showString, readParen, showParen) where

-- The instances of Read and Show for
-- Bool, Maybe, Either, Ordering
-- are done via "deriving" clauses in Prelude.hs

import Data.Char(isSpace, isAlpha, isDigit, isAlphaNum,
showLitChar, readLitChar, lexLitChar)

import Numeric(showSigned, showInt, readSigned, readDec, showFloat,
readFloat, lexDigits)

type ReadS a = String -> [(a,String)]
type ShowS = String -> String

class Read a where
readsPrec :: Int -> ReadS a
readList :: ReadS [a]

-- Minimal complete definition:
-- readsPrec

readList = readParen False (\r -> [pr | ("[",s) <- lex r,
pr <- readl s])

where readl s = [([],t) | ("]",t) <- lex s] ++
[(x:xs,u) | (x,t) <- reads s,

(xs,u) <- readl’ t]
readl’ s = [([],t) | ("]",t) <- lex s] ++

[(x:xs,v) | (",",t) <- lex s,
(x,u) <- reads t,
(xs,v) <- readl’ u]

class Show a where
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList :: [a] -> ShowS

-- Mimimal complete definition:
-- show or showsPrec

showsPrec _ x s = show x ++ s

show x = showsPrec 0 x ""

showList [] = showString "[]"
showList (x:xs) = showChar ’[’ . shows x . showl xs

where showl [] = showChar ’]’
showl (x:xs) = showChar ’,’ . shows x .

showl xs

124 CHAPTER 9. STANDARD PRELUDE

reads :: (Read a) => ReadS a
reads = readsPrec 0

shows :: (Show a) => a -> ShowS
shows = showsPrec 0

read :: (Read a) => String -> a
read s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> x
[] -> error "Prelude.read: no parse"
_ -> error "Prelude.read: ambiguous parse"

showChar :: Char -> ShowS
showChar = (:)

showString :: String -> ShowS
showString = (++)

showParen :: Bool -> ShowS -> ShowS
showParen b p = if b then showChar ’(’ . p . showChar ’)’ else p

readParen :: Bool -> ReadS a -> ReadS a
readParen b g = if b then mandatory else optional

where optional r = g r ++ mandatory r
mandatory r = [(x,u) | ("(",s) <- lex r,

(x,t) <- optional s,
(")",u) <- lex t]

-- This lexer is not completely faithful to the Haskell lexical syntax.
-- Current limitations:
-- Qualified names are not handled properly
-- Octal and hexidecimal numerics are not recognized as a single token
-- Comments are not treated properly

lex :: ReadS String
lex "" = [("","")]
lex (c:s)

| isSpace c = lex (dropWhile isSpace s)
lex (’\’’:s) = [(’\’’:ch++"’", t) | (ch,’\’’:t) <- lexLitChar s,

ch /= "’"]
lex (’"’:s) = [(’"’:str, t) | (str,t) <- lexString s]

where
lexString (’"’:s) = [("\"",s)]
lexString s = [(ch++str, u)

| (ch,t) <- lexStrItem s,
(str,u) <- lexString t]

lexStrItem (’\\’:’&’:s) = [("\\&",s)]
lexStrItem (’\\’:c:s) | isSpace c

= [("\\&",t) |
’\\’:t <-

[dropWhile isSpace s]]
lexStrItem s = lexLitChar s

9.2. PRELUDE PRELUDETEXT 125

lex (c:s) | isSingle c = [([c],s)]
| isSym c = [(c:sym,t) | (sym,t) <- [span isSym s]]
| isAlpha c = [(c:nam,t) | (nam,t) <- [span isIdChar s]]
| isDigit c = [(c:ds++fe,t) | (ds,s) <- [span isDigit s],

(fe,t) <- lexFracExp s]
| otherwise = [] -- bad character

where
isSingle c = c ‘elem‘ ",;()[]{}_‘"
isSym c = c ‘elem‘ "!@#$%&*+./<=>?\\ˆ|:-˜"
isIdChar c = isAlphaNum c || c ‘elem‘ "_’"

lexFracExp (’.’:c:cs) | isDigit c
= [(’.’:ds++e,u) | (ds,t) <- lexDigits (c:cs),

(e,u) <- lexExp t]
lexFracExp s = lexExp s

lexExp (e:s) | e ‘elem‘ "eE"
= [(e:c:ds,u) | (c:t) <- [s], c ‘elem‘ "+-",

(ds,u) <- lexDigits t] ++
[(e:ds,t) | (ds,t) <- lexDigits s]

lexExp s = [("",s)]

instance Show Int where
showsPrec n = showsPrec n . toInteger

-- Converting to Integer avoids
-- possible difficulty with minInt

instance Read Int where
readsPrec p r = [(fromInteger i, t) | (i,t) <- readsPrec p r]

-- Reading at the Integer type avoids
-- possible difficulty with minInt

instance Show Integer where
showsPrec = showSigned showInt

instance Read Integer where
readsPrec p = readSigned readDec

instance Show Float where
showsPrec p = showFloat

instance Read Float where
readsPrec p = readSigned readFloat

instance Show Double where
showsPrec p = showFloat

instance Read Double where
readsPrec p = readSigned readFloat

instance Show () where
showsPrec p () = showString "()"

126 CHAPTER 9. STANDARD PRELUDE

instance Read () where
readsPrec p = readParen False

(\r -> [((),t) | ("(",s) <- lex r,
(")",t) <- lex s])

instance Show Char where
showsPrec p ’\’’ = showString "’\\’’"
showsPrec p c = showChar ’\’’ . showLitChar c . showChar ’\’’

showList cs = showChar ’"’ . showl cs
where showl "" = showChar ’"’

showl (’"’:cs) = showString "\\\"" . showl cs
showl (c:cs) = showLitChar c . showl cs

instance Read Char where
readsPrec p = readParen False

(\r -> [(c,t) | (’\’’:s,t)<- lex r,
(c,"\’") <- readLitChar s])

readList = readParen False (\r -> [(l,t) | (’"’:s, t) <- lex r,
(l,_) <- readl s])

where readl (’"’:s) = [("",s)]
readl (’\\’:’&’:s) = readl s
readl s = [(c:cs,u) | (c ,t) <- readLitChar s,

(cs,u) <- readl t]

instance (Show a) => Show [a] where
showsPrec p = showList

instance (Read a) => Read [a] where
readsPrec p = readList

-- Tuples

instance (Show a, Show b) => Show (a,b) where
showsPrec p (x,y) = showChar ’(’ . shows x . showChar ’,’ .

shows y . showChar ’)’

instance (Read a, Read b) => Read (a,b) where
readsPrec p = readParen False

(\r -> [((x,y), w) | ("(",s) <- lex r,
(x,t) <- reads s,
(",",u) <- lex t,
(y,v) <- reads u,
(")",w) <- lex v])

-- Other tuples have similar Read and Show instances

9.3. PRELUDE PRELUDEIO 127

9.3 Prelude PreludeIO

module PreludeIO (
FilePath, IOError, ioError, userError, catch,
putChar, putStr, putStrLn, print,
getChar, getLine, getContents, interact,
readFile, writeFile, appendFile, readIO, readLn

) where

import PreludeBuiltin

type FilePath = String

data IOError -- The internals of this type are system dependent

instance Show IOError where ...
instance Eq IOError where ...

ioError :: IOError -> IO a
ioError = primIOError

userError :: String -> IOError
userError = primUserError

catch :: IO a -> (IOError -> IO a) -> IO a
catch = primCatch

putChar :: Char -> IO ()
putChar = primPutChar

putStr :: String -> IO ()
putStr s = mapM_ putChar s

putStrLn :: String -> IO ()
putStrLn s = do putStr s

putStr "\n"

print :: Show a => a -> IO ()
print x = putStrLn (show x)

getChar :: IO Char
getChar = primGetChar

getLine :: IO String
getLine = do c <- getChar

if c == ’\n’ then return "" else
do s <- getLine

return (c:s)

128 CHAPTER 9. STANDARD PRELUDE

getContents :: IO String
getContents = primGetContents

interact :: (String -> String) -> IO ()
-- The hSetBuffering ensures the expected interactive behaviour
interact f = do hSetBuffering stdin NoBuffering

hSetBuffering stdout NoBuffering
s <- getContents
putStr (f s)

readFile :: FilePath -> IO String
readFile = primReadFile

writeFile :: FilePath -> String -> IO ()
writeFile = primWriteFile

appendFile :: FilePath -> String -> IO ()
appendFile = primAppendFile

-- raises an exception instead of an error
readIO :: Read a => String -> IO a
readIO s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> return x
[] -> ioError (userError "Prelude.readIO: no parse")
_ -> ioError (userError "Prelude.readIO: ambiguous parse")

readLn :: Read a => IO a
readLn = do l <- getLine

r <- readIO l
return r

Chapter 10

Syntax Reference

10.1 Notational Conventions

These notational conventions are used for presenting syntax:

[pattern] optional
{pattern} zero or more repetitions
(pattern) grouping

pat1 | pat2 choice
pat〈pat′〉 difference—elements generated by pat

except those generated by pat ′

fibonacci terminal syntax in typewriter font

BNF-like syntax is used throughout, with productions having the form:

nonterm → alt1 | alt2 | . . . | altn

In both the lexical and the context-free syntax, there are some ambiguities that are to be resolved by making
grammatical phrases as long as possible, proceeding from left to right (in shift-reduce parsing, resolving
shift/reduce conflicts by shifting). In the lexical syntax, this is the “maximal munch” rule. In the context-free
syntax, this means that conditionals, let-expressions, and lambda abstractions extend to the right as far as
possible.

10.2 Lexical Syntax

program → { lexeme | whitespace }
lexeme → qvarid | qconid | qvarsym | qconsym

| literal | special | reservedop | reservedid

129

130 CHAPTER 10. SYNTAX REFERENCE

literal → integer | float | char | string
special → (|) | , | ; | [|] | ` | { | }

whitespace → whitestuff {whitestuff }
whitestuff → whitechar | comment | ncomment
whitechar → newline | vertab | space | tab | uniWhite
newline → return linefeed | return | linefeed | formfeed
return → a carriage return
linefeed → a line feed
vertab → a vertical tab
formfeed → a form feed
space → a space
tab → a horizontal tab
uniWhite → any Unicode character defined as whitespace

comment → dashes [any〈symbol〉 {any}] newline
dashes → -- {-}
opencom → {-
closecom → -}
ncomment → opencom ANYseq {ncomment ANYseq} closecom
ANYseq → {ANY }〈{ANY } (opencom | closecom) {ANY }〉
ANY → graphic | whitechar
any → graphic | space | tab
graphic → small | large | symbol | digit | special | " | ’

small → ascSmall | uniSmall | _
ascSmall → a | b | . . . | z
uniSmall → any Unicode lowercase letter

large → ascLarge | uniLarge
ascLarge → A | B | . . . | Z
uniLarge → any uppercase or titlecase Unicode letter
symbol → ascSymbol | uniSymbol〈special | _ | " | ’〉

ascSymbol → ! | # | $ | % | & | * | + | . | / | < | = | > | ? | @
| \ | ˆ | | | - | ˜ | :

uniSymbol → any Unicode symbol or punctuation
digit → ascDigit | uniDigit
ascDigit → 0 | 1 | . . . | 9
uniDigit → any Unicode decimal digit
octit → 0 | 1 | . . . | 7
hexit → digit | A | . . . | F | a | . . . | f

varid → (small {small | large | digit | ’ })〈reservedid〉
conid → large {small | large | digit | ’ }
reservedid → case | class | data | default | deriving | do | else

| foreign | if | import | in | infix | infixl
| infixr | instance | let | module | newtype | of
| then | type | where | _

10.3. LAYOUT 131

varsym → (symbol〈:〉 {symbol})〈reservedop | dashes〉
consym → (: {symbol})〈reservedop〉
reservedop → .. | : | :: | = | \ | | | <- | -> | @ | ˜ | =>

varid (variables)
conid (constructors)
tyvar → varid (type variables)
tycon → conid (type constructors)
tycls → conid (type classes)
modid → {conid .} conid (modules)

qvarid → [modid .] varid
qconid → [modid .] conid
qtycon → [modid .] tycon
qtycls → [modid .] tycls
qvarsym → [modid .] varsym
qconsym → [modid .] consym

decimal → digit{digit}
octal → octit{octit}
hexadecimal → hexit{hexit}

integer → decimal
| 0o octal | 0O octal
| 0x hexadecimal | 0X hexadecimal

float → decimal . decimal [exponent]
| decimal exponent

exponent → (e | E) [+ | -] decimal

char → ’ (graphic〈’ | \〉 | space | escape〈\&〉) ’
string → " {graphic〈" | \〉 | space | escape | gap} "
escape → \ (charesc | ascii | decimal | o octal | x hexadecimal)
charesc → a | b | f | n | r | t | v | \ | " | ’ | &
ascii → ˆcntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

cntrl → ascLarge | @ | [| \ |] | ˆ | _
gap → \ whitechar {whitechar} \

10.3 Layout

Section 2.7 gives an informal discussion of the layout rule. This section defines it more precisely.

The meaning of a Haskell program may depend on its layout. The effect of layout on its meaning can be
completely described by adding braces and semicolons in places determined by the layout. The meaning of
this augmented program is now layout insensitive.

132 CHAPTER 10. SYNTAX REFERENCE

The effect of layout is specified in this section by describing how to add braces and semicolons to a laid-out
program. The specification takes the form of a function L that performs the translation. The input to L is:

• A stream of lexemes as specified by the lexical syntax in the Haskell report, with the following addi-
tional tokens:

– If a let, where, do, or of keyword is not followed by the lexeme {, the token {n} is inserted
after the keyword, where n is the indentation of the next lexeme if there is one, or 0 if the end of
file has been reached.

– If the first lexeme of a module is not { or module, then it is preceded by {n} where n is the
indentation of the lexeme.

– Where the start of a lexeme is preceded only by white space on the same line, this lexeme is pre-
ceded by< n >where n is the indentation of the lexeme, provided that it is not, as a consequence
of the first two rules, preceded by {n}. (NB: a string literal may span multiple lines – Section 2.6.
So in the fragment

f = ("Hello \
\Bill", "Jake")

There is no < n > inserted before the \Bill, because it is not the beginning of a complete
lexeme; nor before the ,, because it is not preceded only by white space.)

• A stack of “layout contexts”, in which each element is either:

– Zero, indicating that the enclosing context is explicit (i.e. the programmer supplied the open-
ing brace). If the innermost context is 0, then no layout tokens will be inserted until either the
enclosing context ends or a new context is pushed.

– A positive integer, which is the indentation column of the enclosing layout context.

The “indentation” of a lexeme is the column number of the first character of that lexeme; the indentation of
a line is the indentation of its leftmost lexeme. To determine the column number, assume a fixed-width font
with the following conventions:

• The characters newline , return , linefeed , and formfeed , all start a new line.

• The first column is designated column 1, not 0.

• Tab stops are 8 characters apart.

• A tab character causes the insertion of enough spaces to align the current position with the next tab
stop.

For the purposes of the layout rule, Unicode characters in a source program are considered to be of the same,
fixed, width as an ASCII character. However, to avoid visual confusion, programmers should avoid writing
programs in which the meaning of implicit layout depends on the width of non-space characters.

The application
L tokens []

delivers a layout-insensitive translation of tokens , where tokens is the result of lexically analysing a module
and adding column-number indicators to it as described above. The definition of L is as follows, where we
use “:” as a stream construction operator, and “[]” for the empty stream.

10.3. LAYOUT 133

L (< n >: ts) (m : ms) = ; : (L ts (m : ms)) if m = n
= } : (L (< n >: ts)ms) if n < m

L (< n >: ts)ms = L ts ms

L ({n} : ts) (m : ms) = { : (L ts (n : m : ms)) if n > m (Note 1)
L ({n} : ts) [] = { : (L ts [n]) if n > 0 (Note 1)
L ({n} : ts)ms = { : } : (L (< n >: ts)ms) (Note 2)

L (} : ts) (0 : ms) = } : (L ts ms) (Note 3)
L (} : ts)ms = parse-error (Note 3)

L ({ : ts)ms = { : (L ts (0 : ms)) (Note 4)

L (t : ts) (m : ms) = } : (L (t : ts)ms) if m/ = 0 and parse-error(t)
(Note 5)

L (t : ts)ms = t : (L ts ms)

L [] [] = []
L [] (m : ms) = } : L []ms if m 6= 0 (Note 6)

Note 1. A nested context must be further indented than the enclosing context (n > m). If not, L fails, and
the compiler should indicate a layout error. An example is:

f x = let
h y = let

p z = z
in p

in h

Here, the definition of p is indented less than the indentation of the enclosing context, which is set in
this case by the definition of h.

Note 2. If the first token after a where (say) is not indented more than the enclosing layout context, then the
block must be empty, so empty braces are inserted. The {n} token is replaced by < n >, to mimic the
situation if the empty braces had been explicit.

Note 3. By matching against 0 for the current layout context, we ensure that an explicit close brace can only
match an explicit open brace. A parse error results if an explicit close brace matches an implicit open
brace.

Note 4. This clause means that all brace pairs are treated as explicit layout contexts, including labelled con-
struction and update (Section 3.15). This is a difference between this formulation and Haskell 1.4.

Note 5. The side condition parse-error(t) is to be interpreted as follows: if the tokens generated so far by
L together with the next token t represent an invalid prefix of the Haskell grammar, and the tokens
generated so far by L followed by the token “}” represent a valid prefix of the Haskell grammar, then
parse-error(t) is true.

The test m/ = 0 checks that an implicitly-added closing brace would match an implicit open brace.

Note 6. At the end of the input, any pending close-braces are inserted. It is an error at this point to be within
a non-layout context (i.e. m = 0).

134 CHAPTER 10. SYNTAX REFERENCE

If none of the rules given above matches, then the algorithm fails. It can fail for instance when the end of the
input is reached, and a non-layout context is active, since the close brace is missing. Some error conditions
are not detected by the algorithm, although they could be: for example let }.

Note 1 implements the feature that layout processing can be stopped prematurely by a parse error. For
example

let x = e; y = x in e’

is valid, because it translates to

let { x = e; y = x } in e’

The close brace is inserted due to the parse error rule above.

10.4. LITERATE COMMENTS 135

10.4 Literate comments

The “literate comment” convention, first developed by Richard Bird and Philip Wadler for Orwell, and in-
spired in turn by Donald Knuth’s “literate programming”, is an alternative style for encoding Haskell source
code. The literate style encourages comments by making them the default. A line in which “>” is the first
character is treated as part of the program; all other lines are comments.

The program text is recovered by taking only those lines beginning with “>”, and replacing the leading “>”
with a space. Layout and comments apply exactly as described in Chapter 10 in the resulting text.

To capture some cases where one omits an “>” by mistake, it is an error for a program line to appear adjacent
to a non-blank comment line, where a line is taken as blank if it consists only of whitespace.

By convention, the style of comment is indicated by the file extension, with “.hs” indicating a usual Haskell
file and “.lhs” indicating a literate Haskell file. Using this style, a simple factorial program would be:

This literate program prompts the user for a number
and prints the factorial of that number:

> main :: IO ()

> main = do putStr "Enter a number: "
> l <- readLine
> putStr "n!= "
> print (fact (read l))

This is the factorial function.

> fact :: Integer -> Integer
> fact 0 = 1
> fact n = n * fact (n-1)

An alternative style of literate programming is particularly suitable for use with the LaTeX text process-
ing system. In this convention, only those parts of the literate program that are entirely enclosed between
\begin{code}. . .\end{code} delimiters are treated as program text; all other lines are comments.
More precisely:

• Program code begins on the first line following a line that begins \begin{code}.

• Program code ends just before a subsequent line that begins \end{code} (ignoring string literals, of
course).

It is not necessary to insert additional blank lines before or after these delimiters, though it may be stylistically
desirable. For example,

\documentstyle{article}

\begin{document}

\chapter{Introduction}

This is a trivial program that prints the first 20 factorials.

136 CHAPTER 10. SYNTAX REFERENCE

\begin{code}
main :: IO ()
main = print [(n, product [1..n]) | n <- [1..20]]
\end{code}

\end{document}

This style uses the same file extension. It is not advisable to mix these two styles in the same file.

10.5. CONTEXT-FREE SYNTAX 137

10.5 Context-Free Syntax

module → module modid [exports] where body
| body

body → { impdecls ; topdecls }
| { impdecls }
| { topdecls }

impdecls → impdecl1 ; . . . ; impdecln (n ≥ 1)

exports → (export1 , . . . , exportn [,]) (n ≥ 0)

export → qvar
| qtycon [(..) | (cname1 , . . . , cnamen)] (n ≥ 0)
| qtycls [(..) | (qvar1 , . . . , qvarn)] (n ≥ 0)
| module modid

impdecl → import [qualified] modid [as modid] [impspec]
| (empty declaration)

impspec → (import1 , . . . , importn [,]) (n ≥ 0)
| hiding (import1 , . . . , importn [,]) (n ≥ 0)

import → var
| tycon [(..) | (cname1 , . . . , cnamen)] (n ≥ 0)
| tycls [(..) | (var1 , . . . , varn)] (n ≥ 0)

cname → var | con

topdecls → topdecl1 ; . . . ; topdecln (n ≥ 0)
topdecl → type simpletype = type

| data [context =>] simpletype [= constrs] [deriving]
| newtype [context =>] simpletype = newconstr [deriving]
| class [scontext =>] tycls tyvar [where cdecls]
| instance [scontext =>] qtycls inst [where idecls]
| default (type1 , . . . , typen) (n ≥ 0)
| foreign fdecl
| decl

decls → { decl1 ; . . . ; decln } (n ≥ 0)
decl → gendecl

| (funlhs | pat) rhs

cdecls → { cdecl1 ; . . . ; cdecln } (n ≥ 0)
cdecl → gendecl

| (funlhs | var) rhs

idecls → { idecl1 ; . . . ; idecln } (n ≥ 0)
idecl → (funlhs | var) rhs

| (empty)

138 CHAPTER 10. SYNTAX REFERENCE

gendecl → vars :: [context =>] type (type signature)
| fixity [integer] ops (fixity declaration)
| (empty declaration)

ops → op1 , . . . , opn (n ≥ 1)
vars → var1 , . . ., varn (n ≥ 1)
fixity → infixl | infixr | infix

type → btype [-> type] (function type)

btype → [btype] atype (type application)

atype → gtycon
| tyvar
| (type1 , . . . , typek) (tuple type, k ≥ 2)
| [type] (list type)
| (type) (parenthesized constructor)

gtycon → qtycon
| () (unit type)
| [] (list constructor)
| (->) (function constructor)
| (,{,}) (tupling constructors)

context → class
| (class1 , . . . , classn) (n ≥ 0)

class → qtycls tyvar
| qtycls (tyvar atype1 . . . atypen) (n ≥ 1)

scontext → simpleclass
| (simpleclass1 , . . . , simpleclassn) (n ≥ 0)

simpleclass → qtycls tyvar

simpletype → tycon tyvar1 . . . tyvark (k ≥ 0)
constrs → constr1 | . . . | constrn (n ≥ 1)
constr → con [!] atype1 . . . [!] atypek (arity con = k , k ≥ 0)

| (btype | ! atype) conop (btype | ! atype) (infix conop)
| con { fielddecl1 , . . . , fielddecln } (n ≥ 0)

newconstr → con atype
| con { var :: type }

fielddecl → vars :: (type | ! atype)
deriving → deriving (dclass | (dclass1, . . . , dclassn)) (n ≥ 0)
dclass → qtycls

inst → gtycon
| (gtycon tyvar1 . . . tyvark) (k ≥ 0 , tyvars distinct)
| (tyvar1 , . . . , tyvark) (k ≥ 2 , tyvars distinct)
| [tyvar]
| (tyvar1 -> tyvar2) tyvar1 and tyvar2 distinct

fdecl → import callconv [safety] impent var :: ftype (define variable)
| export callconv expent var :: ftype (expose variable)

10.5. CONTEXT-FREE SYNTAX 139

callconv → ccall | stdcall | cplusplus (calling convention)
| jvm | dotnet
| system-specific calling conventions

impent → [string] (see Section 8.5.1)
expent → [string] (see Section 8.5.1)
safety → unsafe | safe

ftype → frtype
| fatype → ftype

frtype → fatype
| ()

fatype → qtycon atype1 . . . atypek (k ≥ 0)

funlhs → var apat { apat }
| pat varop pat
| (funlhs) apat { apat }

rhs → = exp [where decls]
| gdrhs [where decls]

gdrhs → guards = exp [gdrhs]

guards → | guard1 , . . . , guardn (n ≥ 1)
guard → pat <- infixexp (pattern guard)

| let decls (local declaration)
| infixexp (boolean guard)

exp → infixexp :: [context =>] type (expression type signature)
| infixexp

infixexp → lexp qop infixexp (infix operator application)
| - infixexp (prefix negation)
| lexp

lexp → \ apat1 . . . apatn -> exp (lambda abstraction, n ≥ 1)
| let decls in exp (let expression)
| if exp [;] then exp [;] else exp (conditional)
| case exp of { alts } (case expression)
| do { stmts } (do expression)
| fexp

fexp → [fexp] aexp (function application)

aexp → qvar (variable)
| gcon (general constructor)
| literal
| (exp) (parenthesized expression)
| (exp1 , . . . , expk) (tuple, k ≥ 2)
| [exp1 , . . . , expk] (list, k ≥ 1)
| [exp1 [, exp2] .. [exp3]] (arithmetic sequence)
| [exp | qual1 , . . . , qualn] (list comprehension, n ≥ 1)
| (infixexp qop) (left section)

140 CHAPTER 10. SYNTAX REFERENCE

| (qop〈-〉 infixexp) (right section)
| qcon { fbind1 , . . . , fbindn } (labeled construction, n ≥ 0)
| aexp〈qcon〉 { fbind1 , . . . , fbindn } (labeled update, n ≥ 1)

qual → pat <- exp (generator)
| let decls (local declaration)
| exp (guard)

alts → alt1 ; . . . ; altn (n ≥ 1)
alt → pat -> exp [where decls]

| pat gdpat [where decls]
| (empty alternative)

gdpat → guards -> exp [gdpat]

stmts → stmt1 . . . stmtn exp [;] (n ≥ 0)
stmt → exp ;

| pat <- exp ;
| let decls ;
| ; (empty statement)

fbind → qvar = exp

pat → lpat qconop pat (infix constructor)
| lpat

lpat → apat
| - (integer | float) (negative literal)
| gcon apat1 . . . apatk (arity gcon = k , k ≥ 1)

apat → var [@ apat] (as pattern)
| gcon (arity gcon = 0)
| qcon { fpat1 , . . . , fpatk } (labeled pattern, k ≥ 0)
| literal
| _ (wildcard)
| (pat) (parenthesized pattern)
| (pat1 , . . . , patk) (tuple pattern, k ≥ 2)
| [pat1 , . . . , patk] (list pattern, k ≥ 1)
| ˜ apat (irrefutable pattern)

fpat → qvar = pat

gcon → ()
| []
| (,{,})
| qcon

var → varid | (varsym) (variable)
qvar → qvarid | (qvarsym) (qualified variable)
con → conid | (consym) (constructor)
qcon → qconid | (gconsym) (qualified constructor)

10.5. CONTEXT-FREE SYNTAX 141

varop → varsym | `varid` (variable operator)
qvarop → qvarsym | `qvarid` (qualified variable operator)
conop → consym | `conid` (constructor operator)
qconop → gconsym | `qconid` (qualified constructor operator)
op → varop | conop (operator)
qop → qvarop | qconop (qualified operator)
gconsym → : | qconsym

142 CHAPTER 10. SYNTAX REFERENCE

10.6 Fixity Resolution

The following is an example implementation of fixity resolution for Haskell expressions. Fixity resolution
also applies to Haskell patterns, but patterns are a subset of expressions so in what follows we consider only
expressions for simplicity.

The function resolve takes a list in which the elements are expressions or operators, i.e. an instance of
the infixexp non-terminal in the context-free grammar. It returns either Just e where e is the resolved
expression, or Nothing if the input does not represent a valid expression. In a compiler, of course, it would
be better to return more information about the operators involved for the purposes of producing a useful error
message, but the Maybe type will suffice to illustrate the algorithm here.

import Control.Monad

type Prec = Int
type Var = String

data Op = Op String Prec Fixity
deriving (Eq,Show)

data Fixity = Leftfix | Rightfix | Nonfix
deriving (Eq,Show)

data Exp = Var Var | OpApp Exp Op Exp | Neg Exp
deriving (Eq,Show)

data Tok = TExp Exp | TOp Op | TNeg
deriving (Eq,Show)

resolve :: [Tok] -> Maybe Exp
resolve tokens = fmap fst $ parseNeg (Op "" (-1) Nonfix) tokens
where

parseNeg :: Op -> [Tok] -> Maybe (Exp,[Tok])
parseNeg op1 (TExp e1 : rest)

= parse op1 e1 rest
parseNeg op1 (TNeg : rest)

= do guard (prec1 < 6)
(r, rest’) <- parseNeg (Op "-" 6 Leftfix) rest
parse op1 (Neg r) rest’

where
Op _ prec1 fix1 = op1

parse :: Op -> Exp -> [Tok] -> Maybe (Exp, [Tok])
parse _ e1 [] = Just (e1, [])
parse op1 e1 (TOp op2 : rest)

-- case (1): check for illegal expressions
| prec1 == prec2 && (fix1 /= fix2 || fix1 == Nonfix)
= Nothing

-- case (2): op1 and op2 should associate to the left
| prec1 > prec2 || (prec1 == prec2 && fix1 == Leftfix)
= Just (e1, TOp op2 : rest)

-- case (3): op1 and op2 should associate to the right

10.6. FIXITY RESOLUTION 143

| otherwise
= do (r,rest’) <- parseNeg op2 rest

parse op1 (OpApp e1 op2 r) rest’
where
Op _ prec1 fix1 = op1
Op _ prec2 fix2 = op2

The algorithm works as follows. At each stage we have a call

parse op1 E1 (op2 : tokens)

which means that we are looking at an expression like

E0 ‘op1‘ E1 ‘op2‘ ... (1)

(the caller holds E0). The job of parse is to build the expression to the right of op1, returning the expression
and any remaining input.

There are three cases to consider:

1. if op1 and op2 have the same precedence, but they do not have the same associativity, or they are
declared to be nonfix, then the expression is illegal.

2. If op1 has a higher precedence than op2, or op1 and op2 should left-associate, then we know that
the expression to the right of op1 is E1, so we return this to the caller.

3. Otherwise, we know we want to build an expression of the form E1 ‘op2‘ R. To find R, we call
parseNeg op2 tokens to compute the expression to the right of op2, namely R (more about
parseNeg below, but essentially if tokens is of the form (E2 : rest), then this is equivalent to
parse op2 E2 rest). Now, we have

E0 ‘op1‘ (E1 ‘op2‘ R) ‘op3‘ ...

where op3 is the next operator in the input. This is an instance of (1) above, so to continue we call
parse, with the new E1 == (E1 ‘op2‘ R).

To initialise the algorithm, we set op1 to be an imaginary operator with precedence lower than anything else.
Hence parse will consume the whole input, and return the resulting expression.

The handling of the prefix negation operator, -, complicates matters only slightly. Recall that prefix negation
has the same fixity as infix negation: left-associative with precedence 6. The operator to the left of -, if there
is one, must have precedence lower than 6 for the expression to be legal. The negation operator itself may
left-associate with operators of the same fixity (e.g. +). So for example -a + b is legal and resolves as
(-a) + b, but a + -b is illegal.

The function parseNeg handles prefix negation. If we encounter a negation operator, and it is legal in this
position (the operator to the left has precedence lower than 6), then we proceed in a similar way to case (3)
above: compute the argument to - by recursively calling parseNeg, and then continue by calling parse.

Note that this algorithm is insensitive to the range and resolution of precedences. There is no reason in
principle that Haskell should be limited to integral precedences in the range 1 to 10; a larger range, or
fractional values, would present no additional difficulties.

144 CHAPTER 10. SYNTAX REFERENCE

Chapter 11

Specification of Derived Instances

A derived instance is an instance declaration that is generated automatically in conjunction with a data or
newtype declaration. The body of a derived instance declaration is derived syntactically from the definition
of the associated type. Derived instances are possible only for classes known to the compiler: those defined
in either the Prelude or a standard library. In this chapter, we describe the derivation of classes defined by the
Prelude.

If T is an algebraic datatype declared by:

data cx => T u1 . . . uk = K1 t11 . . . t1k1 | · · · | Kn tn1 . . . tnkn
deriving (C1, . . ., Cm)

(where m ≥ 0 and the parentheses may be omitted if m = 1) then a derived instance declaration is possible
for a class C if these conditions hold:

1. C is one of Eq, Ord, Enum, Bounded, Show, or Read.

2. There is a context cx ′ such that cx ′ ⇒ C tij holds for each of the constituent types tij .

3. If C is Bounded, the type must be either an enumeration (all constructors must be nullary) or have
only one constructor.

4. If C is Enum, the type must be an enumeration.

5. There must be no explicit instance declaration elsewhere in the program that makes T u1 . . . uk an
instance of C .

6. If the data declaration has no constructors (i.e. when n = 0), then no classes are derivable (i.e. m = 0)

For the purposes of derived instances, a newtype declaration is treated as a data declaration with a single
constructor.

If the deriving form is present, an instance declaration is automatically generated for T u1 . . . uk over
each class Ci . If the derived instance declaration is impossible for any of the Ci then a static error results. If
no derived instances are required, the deriving form may be omitted or the form deriving () may be
used.

145

146 CHAPTER 11. SPECIFICATION OF DERIVED INSTANCES

Each derived instance declaration will have the form:

instance (cx, cx ′) => Ci (T u1 . . . uk) where { d }

where d is derived automatically depending on Ci and the data type declaration for T (as will be described
in the remainder of this section).

The context cx ′ is the smallest context satisfying point (2) above. For mutually recusive data types, the
compiler may need to perform a fixpoint calculation to compute it.

The remaining details of the derived instances for each of the derivable Prelude classes are now given. Free
variables and constructors used in these translations always refer to entities defined by the Prelude.

11.1 Derived instances of Eq and Ord

The class methods automatically introduced by derived instances of Eq and Ord are (==), (/=), compare,
(<), (<=), (>), (>=), max, and min. The latter seven operators are defined so as to compare their
arguments lexicographically with respect to the constructor set given, with earlier constructors in the da-
tatype declaration counting as smaller than later ones. For example, for the Bool datatype, we have that
(True > False) == True.

Derived comparisons always traverse constructors from left to right. These examples illustrate this property:

(1,undefined) == (2,undefined) ⇒ False
(undefined,1) == (undefined,2) ⇒ ⊥

All derived operations of class Eq and Ord are strict in both arguments. For example, False <= ⊥ is ⊥,
even though False is the first constructor of the Bool type.

11.2 Derived instances of Enum

Derived instance declarations for the class Enum are only possible for enumerations (data types with only
nullary constructors).

The nullary constructors are assumed to be numbered left-to-right with the indices 0 through n − 1. The
succ and pred operators give the successor and predecessor respectively of a value, under this numbering
scheme. It is an error to apply succ to the maximum element, or pred to the minimum element.

The toEnum and fromEnum operators map enumerated values to and from the Int type; toEnum raises a
runtime error if the Int argument is not the index of one of the constructors.

The definitions of the remaining methods are

enumFrom x = enumFromTo x lastCon
enumFromThen x y = enumFromThenTo x y bound

where
bound | fromEnum y >= fromEnum x = lastCon

| otherwise = firstCon
enumFromTo x y = map toEnum [fromEnum x .. fromEnum y]
enumFromThenTo x y z = map toEnum [fromEnum x, fromEnum y .. fromEnum z]

11.3. DERIVED INSTANCES OF BOUNDED 147

where firstCon and lastCon are respectively the first and last constructors listed in the data declara-
tion. For example, given the datatype:

data Color = Red | Orange | Yellow | Green deriving (Enum)

we would have:

[Orange ..] == [Orange, Yellow, Green]
fromEnum Yellow == 2

11.3 Derived instances of Bounded

The Bounded class introduces the class methods minBound and maxBound, which define the minimal
and maximal elements of the type. For an enumeration, the first and last constructors listed in the data
declaration are the bounds. For a type with a single constructor, the constructor is applied to the bounds for
the constituent types. For example, the following datatype:

data Pair a b = Pair a b deriving Bounded

would generate the following Bounded instance:

instance (Bounded a,Bounded b) => Bounded (Pair a b) where
minBound = Pair minBound minBound
maxBound = Pair maxBound maxBound

11.4 Derived instances of Read and Show

The class methods automatically introduced by derived instances of Read and Show are showsPrec,
readsPrec, showList, and readList. They are used to coerce values into strings and parse strings
into values.

The function showsPrec d x r accepts a precedence level d (a number from 0 to 11), a value x, and a
string r. It returns a string representing x concatenated to r. showsPrec satisfies the law:

showsPrec d x r ++ s == showsPrec d x (r ++ s)

The representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less
than d. Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in
parentheses, unless it is an atomic expression (recall that function application has precedence 10). The extra
parameter r is essential if tree-like structures are to be printed in linear time rather than time quadratic in the
size of the tree.

The function readsPrec d s accepts a precedence level d (a number from 0 to 10) and a string s, and
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string)
pairs. If there is no successful parse, the returned list is empty. Parsing of an un-parenthesised infix operator
application succeeds only if the precedence of the operator is greater than or equal to d.

It should be the case that

148 CHAPTER 11. SPECIFICATION OF DERIVED INSTANCES

(x,"") is an element of (readsPrec d (showsPrec d x ""))

That is, readsPrec should be able to parse the string produced by showsPrec, and should deliver the
value that showsPrec started with.

showList and readList allow lists of objects to be represented using non-standard denotations. This is
especially useful for strings (lists of Char).

readsPrec will parse any valid representation of the standard types apart from strings, for which only
quoted strings are accepted, and other lists, for which only the bracketed form [. . .] is accepted. See Chap-
ter 9 for full details.

The result of show is a syntactically correct Haskell expression containing only constants, given the fixity
declarations in force at the point where the type is declared. It contains only the constructor names defined
in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field
names, and equal signs are also used. Parentheses are only added where needed, ignoring associativity. No
line breaks are added. The result of show is readable by read if all component types are readable. (This is
true for all instances defined in the Prelude but may not be true for user-defined instances.)

Derived instances of Read make the following assumptions, which derived instances of Show obey:

• If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix
applications of the constructor (not the prefix form).

• Associativity is not used to reduce the occurrence of parentheses, although precedence may be. For
example, given

infixr 4 :$
data T = Int :$ T | NT

then:

– show (1 :$ 2 :$ NT) produces the string "1 :$ (2 :$ NT)".

– read "1 :$ (2 :$ NT)" succeeds, with the obvious result.

– read "1 :$ 2 :$ NT" fails.

• If the constructor is defined using record syntax, the derived Read will parse only the record-syntax
form, and furthermore, the fields must be given in the same order as the original declaration.

• The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string.
Extra parentheses are also allowed.

The derived Read and Show instances may be unsuitable for some uses. Some problems include:

• Circular structures cannot be printed or read by these instances.

• The printer loses shared substructure; the printed representation of an object may be much larger than
necessary.

• The parsing techniques used by the reader are very inefficient; reading a large structure may be quite
slow.

• There is no user control over the printing of types defined in the Prelude. For example, there is no way
to change the formatting of floating point numbers.

11.5. AN EXAMPLE 149

11.5 An Example

As a complete example, consider a tree datatype:

data Tree a = Leaf a | Tree a :ˆ: Tree a
deriving (Eq, Ord, Read, Show)

Automatic derivation of instance declarations for Bounded and Enum are not possible, as Tree is not
an enumeration or single-constructor datatype. The complete instance declarations for Tree are shown in
Figure 11.1, Note the implicit use of default class method definitions—for example, only <= is defined for
Ord, with the other class methods (<, >, >=, max, and min) being defined by the defaults given in the class
declaration shown in Figure 6.1.

150 CHAPTER 11. SPECIFICATION OF DERIVED INSTANCES

infixr 5 :ˆ:
data Tree a = Leaf a | Tree a :ˆ: Tree a

instance (Eq a) => Eq (Tree a) where
Leaf m == Leaf n = m==n
u:ˆ:v == x:ˆ:y = u==x && v==y

_ == _ = False

instance (Ord a) => Ord (Tree a) where
Leaf m <= Leaf n = m<=n
Leaf m <= x:ˆ:y = True
u:ˆ:v <= Leaf n = False
u:ˆ:v <= x:ˆ:y = u<x || u==x && v<=y

instance (Show a) => Show (Tree a) where

showsPrec d (Leaf m) = showParen (d > app_prec) showStr
where

showStr = showString "Leaf " . showsPrec (app_prec+1) m

showsPrec d (u :ˆ: v) = showParen (d > up_prec) showStr
where

showStr = showsPrec (up_prec+1) u .
showString " :ˆ: " .
showsPrec (up_prec+1) v

-- Note: right-associativity of :ˆ: ignored

instance (Read a) => Read (Tree a) where

readsPrec d r = readParen (d > up_prec)
(\r -> [(u:ˆ:v,w) |

(u,s) <- readsPrec (up_prec+1) r,
(":ˆ:",t) <- lex s,
(v,w) <- readsPrec (up_prec+1) t]) r

++ readParen (d > app_prec)
(\r -> [(Leaf m,t) |

("Leaf",s) <- lex r,
(m,t) <- readsPrec (app_prec+1) s]) r

up_prec = 5 -- Precedence of :ˆ:
app_prec = 10 -- Application has precedence one more than

-- the most tightly-binding operator

Figure 11.1: Example of Derived Instances

Chapter 12

Compiler Pragmas

Some compiler implementations support compiler pragmas, which are used to give additional instructions
or hints to the compiler, but which do not form part of the Haskell language proper and do not change a
program’s semantics. This chapter summarizes this existing practice. An implementation is not required
to respect any pragma, although pragmas that are not recognised by the implementation should be ignored.
Implementations are strongly encouraged to support the LANGUAGE pragma described below as there are
many language extensions being used in practice.

Lexically, pragmas appear as comments, except that the enclosing syntax is {-# #-}.

12.1 Inlining

decl → {-# INLINE qvars #-}
decl → {-# NOINLINE qvars #-}

The INLINE pragma instructs the compiler to inline the specified variables at their use sites. Compilers will
often automatically inline simple expressions. This may be prevented by the NOINLINE pragma.

12.2 Specialization

decl → {-# SPECIALIZE spec1 , . . . , speck #-} (k ≥ 1)
spec → vars :: type

Specialization is used to avoid inefficiencies involved in dispatching overloaded functions. For example, in

factorial :: Num a => a -> a
factorial 0 = 0
factorial n = n * factorial (n-1)
{-# SPECIALIZE factorial :: Int -> Int,

factorial :: Integer -> Integer #-}

calls to factorial in which the compiler can detect that the parameter is either Int or Integer will use
specialized versions of factorial which do not involve overloaded numeric operations.

151

152 CHAPTER 12. COMPILER PRAGMAS

12.3 Language extensions

The LANGUAGE pragma is a file-header pragma. A file-header pragma must precede the module keyword in
a source file. There can be as many file-header pragmas as you please, and they can be preceded or followed
by comments. An individual language pragma begins with the keyword LANGUAGE and is followed by a
comma-separated list of named language features.

For example, to enable scoped type variables and preprocessing with CPP, if your Haskell implementation
supports these extensions:

{-# LANGUAGE ScopedTypeVariables, CPP #-}

If a Haskell implementation does not recognize or support a particular language feature that a source file
requests (or cannot support the combination of language features requested), any attempt to compile or oth-
erwise use that file with that Haskell implementation must fail with an error.

In the interests of portability, multiple attempts to enable the same, supported language features (e.g.
via command-line arguments, implementation-specific features dependencies or non-standard pragmas) are
specifically permitted. Haskell 2010 implementations that support the LANGUAGE pragma are required to
support

{-# LANGUAGE Haskell2010 #-}

Those implementations are also encouraged to support the following named language features:

PatternGuards, NoNPlusKPatterns, RelaxedPolyRec,
EmptyDataDecls, ForeignFunctionInterface

These are the named language extensions supported by some pre-Haskell 2010 implementations, that have
been integrated into this report.

Part II

The Haskell 2010 Libraries

153

Chapter 13

Control.Monad

module Control.Monad (
Functor(fmap), Monad((>>=), (>>), return, fail), MonadPlus(mzero, mplus),
mapM, mapM_, forM, forM_, sequence, sequence_, (=<<), (>=>), (<=<),
forever, void, join, msum, filterM, mapAndUnzipM, zipWithM,
zipWithM_, foldM, foldM_, replicateM, replicateM_, guard, when,
unless, liftM, liftM2, liftM3, liftM4, liftM5, ap

) where

The Control.Monad module provides the Functor, Monad and MonadPlus classes, together with some
useful operations on monads.

13.1 Functor and monad classes

class Functor f where

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the
following laws:

fmap id == id
fmap (f . g) == fmap f . fmap g

The instances of Functor for lists, Data.Maybe.Maybe and System.IO.IO satisfy these laws.

Methods

fmap :: (a -> b) -> f a -> f b

instance Functor []
instance Functor IO
instance Functor Maybe
instance Ix i => Functor (Array i)

155

156 CHAPTER 13. CONTROL.MONAD

class Monad m where

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics
known as category theory. From the perspective of a Haskell programmer, however, it is best to think
of a monad as an abstract datatype of actions. Haskell’s do expressions provide a convenient syntax
for writing monadic expressions.

Minimal complete definition: >>= and return.

Instances of Monad should satisfy the following laws:

return a >>= k == k a
m >>= return == m
m >>= (\x -> k x >>= h) == (m >>= k) >>= h

Instances of both Monad and Functor should additionally satisfy the law:

fmap f xs == xs >>= return . f

The instances of Monad for lists, Data.Maybe.Maybe and System.IO.IO defined in the Prelude

satisfy these laws.

Methods

(>>=) :: m a -> (a -> m b) -> m b

Sequentially compose two actions, passing any value produced by the first as an argument to the
second.

(>>) :: m a -> m b -> m b

Sequentially compose two actions, discarding any value produced by the first, like sequencing
operators (such as the semicolon) in imperative languages.

return :: a -> m a

Inject a value into the monadic type.

fail :: String -> m a

Fail with a message. This operation is not part of the mathematical definition of a monad, but is
invoked on pattern-match failure in a do expression.

instance Monad []
instance Monad IO
instance Monad Maybe

class Monad m => MonadPlus m where

Monads that also support choice and failure.

Methods

mzero :: m a

the identity of mplus. It should also satisfy the equations

mzero >>= f = mzero
v >> mzero = mzero

13.2. FUNCTIONS 157

mplus :: m a -> m a -> m a

an associative operation

instance MonadPlus []
instance MonadPlus Maybe

13.2 Functions

13.2.1 Naming conventions

The functions in this library use the following naming conventions:

• A postfix ’M’ always stands for a function in the Kleisli category: The monad type constructor m is
added to function results (modulo currying) and nowhere else. So, for example,

filter :: (a -> Bool) -> [a] -> [a]
filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

• A postfix ’_’ changes the result type from (m a) to (m ()). Thus, for example:

sequence :: Monad m => [m a] -> m [a]
sequence_ :: Monad m => [m a] -> m ()

• A prefix ’m’ generalizes an existing function to a monadic form. Thus, for example:

sum :: Num a => [a] -> a
msum :: MonadPlus m => [m a] -> m a

13.2.2 Basic Monad functions

mapM :: Monad m => (a -> m b) -> [a] -> m [b]

mapM f is equivalent to sequence . map f.

mapM_ :: Monad m => (a -> m b) -> [a] -> m ()

mapM_ f is equivalent to sequence_ . map f.

forM :: Monad m => [a] -> (a -> m b) -> m [b]

forM is mapM with its arguments flipped

forM_ :: Monad m => [a] -> (a -> m b) -> m ()

forM_ is mapM_ with its arguments flipped

158 CHAPTER 13. CONTROL.MONAD

sequence :: Monad m => [m a] -> m [a]

Evaluate each action in the sequence from left to right, and collect the results.

sequence_ :: Monad m => [m a] -> m ()

Evaluate each action in the sequence from left to right, and ignore the results.

(=<<) :: Monad m => (a -> m b) -> m a -> m b

Same as >>=, but with the arguments interchanged.

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c

Left-to-right Kleisli composition of monads.

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c

Right-to-left Kleisli composition of monads. (>=>), with the arguments flipped

forever :: Monad m => m a -> m b

forever act repeats the action infinitely.

void :: Functor f => f a -> f ()

void value discards or ignores the result of evaluation, such as the return value of an IO action.

13.2.3 Generalisations of list functions

join :: Monad m => m (m a) -> m a

The join function is the conventional monad join operator. It is used to remove one level of monadic
structure, projecting its bound argument into the outer level.

msum :: MonadPlus m => [m a] -> m a

This generalizes the list-based concat function.

filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]

This generalizes the list-based filter function.

mapAndUnzipM :: Monad m => (a -> m (b, c)) -> [a] -> m ([b], [c])

The mapAndUnzipM function maps its first argument over a list, returning the result as a pair of lists.
This function is mainly used with complicated data structures or a state-transforming monad.

zipWithM :: Monad m => (a -> b -> m c) -> [a] -> [b] -> m [c]

The zipWithM function generalizes zipWith to arbitrary monads.

13.2. FUNCTIONS 159

zipWithM_ :: Monad m => (a -> b -> m c) -> [a] -> [b] -> m ()

zipWithM_ is the extension of zipWithM which ignores the final result.

foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a

The foldM function is analogous to foldl, except that its result is encapsulated in a monad. Note that
foldM works from left-to-right over the list arguments. This could be an issue where (>>) and the
‘folded function’ are not commutative.

foldM f a1 [x1, x2, ..., xm]

==

do
a2 <- f a1 x1
a3 <- f a2 x2
...
f am xm

If right-to-left evaluation is required, the input list should be reversed.

foldM_ :: Monad m => (a -> b -> m a) -> a -> [b] -> m ()

Like foldM, but discards the result.

replicateM :: Monad m => Int -> m a -> m [a]

replicateM n act performs the action n times, gathering the results.

replicateM_ :: Monad m => Int -> m a -> m ()

Like replicateM, but discards the result.

13.2.4 Conditional execution of monadic expressions

guard :: MonadPlus m => Bool -> m ()

guard b is return () if b is True, and mzero if b is False.

when :: Monad m => Bool -> m () -> m ()

Conditional execution of monadic expressions. For example,

when debug (putStr "Debugging\n")

will output the string Debugging\n if the Boolean value debug is True, and otherwise do nothing.

unless :: Monad m => Bool -> m () -> m ()

The reverse of when.

160 CHAPTER 13. CONTROL.MONAD

13.2.5 Monadic lifting operators

liftM :: Monad m => (a1 -> r) -> m a1 -> m r

Promote a function to a monad.

liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r

Promote a function to a monad, scanning the monadic arguments from left to right. For example,

liftM2 (+) [0,1] [0,2] = [0,2,1,3]
liftM2 (+) (Just 1) Nothing = Nothing

liftM3 :: Monad m => (a1 -> a2 -> a3 -> r)
-> m a1 -> m a2 -> m a3 -> m r

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r)
-> m a1 -> m a2 -> m a3 -> m a4 -> m r

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r)
-> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

ap :: Monad m => m (a -> b) -> m a -> m b

In many situations, the liftM operations can be replaced by uses of ap, which promotes function
application.

return f ‘ap‘ x1 ‘ap‘ ... ‘ap‘ xn

is equivalent to

liftMn f x1 x2 ... xn

Chapter 14

Data.Array

module Data.Array (
module Data.Ix, Array, array, listArray, accumArray, (!), bounds,
indices, elems, assocs, (//), accum, ixmap

) where

14.1 Immutable non-strict arrays

Haskell provides indexable arrays, which may be thought of as functions whose domains are isomorphic
to contiguous subsets of the integers. Functions restricted in this way can be implemented efficiently; in
particular, a programmer may reasonably expect rapid access to the components. To ensure the possibility of
such an implementation, arrays are treated as data, not as general functions.

Since most array functions involve the class Ix, the contents of the module Data.Ix are re-exported from
Data.Array for convenience:

module Data.Ix

data Ix i => Array i e

The type of immutable non-strict (boxed) arrays with indices in i and elements in e.

instance Ix i => Functor (Array i)
instance (Ix i, Eq e) => Eq (Array i e)
instance (Ix i, Ord e) => Ord (Array i e)
instance (Ix a, Read a, Read b) => Read (Array a b)
instance (Ix a, Show a, Show b) => Show (Array a b)

161

162 CHAPTER 14. DATA.ARRAY

14.2 Array construction

array

:: Ix i
=> (i, i) a pair of bounds, each of the index type of the array. These bounds are the lowest

and highest indices in the array, in that order. For example, a one-origin vector of
length ’10’ has bounds ’(1,10)’, and a one-origin ’10’ by ’10’ matrix has bounds
’((1,1),(10,10))’.

-> [(i, e)] a list of associations of the form (index, value). Typically, this list will be ex-
pressed as a comprehension. An association ’(i, x)’ defines the value of the array
at index i to be x.

-> Array i e

Construct an array with the specified bounds and containing values for given indices within these
bounds.

The array is undefined (i.e. bottom) if any index in the list is out of bounds. If any two associations in
the list have the same index, the value at that index is undefined (i.e. bottom).

Because the indices must be checked for these errors, array is strict in the bounds argument and in
the indices of the association list, but non-strict in the values. Thus, recurrences such as the following
are possible:

a = array (1,100) ((1,1) : [(i, i * a!(i-1)) | i <- [2..100]])

Not every index within the bounds of the array need appear in the association list, but the values
associated with indices that do not appear will be undefined (i.e. bottom).

If, in any dimension, the lower bound is greater than the upper bound, then the array is legal, but empty.
Indexing an empty array always gives an array-bounds error, but bounds still yields the bounds with
which the array was constructed.

listArray :: Ix i => (i, i) -> [e] -> Array i e

Construct an array from a pair of bounds and a list of values in index order.

accumArray

:: Ix i
=> (e -> a -> e) accumulating function
-> e initial value
-> (i, i) bounds of the array
-> [(i, a)] association list
-> Array i e

The accumArray function deals with repeated indices in the association list using an accumulating
function which combines the values of associations with the same index. For example, given a list of
values of some index type, hist produces a histogram of the number of occurrences of each index
within a specified range:

hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
hist bnds is = accumArray (+) 0 bnds [(i, 1) | i<-is, inRange bnds i]

If the accumulating function is strict, then accumArray is strict in the values, as well as the indices,
in the association list. Thus, unlike ordinary arrays built with array, accumulated arrays should not in
general be recursive.

14.3. ACCESSING ARRAYS 163

14.3 Accessing arrays

(!) :: Ix i => Array i e -> i -> e

The value at the given index in an array.

bounds :: Ix i => Array i e -> (i, i)

The bounds with which an array was constructed.

indices :: Ix i => Array i e -> [i]

The list of indices of an array in ascending order.

elems :: Ix i => Array i e -> [e]

The list of elements of an array in index order.

assocs :: Ix i => Array i e -> [(i, e)]

The list of associations of an array in index order.

14.4 Incremental array updates

(//) :: Ix i => Array i e -> [(i, e)] -> Array i e

Constructs an array identical to the first argument except that it has been updated by the associations in
the right argument. For example, if m is a 1-origin, n by n matrix, then

m//[((i,i), 0) | i <- [1..n]]

is the same matrix, except with the diagonal zeroed.

Repeated indices in the association list are handled as for array: the resulting array is undefined (i.e.
bottom),

accum :: Ix i => (e -> a -> e)
-> Array i e -> [(i, a)] -> Array i e

accum f takes an array and an association list and accumulates pairs from the list into the array with
the accumulating function f. Thus accumArray can be defined using accum:

accumArray f z b = accum f (array b [(i, z) | i <- range b])

14.5 Derived arrays

ixmap :: (Ix i, Ix j) => (i, i)
-> (i -> j) -> Array j e -> Array i e

ixmap allows for transformations on array indices. It may be thought of as providing function compo-
sition on the right with the mapping that the original array embodies.

A similar transformation of array values may be achieved using fmap from the Array instance of the
Functor class.

164 CHAPTER 14. DATA.ARRAY

14.6 Specification

module Array (
module Data.Ix, -- export all of Data.Ix
Array, array, listArray, (!), bounds, indices, elems, assocs,
accumArray, (//), accum, ixmap) where

import Data.Ix
import Data.List((\\))

infixl 9 !, //

data (Ix a) => Array a b = MkArray (a,a) (a -> b) deriving ()

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
array b ivs

| any (not . inRange b. fst) ivs
= error "Data.Array.array: out-of-range array association"

| otherwise
= MkArray b arr

where
arr j = case [v | (i,v) <- ivs, i == j] of

[v] -> v
[] -> error "Data.Array.!: undefined array element"
_ -> error "Data.Array.!: multiply defined array element"

listArray :: (Ix a) => (a,a) -> [b] -> Array a b
listArray b vs = array b (zipWith (\ a b -> (a,b)) (range b) vs)

(!) :: (Ix a) => Array a b -> a -> b
(!) (MkArray _ f) = f

bounds :: (Ix a) => Array a b -> (a,a)
bounds (MkArray b _) = b

indices :: (Ix a) => Array a b -> [a]
indices = range . bounds

elems :: (Ix a) => Array a b -> [b]
elems a = [a!i | i <- indices a]

assocs :: (Ix a) => Array a b -> [(a,b)]
assocs a = [(i, a!i) | i <- indices a]

(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b
a // new_ivs = array (bounds a) (old_ivs ++ new_ivs)

where
old_ivs = [(i,a!i) | i <- indices a,

i ‘notElem‘ new_is]
new_is = [i | (i,_) <- new_ivs]

accum :: (Ix a) => (b -> c -> b) -> Array a b -> [(a,c)]
-> Array a b

accum f = foldl (\a (i,v) -> a // [(i,f (a!i) v)])

14.6. SPECIFICATION 165

accumArray :: (Ix a) => (b -> c -> b) -> b -> (a,a) -> [(a,c)]
-> Array a b

accumArray f z b = accum f (array b [(i,z) | i <- range b])

ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b) -> Array b c
-> Array a c

ixmap b f a = array b [(i, a ! f i) | i <- range b]

instance (Ix a) => Functor (Array a) where
fmap fn (MkArray b f) = MkArray b (fn . f)

instance (Ix a, Eq b) => Eq (Array a b) where
a == a’ = assocs a == assocs a’

instance (Ix a, Ord b) => Ord (Array a b) where
a <= a’ = assocs a <= assocs a’

instance (Ix a, Show a, Show b) => Show (Array a b) where
showsPrec p a = showParen (p > arrPrec) (

showString "array " .
showsPrec (arrPrec+1) (bounds a) . showChar ’ ’ .
showsPrec (arrPrec+1) (assocs a))

instance (Ix a, Read a, Read b) => Read (Array a b) where
readsPrec p = readParen (p > arrPrec)

(\r -> [(array b as, u)
| ("array",s) <- lex r,
(b,t) <- readsPrec (arrPrec+1) s,
(as,u) <- readsPrec (arrPrec+1) t])

-- Precedence of the ’array’ function is that of application itself
arrPrec = 10

166 CHAPTER 14. DATA.ARRAY

Chapter 15

Data.Bits

module Data.Bits (
Bits((.&.),

(.|.),
xor,
complement,
shift,
rotate,
bit,
setBit,
clearBit,
complementBit,
testBit,
bitSize,
isSigned,
shiftL,
shiftR,
rotateL,
rotateR)

) where

This module defines bitwise operations for signed and unsigned integers.

class Num a => Bits a where

The Bits class defines bitwise operations over integral types.

• Bits are numbered from 0 with bit 0 being the least significant bit.

Minimal complete definition: .&., .|., xor, complement, (shift or (shiftL and shiftR)),
(rotate or (rotateL and rotateR)), bitSize and isSigned.

Methods

167

168 CHAPTER 15. DATA.BITS

(.&.) :: a -> a -> a

Bitwise ”and”

(.|.) :: a -> a -> a

Bitwise ”or”

xor :: a -> a -> a

Bitwise ”xor”

complement :: a -> a

Reverse all the bits in the argument

shift :: a -> Int -> a

shift x i shifts x left by i bits if i is positive, or right by -i bits otherwise. Right shifts
perform sign extension on signed number types; i.e. they fill the top bits with 1 if the x is negative
and with 0 otherwise.
An instance can define either this unified shift or shiftL and shiftR, depending on which is
more convenient for the type in question.

rotate :: a -> Int -> a

rotate x i rotates x left by i bits if i is positive, or right by -i bits otherwise.
For unbounded types like Integer, rotate is equivalent to shift.
An instance can define either this unified rotate or rotateL and rotateR, depending on which
is more convenient for the type in question.

bit :: Int -> a

bit i is a value with the ith bit set and all other bits clear

setBit :: a -> Int -> a

x ‘setBit‘ i is the same as x .|. bit i

clearBit :: a -> Int -> a

x ‘clearBit‘ i is the same as x .&. complement (bit i)

complementBit :: a -> Int -> a

x ‘complementBit‘ i is the same as x ‘xor‘ bit i

testBit :: a -> Int -> Bool

Return True if the nth bit of the argument is 1

bitSize :: a -> Int

Return the number of bits in the type of the argument. The actual value of the argument is ignored.
The function bitSize is undefined for types that do not have a fixed bitsize, like Integer.

isSigned :: a -> Bool

Return True if the argument is a signed type. The actual value of the argument is ignored

169

shiftL :: a -> Int -> a

Shift the argument left by the specified number of bits (which must be non-negative).
An instance can define either this and shiftR or the unified shift, depending on which is more
convenient for the type in question.

shiftR :: a -> Int -> a

Shift the first argument right by the specified number of bits (which must be non-negative). Right
shifts perform sign extension on signed number types; i.e. they fill the top bits with 1 if the x is
negative and with 0 otherwise.
An instance can define either this and shiftL or the unified shift, depending on which is more
convenient for the type in question.

rotateL :: a -> Int -> a

Rotate the argument left by the specified number of bits (which must be non-negative).
An instance can define either this and rotateR or the unified rotate, depending on which is
more convenient for the type in question.

rotateR :: a -> Int -> a

Rotate the argument right by the specified number of bits (which must be non-negative).
An instance can define either this and rotateL or the unified rotate, depending on which is
more convenient for the type in question.

170 CHAPTER 15. DATA.BITS

instance Bits Int
instance Bits Int8
instance Bits Int16
instance Bits Int32
instance Bits Int64
instance Bits Integer
instance Bits Word
instance Bits Word8
instance Bits Word16
instance Bits Word32
instance Bits Word64
instance Bits WordPtr
instance Bits IntPtr
instance Bits CChar
instance Bits CSChar
instance Bits CUChar
instance Bits CShort
instance Bits CUShort
instance Bits CInt
instance Bits CUInt
instance Bits CLong
instance Bits CULong
instance Bits CLLong
instance Bits CULLong
instance Bits CPtrdiff
instance Bits CSize
instance Bits CWchar
instance Bits CSigAtomic
instance Bits CIntPtr
instance Bits CUIntPtr
instance Bits CIntMax
instance Bits CUIntMax

Chapter 16

Data.Char

module Data.Char (
Char, String, isControl, isSpace, isLower, isUpper, isAlpha,
isAlphaNum, isPrint, isDigit, isOctDigit, isHexDigit, isLetter,
isMark, isNumber, isPunctuation, isSymbol, isSeparator, isAscii,
isLatin1, isAsciiUpper, isAsciiLower,
GeneralCategory(UppercaseLetter,

LowercaseLetter,
TitlecaseLetter,
ModifierLetter,
OtherLetter,
NonSpacingMark,
SpacingCombiningMark,
EnclosingMark,
DecimalNumber,
LetterNumber,
OtherNumber,
ConnectorPunctuation,
DashPunctuation,
OpenPunctuation,
ClosePunctuation,
InitialQuote,
FinalQuote,
OtherPunctuation,
MathSymbol,
CurrencySymbol,
ModifierSymbol,
OtherSymbol,
Space,
LineSeparator,
ParagraphSeparator,
Control,
Format,
Surrogate,
PrivateUse,
NotAssigned),

171

172 CHAPTER 16. DATA.CHAR

generalCategory, toUpper, toLower, toTitle, digitToInt, intToDigit,
ord, chr, showLitChar, lexLitChar, readLitChar

) where

16.1 Characters and strings

data Char

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC
10646) characters (see http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 charachers), which is itself an extension of the ASCII character set
(the first 128 characters). A character literal in Haskell has type Char.

To convert a Char to or from the corresponding Int value defined by Unicode, use Prelude.toEnum
and Prelude.fromEnum from the Prelude.Enum class respectively (or equivalently ord and chr).

instance Bounded Char
instance Enum Char
instance Eq Char
instance Ord Char
instance Read Char
instance Show Char
instance Ix Char
instance Storable Char

type String = [Char]

A String is a list of characters. String constants in Haskell are values of type String.

16.2 Character classification

Unicode characters are divided into letters, numbers, marks, punctuation, symbols, separators (including
spaces) and others (including control characters).

isControl :: Char -> Bool

Selects control characters, which are the non-printing characters of the Latin-1 subset of Unicode.

isSpace :: Char -> Bool

Returns True for any Unicode space character, and the control characters \t, \n, \r, \f, \v.

isLower :: Char -> Bool

Selects lower-case alphabetic Unicode characters (letters).

http://www.unicode.org/

16.2. CHARACTER CLASSIFICATION 173

isUpper :: Char -> Bool

Selects upper-case or title-case alphabetic Unicode characters (letters). Title case is used by a small
number of letter ligatures like the single-character form of Lj.

isAlpha :: Char -> Bool

Selects alphabetic Unicode characters (lower-case, upper-case and title-case letters, plus letters of case-
less scripts and modifiers letters). This function is equivalent to Data.Char.isLetter.

isAlphaNum :: Char -> Bool

Selects alphabetic or numeric digit Unicode characters.

Note that numeric digits outside the ASCII range are selected by this function but not by isDigit.
Such digits may be part of identifiers but are not used by the printer and reader to represent numbers.

isPrint :: Char -> Bool

Selects printable Unicode characters (letters, numbers, marks, punctuation, symbols and spaces).

isDigit :: Char -> Bool

Selects ASCII digits, i.e. ’0’..’9’.

isOctDigit :: Char -> Bool

Selects ASCII octal digits, i.e. ’0’..’7’.

isHexDigit :: Char -> Bool

Selects ASCII hexadecimal digits, i.e. ’0’..’9’, ’a’..’f’, ’A’..’F’.

isLetter :: Char -> Bool

Selects alphabetic Unicode characters (lower-case, upper-case and title-case letters, plus letters of case-
less scripts and modifiers letters). This function is equivalent to Data.Char.isAlpha.

isMark :: Char -> Bool

Selects Unicode mark characters, e.g. accents and the like, which combine with preceding letters.

isNumber :: Char -> Bool

Selects Unicode numeric characters, including digits from various scripts, Roman numerals, etc.

isPunctuation :: Char -> Bool

Selects Unicode punctuation characters, including various kinds of connectors, brackets and quotes.

isSymbol :: Char -> Bool

Selects Unicode symbol characters, including mathematical and currency symbols.

isSeparator :: Char -> Bool

Selects Unicode space and separator characters.

174 CHAPTER 16. DATA.CHAR

16.2.1 Subranges

isAscii :: Char -> Bool

Selects the first 128 characters of the Unicode character set, corresponding to the ASCII character set.

isLatin1 :: Char -> Bool

Selects the first 256 characters of the Unicode character set, corresponding to the ISO 8859-1 (Latin-1)
character set.

isAsciiUpper :: Char -> Bool

Selects ASCII upper-case letters, i.e. characters satisfying both isAscii and isUpper.

isAsciiLower :: Char -> Bool

Selects ASCII lower-case letters, i.e. characters satisfying both isAscii and isLower.

16.2.2 Unicode general categories

data GeneralCategory

= UppercaseLetter Lu: Letter, Uppercase
| LowercaseLetter Ll: Letter, Lowercase
| TitlecaseLetter Lt: Letter, Titlecase
| ModifierLetter Lm: Letter, Modifier
| OtherLetter Lo: Letter, Other
| NonSpacingMark Mn: Mark, Non-Spacing
| SpacingCombiningMark Mc: Mark, Spacing Combining
| EnclosingMark Me: Mark, Enclosing
| DecimalNumber Nd: Number, Decimal
| LetterNumber Nl: Number, Letter
| OtherNumber No: Number, Other
| ConnectorPunctuation Pc: Punctuation, Connector
| DashPunctuation Pd: Punctuation, Dash
| OpenPunctuation Ps: Punctuation, Open
| ClosePunctuation Pe: Punctuation, Close
| InitialQuote Pi: Punctuation, Initial quote
| FinalQuote Pf: Punctuation, Final quote
| OtherPunctuation Po: Punctuation, Other
| MathSymbol Sm: Symbol, Math
| CurrencySymbol Sc: Symbol, Currency
| ModifierSymbol Sk: Symbol, Modifier
| OtherSymbol So: Symbol, Other
| Space Zs: Separator, Space
| LineSeparator Zl: Separator, Line
| ParagraphSeparator Zp: Separator, Paragraph
| Control Cc: Other, Control
| Format Cf: Other, Format
| Surrogate Cs: Other, Surrogate
| PrivateUse Co: Other, Private Use
| NotAssigned Cn: Other, Not Assigned

16.3. CASE CONVERSION 175

Unicode General Categories (column 2 of the UnicodeData table) in the order they are listed in the
Unicode standard.

instance Bounded GeneralCategory
instance Enum GeneralCategory
instance Eq GeneralCategory
instance Ord GeneralCategory
instance Read GeneralCategory
instance Show GeneralCategory
instance Ix GeneralCategory

generalCategory :: Char -> GeneralCategory

The Unicode general category of the character.

16.3 Case conversion

toUpper :: Char -> Char

Convert a letter to the corresponding upper-case letter, if any. Any other character is returned un-
changed.

toLower :: Char -> Char

Convert a letter to the corresponding lower-case letter, if any. Any other character is returned un-
changed.

toTitle :: Char -> Char

Convert a letter to the corresponding title-case or upper-case letter, if any. (Title case differs from upper
case only for a small number of ligature letters.) Any other character is returned unchanged.

16.4 Single digit characters

digitToInt :: Char -> Int

Convert a single digit Char to the corresponding Int. This function fails unless its argument satisfies
isHexDigit, but recognises both upper and lower-case hexadecimal digits (i.e. ’0’..’9’, ’a’..’f’,
’A’..’F’).

intToDigit :: Int -> Char

Convert an Int in the range 0..15 to the corresponding single digit Char. This function fails on other
inputs, and generates lower-case hexadecimal digits.

176 CHAPTER 16. DATA.CHAR

16.5 Numeric representations

ord :: Char -> Int

The Prelude.fromEnum method restricted to the type Data.Char.Char.

chr :: Int -> Char

The Prelude.toEnum method restricted to the type Data.Char.Char.

16.6 String representations

showLitChar :: Char -> ShowS

Convert a character to a string using only printable characters, using Haskell source-language escape
conventions. For example:

showLitChar ’\n’ s = "\\n" ++ s

lexLitChar :: ReadS String

Read a string representation of a character, using Haskell source-language escape conventions. For
example:

lexLitChar "\\nHello" = [("\\n", "Hello")]

readLitChar :: ReadS Char

Read a string representation of a character, using Haskell source-language escape conventions, and
convert it to the character that it encodes. For example:

readLitChar "\\nHello" = [(’\n’, "Hello")]

Chapter 17

Data.Complex

module Data.Complex (
Complex(:+), realPart, imagPart, mkPolar, cis, polar, magnitude,
phase, conjugate

) where

17.1 Rectangular form

data RealFloat a => Complex a

= !a :+ !a forms a complex number from its real and imaginary rectangular components.

Complex numbers are an algebraic type.

For a complex number z, abs z is a number with the magnitude of z, but oriented in the positive real
direction, whereas signum z has the phase of z, but unit magnitude.

instance RealFloat a => Eq (Complex a)
instance RealFloat a => Floating (Complex a)
instance RealFloat a => Fractional (Complex a)
instance RealFloat a => Num (Complex a)
instance (Read a, RealFloat a) => Read (Complex a)
instance RealFloat a => Show (Complex a)

realPart :: RealFloat a => Complex a -> a

Extracts the real part of a complex number.

imagPart :: RealFloat a => Complex a -> a

Extracts the imaginary part of a complex number.

177

178 CHAPTER 17. DATA.COMPLEX

17.2 Polar form

mkPolar :: RealFloat a => a -> a -> Complex a

Form a complex number from polar components of magnitude and phase.

cis :: RealFloat a => a -> Complex a

cis t is a complex value with magnitude 1 and phase t (modulo 2*pi).

polar :: RealFloat a => Complex a -> (a, a)

The function polar takes a complex number and returns a (magnitude, phase) pair in canonical form:
the magnitude is nonnegative, and the phase in the range (-pi, pi]; if the magnitude is zero, then so
is the phase.

magnitude :: RealFloat a => Complex a -> a

The nonnegative magnitude of a complex number.

phase :: RealFloat a => Complex a -> a

The phase of a complex number, in the range (-pi, pi]. If the magnitude is zero, then so is the
phase.

17.3 Conjugate

conjugate :: RealFloat a => Complex a -> Complex a

The conjugate of a complex number.

17.4 Specification

module Data.Complex(Complex((:+)), realPart, imagPart, conjugate, mkPolar,
cis, polar, magnitude, phase) where

infix 6 :+

data (RealFloat a) => Complex a = !a :+ !a deriving (Eq,Read,Show)

realPart, imagPart :: (RealFloat a) => Complex a -> a
realPart (x:+y) = x
imagPart (x:+y) = y

conjugate :: (RealFloat a) => Complex a -> Complex a
conjugate (x:+y) = x :+ (-y)

mkPolar :: (RealFloat a) => a -> a -> Complex a
mkPolar r theta = r * cos theta :+ r * sin theta

17.4. SPECIFICATION 179

cis :: (RealFloat a) => a -> Complex a
cis theta = cos theta :+ sin theta

polar :: (RealFloat a) => Complex a -> (a,a)
polar z = (magnitude z, phase z)

magnitude :: (RealFloat a) => Complex a -> a
magnitude (x:+y) = scaleFloat k

(sqrt ((scaleFloat mk x)ˆ2 + (scaleFloat mk y)ˆ2))
where k = max (exponent x) (exponent y)

mk = - k

phase :: (RealFloat a) => Complex a -> a
phase (0 :+ 0) = 0
phase (x :+ y) = atan2 y x

instance (RealFloat a) => Num (Complex a) where
(x:+y) + (x’:+y’) = (x+x’) :+ (y+y’)
(x:+y) - (x’:+y’) = (x-x’) :+ (y-y’)
(x:+y) * (x’:+y’) = (x*x’-y*y’) :+ (x*y’+y*x’)
negate (x:+y) = negate x :+ negate y
abs z = magnitude z :+ 0
signum 0 = 0
signum z@(x:+y) = x/r :+ y/r where r = magnitude z
fromInteger n = fromInteger n :+ 0

instance (RealFloat a) => Fractional (Complex a) where
(x:+y) / (x’:+y’) = (x*x’’+y*y’’) / d :+ (y*x’’-x*y’’) / d

where x’’ = scaleFloat k x’
y’’ = scaleFloat k y’
k = - max (exponent x’) (exponent y’)
d = x’*x’’ + y’*y’’

fromRational a = fromRational a :+ 0

instance (RealFloat a) => Floating (Complex a) where
pi = pi :+ 0
exp (x:+y) = expx * cos y :+ expx * sin y

where expx = exp x
log z = log (magnitude z) :+ phase z

sqrt 0 = 0
sqrt z@(x:+y) = u :+ (if y < 0 then -v else v)

where (u,v) = if x < 0 then (v’,u’) else (u’,v’)
v’ = abs y / (u’*2)
u’ = sqrt ((magnitude z + abs x) / 2)

sin (x:+y) = sin x * cosh y :+ cos x * sinh y
cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y)
tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))

where sinx = sin x
cosx = cos x
sinhy = sinh y

180 CHAPTER 17. DATA.COMPLEX

coshy = cosh y

sinh (x:+y) = cos y * sinh x :+ sin y * cosh x
cosh (x:+y) = cos y * cosh x :+ sin y * sinh x
tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)

where siny = sin y
cosy = cos y
sinhx = sinh x
coshx = cosh x

asin z@(x:+y) = y’:+(-x’)
where (x’:+y’) = log (((-y):+x) + sqrt (1 - z*z))

acos z@(x:+y) = y’’:+(-x’’)
where (x’’:+y’’) = log (z + ((-y’):+x’))

(x’:+y’) = sqrt (1 - z*z)
atan z@(x:+y) = y’:+(-x’)

where (x’:+y’) = log (((1-y):+x) / sqrt (1+z*z))

asinh z = log (z + sqrt (1+z*z))
acosh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))
atanh z = log ((1+z) / sqrt (1-z*z))

Chapter 18

Data.Int

module Data.Int (
Int, Int8, Int16, Int32, Int64

) where

18.1 Signed integer types

This module provides signed integer types of unspecified width (Int) and fixed widths (Int8, Int16, Int32
and Int64). All arithmetic is performed modulo 2ˆn, where n is the number of bits in the type.

For coercing between any two integer types, use fromIntegral. Coercing word types (see Data.Word) to
and from integer types preserves representation, not sign.

The rules that hold for Enum instances over a bounded type such as Int (see the section of the Haskell
language report dealing with arithmetic sequences) also hold for the Enum instances over the various Int
types defined here.

Right and left shifts by amounts greater than or equal to the width of the type result in either zero or -1,
depending on the sign of the value being shifted. This is contrary to the behaviour in C, which is undefined;
a common interpretation is to truncate the shift count to the width of the type, for example 1 << 32 == 1

in some C implementations.

data Int

A fixed-precision integer type with at least the range [-2ˆ29 .. 2ˆ29-1]. The exact range for
a given implementation can be determined by using Prelude.minBound and Prelude.maxBound

from the Prelude.Bounded class.

181

182 CHAPTER 18. DATA.INT

instance Bounded Int
instance Enum Int
instance Eq Int
instance Integral Int
instance Num Int
instance Ord Int
instance Read Int
instance Real Int
instance Show Int
instance Ix Int
instance Storable Int
instance Bits Int

data Int8

8-bit signed integer type

instance Bounded Int8
instance Enum Int8
instance Eq Int8
instance Integral Int8
instance Num Int8
instance Ord Int8
instance Read Int8
instance Real Int8
instance Show Int8
instance Ix Int8
instance Storable Int8
instance Bits Int8

data Int16

16-bit signed integer type

instance Bounded Int16
instance Enum Int16
instance Eq Int16
instance Integral Int16
instance Num Int16
instance Ord Int16
instance Read Int16
instance Real Int16
instance Show Int16
instance Ix Int16
instance Storable Int16
instance Bits Int16

data Int32

32-bit signed integer type

18.1. SIGNED INTEGER TYPES 183

instance Bounded Int32
instance Enum Int32
instance Eq Int32
instance Integral Int32
instance Num Int32
instance Ord Int32
instance Read Int32
instance Real Int32
instance Show Int32
instance Ix Int32
instance Storable Int32
instance Bits Int32

data Int64

64-bit signed integer type

instance Bounded Int64
instance Enum Int64
instance Eq Int64
instance Integral Int64
instance Num Int64
instance Ord Int64
instance Read Int64
instance Real Int64
instance Show Int64
instance Ix Int64
instance Storable Int64
instance Bits Int64

184 CHAPTER 18. DATA.INT

Chapter 19

Data.Ix

module Data.Ix (
Ix(range, index, inRange, rangeSize)

) where

19.1 The Ix class

class Ord a => Ix a where

The Ix class is used to map a contiguous subrange of values in a type onto integers. It is used primarily
for array indexing (see the array package).

The first argument (l,u) of each of these operations is a pair specifying the lower and upper bounds
of a contiguous subrange of values.

An implementation is entitled to assume the following laws about these operations:

• inRange (l,u) i == elem i (range (l,u))

• range (l,u) !! index (l,u) i == i, when inRange (l,u) i

• map (index (l,u)) (range (l,u))) == [0..rangeSize (l,u)-1]

• rangeSize (l,u) == length (range (l,u))

Minimal complete instance: range, index and inRange.

Methods

range :: (a, a) -> [a]

The list of values in the subrange defined by a bounding pair.

185

186 CHAPTER 19. DATA.IX

index :: (a, a) -> a -> Int

The position of a subscript in the subrange.

inRange :: (a, a) -> a -> Bool

Returns True the given subscript lies in the range defined the bounding pair.

rangeSize :: (a, a) -> Int

The size of the subrange defined by a bounding pair.

instance Ix Bool
instance Ix Char
instance Ix Int
instance Ix Int8
instance Ix Int16
instance Ix Int32
instance Ix Int64
instance Ix Integer
instance Ix Ordering
instance Ix Word
instance Ix Word8
instance Ix Word16
instance Ix Word32
instance Ix Word64
instance Ix ()
instance Ix GeneralCategory
instance Ix SeekMode
instance Ix IOMode
instance (Ix a, Ix b) => Ix (a, b)
instance (Ix a1, Ix a2, Ix a3) => Ix (a1, a2, a3)
instance (Ix a1, Ix a2, Ix a3, Ix a4) => Ix (a1, a2, a3, a4)
instance (Ix a1, Ix a2, Ix a3, Ix a4, Ix a5) => Ix (a1, a2, a3, a4, a5)

19.2 Deriving Instances of Ix

It is possible to derive an instance of Ix automatically, using a deriving clause on a data declaration.
Such derived instance declarations for the class Ix are only possible for enumerations (i.e. datatypes having
only nullary constructors) and single-constructor datatypes, whose constituent types are instances of Ix. A
Haskell implementation must provide Ix instances for tuples up to at least size 15.

For an enumeration, the nullary constructors are assumed to be numbered left-to-right with the indices being
0 to n-1 inclusive. This is the same numbering defined by the Enum class. For example, given the datatype:

data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

we would have:

range (Yellow,Blue) == [Yellow,Green,Blue]
index (Yellow,Blue) Green == 1
inRange (Yellow,Blue) Red == False

19.2. DERIVING INSTANCES OF IX 187

For single-constructor datatypes, the derived instance declarations are as shown for tuples:

instance (Ix a, Ix b) => Ix (a,b) where
range ((l,l’),(u,u’))

= [(i,i’) | i <- range (l,u), i’ <- range (l’,u’)]
index ((l,l’),(u,u’)) (i,i’)

= index (l,u) i * rangeSize (l’,u’) + index (l’,u’) i’
inRange ((l,l’),(u,u’)) (i,i’)

= inRange (l,u) i && inRange (l’,u’) i’

-- Instances for other tuples are obtained from this scheme:
--
-- instance (Ix a1, Ix a2, ... , Ix ak) => Ix (a1,a2,...,ak) where
-- range ((l1,l2,...,lk),(u1,u2,...,uk)) =
-- [(i1,i2,...,ik) | i1 <- range (l1,u1),
-- i2 <- range (l2,u2),
-- ...
-- ik <- range (lk,uk)]
--
-- index ((l1,l2,...,lk),(u1,u2,...,uk)) (i1,i2,...,ik) =
-- index (lk,uk) ik + rangeSize (lk,uk) * (
-- index (lk-1,uk-1) ik-1 + rangeSize (lk-1,uk-1) * (
-- ...
-- index (l1,u1)))
--
-- inRange ((l1,l2,...lk),(u1,u2,...,uk)) (i1,i2,...,ik) =
-- inRange (l1,u1) i1 && inRange (l2,u2) i2 &&
-- ... && inRange (lk,uk) ik

188 CHAPTER 19. DATA.IX

Chapter 20

Data.List

module Data.List (
(++), head, last, tail, init, null, length, map, reverse,
intersperse, intercalate, transpose, subsequences, permutations,
foldl, foldl’, foldl1, foldl1’, foldr, foldr1, concat, concatMap,
and, or, any, all, sum, product, maximum, minimum, scanl, scanl1,
scanr, scanr1, mapAccumL, mapAccumR, iterate, repeat, replicate,
cycle, unfoldr, take, drop, splitAt, takeWhile, dropWhile, span,
break, stripPrefix, group, inits, tails, isPrefixOf, isSuffixOf,
isInfixOf, elem, notElem, lookup, find, filter, partition, (!!),
elemIndex, elemIndices, findIndex, findIndices, zip, zip3, zip4,
zip5, zip6, zip7, zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
zipWith7, unzip, unzip3, unzip4, unzip5, unzip6, unzip7, lines,
words, unlines, unwords, nub, delete, (\\), union, intersect, sort,
insert, nubBy, deleteBy, deleteFirstsBy, unionBy, intersectBy,
groupBy, sortBy, insertBy, maximumBy, minimumBy, genericLength,
genericTake, genericDrop, genericSplitAt, genericIndex, genericReplicate

) where

20.1 Basic functions

(++) :: [a] -> [a] -> [a]

Append two lists, i.e.,

[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

189

190 CHAPTER 20. DATA.LIST

head :: [a] -> a

Extract the first element of a list, which must be non-empty.

last :: [a] -> a

Extract the last element of a list, which must be finite and non-empty.

tail :: [a] -> [a]

Extract the elements after the head of a list, which must be non-empty.

init :: [a] -> [a]

Return all the elements of a list except the last one. The list must be non-empty.

null :: [a] -> Bool

Test whether a list is empty.

length :: [a] -> Int

O(n). length returns the length of a finite list as an Int. It is an instance of the more general
Data.List.genericLength, the result type of which may be any kind of number.

20.2 List transformations

map :: (a -> b) -> [a] -> [b]

map f xs is the list obtained by applying f to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
map f [x1, x2, ...] == [f x1, f x2, ...]

reverse :: [a] -> [a]

reverse xs returns the elements of xs in reverse order. xs must be finite.

intersperse :: a -> [a] -> [a]

The intersperse function takes an element and a list and ‘intersperses’ that element between the
elements of the list. For example,

intersperse ’,’ "abcde" == "a,b,c,d,e"

intercalate :: [a] -> [[a]] -> [a]

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the list xs in
between the lists in xss and concatenates the result.

transpose :: [[a]] -> [[a]]

The transpose function transposes the rows and columns of its argument. For example,

20.3. REDUCING LISTS (FOLDS) 191

transpose [[1,2,3],[4,5,6]] == [[1,4],[2,5],[3,6]]

subsequences :: [a] -> [[a]]

The subsequences function returns the list of all subsequences of the argument.

subsequences "abc" == ["","a","b","ab","c","ac","bc","abc"]

permutations :: [a] -> [[a]]

The permutations function returns the list of all permutations of the argument.

permutations "abc" == ["abc","bac","cba","bca","cab","acb"]

20.3 Reducing lists (folds)

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a
list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] == (...((z ‘f‘ x1) ‘f‘ x2) ‘f‘...) ‘f‘ xn

The list must be finite.

foldl’ :: (a -> b -> a) -> a -> [b] -> a

A strict version of foldl.

foldl1 :: (a -> a -> a) -> [a] -> a

foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-
empty lists.

foldl1’ :: (a -> a -> a) -> [a] -> a

A strict version of foldl1

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr, applied to a binary operator, a starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] == x1 ‘f‘ (x2 ‘f‘ ... (xn ‘f‘ z)...)

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 is a variant of foldr that has no starting value argument, and thus must be applied to non-
empty lists.

192 CHAPTER 20. DATA.LIST

20.3.1 Special folds

concat :: [[a]] -> [a]

Concatenate a list of lists.

concatMap :: (a -> [b]) -> [a] -> [b]

Map a function over a list and concatenate the results.

and :: [Bool] -> Bool

and returns the conjunction of a Boolean list. For the result to be True, the list must be finite; False,
however, results from a False value at a finite index of a finite or infinite list.

or :: [Bool] -> Bool

or returns the disjunction of a Boolean list. For the result to be False, the list must be finite; True,
however, results from a True value at a finite index of a finite or infinite list.

any :: (a -> Bool) -> [a] -> Bool

Applied to a predicate and a list, any determines if any element of the list satisfies the predicate. For the
result to be False, the list must be finite; True, however, results from a True value for the predicate
applied to an element at a finite index of a finite or infinite list.

all :: (a -> Bool) -> [a] -> Bool

Applied to a predicate and a list, all determines if all elements of the list satisfy the predicate. For the
result to be True, the list must be finite; False, however, results from a False value for the predicate
applied to an element at a finite index of a finite or infinite list.

sum :: Num a => [a] -> a

The sum function computes the sum of a finite list of numbers.

product :: Num a => [a] -> a

The product function computes the product of a finite list of numbers.

maximum :: Ord a => [a] -> a

maximum returns the maximum value from a list, which must be non-empty, finite, and of an ordered
type. It is a special case of maximumBy, which allows the programmer to supply their own comparison
function.

minimum :: Ord a => [a] -> a

minimum returns the minimum value from a list, which must be non-empty, finite, and of an ordered
type. It is a special case of minimumBy, which allows the programmer to supply their own comparison
function.

20.4. BUILDING LISTS 193

20.4 Building lists

20.4.1 Scans

scanl :: (a -> b -> a) -> a -> [b] -> [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:

scanl f z [x1, x2, ...] == [z, z ‘f‘ x1, (z ‘f‘ x1) ‘f‘ x2, ...]

Note that

last (scanl f z xs) == foldl f z xs.

scanl1 :: (a -> a -> a) -> [a] -> [a]

scanl1 is a variant of scanl that has no starting value argument:

scanl1 f [x1, x2, ...] == [x1, x1 ‘f‘ x2, ...]

scanr :: (a -> b -> b) -> b -> [a] -> [b]

scanr is the right-to-left dual of scanl. Note that

head (scanr f z xs) == foldr f z xs.

scanr1 :: (a -> a -> a) -> [a] -> [a]

scanr1 is a variant of scanr that has no starting value argument.

20.4.2 Accumulating maps

mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])

The mapAccumL function behaves like a combination of map and foldl; it applies a function to each
element of a list, passing an accumulating parameter from left to right, and returning a final value of
this accumulator together with the new list.

mapAccumR :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])

The mapAccumR function behaves like a combination of map and foldr; it applies a function to each
element of a list, passing an accumulating parameter from right to left, and returning a final value of
this accumulator together with the new list.

20.4.3 Infinite lists

iterate :: (a -> a) -> a -> [a]

iterate f x returns an infinite list of repeated applications of f to x:

iterate f x == [x, f x, f (f x), ...]

194 CHAPTER 20. DATA.LIST

repeat :: a -> [a]

repeat x is an infinite list, with x the value of every element.

replicate :: Int -> a -> [a]

replicate n x is a list of length n with x the value of every element. It is an instance of the more
general Data.List.genericReplicate, in which n may be of any integral type.

cycle :: [a] -> [a]

cycle ties a finite list into a circular one, or equivalently, the infinite repetition of the original list. It is
the identity on infinite lists.

20.4.4 Unfolding

unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

The unfoldr function is a ‘dual’ to foldr: while foldr reduces a list to a summary value, unfoldr
builds a list from a seed value. The function takes the element and returns Nothing if it is done
producing the list or returns Just (a,b), in which case, a is a prepended to the list and b is used as
the next element in a recursive call. For example,

iterate f == unfoldr (\x -> Just (x, f x))

In some cases, unfoldr can undo a foldr operation:

unfoldr f’ (foldr f z xs) == xs

if the following holds:

f’ (f x y) = Just (x,y)
f’ z = Nothing

A simple use of unfoldr:

unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
[10,9,8,7,6,5,4,3,2,1]

20.5 Sublists

20.5.1 Extracting sublists

take :: Int -> [a] -> [a]

take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if n > length xs:

take 5 "Hello World!" == "Hello"
take 3 [1,2,3,4,5] == [1,2,3]
take 3 [1,2] == [1,2]
take 3 [] == []
take (-1) [1,2] == []
take 0 [1,2] == []

20.5. SUBLISTS 195

It is an instance of the more general Data.List.genericTake, in which n may be of any integral
type.

drop :: Int -> [a] -> [a]

drop n xs returns the suffix of xs after the first n elements, or [] if n > length xs:

drop 6 "Hello World!" == "World!"
drop 3 [1,2,3,4,5] == [4,5]
drop 3 [1,2] == []
drop 3 [] == []
drop (-1) [1,2] == [1,2]
drop 0 [1,2] == [1,2]

It is an instance of the more general Data.List.genericDrop, in which n may be of any integral
type.

splitAt :: Int -> [a] -> ([a], [a])

splitAt n xs returns a tuple where first element is xs prefix of length n and second element is the
remainder of the list:

splitAt 6 "Hello World!" == ("Hello ","World!")
splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5])
splitAt 1 [1,2,3] == ([1],[2,3])
splitAt 3 [1,2,3] == ([1,2,3],[])
splitAt 4 [1,2,3] == ([1,2,3],[])
splitAt 0 [1,2,3] == ([],[1,2,3])
splitAt (-1) [1,2,3] == ([],[1,2,3])

It is equivalent to (take n xs, drop n xs). splitAt is an instance of the more general
Data.List.genericSplitAt, in which n may be of any integral type.

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of
elements that satisfy p:

takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
takeWhile (< 9) [1,2,3] == [1,2,3]
takeWhile (< 0) [1,2,3] == []

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p xs returns the suffix remaining after takeWhile p xs:

dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3]
dropWhile (< 9) [1,2,3] == []
dropWhile (< 0) [1,2,3] == [1,2,3]

span :: (a -> Bool) -> [a] -> ([a], [a])

span, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly
empty) of xs of elements that satisfy p and second element is the remainder of the list:

196 CHAPTER 20. DATA.LIST

span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4])
span (< 9) [1,2,3] == ([1,2,3],[])
span (< 0) [1,2,3] == ([],[1,2,3])

span p xs is equivalent to (takeWhile p xs, dropWhile p xs)

break :: (a -> Bool) -> [a] -> ([a], [a])

break, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix
(possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list:

break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4])
break (< 9) [1,2,3] == ([],[1,2,3])
break (> 9) [1,2,3] == ([1,2,3],[])

break p is equivalent to span (not . p).

stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]

The stripPrefix function drops the given prefix from a list. It returns Nothing if the list did not
start with the prefix given, or Just the list after the prefix, if it does.

stripPrefix "foo" "foobar" == Just "bar"
stripPrefix "foo" "foo" == Just ""
stripPrefix "foo" "barfoo" == Nothing
stripPrefix "foo" "barfoobaz" == Nothing

group :: Eq a => [a] -> [[a]]

The group function takes a list and returns a list of lists such that the concatenation of the result is
equal to the argument. Moreover, each sublist in the result contains only equal elements. For example,

group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"]

It is a special case of groupBy, which allows the programmer to supply their own equality test.

inits :: [a] -> [[a]]

The inits function returns all initial segments of the argument, shortest first. For example,

inits "abc" == ["","a","ab","abc"]

tails :: [a] -> [[a]]

The tails function returns all final segments of the argument, longest first. For example,

tails "abc" == ["abc", "bc", "c",""]

20.6. SEARCHING LISTS 197

20.5.2 Predicates

isPrefixOf :: Eq a => [a] -> [a] -> Bool

The isPrefixOf function takes two lists and returns True iff the first list is a prefix of the second.

isSuffixOf :: Eq a => [a] -> [a] -> Bool

The isSuffixOf function takes two lists and returns True iff the first list is a suffix of the second.
Both lists must be finite.

isInfixOf :: Eq a => [a] -> [a] -> Bool

The isInfixOf function takes two lists and returns True iff the first list is contained, wholly and
intact, anywhere within the second.

Example:

isInfixOf "Haskell" "I really like Haskell." == True
isInfixOf "Ial" "I really like Haskell." == False

20.6 Searching lists

20.6.1 Searching by equality

elem :: Eq a => a -> [a] -> Bool

elem is the list membership predicate, usually written in infix form, e.g., x ‘elem‘ xs. For the result
to be False, the list must be finite; True, however, results from an element equal to x found at a finite
index of a finite or infinite list.

notElem :: Eq a => a -> [a] -> Bool

notElem is the negation of elem.

lookup :: Eq a => a -> [(a, b)] -> Maybe b

lookup key assocs looks up a key in an association list.

20.6.2 Searching with a predicate

find :: (a -> Bool) -> [a] -> Maybe a

The find function takes a predicate and a list and returns the first element in the list matching the
predicate, or Nothing if there is no such element.

filter :: (a -> Bool) -> [a] -> [a]

filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate;
i.e.,

198 CHAPTER 20. DATA.LIST

filter p xs = [x | x <- xs, p x]

partition :: (a -> Bool) -> [a] -> ([a], [a])

The partition function takes a predicate a list and returns the pair of lists of elements which do and
do not satisfy the predicate, respectively; i.e.,

partition p xs == (filter p xs, filter (not . p) xs)

20.7 Indexing lists

These functions treat a list xs as a indexed collection, with indices ranging from 0 to length xs - 1.

(!!) :: [a] -> Int -> a

List index (subscript) operator, starting from 0. It is an instance of the more general
Data.List.genericIndex, which takes an index of any integral type.

elemIndex :: Eq a => a -> [a] -> Maybe Int

The elemIndex function returns the index of the first element in the given list which is equal (by ==)
to the query element, or Nothing if there is no such element.

elemIndices :: Eq a => a -> [a] -> [Int]

The elemIndices function extends elemIndex, by returning the indices of all elements equal to the
query element, in ascending order.

findIndex :: (a -> Bool) -> [a] -> Maybe Int

The findIndex function takes a predicate and a list and returns the index of the first element in the
list satisfying the predicate, or Nothing if there is no such element.

findIndices :: (a -> Bool) -> [a] -> [Int]

The findIndices function extends findIndex, by returning the indices of all elements satisfying
the predicate, in ascending order.

20.8 Zipping and unzipping lists

zip :: [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs. If one input list is short, excess elements
of the longer list are discarded.

zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]

zip3 takes three lists and returns a list of triples, analogous to zip.

20.8. ZIPPING AND UNZIPPING LISTS 199

zip4 :: [a] -> [b] -> [c] -> [d] -> [(a, b, c, d)]

The zip4 function takes four lists and returns a list of quadruples, analogous to zip.

zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a, b, c, d, e)]

The zip5 function takes five lists and returns a list of five-tuples, analogous to zip.

zip6 :: [a]
-> [b] -> [c] -> [d] -> [e] -> [f] -> [(a, b, c, d, e, f)]

The zip6 function takes six lists and returns a list of six-tuples, analogous to zip.

zip7 :: [a]
-> [b]

-> [c] -> [d] -> [e] -> [f] -> [g] -> [(a, b, c, d, e, f, g)]

The zip7 function takes seven lists and returns a list of seven-tuples, analogous to zip.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling
function. For example, zipWith (+) is applied to two lists to produce the list of corresponding sums.

zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]

The zipWith3 function takes a function which combines three elements, as well as three lists and
returns a list of their point-wise combination, analogous to zipWith.

zipWith4 :: (a -> b -> c -> d -> e)
-> [a] -> [b] -> [c] -> [d] -> [e]

The zipWith4 function takes a function which combines four elements, as well as four lists and returns
a list of their point-wise combination, analogous to zipWith.

zipWith5 :: (a -> b -> c -> d -> e -> f)
-> [a] -> [b] -> [c] -> [d] -> [e] -> [f]

The zipWith5 function takes a function which combines five elements, as well as five lists and returns
a list of their point-wise combination, analogous to zipWith.

zipWith6 :: (a -> b -> c -> d -> e -> f -> g)
-> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g]

The zipWith6 function takes a function which combines six elements, as well as six lists and returns
a list of their point-wise combination, analogous to zipWith.

zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h)
-> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [h]

The zipWith7 function takes a function which combines seven elements, as well as seven lists and
returns a list of their point-wise combination, analogous to zipWith.

200 CHAPTER 20. DATA.LIST

unzip :: [(a, b)] -> ([a], [b])

unzip transforms a list of pairs into a list of first components and a list of second components.

unzip3 :: [(a, b, c)] -> ([a], [b], [c])

The unzip3 function takes a list of triples and returns three lists, analogous to unzip.

unzip4 :: [(a, b, c, d)] -> ([a], [b], [c], [d])

The unzip4 function takes a list of quadruples and returns four lists, analogous to unzip.

unzip5 :: [(a, b, c, d, e)] -> ([a], [b], [c], [d], [e])

The unzip5 function takes a list of five-tuples and returns five lists, analogous to unzip.

unzip6 :: [(a, b, c, d, e, f)] -> ([a], [b], [c], [d], [e], [f])

The unzip6 function takes a list of six-tuples and returns six lists, analogous to unzip.

unzip7 :: [(a, b, c, d, e, f, g)]
-> ([a], [b], [c], [d], [e], [f], [g])

The unzip7 function takes a list of seven-tuples and returns seven lists, analogous to unzip.

20.9 Special lists

20.9.1 Functions on strings

lines :: String -> [String]

lines breaks a string up into a list of strings at newline characters. The resulting strings do not contain
newlines.

words :: String -> [String]

words breaks a string up into a list of words, which were delimited by white space.

unlines :: [String] -> String

unlines is an inverse operation to lines. It joins lines, after appending a terminating newline to
each.

unwords :: [String] -> String

unwords is an inverse operation to words. It joins words with separating spaces.

20.9. SPECIAL LISTS 201

20.9.2 ”Set” operations

nub :: Eq a => [a] -> [a]

O(nˆ2). The nub function removes duplicate elements from a list. In particular, it keeps only the first
occurrence of each element. (The name nub means ‘essence’.) It is a special case of nubBy, which
allows the programmer to supply their own equality test.

delete :: Eq a => a -> [a] -> [a]

delete x removes the first occurrence of x from its list argument. For example,

delete ’a’ "banana" == "bnana"

It is a special case of deleteBy, which allows the programmer to supply their own equality test.

(\\) :: Eq a => [a] -> [a] -> [a]

The \\ function is list difference ((non-associative). In the result of xs \\ ys, the first occurrence of
each element of ys in turn (if any) has been removed from xs. Thus

(xs ++ ys) \\ xs == ys.

It is a special case of deleteFirstsBy, which allows the programmer to supply their own equality
test.

union :: Eq a => [a] -> [a] -> [a]

The union function returns the list union of the two lists. For example,

"dog" ‘union‘ "cow" == "dogcw"

Duplicates, and elements of the first list, are removed from the the second list, but if the first list
contains duplicates, so will the result. It is a special case of unionBy, which allows the programmer
to supply their own equality test.

intersect :: Eq a => [a] -> [a] -> [a]

The intersect function takes the list intersection of two lists. For example,

[1,2,3,4] ‘intersect‘ [2,4,6,8] == [2,4]

If the first list contains duplicates, so will the result.

[1,2,2,3,4] ‘intersect‘ [6,4,4,2] == [2,2,4]

It is a special case of intersectBy, which allows the programmer to supply their own equality test.

202 CHAPTER 20. DATA.LIST

20.9.3 Ordered lists

sort :: Ord a => [a] -> [a]

The sort function implements a stable sorting algorithm. It is a special case of sortBy, which allows
the programmer to supply their own comparison function.

insert :: Ord a => a -> [a] -> [a]

The insert function takes an element and a list and inserts the element into the list at the last position
where it is still less than or equal to the next element. In particular, if the list is sorted before the call,
the result will also be sorted. It is a special case of insertBy, which allows the programmer to supply
their own comparison function.

20.10 Generalized functions

20.10.1 The ”By” operations

By convention, overloaded functions have a non-overloaded counterpart whose name is suffixed with ‘By’.

20.10.1.1 User-supplied equality (replacing an Eq context)

The predicate is assumed to define an equivalence.

nubBy :: (a -> a -> Bool) -> [a] -> [a]

The nubBy function behaves just like nub, except it uses a user-supplied equality predicate instead of
the overloaded == function.

deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]

The deleteBy function behaves like delete, but takes a user-supplied equality predicate.

deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

The deleteFirstsBy function takes a predicate and two lists and returns the first list with the first
occurrence of each element of the second list removed.

unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

The unionBy function is the non-overloaded version of union.

intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]

The intersectBy function is the non-overloaded version of intersect.

groupBy :: (a -> a -> Bool) -> [a] -> [[a]]

The groupBy function is the non-overloaded version of group.

20.10. GENERALIZED FUNCTIONS 203

20.10.1.2 User-supplied comparison (replacing an Ord context)

The function is assumed to define a total ordering.

sortBy :: (a -> a -> Ordering) -> [a] -> [a]

The sortBy function is the non-overloaded version of sort.

insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]

The non-overloaded version of insert.

maximumBy :: (a -> a -> Ordering) -> [a] -> a

The maximumBy function takes a comparison function and a list and returns the greatest element of the
list by the comparison function. The list must be finite and non-empty.

minimumBy :: (a -> a -> Ordering) -> [a] -> a

The minimumBy function takes a comparison function and a list and returns the least element of the
list by the comparison function. The list must be finite and non-empty.

20.10.2 The ”generic” operations

The prefix ‘generic’ indicates an overloaded function that is a generalized version of a Prelude function.

genericLength :: Num i => [b] -> i

The genericLength function is an overloaded version of length. In particular, instead of returning
an Int, it returns any type which is an instance of Num. It is, however, less efficient than length.

genericTake :: Integral i => i -> [a] -> [a]

The genericTake function is an overloaded version of take, which accepts any Integral value as
the number of elements to take.

genericDrop :: Integral i => i -> [a] -> [a]

The genericDrop function is an overloaded version of drop, which accepts any Integral value as
the number of elements to drop.

genericSplitAt :: Integral i => i -> [b] -> ([b], [b])

The genericSplitAt function is an overloaded version of splitAt, which accepts any Integral

value as the position at which to split.

genericIndex :: Integral a => [b] -> a -> b

The genericIndex function is an overloaded version of !!, which accepts any Integral value as
the index.

204 CHAPTER 20. DATA.LIST

genericReplicate :: Integral i => i -> a -> [a]

The genericReplicate function is an overloaded version of replicate, which accepts any
Integral value as the number of repetitions to make.

Chapter 21

Data.Maybe

module Data.Maybe (
Maybe(Nothing, Just), maybe, isJust, isNothing, fromJust, fromMaybe,
listToMaybe, maybeToList, catMaybes, mapMaybe

) where

21.1 The Maybe type and operations

data Maybe a

= Nothing
| Just a

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of
type a (represented as Just a), or it is empty (represented as Nothing). Using Maybe is a good way
to deal with errors or exceptional cases without resorting to drastic measures such as error.

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented
by Nothing. A richer error monad can be built using the Data.Either.Either type.

instance Monad Maybe
instance Functor Maybe
instance MonadPlus Maybe
instance Eq a => Eq (Maybe a)
instance Ord a => Ord (Maybe a)
instance Read a => Read (Maybe a)
instance Show a => Show (Maybe a)

maybe :: b -> (a -> b) -> Maybe a -> b

The maybe function takes a default value, a function, and a Maybe value. If the Maybe value is
Nothing, the function returns the default value. Otherwise, it applies the function to the value inside
the Just and returns the result.

205

206 CHAPTER 21. DATA.MAYBE

isJust :: Maybe a -> Bool

The isJust function returns True iff its argument is of the form Just _.

isNothing :: Maybe a -> Bool

The isNothing function returns True iff its argument is Nothing.

fromJust :: Maybe a -> a

The fromJust function extracts the element out of a Just and throws an error if its argument is
Nothing.

fromMaybe :: a -> Maybe a -> a

The fromMaybe function takes a default value and and Maybe value. If the Maybe is Nothing, it
returns the default values; otherwise, it returns the value contained in the Maybe.

listToMaybe :: [a] -> Maybe a

The listToMaybe function returns Nothing on an empty list or Just a where a is the first element
of the list.

maybeToList :: Maybe a -> [a]

The maybeToList function returns an empty list when given Nothing or a singleton list when not
given Nothing.

catMaybes :: [Maybe a] -> [a]

The catMaybes function takes a list of Maybes and returns a list of all the Just values.

mapMaybe :: (a -> Maybe b) -> [a] -> [b]

The mapMaybe function is a version of map which can throw out elements. In particular, the functional
argument returns something of type Maybe b. If this is Nothing, no element is added on to the result
list. If it just Just b, then b is included in the result list.

21.2 Specification

module Data.Maybe(
Maybe(Nothing, Just),
isJust, isNothing,
fromJust, fromMaybe, listToMaybe, maybeToList,
catMaybes, mapMaybe,
maybe

) where

maybe :: b -> (a -> b) -> Maybe a -> b
maybe n _ Nothing = n
maybe _ f (Just x) = f x

21.2. SPECIFICATION 207

isJust :: Maybe a -> Bool
isJust (Just a) = True
isJust Nothing = False

isNothing :: Maybe a -> Bool
isNothing = not . isJust

fromJust :: Maybe a -> a
fromJust (Just a) = a
fromJust Nothing = error "Maybe.fromJust: Nothing"

fromMaybe :: a -> Maybe a -> a
fromMaybe d Nothing = d
fromMaybe d (Just a) = a

maybeToList :: Maybe a -> [a]
maybeToList Nothing = []
maybeToList (Just a) = [a]

listToMaybe :: [a] -> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

catMaybes :: [Maybe a] -> [a]
catMaybes ms = [m | Just m <- ms]

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe f = catMaybes . map f

208 CHAPTER 21. DATA.MAYBE

Chapter 22

Data.Ratio

module Data.Ratio (
Ratio, Rational, (%), numerator, denominator, approxRational

) where

data Integral a => Ratio a

Rational numbers, with numerator and denominator of some Integral type.

instance Integral a => Enum (Ratio a)
instance Integral a => Eq (Ratio a)
instance Integral a => Fractional (Ratio a)
instance Integral a => Num (Ratio a)
instance Integral a => Ord (Ratio a)
instance (Integral a, Read a) => Read (Ratio a)
instance Integral a => Real (Ratio a)
instance Integral a => RealFrac (Ratio a)
instance Integral a => Show (Ratio a)

type Rational = Ratio Integer

Arbitrary-precision rational numbers, represented as a ratio of two Integer values. A rational number
may be constructed using the % operator.

(%) :: Integral a => a -> a -> Ratio a

Forms the ratio of two integral numbers.

numerator :: Integral a => Ratio a -> a

Extract the numerator of the ratio in reduced form: the numerator and denominator have no common
factor and the denominator is positive.

209

210 CHAPTER 22. DATA.RATIO

denominator :: Integral a => Ratio a -> a

Extract the denominator of the ratio in reduced form: the numerator and denominator have no common
factor and the denominator is positive.

approxRational :: RealFrac a => a -> a -> Rational

approxRational, applied to two real fractional numbers x and epsilon, returns the simplest rational
number within epsilon of x. A rational number y is said to be simpler than another y’ if

• abs (numerator y) <= abs (numerator y’), and

• denominator y <= denominator y’.

Any real interval contains a unique simplest rational; in particular, note that 0/1 is the simplest rational
of all.

22.1 Specification

module Data.Ratio (
Ratio, Rational, (%), numerator, denominator, approxRational) where

infixl 7 %

ratPrec = 7 :: Int

data (Integral a) => Ratio a = !a :% !a deriving (Eq)
type Rational = Ratio Integer

(%) :: (Integral a) => a -> a -> Ratio a
numerator, denominator :: (Integral a) => Ratio a -> a
approxRational :: (RealFrac a) => a -> a -> Rational

-- "reduce" is a subsidiary function used only in this module.
-- It normalises a ratio by dividing both numerator
-- and denominator by their greatest common divisor.
--
-- E.g., 12 ‘reduce‘ 8 == 3 :% 2
-- 12 ‘reduce‘ (-8) == 3 :% (-2)

reduce _ 0 = error "Data.Ratio.% : zero denominator"
reduce x y = (x ‘quot‘ d) :% (y ‘quot‘ d)

where d = gcd x y

x % y = reduce (x * signum y) (abs y)

numerator (x :% _) = x

denominator (_ :% y) = y

instance (Integral a) => Ord (Ratio a) where
(x:%y) <= (x’:%y’) = x * y’ <= x’ * y

22.1. SPECIFICATION 211

(x:%y) < (x’:%y’) = x * y’ < x’ * y

instance (Integral a) => Num (Ratio a) where
(x:%y) + (x’:%y’) = reduce (x*y’ + x’*y) (y*y’)
(x:%y) * (x’:%y’) = reduce (x * x’) (y * y’)
negate (x:%y) = (-x) :% y
abs (x:%y) = abs x :% y
signum (x:%y) = signum x :% 1
fromInteger x = fromInteger x :% 1

instance (Integral a) => Real (Ratio a) where
toRational (x:%y) = toInteger x :% toInteger y

instance (Integral a) => Fractional (Ratio a) where
(x:%y) / (x’:%y’) = (x*y’) % (y*x’)
recip (x:%y) = y % x
fromRational (x:%y) = fromInteger x :% fromInteger y

instance (Integral a) => RealFrac (Ratio a) where
properFraction (x:%y) = (fromIntegral q, r:%y)

where (q,r) = quotRem x y

instance (Integral a) => Enum (Ratio a) where
succ x = x+1
pred x = x-1
toEnum = fromIntegral
fromEnum = fromInteger . truncate -- May overflow
enumFrom = numericEnumFrom -- These numericEnumXXX functions
enumFromThen = numericEnumFromThen -- are as defined in Prelude.hs
enumFromTo = numericEnumFromTo -- but not exported from it!
enumFromThenTo = numericEnumFromThenTo

instance (Read a, Integral a) => Read (Ratio a) where
readsPrec p = readParen (p > ratPrec)

(\r -> [(x%y,u) | (x,s) <- readsPrec (ratPrec+1) r,
("%",t) <- lex s,
(y,u) <- readsPrec (ratPrec+1) t])

instance (Integral a) => Show (Ratio a) where
showsPrec p (x:%y) = showParen (p > ratPrec)

showsPrec (ratPrec+1) x .
showString " % " .
showsPrec (ratPrec+1) y)

approxRational x eps = simplest (x-eps) (x+eps)
where simplest x y | y < x = simplest y x

| x == y = xr
| x > 0 = simplest’ n d n’ d’
| y < 0 = - simplest’ (-n’) d’ (-n) d
| otherwise = 0 :% 1

where xr@(n:%d) = toRational x
(n’:%d’) = toRational y

212 CHAPTER 22. DATA.RATIO

simplest’ n d n’ d’ -- assumes 0 < n%d < n’%d’
| r == 0 = q :% 1
| q /= q’ = (q+1) :% 1
| otherwise = (q*n’’+d’’) :% n’’

where (q,r) = quotRem n d
(q’,r’) = quotRem n’ d’
(n’’:%d’’) = simplest’ d’ r’ d r

Chapter 23

Data.Word

module Data.Word (
Word, Word8, Word16, Word32, Word64

) where

23.1 Unsigned integral types

This module provides unsigned integer types of unspecified width (Word) and fixed widths (Word8, Word16,
Word32 and Word64). All arithmetic is performed modulo 2ˆn, where n is the number of bits in the type.

For coercing between any two integer types, use fromIntegral. Coercing word types to and from integer
types preserves representation, not sign.

The rules that hold for Enum instances over a bounded type such as Int (see the section of the Haskell
language report dealing with arithmetic sequences) also hold for the Enum instances over the various Word
types defined here.

Right and left shifts by amounts greater than or equal to the width of the type result in a zero result. This is
contrary to the behaviour in C, which is undefined; a common interpretation is to truncate the shift count to
the width of the type, for example 1 << 32 == 1 in some C implementations.

data Word

A Word is an unsigned integral type, with the same size as Int.

213

214 CHAPTER 23. DATA.WORD

instance Bounded Word
instance Enum Word
instance Eq Word
instance Integral Word
instance Num Word
instance Ord Word
instance Read Word
instance Real Word
instance Show Word
instance Ix Word
instance Storable Word
instance Bits Word

data Word8

8-bit unsigned integer type

instance Bounded Word8
instance Enum Word8
instance Eq Word8
instance Integral Word8
instance Num Word8
instance Ord Word8
instance Read Word8
instance Real Word8
instance Show Word8
instance Ix Word8
instance Storable Word8
instance Bits Word8

data Word16

16-bit unsigned integer type

instance Bounded Word16
instance Enum Word16
instance Eq Word16
instance Integral Word16
instance Num Word16
instance Ord Word16
instance Read Word16
instance Real Word16
instance Show Word16
instance Ix Word16
instance Storable Word16
instance Bits Word16

data Word32

32-bit unsigned integer type

23.1. UNSIGNED INTEGRAL TYPES 215

instance Bounded Word32
instance Enum Word32
instance Eq Word32
instance Integral Word32
instance Num Word32
instance Ord Word32
instance Read Word32
instance Real Word32
instance Show Word32
instance Ix Word32
instance Storable Word32
instance Bits Word32

data Word64

64-bit unsigned integer type

instance Bounded Word64
instance Enum Word64
instance Eq Word64
instance Integral Word64
instance Num Word64
instance Ord Word64
instance Read Word64
instance Real Word64
instance Show Word64
instance Ix Word64
instance Storable Word64
instance Bits Word64

216 CHAPTER 23. DATA.WORD

Chapter 24

Foreign

module Foreign (
module Data.Bits, module Data.Int, module Data.Word, module Foreign.Ptr,
module Foreign.ForeignPtr, module Foreign.StablePtr,
module Foreign.Storable, module Foreign.Marshal

) where

The module Foreign combines the interfaces of all modules providing language-independent marshalling
support, namely

module Data.Bits
module Data.Int
module Data.Word
module Foreign.Ptr
module Foreign.ForeignPtr
module Foreign.StablePtr
module Foreign.Storable
module Foreign.Marshal

217

218 CHAPTER 24. FOREIGN

Chapter 25

Foreign.C

module Foreign.C (
module Foreign.C.Types, module Foreign.C.String, module Foreign.C.Error

) where

The module Foreign.C combines the interfaces of all modules providing C-specific marshalling support,
namely

module Foreign.C.Types
module Foreign.C.String
module Foreign.C.Error

219

220 CHAPTER 25. FOREIGN.C

Chapter 26

Foreign.C.Error

module Foreign.C.Error (
Errno(Errno), eOK, e2BIG, eACCES, eADDRINUSE, eADDRNOTAVAIL, eADV,
eAFNOSUPPORT, eAGAIN, eALREADY, eBADF, eBADMSG, eBADRPC, eBUSY,
eCHILD, eCOMM, eCONNABORTED, eCONNREFUSED, eCONNRESET, eDEADLK,
eDESTADDRREQ, eDIRTY, eDOM, eDQUOT, eEXIST, eFAULT, eFBIG, eFTYPE,
eHOSTDOWN, eHOSTUNREACH, eIDRM, eILSEQ, eINPROGRESS, eINTR, eINVAL,
eIO, eISCONN, eISDIR, eLOOP, eMFILE, eMLINK, eMSGSIZE, eMULTIHOP,
eNAMETOOLONG, eNETDOWN, eNETRESET, eNETUNREACH, eNFILE, eNOBUFS,
eNODATA, eNODEV, eNOENT, eNOEXEC, eNOLCK, eNOLINK, eNOMEM, eNOMSG,
eNONET, eNOPROTOOPT, eNOSPC, eNOSR, eNOSTR, eNOSYS, eNOTBLK,
eNOTCONN, eNOTDIR, eNOTEMPTY, eNOTSOCK, eNOTTY, eNXIO, eOPNOTSUPP,
ePERM, ePFNOSUPPORT, ePIPE, ePROCLIM, ePROCUNAVAIL, ePROGMISMATCH,
ePROGUNAVAIL, ePROTO, ePROTONOSUPPORT, ePROTOTYPE, eRANGE, eREMCHG,
eREMOTE, eROFS, eRPCMISMATCH, eRREMOTE, eSHUTDOWN, eSOCKTNOSUPPORT,
eSPIPE, eSRCH, eSRMNT, eSTALE, eTIME, eTIMEDOUT, eTOOMANYREFS,
eTXTBSY, eUSERS, eWOULDBLOCK, eXDEV, isValidErrno, getErrno,
resetErrno, errnoToIOError, throwErrno, throwErrnoIf, throwErrnoIf_,
throwErrnoIfRetry, throwErrnoIfRetry_, throwErrnoIfMinus1,
throwErrnoIfMinus1_, throwErrnoIfMinus1Retry, throwErrnoIfMinus1Retry_,
throwErrnoIfNull, throwErrnoIfNullRetry, throwErrnoIfRetryMayBlock,
throwErrnoIfRetryMayBlock_, throwErrnoIfMinus1RetryMayBlock,
throwErrnoIfMinus1RetryMayBlock_, throwErrnoIfNullRetryMayBlock,
throwErrnoPath, throwErrnoPathIf, throwErrnoPathIf_,
throwErrnoPathIfNull, throwErrnoPathIfMinus1, throwErrnoPathIfMinus1_

) where

The module Foreign.C.Error facilitates C-specific error handling of errno.

26.1 Haskell representations of errno values

newtype Errno

221

222 CHAPTER 26. FOREIGN.C.ERROR

= Errno CInt

Haskell representation for errno values. The implementation is deliberately exposed, to allow users
to add their own definitions of Errno values.

instance Eq Errno

26.1.1 Common errno symbols

Different operating systems and/or C libraries often support different values of errno. This module de-
fines the common values, but due to the open definition of Errno users may add definitions which are not
predefined.

eOK :: Errno

e2BIG :: Errno

eACCES :: Errno

eADDRINUSE :: Errno

eADDRNOTAVAIL :: Errno

eADV :: Errno

eAFNOSUPPORT :: Errno

eAGAIN :: Errno

eALREADY :: Errno

eBADF :: Errno

eBADMSG :: Errno

eBADRPC :: Errno

eBUSY :: Errno

eCHILD :: Errno

eCOMM :: Errno

eCONNABORTED :: Errno

eCONNREFUSED :: Errno

eCONNRESET :: Errno

eDEADLK :: Errno

eDESTADDRREQ :: Errno

eDIRTY :: Errno

eDOM :: Errno

26.1. HASKELL REPRESENTATIONS OF ERRNO VALUES 223

eDQUOT :: Errno

eEXIST :: Errno

eFAULT :: Errno

eFBIG :: Errno

eFTYPE :: Errno

eHOSTDOWN :: Errno

eHOSTUNREACH :: Errno

eIDRM :: Errno

eILSEQ :: Errno

eINPROGRESS :: Errno

eINTR :: Errno

eINVAL :: Errno

eIO :: Errno

eISCONN :: Errno

eISDIR :: Errno

eLOOP :: Errno

eMFILE :: Errno

eMLINK :: Errno

eMSGSIZE :: Errno

eMULTIHOP :: Errno

eNAMETOOLONG :: Errno

eNETDOWN :: Errno

eNETRESET :: Errno

eNETUNREACH :: Errno

eNFILE :: Errno

eNOBUFS :: Errno

eNODATA :: Errno

eNODEV :: Errno

eNOENT :: Errno

eNOEXEC :: Errno

eNOLCK :: Errno

224 CHAPTER 26. FOREIGN.C.ERROR

eNOLINK :: Errno

eNOMEM :: Errno

eNOMSG :: Errno

eNONET :: Errno

eNOPROTOOPT :: Errno

eNOSPC :: Errno

eNOSR :: Errno

eNOSTR :: Errno

eNOSYS :: Errno

eNOTBLK :: Errno

eNOTCONN :: Errno

eNOTDIR :: Errno

eNOTEMPTY :: Errno

eNOTSOCK :: Errno

eNOTTY :: Errno

eNXIO :: Errno

eOPNOTSUPP :: Errno

ePERM :: Errno

ePFNOSUPPORT :: Errno

ePIPE :: Errno

ePROCLIM :: Errno

ePROCUNAVAIL :: Errno

ePROGMISMATCH :: Errno

ePROGUNAVAIL :: Errno

ePROTO :: Errno

ePROTONOSUPPORT :: Errno

ePROTOTYPE :: Errno

eRANGE :: Errno

eREMCHG :: Errno

eREMOTE :: Errno

eROFS :: Errno

26.1. HASKELL REPRESENTATIONS OF ERRNO VALUES 225

eRPCMISMATCH :: Errno

eRREMOTE :: Errno

eSHUTDOWN :: Errno

eSOCKTNOSUPPORT :: Errno

eSPIPE :: Errno

eSRCH :: Errno

eSRMNT :: Errno

eSTALE :: Errno

eTIME :: Errno

eTIMEDOUT :: Errno

eTOOMANYREFS :: Errno

eTXTBSY :: Errno

eUSERS :: Errno

eWOULDBLOCK :: Errno

eXDEV :: Errno

26.1.2 Errno functions

isValidErrno :: Errno -> Bool

Yield True if the given Errno value is valid on the system. This implies that the Eq instance of Errno
is also system dependent as it is only defined for valid values of Errno.

getErrno :: IO Errno

Get the current value of errno in the current thread.

resetErrno :: IO ()

Reset the current thread’s errno value to eOK.

errnoToIOError

:: String the location where the error occurred
-> Errno the error number
-> Maybe Handle optional handle associated with the error
-> Maybe String optional filename associated with the error
-> IOError

Construct an IOError based on the given Errno value. The optional information can be used to
improve the accuracy of error messages.

226 CHAPTER 26. FOREIGN.C.ERROR

throwErrno

:: String textual description of the error location
-> IO a

Throw an IOError corresponding to the current value of getErrno.

26.1.3 Guards for IO operations that may fail

throwErrnoIf

:: (a -> Bool) predicate to apply to the result value of the IO operation
-> String textual description of the location
-> IO a the IO operation to be executed
-> IO a

Throw an IOError corresponding to the current value of getErrno if the result value of the IO action
meets the given predicate.

throwErrnoIf_ :: (a -> Bool) -> String -> IO a -> IO ()

as throwErrnoIf, but discards the result of the IO action after error handling.

throwErrnoIfRetry :: (a -> Bool) -> String -> IO a -> IO a

as throwErrnoIf, but retry the IO action when it yields the error code eINTR - this amounts to the
standard retry loop for interrupted POSIX system calls.

throwErrnoIfRetry_ :: (a -> Bool) -> String -> IO a -> IO ()

as throwErrnoIfRetry, but discards the result.

throwErrnoIfMinus1 :: Num a => String -> IO a -> IO a

Throw an IOError corresponding to the current value of getErrno if the IO action returns a result of
-1.

throwErrnoIfMinus1_ :: Num a => String -> IO a -> IO ()

as throwErrnoIfMinus1, but discards the result.

throwErrnoIfMinus1Retry :: Num a => String -> IO a -> IO a

Throw an IOError corresponding to the current value of getErrno if the IO action returns a result of
-1, but retries in case of an interrupted operation.

throwErrnoIfMinus1Retry_ :: Num a => String -> IO a -> IO ()

as throwErrnoIfMinus1, but discards the result.

throwErrnoIfNull :: String -> IO (Ptr a) -> IO (Ptr a)

Throw an IOError corresponding to the current value of getErrno if the IO action returns nullPtr.

26.1. HASKELL REPRESENTATIONS OF ERRNO VALUES 227

throwErrnoIfNullRetry :: String -> IO (Ptr a) -> IO (Ptr a)

Throw an IOError corresponding to the current value of getErrno if the IO action returns nullPtr,
but retry in case of an interrupted operation.

throwErrnoIfRetryMayBlock

:: (a -> Bool) predicate to apply to the result value of the IO operation
-> String textual description of the location
-> IO a the IO operation to be executed
-> IO b action to execute before retrying if an immediate retry would block
-> IO a

as throwErrnoIfRetry, but additionally if the operation yields the error code eAGAIN or
eWOULDBLOCK, an alternative action is executed before retrying.

throwErrnoIfRetryMayBlock_ :: (a -> Bool)
-> String -> IO a -> IO b -> IO ()

as throwErrnoIfRetryMayBlock, but discards the result.

throwErrnoIfMinus1RetryMayBlock :: Num a => String
-> IO a -> IO b -> IO a

as throwErrnoIfMinus1Retry, but checks for operations that would block.

throwErrnoIfMinus1RetryMayBlock_ :: Num a => String
-> IO a -> IO b -> IO ()

as throwErrnoIfMinus1RetryMayBlock, but discards the result.

throwErrnoIfNullRetryMayBlock :: String
-> IO (Ptr a) -> IO b -> IO (Ptr a)

as throwErrnoIfNullRetry, but checks for operations that would block.

throwErrnoPath :: String -> FilePath -> IO a

as throwErrno, but exceptions include the given path when appropriate.

throwErrnoPathIf :: (a -> Bool)
-> String -> FilePath -> IO a -> IO a

as throwErrnoIf, but exceptions include the given path when appropriate.

throwErrnoPathIf_ :: (a -> Bool)
-> String -> FilePath -> IO a -> IO ()

as throwErrnoIf_, but exceptions include the given path when appropriate.

throwErrnoPathIfNull :: String
-> FilePath -> IO (Ptr a) -> IO (Ptr a)

as throwErrnoIfNull, but exceptions include the given path when appropriate.

228 CHAPTER 26. FOREIGN.C.ERROR

throwErrnoPathIfMinus1 :: Num a => String
-> FilePath -> IO a -> IO a

as throwErrnoIfMinus1, but exceptions include the given path when appropriate.

throwErrnoPathIfMinus1_ :: Num a => String
-> FilePath -> IO a -> IO ()

as throwErrnoIfMinus1_, but exceptions include the given path when appropriate.

Chapter 27

Foreign.C.String

module Foreign.C.String (
CString, CStringLen, peekCString, peekCStringLen, newCString,
newCStringLen, withCString, withCStringLen, charIsRepresentable,
castCharToCChar, castCCharToChar, castCharToCUChar, castCUCharToChar,
castCharToCSChar, castCSCharToChar, peekCAString, peekCAStringLen,
newCAString, newCAStringLen, withCAString, withCAStringLen, CWString,
CWStringLen, peekCWString, peekCWStringLen, newCWString,
newCWStringLen, withCWString, withCWStringLen

) where

Utilities for primitive marshalling of C strings.

The marshalling converts each Haskell character, representing a Unicode code point, to one or more bytes in
a manner that, by default, is determined by the current locale. As a consequence, no guarantees can be made
about the relative length of a Haskell string and its corresponding C string, and therefore all the marshalling
routines include memory allocation. The translation between Unicode and the encoding of the current locale
may be lossy.

27.1 C strings

type CString = Ptr CChar

A C string is a reference to an array of C characters terminated by NUL.

type CStringLen = (Ptr CChar, Int)

A string with explicit length information in bytes instead of a terminating NUL (allowing NUL char-
acters in the middle of the string).

229

230 CHAPTER 27. FOREIGN.C.STRING

27.1.1 Using a locale-dependent encoding

Currently these functions are identical to their CAString counterparts; eventually they will use an encoding
determined by the current locale.

peekCString :: CString -> IO String

Marshal a NUL terminated C string into a Haskell string.

peekCStringLen :: CStringLen -> IO String

Marshal a C string with explicit length into a Haskell string.

newCString :: String -> IO CString

Marshal a Haskell string into a NUL terminated C string.

• the Haskell string may not contain any NUL characters

• new storage is allocated for the C string and must be explicitly freed using
Foreign.Marshal.Alloc.free or Foreign.Marshal.Alloc.finalizerFree.

newCStringLen :: String -> IO CStringLen

Marshal a Haskell string into a C string (ie, character array) with explicit length information.

• new storage is allocated for the C string and must be explicitly freed using
Foreign.Marshal.Alloc.free or Foreign.Marshal.Alloc.finalizerFree.

withCString :: String -> (CString -> IO a) -> IO a

Marshal a Haskell string into a NUL terminated C string using temporary storage.

• the Haskell string may not contain any NUL characters

• the memory is freed when the subcomputation terminates (either normally or via an exception),
so the pointer to the temporary storage must not be used after this.

withCStringLen :: String -> (CStringLen -> IO a) -> IO a

Marshal a Haskell string into a C string (ie, character array) in temporary storage, with explicit length
information.

• the memory is freed when the subcomputation terminates (either normally or via an exception),
so the pointer to the temporary storage must not be used after this.

charIsRepresentable :: Char -> IO Bool

Determines whether a character can be accurately encoded in a CString. Unrepresentable characters
are converted to ’?’.

Currently only Latin-1 characters are representable.

27.1. C STRINGS 231

27.1.2 Using 8-bit characters

These variants of the above functions are for use with C libraries that are ignorant of Unicode. These functions
should be used with care, as a loss of information can occur.

castCharToCChar :: Char -> CChar

Convert a Haskell character to a C character. This function is only safe on the first 256 characters.

castCCharToChar :: CChar -> Char

Convert a C byte, representing a Latin-1 character, to the corresponding Haskell character.

castCharToCUChar :: Char -> CUChar

Convert a Haskell character to a C unsigned char. This function is only safe on the first 256 char-
acters.

castCUCharToChar :: CUChar -> Char

Convert a C unsigned char, representing a Latin-1 character, to the corresponding Haskell character.

castCharToCSChar :: Char -> CSChar

Convert a Haskell character to a C signed char. This function is only safe on the first 256 characters.

castCSCharToChar :: CSChar -> Char

Convert a C signed char, representing a Latin-1 character, to the corresponding Haskell character.

peekCAString :: CString -> IO String

Marshal a NUL terminated C string into a Haskell string.

peekCAStringLen :: CStringLen -> IO String

Marshal a C string with explicit length into a Haskell string.

newCAString :: String -> IO CString

Marshal a Haskell string into a NUL terminated C string.

• the Haskell string may not contain any NUL characters

• new storage is allocated for the C string and must be explicitly freed using
Foreign.Marshal.Alloc.free or Foreign.Marshal.Alloc.finalizerFree.

newCAStringLen :: String -> IO CStringLen

Marshal a Haskell string into a C string (ie, character array) with explicit length information.

• new storage is allocated for the C string and must be explicitly freed using
Foreign.Marshal.Alloc.free or Foreign.Marshal.Alloc.finalizerFree.

232 CHAPTER 27. FOREIGN.C.STRING

withCAString :: String -> (CString -> IO a) -> IO a

Marshal a Haskell string into a NUL terminated C string using temporary storage.

• the Haskell string may not contain any NUL characters

• the memory is freed when the subcomputation terminates (either normally or via an exception),
so the pointer to the temporary storage must not be used after this.

withCAStringLen :: String -> (CStringLen -> IO a) -> IO a

Marshal a Haskell string into a C string (ie, character array) in temporary storage, with explicit length
information.

• the memory is freed when the subcomputation terminates (either normally or via an exception),
so the pointer to the temporary storage must not be used after this.

27.2 C wide strings

These variants of the above functions are for use with C libraries that encode Unicode using the C wchar_t

type in a system-dependent way. The only encodings supported are

• UTF-32 (the C compiler defines __STDC_ISO_10646__), or

• UTF-16 (as used on Windows systems).

type CWString = Ptr CWchar

A C wide string is a reference to an array of C wide characters terminated by NUL.

type CWStringLen = (Ptr CWchar, Int)

A wide character string with explicit length information in CWchars instead of a terminating NUL
(allowing NUL characters in the middle of the string).

peekCWString :: CWString -> IO String

Marshal a NUL terminated C wide string into a Haskell string.

peekCWStringLen :: CWStringLen -> IO String

Marshal a C wide string with explicit length into a Haskell string.

newCWString :: String -> IO CWString

Marshal a Haskell string into a NUL terminated C wide string.

• the Haskell string may not contain any NUL characters

• new storage is allocated for the C wide string and must be explicitly freed using
Foreign.Marshal.Alloc.free or Foreign.Marshal.Alloc.finalizerFree.

27.2. C WIDE STRINGS 233

newCWStringLen :: String -> IO CWStringLen

Marshal a Haskell string into a C wide string (ie, wide character array) with explicit length information.

• new storage is allocated for the C wide string and must be explicitly freed using
Foreign.Marshal.Alloc.free or Foreign.Marshal.Alloc.finalizerFree.

withCWString :: String -> (CWString -> IO a) -> IO a

Marshal a Haskell string into a NUL terminated C wide string using temporary storage.

• the Haskell string may not contain any NUL characters

• the memory is freed when the subcomputation terminates (either normally or via an exception),
so the pointer to the temporary storage must not be used after this.

withCWStringLen :: String -> (CWStringLen -> IO a) -> IO a

Marshal a Haskell string into a NUL terminated C wide string using temporary storage.

• the Haskell string may not contain any NUL characters

• the memory is freed when the subcomputation terminates (either normally or via an exception),
so the pointer to the temporary storage must not be used after this.

234 CHAPTER 27. FOREIGN.C.STRING

Chapter 28

Foreign.C.Types

module Foreign.C.Types (
CChar, CSChar, CUChar, CShort, CUShort, CInt, CUInt, CLong, CULong,
CPtrdiff, CSize, CWchar, CSigAtomic, CLLong, CULLong, CIntPtr,
CUIntPtr, CIntMax, CUIntMax, CClock, CTime, CFloat, CDouble, CFile,
CFpos, CJmpBuf

) where

28.1 Representations of C types

These types are needed to accurately represent C function prototypes, in order to access C library interfaces
in Haskell. The Haskell system is not required to represent those types exactly as C does, but the following
guarantees are provided concerning a Haskell type CT representing a C type t:

• If a C function prototype has t as an argument or result type, the use of CT in the corresponding position
in a foreign declaration permits the Haskell program to access the full range of values encoded by the
C type; and conversely, any Haskell value for CT has a valid representation in C.

• sizeOf (undefined :: CT) will yield the same value as sizeof (t) in C.

• alignment (undefined :: CT) matches the alignment constraint enforced by the C implementa-
tion for t.

• The members peek and poke of the Storable class map all values of CT to the corresponding value
of t and vice versa.

• When an instance of Bounded is defined for CT, the values of minBound and maxBound coincide with
t_MIN and t_MAX in C.

235

236 CHAPTER 28. FOREIGN.C.TYPES

• When an instance of Eq or Ord is defined for CT, the predicates defined by the type class implement
the same relation as the corresponding predicate in C on t.

• When an instance of Num, Read, Integral, Fractional, Floating, RealFrac, or RealFloat is
defined for CT, the arithmetic operations defined by the type class implement the same function as the
corresponding arithmetic operations (if available) in C on t.

• When an instance of Bits is defined for CT, the bitwise operation defined by the type class implement
the same function as the corresponding bitwise operation in C on t.

28.1.1 Integral types

These types are are represented as newtypes of types in Data.Int and Data.Word, and are instances of
Eq, Ord, Num, Read, Show, Enum, Storable, Bounded, Real, Integral and Bits.

data CChar

Haskell type representing the C char type.

instance Bounded CChar
instance Enum CChar
instance Eq CChar
instance Integral CChar
instance Num CChar
instance Ord CChar
instance Read CChar
instance Real CChar
instance Show CChar
instance Storable CChar
instance Bits CChar

data CSChar

Haskell type representing the C signed char type.

instance Bounded CSChar
instance Enum CSChar
instance Eq CSChar
instance Integral CSChar
instance Num CSChar
instance Ord CSChar
instance Read CSChar
instance Real CSChar
instance Show CSChar
instance Storable CSChar
instance Bits CSChar

data CUChar

Haskell type representing the C unsigned char type.

28.1. REPRESENTATIONS OF C TYPES 237

instance Bounded CUChar
instance Enum CUChar
instance Eq CUChar
instance Integral CUChar
instance Num CUChar
instance Ord CUChar
instance Read CUChar
instance Real CUChar
instance Show CUChar
instance Storable CUChar
instance Bits CUChar

data CShort

Haskell type representing the C short type.

instance Bounded CShort
instance Enum CShort
instance Eq CShort
instance Integral CShort
instance Num CShort
instance Ord CShort
instance Read CShort
instance Real CShort
instance Show CShort
instance Storable CShort
instance Bits CShort

data CUShort

Haskell type representing the C unsigned short type.

instance Bounded CUShort
instance Enum CUShort
instance Eq CUShort
instance Integral CUShort
instance Num CUShort
instance Ord CUShort
instance Read CUShort
instance Real CUShort
instance Show CUShort
instance Storable CUShort
instance Bits CUShort

data CInt

Haskell type representing the C int type.

238 CHAPTER 28. FOREIGN.C.TYPES

instance Bounded CInt
instance Enum CInt
instance Eq CInt
instance Integral CInt
instance Num CInt
instance Ord CInt
instance Read CInt
instance Real CInt
instance Show CInt
instance Storable CInt
instance Bits CInt

data CUInt

Haskell type representing the C unsigned int type.

instance Bounded CUInt
instance Enum CUInt
instance Eq CUInt
instance Integral CUInt
instance Num CUInt
instance Ord CUInt
instance Read CUInt
instance Real CUInt
instance Show CUInt
instance Storable CUInt
instance Bits CUInt

data CLong

Haskell type representing the C long type.

instance Bounded CLong
instance Enum CLong
instance Eq CLong
instance Integral CLong
instance Num CLong
instance Ord CLong
instance Read CLong
instance Real CLong
instance Show CLong
instance Storable CLong
instance Bits CLong

data CULong

Haskell type representing the C unsigned long type.

28.1. REPRESENTATIONS OF C TYPES 239

instance Bounded CULong
instance Enum CULong
instance Eq CULong
instance Integral CULong
instance Num CULong
instance Ord CULong
instance Read CULong
instance Real CULong
instance Show CULong
instance Storable CULong
instance Bits CULong

data CPtrdiff

Haskell type representing the C ptrdiff_t type.

instance Bounded CPtrdiff
instance Enum CPtrdiff
instance Eq CPtrdiff
instance Integral CPtrdiff
instance Num CPtrdiff
instance Ord CPtrdiff
instance Read CPtrdiff
instance Real CPtrdiff
instance Show CPtrdiff
instance Storable CPtrdiff
instance Bits CPtrdiff

data CSize

Haskell type representing the C size_t type.

instance Bounded CSize
instance Enum CSize
instance Eq CSize
instance Integral CSize
instance Num CSize
instance Ord CSize
instance Read CSize
instance Real CSize
instance Show CSize
instance Storable CSize
instance Bits CSize

data CWchar

Haskell type representing the C wchar_t type.

240 CHAPTER 28. FOREIGN.C.TYPES

instance Bounded CWchar
instance Enum CWchar
instance Eq CWchar
instance Integral CWchar
instance Num CWchar
instance Ord CWchar
instance Read CWchar
instance Real CWchar
instance Show CWchar
instance Storable CWchar
instance Bits CWchar

data CSigAtomic

Haskell type representing the C sig_atomic_t type.

instance Bounded CSigAtomic
instance Enum CSigAtomic
instance Eq CSigAtomic
instance Integral CSigAtomic
instance Num CSigAtomic
instance Ord CSigAtomic
instance Read CSigAtomic
instance Real CSigAtomic
instance Show CSigAtomic
instance Storable CSigAtomic
instance Bits CSigAtomic

data CLLong

Haskell type representing the C long long type.

instance Bounded CLLong
instance Enum CLLong
instance Eq CLLong
instance Integral CLLong
instance Num CLLong
instance Ord CLLong
instance Read CLLong
instance Real CLLong
instance Show CLLong
instance Storable CLLong
instance Bits CLLong

data CULLong

Haskell type representing the C unsigned long long type.

28.1. REPRESENTATIONS OF C TYPES 241

instance Bounded CULLong
instance Enum CULLong
instance Eq CULLong
instance Integral CULLong
instance Num CULLong
instance Ord CULLong
instance Read CULLong
instance Real CULLong
instance Show CULLong
instance Storable CULLong
instance Bits CULLong

data CIntPtr

instance Bounded CIntPtr
instance Enum CIntPtr
instance Eq CIntPtr
instance Integral CIntPtr
instance Num CIntPtr
instance Ord CIntPtr
instance Read CIntPtr
instance Real CIntPtr
instance Show CIntPtr
instance Storable CIntPtr
instance Bits CIntPtr

data CUIntPtr

instance Bounded CUIntPtr
instance Enum CUIntPtr
instance Eq CUIntPtr
instance Integral CUIntPtr
instance Num CUIntPtr
instance Ord CUIntPtr
instance Read CUIntPtr
instance Real CUIntPtr
instance Show CUIntPtr
instance Storable CUIntPtr
instance Bits CUIntPtr

data CIntMax

instance Bounded CIntMax
instance Enum CIntMax
instance Eq CIntMax
instance Integral CIntMax
instance Num CIntMax
instance Ord CIntMax
instance Read CIntMax
instance Real CIntMax
instance Show CIntMax
instance Storable CIntMax
instance Bits CIntMax

242 CHAPTER 28. FOREIGN.C.TYPES

data CUIntMax

instance Bounded CUIntMax
instance Enum CUIntMax
instance Eq CUIntMax
instance Integral CUIntMax
instance Num CUIntMax
instance Ord CUIntMax
instance Read CUIntMax
instance Real CUIntMax
instance Show CUIntMax
instance Storable CUIntMax
instance Bits CUIntMax

28.1.2 Numeric types

These types are are represented as newtypes of basic foreign types, and are instances of Eq, Ord, Num, Read,
Show, Enum and Storable.

data CClock

Haskell type representing the C clock_t type.

instance Enum CClock
instance Eq CClock
instance Num CClock
instance Ord CClock
instance Read CClock
instance Real CClock
instance Show CClock
instance Storable CClock

data CTime

Haskell type representing the C time_t type.

instance Enum CTime
instance Eq CTime
instance Num CTime
instance Ord CTime
instance Read CTime
instance Real CTime
instance Show CTime
instance Storable CTime

28.1.3 Floating types

These types are are represented as newtypes of Float and Double, and are instances of Eq, Ord, Num,
Read, Show, Enum, Storable, Real, Fractional, Floating, RealFrac and RealFloat.

28.1. REPRESENTATIONS OF C TYPES 243

data CFloat

Haskell type representing the C float type.

instance Enum CFloat
instance Eq CFloat
instance Floating CFloat
instance Fractional CFloat
instance Num CFloat
instance Ord CFloat
instance Read CFloat
instance Real CFloat
instance RealFloat CFloat
instance RealFrac CFloat
instance Show CFloat
instance Storable CFloat

data CDouble

Haskell type representing the C double type.

instance Enum CDouble
instance Eq CDouble
instance Floating CDouble
instance Fractional CDouble
instance Num CDouble
instance Ord CDouble
instance Read CDouble
instance Real CDouble
instance RealFloat CDouble
instance RealFrac CDouble
instance Show CDouble
instance Storable CDouble

28.1.4 Other types

data CFile

Haskell type representing the C FILE type.

data CFpos

Haskell type representing the C fpos_t type.

data CJmpBuf

Haskell type representing the C jmp_buf type.

244 CHAPTER 28. FOREIGN.C.TYPES

Chapter 29

Foreign.ForeignPtr

module Foreign.ForeignPtr (
ForeignPtr, FinalizerPtr, FinalizerEnvPtr, newForeignPtr,
newForeignPtr_, addForeignPtrFinalizer, newForeignPtrEnv,
addForeignPtrFinalizerEnv, withForeignPtr, finalizeForeignPtr,
unsafeForeignPtrToPtr, touchForeignPtr, castForeignPtr,
mallocForeignPtr, mallocForeignPtrBytes, mallocForeignPtrArray,
mallocForeignPtrArray0

) where

29.1 Finalised data pointers

data ForeignPtr a

The type ForeignPtr represents references to objects that are maintained in a foreign language, i.e.,
that are not part of the data structures usually managed by the Haskell storage manager. The essential
difference between ForeignPtrs and vanilla memory references of type Ptr a is that the former may
be associated with finalizers. A finalizer is a routine that is invoked when the Haskell storage manager
detects that - within the Haskell heap and stack - there are no more references left that are pointing to
the ForeignPtr. Typically, the finalizer will, then, invoke routines in the foreign language that free
the resources bound by the foreign object.

The ForeignPtr is parameterised in the same way as Ptr. The type argument of ForeignPtr should
normally be an instance of class Storable.

instance Eq (ForeignPtr a)
instance Ord (ForeignPtr a)
instance Show (ForeignPtr a)

245

246 CHAPTER 29. FOREIGN.FOREIGNPTR

type FinalizerPtr a = FunPtr (Ptr a -> IO ())

A finalizer is represented as a pointer to a foreign function that, at finalisation time, gets as an argument
a plain pointer variant of the foreign pointer that the finalizer is associated with.

type FinalizerEnvPtr env a = FunPtr (Ptr env -> Ptr a -> IO ())

29.1.1 Basic operations

newForeignPtr :: FinalizerPtr a -> Ptr a -> IO (ForeignPtr a)

Turns a plain memory reference into a foreign pointer, and associates a finalizer with the reference. The
finalizer will be executed after the last reference to the foreign object is dropped. There is no guarantee
of promptness, however the finalizer will be executed before the program exits.

newForeignPtr_ :: Ptr a -> IO (ForeignPtr a)

Turns a plain memory reference into a foreign pointer that may be associated with finalizers by using
addForeignPtrFinalizer.

addForeignPtrFinalizer :: FinalizerPtr a -> ForeignPtr a -> IO ()

This function adds a finalizer to the given foreign object. The finalizer will run before all other finalizers
for the same object which have already been registered.

newForeignPtrEnv :: FinalizerEnvPtr env a
-> Ptr env -> Ptr a -> IO (ForeignPtr a)

This variant of newForeignPtr adds a finalizer that expects an environment in addition to the final-
ized pointer. The environment that will be passed to the finalizer is fixed by the second argument to
newForeignPtrEnv.

addForeignPtrFinalizerEnv :: FinalizerEnvPtr env a
-> Ptr env -> ForeignPtr a -> IO ()

Like addForeignPtrFinalizerEnv but allows the finalizer to be passed an additional environment
parameter to be passed to the finalizer. The environment passed to the finalizer is fixed by the second
argument to addForeignPtrFinalizerEnv

withForeignPtr :: ForeignPtr a -> (Ptr a -> IO b) -> IO b

This is a way to look at the pointer living inside a foreign object. This function takes a function
which is applied to that pointer. The resulting IO action is then executed. The foreign object is kept
alive at least during the whole action, even if it is not used directly inside. Note that it is not safe
to return the pointer from the action and use it after the action completes. All uses of the pointer
should be inside the withForeignPtr bracket. The reason for this unsafeness is the same as for
unsafeForeignPtrToPtr below: the finalizer may run earlier than expected, because the compiler
can only track usage of the ForeignPtr object, not a Ptr object made from it.

This function is normally used for marshalling data to or from the object pointed to by the
ForeignPtr, using the operations from the Storable class.

finalizeForeignPtr :: ForeignPtr a -> IO ()

Causes the finalizers associated with a foreign pointer to be run immediately.

29.1. FINALISED DATA POINTERS 247

29.1.2 Low-level operations

unsafeForeignPtrToPtr :: ForeignPtr a -> Ptr a

This function extracts the pointer component of a foreign pointer. This is a potentially dangerous
operations, as if the argument to unsafeForeignPtrToPtr is the last usage occurrence of the given
foreign pointer, then its finalizer(s) will be run, which potentially invalidates the plain pointer just
obtained. Hence, touchForeignPtr must be used wherever it has to be guaranteed that the pointer
lives on - i.e., has another usage occurrence.

To avoid subtle coding errors, hand written marshalling code should preferably use
Foreign.ForeignPtr.withForeignPtr rather than combinations of unsafeForeignPtrToPtr
and touchForeignPtr. However, the latter routines are occasionally preferred in tool generated
marshalling code.

touchForeignPtr :: ForeignPtr a -> IO ()

This function ensures that the foreign object in question is alive at the given place in the sequence of IO
actions. In particular withForeignPtr does a touchForeignPtr after it executes the user action.

Note that this function should not be used to express dependencies between finalizers on ForeignPtrs.
For example, if the finalizer for a ForeignPtr F1 calls touchForeignPtr on a second ForeignPtr
F2, then the only guarantee is that the finalizer for F2 is never started before the finalizer for F1. They
might be started together if for example both F1 and F2 are otherwise unreachable.

In general, it is not recommended to use finalizers on separate objects with ordering constraints between
them. To express the ordering robustly requires explicit synchronisation between finalizers.

castForeignPtr :: ForeignPtr a -> ForeignPtr b

This function casts a ForeignPtr parameterised by one type into another type.

29.1.3 Allocating managed memory

mallocForeignPtr :: Storable a => IO (ForeignPtr a)

Allocate some memory and return a ForeignPtr to it. The memory will be released automatically
when the ForeignPtr is discarded.

mallocForeignPtr is equivalent to

do { p <- malloc; newForeignPtr finalizerFree p }

although it may be implemented differently internally: you may not assume that the memory returned
by mallocForeignPtr has been allocated with Foreign.Marshal.Alloc.malloc.

mallocForeignPtrBytes :: Int -> IO (ForeignPtr a)

This function is similar to mallocForeignPtr, except that the size of the memory required is given
explicitly as a number of bytes.

mallocForeignPtrArray :: Storable a => Int -> IO (ForeignPtr a)

This function is similar to Foreign.Marshal.Array.mallocArray, but yields a memory area that
has a finalizer attached that releases the memory area. As with mallocForeignPtr, it is not guaran-
teed that the block of memory was allocated by Foreign.Marshal.Alloc.malloc.

248 CHAPTER 29. FOREIGN.FOREIGNPTR

mallocForeignPtrArray0 :: Storable a => Int -> IO (ForeignPtr a)

This function is similar to Foreign.Marshal.Array.mallocArray0, but yields a memory area
that has a finalizer attached that releases the memory area. As with mallocForeignPtr, it is not
guaranteed that the block of memory was allocated by Foreign.Marshal.Alloc.malloc.

Chapter 30

Foreign.Marshal

module Foreign.Marshal (
module Foreign.Marshal.Alloc, module Foreign.Marshal.Array,
module Foreign.Marshal.Error, module Foreign.Marshal.Utils,
unsafeLocalState

) where

The module Foreign.Marshal re-exports the other modules in the Foreign.Marshal hierarchy:

module Foreign.Marshal.Alloc
module Foreign.Marshal.Array
module Foreign.Marshal.Error
module Foreign.Marshal.Utils

and provides one function:

unsafeLocalState :: IO a -> a

Sometimes an external entity is a pure function, except that it passes arguments and/or results via
pointers. The function unsafeLocalState permits the packaging of such entities as pure functions.

The only IO operations allowed in the IO action passed to unsafeLocalState are (a) local allocation
(alloca, allocaBytes and derived operations such as withArray and withCString), and (b)
pointer operations (Foreign.Storable and Foreign.Ptr) on the pointers to local storage, and (c)
foreign functions whose only observable effect is to read and/or write the locally allocated memory.
Passing an IO operation that does not obey these rules results in undefined behaviour.

It is expected that this operation will be replaced in a future revision of Haskell.

249

250 CHAPTER 30. FOREIGN.MARSHAL

Chapter 31

Foreign.Marshal.Alloc

module Foreign.Marshal.Alloc (
alloca, allocaBytes, malloc, mallocBytes, realloc, reallocBytes,
free, finalizerFree

) where

The module Foreign.Marshal.Alloc provides operations to allocate and deallocate blocks of raw mem-
ory (i.e., unstructured chunks of memory outside of the area maintained by the Haskell storage manager).
These memory blocks are commonly used to pass compound data structures to foreign functions or to pro-
vide space in which compound result values are obtained from foreign functions.

If any of the allocation functions fails, a value of nullPtr is produced. If free or reallocBytes is
applied to a memory area that has been allocated with alloca or allocaBytes, the behaviour is undefined.
Any further access to memory areas allocated with alloca or allocaBytes, after the computation that
was passed to the allocation function has terminated, leads to undefined behaviour. Any further access to
the memory area referenced by a pointer passed to realloc, reallocBytes, or free entails undefined
behaviour.

All storage allocated by functions that allocate based on a size in bytes must be sufficiently aligned for any
of the basic foreign types that fits into the newly allocated storage. All storage allocated by functions that
allocate based on a specific type must be sufficiently aligned for that type. Array allocation routines need to
obey the same alignment constraints for each array element.

31.1 Memory allocation

31.1.1 Local allocation

alloca :: Storable a => (Ptr a -> IO b) -> IO b

251

252 CHAPTER 31. FOREIGN.MARSHAL.ALLOC

alloca f executes the computation f, passing as argument a pointer to a temporarily allocated block
of memory sufficient to hold values of type a.

The memory is freed when f terminates (either normally or via an exception), so the pointer passed to
f must not be used after this.

allocaBytes :: Int -> (Ptr a -> IO b) -> IO b

allocaBytes n f executes the computation f, passing as argument a pointer to a temporarily allo-
cated block of memory of n bytes. The block of memory is sufficiently aligned for any of the basic
foreign types that fits into a memory block of the allocated size.

The memory is freed when f terminates (either normally or via an exception), so the pointer passed to
f must not be used after this.

31.1.2 Dynamic allocation

malloc :: Storable a => IO (Ptr a)

Allocate a block of memory that is sufficient to hold values of type a. The size of the area allocated is
determined by the sizeOf method from the instance of Storable for the appropriate type.

The memory may be deallocated using free or finalizerFree when no longer required.

mallocBytes :: Int -> IO (Ptr a)

Allocate a block of memory of the given number of bytes. The block of memory is sufficiently aligned
for any of the basic foreign types that fits into a memory block of the allocated size.

The memory may be deallocated using free or finalizerFree when no longer required.

realloc :: Storable b => Ptr a -> IO (Ptr b)

Resize a memory area that was allocated with malloc or mallocBytes to the size needed to store
values of type b. The returned pointer may refer to an entirely different memory area, but will be
suitably aligned to hold values of type b. The contents of the referenced memory area will be the same
as of the original pointer up to the minimum of the original size and the size of values of type b.

If the argument to realloc is nullPtr, realloc behaves like malloc.

reallocBytes :: Ptr a -> Int -> IO (Ptr a)

Resize a memory area that was allocated with malloc or mallocBytes to the given size. The returned
pointer may refer to an entirely different memory area, but will be sufficiently aligned for any of the
basic foreign types that fits into a memory block of the given size. The contents of the referenced
memory area will be the same as of the original pointer up to the minimum of the original size and the
given size.

If the pointer argument to reallocBytes is nullPtr, reallocBytes behaves like malloc. If the
requested size is 0, reallocBytes behaves like free.

free :: Ptr a -> IO ()

Free a block of memory that was allocated with malloc, mallocBytes, realloc, reallocBytes,
Foreign.Marshal.Utils.new or any of the newX functions in Foreign.Marshal.Array or
Foreign.C.String.

31.1. MEMORY ALLOCATION 253

finalizerFree :: FinalizerPtr a

A pointer to a foreign function equivalent to free, which may be used as a finalizer (cf
Foreign.ForeignPtr.ForeignPtr) for storage allocated with malloc, mallocBytes, realloc
or reallocBytes.

254 CHAPTER 31. FOREIGN.MARSHAL.ALLOC

Chapter 32

Foreign.Marshal.Array

module Foreign.Marshal.Array (
mallocArray, mallocArray0, allocaArray, allocaArray0, reallocArray,
reallocArray0, peekArray, peekArray0, pokeArray, pokeArray0, newArray,
newArray0, withArray, withArray0, withArrayLen, withArrayLen0,
copyArray, moveArray, lengthArray0, advancePtr

) where

The module Foreign.Marshal.Array provides operations for marshalling Haskell lists into monolithic
arrays and vice versa. Most functions come in two flavours: one for arrays terminated by a special termination
element and one where an explicit length parameter is used to determine the extent of an array. The typical
example for the former case are C’s NUL terminated strings. However, please note that C strings should
usually be marshalled using the functions provided by Foreign.C.String as the Unicode encoding has
to be taken into account. All functions specifically operating on arrays that are terminated by a special
termination element have a name ending on 0—e.g., mallocArray allocates space for an array of the given
size, whereas mallocArray0 allocates space for one more element to ensure that there is room for the
terminator.

32.1 Marshalling arrays

32.1.1 Allocation

mallocArray :: Storable a => Int -> IO (Ptr a)

Allocate storage for the given number of elements of a storable type (like
Foreign.Marshal.Alloc.malloc, but for multiple elements).

mallocArray0 :: Storable a => Int -> IO (Ptr a)

Like mallocArray, but add an extra position to hold a special termination element.

255

256 CHAPTER 32. FOREIGN.MARSHAL.ARRAY

allocaArray :: Storable a => Int -> (Ptr a -> IO b) -> IO b

Temporarily allocate space for the given number of elements (like
Foreign.Marshal.Alloc.alloca, but for multiple elements).

allocaArray0 :: Storable a => Int -> (Ptr a -> IO b) -> IO b

Like allocaArray, but add an extra position to hold a special termination element.

reallocArray :: Storable a => Ptr a -> Int -> IO (Ptr a)

Adjust the size of an array

reallocArray0 :: Storable a => Ptr a -> Int -> IO (Ptr a)

Adjust the size of an array including an extra position for the end marker.

32.1.2 Marshalling

peekArray :: Storable a => Int -> Ptr a -> IO [a]

Convert an array of given length into a Haskell list.

peekArray0 :: (Storable a, Eq a) => a -> Ptr a -> IO [a]

Convert an array terminated by the given end marker into a Haskell list

pokeArray :: Storable a => Ptr a -> [a] -> IO ()

Write the list elements consecutive into memory

pokeArray0 :: Storable a => a -> Ptr a -> [a] -> IO ()

Write the list elements consecutive into memory and terminate them with the given marker element

32.1.3 Combined allocation and marshalling

newArray :: Storable a => [a] -> IO (Ptr a)

Write a list of storable elements into a newly allocated, consecutive sequence of storable values (like
Foreign.Marshal.Utils.new, but for multiple elements).

newArray0 :: Storable a => a -> [a] -> IO (Ptr a)

Write a list of storable elements into a newly allocated, consecutive sequence of storable values, where
the end is fixed by the given end marker

withArray :: Storable a => [a] -> (Ptr a -> IO b) -> IO b

Temporarily store a list of storable values in memory (like Foreign.Marshal.Utils.with, but for
multiple elements).

32.1. MARSHALLING ARRAYS 257

withArray0 :: Storable a => a -> [a] -> (Ptr a -> IO b) -> IO b

Like withArray, but a terminator indicates where the array ends

withArrayLen :: Storable a => [a] -> (Int -> Ptr a -> IO b) -> IO b

Like withArray, but the action gets the number of values as an additional parameter

withArrayLen0 :: Storable a => a
-> [a] -> (Int -> Ptr a -> IO b) -> IO b

Like withArrayLen, but a terminator indicates where the array ends

32.1.4 Copying

(argument order: destination, source)

copyArray :: Storable a => Ptr a -> Ptr a -> Int -> IO ()

Copy the given number of elements from the second array (source) into the first array (destination); the
copied areas may not overlap

moveArray :: Storable a => Ptr a -> Ptr a -> Int -> IO ()

Copy the given number of elements from the second array (source) into the first array (destination); the
copied areas may overlap

32.1.5 Finding the length

lengthArray0 :: (Storable a, Eq a) => a -> Ptr a -> IO Int

Return the number of elements in an array, excluding the terminator

32.1.6 Indexing

advancePtr :: Storable a => Ptr a -> Int -> Ptr a

Advance a pointer into an array by the given number of elements

258 CHAPTER 32. FOREIGN.MARSHAL.ARRAY

Chapter 33

Foreign.Marshal.Error

module Foreign.Marshal.Error (
throwIf, throwIf_, throwIfNeg, throwIfNeg_, throwIfNull, void

) where

throwIf

:: (a -> Bool) error condition on the result of the IO action
-> (a -> String) computes an error message from erroneous results of the IO action
-> IO a the IO action to be executed
-> IO a

Execute an IO action, throwing a userError if the predicate yields True when applied to the result
returned by the IO action. If no exception is raised, return the result of the computation.

throwIf_ :: (a -> Bool) -> (a -> String) -> IO a -> IO ()

Like throwIf, but discarding the result

throwIfNeg :: (Ord a, Num a) => (a -> String) -> IO a -> IO a

Guards against negative result values

throwIfNeg_ :: (Ord a, Num a) => (a -> String) -> IO a -> IO ()

Like throwIfNeg, but discarding the result

throwIfNull :: String -> IO (Ptr a) -> IO (Ptr a)

Guards against null pointers

void :: IO a -> IO ()

Discard the return value of an IO action

259

260 CHAPTER 33. FOREIGN.MARSHAL.ERROR

Chapter 34

Foreign.Marshal.Utils

module Foreign.Marshal.Utils (
with, new, fromBool, toBool, maybeNew, maybeWith, maybePeek,
withMany, copyBytes, moveBytes

) where

34.1 General marshalling utilities

34.1.1 Combined allocation and marshalling

with :: Storable a => a -> (Ptr a -> IO b) -> IO b

with val f executes the computation f, passing as argument a pointer to a temporarily allocated
block of memory into which val has been marshalled (the combination of alloca and poke).

The memory is freed when f terminates (either normally or via an exception), so the pointer passed to
f must not be used after this.

new :: Storable a => a -> IO (Ptr a)

Allocate a block of memory and marshal a value into it (the combination of malloc and poke). The
size of the area allocated is determined by the Foreign.Storable.sizeOf method from the instance
of Storable for the appropriate type.

The memory may be deallocated using Foreign.Marshal.Alloc.free or
Foreign.Marshal.Alloc.finalizerFree when no longer required.

261

262 CHAPTER 34. FOREIGN.MARSHAL.UTILS

34.1.2 Marshalling of Boolean values (non-zero corresponds to True)

fromBool :: Num a => Bool -> a

Convert a Haskell Bool to its numeric representation

toBool :: Num a => a -> Bool

Convert a Boolean in numeric representation to a Haskell value

34.1.3 Marshalling of Maybe values

maybeNew :: (a -> IO (Ptr a)) -> Maybe a -> IO (Ptr a)

Allocate storage and marshal a storable value wrapped into a Maybe

• the nullPtr is used to represent Nothing

maybeWith :: (a -> (Ptr b -> IO c) -> IO c)
-> Maybe a -> (Ptr b -> IO c) -> IO c

Converts a withXXX combinator into one marshalling a value wrapped into a Maybe, using nullPtr

to represent Nothing.

maybePeek :: (Ptr a -> IO b) -> Ptr a -> IO (Maybe b)

Convert a peek combinator into a one returning Nothing if applied to a nullPtr

34.1.4 Marshalling lists of storable objects

withMany :: (a -> (b -> res) -> res) -> [a] -> ([b] -> res) -> res

Replicates a withXXX combinator over a list of objects, yielding a list of marshalled objects

34.1.5 Haskellish interface to memcpy and memmove

(argument order: destination, source)

copyBytes :: Ptr a -> Ptr a -> Int -> IO ()

Copies the given number of bytes from the second area (source) into the first (destination); the copied
areas may not overlap

moveBytes :: Ptr a -> Ptr a -> Int -> IO ()

Copies the given number of bytes from the second area (source) into the first (destination); the copied
areas may overlap

Chapter 35

Foreign.Ptr

module Foreign.Ptr (
Ptr, nullPtr, castPtr, plusPtr, alignPtr, minusPtr, FunPtr,
nullFunPtr, castFunPtr, castFunPtrToPtr, castPtrToFunPtr,
freeHaskellFunPtr, IntPtr, ptrToIntPtr, intPtrToPtr, WordPtr,
ptrToWordPtr, wordPtrToPtr

) where

The module Foreign.Ptr provides typed pointers to foreign entities. We distinguish two kinds of pointers:
pointers to data and pointers to functions. It is understood that these two kinds of pointers may be represented
differently as they may be references to data and text segments, respectively.

35.1 Data pointers

data Ptr a

A value of type Ptr a represents a pointer to an object, or an array of objects, which may be marshalled
to or from Haskell values of type a.

The type a will often be an instance of class Foreign.Storable.Storable which provides the
marshalling operations. However this is not essential, and you can provide your own operations to
access the pointer. For example you might write small foreign functions to get or set the fields of a C
struct.

instance Eq (Ptr a)
instance Ord (Ptr a)
instance Show (Ptr a)
instance Storable (Ptr a)

263

264 CHAPTER 35. FOREIGN.PTR

nullPtr :: Ptr a

The constant nullPtr contains a distinguished value of Ptr that is not associated with a valid memory
location.

castPtr :: Ptr a -> Ptr b

The castPtr function casts a pointer from one type to another.

plusPtr :: Ptr a -> Int -> Ptr b

Advances the given address by the given offset in bytes.

alignPtr :: Ptr a -> Int -> Ptr a

Given an arbitrary address and an alignment constraint, alignPtr yields the next higher address that
fulfills the alignment constraint. An alignment constraint x is fulfilled by any address divisible by x.
This operation is idempotent.

minusPtr :: Ptr a -> Ptr b -> Int

Computes the offset required to get from the second to the first argument. We have

p2 == p1 ‘plusPtr‘ (p2 ‘minusPtr‘ p1)

35.2 Function pointers

data FunPtr a

A value of type FunPtr a is a pointer to a function callable from foreign code. The type a will
normally be a foreign type, a function type with zero or more arguments where

• the argument types are marshallable foreign types, i.e. Char, Int, Double, Float,
Bool, Data.Int.Int8, Data.Int.Int16, Data.Int.Int32, Data.Int.Int64,
Data.Word.Word8, Data.Word.Word16, Data.Word.Word32, Data.Word.Word64,
Ptr a, FunPtr a, Foreign.StablePtr.StablePtr a or a renaming of any of these using
newtype.

• the return type is either a marshallable foreign type or has the form IO twhere t is a marshallable
foreign type or ().

A value of type FunPtr a may be a pointer to a foreign function, either returned by another foreign
function or imported with a a static address import like

foreign import ccall "stdlib.h &free"
p_free :: FunPtr (Ptr a -> IO ())

or a pointer to a Haskell function created using a wrapper stub declared to produce a FunPtr of the
correct type. For example:

type Compare = Int -> Int -> Bool
foreign import ccall "wrapper"
mkCompare :: Compare -> IO (FunPtr Compare)

35.3. INTEGRAL TYPES WITH LOSSLESS CONVERSION TO AND FROM POINTERS 265

Calls to wrapper stubs like mkCompare allocate storage, which should be released with
Foreign.Ptr.freeHaskellFunPtr when no longer required.

To convert FunPtr values to corresponding Haskell functions, one can define a dynamic stub for the
specific foreign type, e.g.

type IntFunction = CInt -> IO ()
foreign import ccall "dynamic"
mkFun :: FunPtr IntFunction -> IntFunction

instance Eq (FunPtr a)
instance Ord (FunPtr a)
instance Show (FunPtr a)
instance Storable (FunPtr a)

nullFunPtr :: FunPtr a

The constant nullFunPtr contains a distinguished value of FunPtr that is not associated with a valid
memory location.

castFunPtr :: FunPtr a -> FunPtr b

Casts a FunPtr to a FunPtr of a different type.

castFunPtrToPtr :: FunPtr a -> Ptr b

Casts a FunPtr to a Ptr.

Note: this is valid only on architectures where data and function pointers range over the same set of
addresses, and should only be used for bindings to external libraries whose interface already relies on
this assumption.

castPtrToFunPtr :: Ptr a -> FunPtr b

Casts a Ptr to a FunPtr.

Note: this is valid only on architectures where data and function pointers range over the same set of
addresses, and should only be used for bindings to external libraries whose interface already relies on
this assumption.

freeHaskellFunPtr :: FunPtr a -> IO ()

Release the storage associated with the given FunPtr, which must have been obtained from a wrapper
stub. This should be called whenever the return value from a foreign import wrapper function is no
longer required; otherwise, the storage it uses will leak.

35.3 Integral types with lossless conversion to and from pointers

data IntPtr

A signed integral type that can be losslessly converted to and from Ptr. This type is also compatible
with the C99 type intptr_t, and can be marshalled to and from that type safely.

266 CHAPTER 35. FOREIGN.PTR

instance Bounded IntPtr
instance Enum IntPtr
instance Eq IntPtr
instance Integral IntPtr
instance Num IntPtr
instance Ord IntPtr
instance Read IntPtr
instance Real IntPtr
instance Show IntPtr
instance Storable IntPtr
instance Bits IntPtr

ptrToIntPtr :: Ptr a -> IntPtr

casts a Ptr to an IntPtr

intPtrToPtr :: IntPtr -> Ptr a

casts an IntPtr to a Ptr

data WordPtr

An unsigned integral type that can be losslessly converted to and from Ptr. This type is also compatible
with the C99 type uintptr_t, and can be marshalled to and from that type safely.

instance Bounded WordPtr
instance Enum WordPtr
instance Eq WordPtr
instance Integral WordPtr
instance Num WordPtr
instance Ord WordPtr
instance Read WordPtr
instance Real WordPtr
instance Show WordPtr
instance Storable WordPtr
instance Bits WordPtr

ptrToWordPtr :: Ptr a -> WordPtr

casts a Ptr to a WordPtr

wordPtrToPtr :: WordPtr -> Ptr a

casts a WordPtr to a Ptr

Chapter 36

Foreign.StablePtr

module Foreign.StablePtr (
StablePtr, newStablePtr, deRefStablePtr, freeStablePtr,
castStablePtrToPtr, castPtrToStablePtr

) where

36.1 Stable references to Haskell values

data StablePtr a

A stable pointer is a reference to a Haskell expression that is guaranteed not to be affected by garbage
collection, i.e., it will neither be deallocated nor will the value of the stable pointer itself change during
garbage collection (ordinary references may be relocated during garbage collection). Consequently,
stable pointers can be passed to foreign code, which can treat it as an opaque reference to a Haskell
value.

A value of type StablePtr a is a stable pointer to a Haskell expression of type a.

instance Eq (StablePtr a)
instance Storable (StablePtr a)

newStablePtr :: a -> IO (StablePtr a)

Create a stable pointer referring to the given Haskell value.

deRefStablePtr :: StablePtr a -> IO a

Obtain the Haskell value referenced by a stable pointer, i.e., the same value that was passed to the
corresponding call to makeStablePtr. If the argument to deRefStablePtr has already been freed
using freeStablePtr, the behaviour of deRefStablePtr is undefined.

267

268 CHAPTER 36. FOREIGN.STABLEPTR

freeStablePtr :: StablePtr a -> IO ()

Dissolve the association between the stable pointer and the Haskell value. Afterwards, if the sta-
ble pointer is passed to deRefStablePtr or freeStablePtr, the behaviour is undefined. How-
ever, the stable pointer may still be passed to castStablePtrToPtr, but the Foreign.Ptr.Ptr

() value returned by castStablePtrToPtr, in this case, is undefined (in particular, it may be
Foreign.Ptr.nullPtr). Nevertheless, the call to castStablePtrToPtr is guaranteed not to di-
verge.

castStablePtrToPtr :: StablePtr a -> Ptr ()

Coerce a stable pointer to an address. No guarantees are made about the resulting value, except that the
original stable pointer can be recovered by castPtrToStablePtr. In particular, the address may not
refer to an accessible memory location and any attempt to pass it to the member functions of the class
Foreign.Storable.Storable leads to undefined behaviour.

castPtrToStablePtr :: Ptr () -> StablePtr a

The inverse of castStablePtrToPtr, i.e., we have the identity

sp == castPtrToStablePtr (castStablePtrToPtr sp)

for any stable pointer sp on which freeStablePtr has not been executed yet. More-
over, castPtrToStablePtr may only be applied to pointers that have been produced by
castStablePtrToPtr.

36.1.1 The C-side interface

The following definition is available to C programs inter-operating with Haskell code when including the
header HsFFI.h.

typedef void *HsStablePtr;

Note that no assumptions may be made about the values representing stable pointers. In fact, they need not
even be valid memory addresses. The only guarantee provided is that if they are passed back to Haskell land,
the function deRefStablePtr will be able to reconstruct the Haskell value referred to by the stable pointer.

Chapter 37

Foreign.Storable

module Foreign.Storable (
Storable(sizeOf,

alignment,
peekElemOff,
pokeElemOff,
peekByteOff,
pokeByteOff,
peek,
poke)

) where

class Storable a where

The member functions of this class facilitate writing values of primitive types to raw memory (which
may have been allocated with the above mentioned routines) and reading values from blocks of raw
memory. The class, furthermore, includes support for computing the storage requirements and align-
ment restrictions of storable types.

Memory addresses are represented as values of type Ptr a, for some a which is an instance of class
Storable. The type argument to Ptr helps provide some valuable type safety in FFI code (you can’t
mix pointers of different types without an explicit cast), while helping the Haskell type system figure
out which marshalling method is needed for a given pointer.

All marshalling between Haskell and a foreign language ultimately boils down to translating Has-
kell data structures into the binary representation of a corresponding data structure of the foreign lan-
guage and vice versa. To code this marshalling in Haskell, it is necessary to manipulate primitive data
types stored in unstructured memory blocks. The class Storable facilitates this manipulation on all
types for which it is instantiated, which are the standard basic types of Haskell, the fixed size Int

types (Int8, Int16, Int32, Int64), the fixed size Word types (Word8, Word16, Word32, Word64),
StablePtr, all types from Foreign.C.Types, as well as Ptr.

Minimal complete definition: sizeOf, alignment, one of peek, peekElemOff and peekByteOff,
and one of poke, pokeElemOff and pokeByteOff.

269

270 CHAPTER 37. FOREIGN.STORABLE

Methods

sizeOf :: a -> Int

Computes the storage requirements (in bytes) of the argument. The value of the argument is not
used.

alignment :: a -> Int

Computes the alignment constraint of the argument. An alignment constraint x is fulfilled by any
address divisible by x. The value of the argument is not used.

peekElemOff :: Ptr a -> Int -> IO a

Read a value from a memory area regarded as an array of values of the same kind. The first
argument specifies the start address of the array and the second the index into the array (the first
element of the array has index 0). The following equality holds,

peekElemOff addr idx = IOExts.fixIO $ \result ->
peek (addr ‘plusPtr‘ (idx * sizeOf result))

Note that this is only a specification, not necessarily the concrete implementation of the function.

pokeElemOff :: Ptr a -> Int -> a -> IO ()

Write a value to a memory area regarded as an array of values of the same kind. The following
equality holds:

pokeElemOff addr idx x =
poke (addr ‘plusPtr‘ (idx * sizeOf x)) x

peekByteOff :: Ptr b -> Int -> IO a

Read a value from a memory location given by a base address and offset. The following equality
holds:

peekByteOff addr off = peek (addr ‘plusPtr‘ off)

pokeByteOff :: Ptr b -> Int -> a -> IO ()

Write a value to a memory location given by a base address and offset. The following equality
holds:

pokeByteOff addr off x = poke (addr ‘plusPtr‘ off) x

peek :: Ptr a -> IO a

Read a value from the given memory location.
Note that the peek and poke functions might require properly aligned addresses to function cor-
rectly. This is architecture dependent; thus, portable code should ensure that when peeking or
poking values of some type a, the alignment constraint for a, as given by the function alignment
is fulfilled.

poke :: Ptr a -> a -> IO ()

Write the given value to the given memory location. Alignment restrictions might apply; see
peek.

271

instance Storable Bool
instance Storable Char
instance Storable Double
instance Storable Float
instance Storable Int
instance Storable Int8
instance Storable Int16
instance Storable Int32
instance Storable Int64
instance Storable Word
instance Storable Word8
instance Storable Word16
instance Storable Word32
instance Storable Word64
instance Storable WordPtr
instance Storable IntPtr
instance Storable CChar
instance Storable CSChar
instance Storable CUChar
instance Storable CShort
instance Storable CUShort
instance Storable CInt
instance Storable CUInt
instance Storable CLong
instance Storable CULong
instance Storable CLLong
instance Storable CULLong
instance Storable CFloat
instance Storable CDouble
instance Storable CPtrdiff
instance Storable CSize
instance Storable CWchar
instance Storable CSigAtomic
instance Storable CClock
instance Storable CTime
instance Storable CIntPtr
instance Storable CUIntPtr
instance Storable CIntMax
instance Storable CUIntMax
instance Storable (StablePtr a)
instance Storable (Ptr a)
instance Storable (FunPtr a)

272 CHAPTER 37. FOREIGN.STORABLE

Chapter 38

Numeric

module Numeric (
showSigned, showIntAtBase, showInt, showHex, showOct, showEFloat,
showFFloat, showGFloat, showFloat, floatToDigits, readSigned, readInt,
readDec, readOct, readHex, readFloat, lexDigits, fromRat

) where

38.1 Showing

showSigned

:: Real a
=> (a -> ShowS) a function that can show unsigned values
-> Int the precedence of the enclosing context
-> a the value to show
-> ShowS

Converts a possibly-negative Real value to a string.

showIntAtBase :: Integral a => a -> (Int -> Char) -> a -> ShowS

Shows a non-negative Integral number using the base specified by the first argument, and the char-
acter representation specified by the second.

showInt :: Integral a => a -> ShowS

Show non-negative Integral numbers in base 10.

showHex :: Integral a => a -> ShowS

Show non-negative Integral numbers in base 16.

273

274 CHAPTER 38. NUMERIC

showOct :: Integral a => a -> ShowS

Show non-negative Integral numbers in base 8.

showEFloat :: RealFloat a => Maybe Int -> a -> ShowS

Show a signed RealFloat value using scientific (exponential) notation (e.g. 2.45e2, 1.5e-3).

In the call showEFloat digs val, if digs is Nothing, the value is shown to full precision; if digs
is Just d, then at most d digits after the decimal point are shown.

showFFloat :: RealFloat a => Maybe Int -> a -> ShowS

Show a signed RealFloat value using standard decimal notation (e.g. 245000, 0.0015).

In the call showFFloat digs val, if digs is Nothing, the value is shown to full precision; if digs
is Just d, then at most d digits after the decimal point are shown.

showGFloat :: RealFloat a => Maybe Int -> a -> ShowS

Show a signed RealFloat value using standard decimal notation for arguments whose absolute value
lies between 0.1 and 9,999,999, and scientific notation otherwise.

In the call showGFloat digs val, if digs is Nothing, the value is shown to full precision; if digs
is Just d, then at most d digits after the decimal point are shown.

showFloat :: RealFloat a => a -> ShowS

Show a signed RealFloat value to full precision using standard decimal notation for arguments whose
absolute value lies between 0.1 and 9,999,999, and scientific notation otherwise.

floatToDigits :: RealFloat a => Integer -> a -> ([Int], Int)

floatToDigits takes a base and a non-negative RealFloat number, and returns a list of digits and
an exponent. In particular, if x>=0, and

floatToDigits base x = ([d1,d2,...,dn], e)

then

1. n >= 1

2. x = 0.d1d2...dn * (base**e)

3. 0 <= di <= base-1

38.2 Reading

NB: readInt is the ’dual’ of showIntAtBase, and readDec is the ‘dual’ of showInt. The inconsistent
naming is a historical accident.

readSigned :: Real a => ReadS a -> ReadS a

Reads a signed Real value, given a reader for an unsigned value.

38.3. MISCELLANEOUS 275

readInt

:: Num a
=> a the base
-> (Char -> Bool) a predicate distinguishing valid digits in this base
-> (Char -> Int) a function converting a valid digit character to an Int

-> ReadS a

Reads an unsigned Integral value in an arbitrary base.

readDec :: Num a => ReadS a

Read an unsigned number in decimal notation.

readOct :: Num a => ReadS a

Read an unsigned number in octal notation.

readHex :: Num a => ReadS a

Read an unsigned number in hexadecimal notation. Both upper or lower case letters are allowed.

readFloat :: RealFrac a => ReadS a

Reads an unsigned RealFrac value, expressed in decimal scientific notation.

lexDigits :: ReadS String

Reads a non-empty string of decimal digits.

38.3 Miscellaneous

fromRat :: RealFloat a => Rational -> a

Converts a Rational value into any type in class RealFloat.

276 CHAPTER 38. NUMERIC

Chapter 39

System.Environment

module System.Environment (
getArgs, getProgName, getEnv

) where

getArgs :: IO [String]

Computation getArgs returns a list of the program’s command line arguments (not including the
program name).

getProgName :: IO String

Computation getProgName returns the name of the program as it was invoked.

However, this is hard-to-impossible to implement on some non-Unix OSes, so instead, for maximum
portability, we just return the leafname of the program as invoked. Even then there are some differences
between platforms: on Windows, for example, a program invoked as foo is probably really FOO.EXE,
and that is what getProgName will return.

getEnv :: String -> IO String

Computation getEnv var returns the value of the environment variable var.

This computation may fail with:

• System.IO.Error.isDoesNotExistError if the environment variable does not exist.

277

278 CHAPTER 39. SYSTEM.ENVIRONMENT

Chapter 40

System.Exit

module System.Exit (
ExitCode(ExitSuccess, ExitFailure), exitWith, exitFailure, exitSuccess

) where

data ExitCode

= ExitSuccess indicates successful termination;
| ExitFailure Int indicates program failure with an exit code. The exact interpretation of

the code is operating-system dependent. In particular, some values may be
prohibited (e.g. 0 on a POSIX-compliant system).

Defines the exit codes that a program can return.

instance Eq ExitCode
instance Ord ExitCode
instance Read ExitCode
instance Show ExitCode

exitWith :: ExitCode -> IO a

Computation exitWith code terminates the program, returning code to the program’s caller. The
caller may interpret the return code as it wishes, but the program should return ExitSuccess to mean
normal completion, and ExitFailure n to mean that the program encountered a problem from which
it could not recover. The value exitFailure is equal to exitWith (ExitFailure exitfail),
where exitfail is implementation-dependent. exitWith bypasses the error handling in the I/O
monad and cannot be intercepted by catch from the Prelude.

exitFailure :: IO a

The computation exitFailure is equivalent to exitWith (ExitFailure exitfail), where exitfail is
implementation-dependent.

279

280 CHAPTER 40. SYSTEM.EXIT

exitSuccess :: IO a

The computation exitSuccess is equivalent to exitWith ExitSuccess, It terminates the program
successfully.

Chapter 41

System.IO

module System.IO (
IO, fixIO, FilePath, Handle, stdin, stdout, stderr, withFile,
openFile, IOMode(ReadMode, WriteMode, AppendMode, ReadWriteMode), hClose,
readFile, writeFile, appendFile, hFileSize, hSetFileSize, hIsEOF,
isEOF, BufferMode(NoBuffering, LineBuffering, BlockBuffering),
hSetBuffering, hGetBuffering, hFlush, hGetPosn, hSetPosn, HandlePosn,
hSeek, SeekMode(AbsoluteSeek, RelativeSeek, SeekFromEnd), hTell,
hIsOpen, hIsClosed, hIsReadable, hIsWritable, hIsSeekable,
hIsTerminalDevice, hSetEcho, hGetEcho, hShow, hWaitForInput, hReady,
hGetChar, hGetLine, hLookAhead, hGetContents, hPutChar, hPutStr,
hPutStrLn, hPrint, interact, putChar, putStr, putStrLn, print,
getChar, getLine, getContents, readIO, readLn

) where

41.1 The IO monad

data IO a

A value of type IO a is a computation which, when performed, does some I/O before returning a value
of type a.

There is really only one way to ”perform” an I/O action: bind it to Main.main in your program. When
your program is run, the I/O will be performed. It isn’t possible to perform I/O from an arbitrary
function, unless that function is itself in the IO monad and called at some point, directly or indirectly,
from Main.main.

IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations
from the Monad class.

instance Monad IO
instance Functor IO

281

282 CHAPTER 41. SYSTEM.IO

fixIO :: (a -> IO a) -> IO a

41.2 Files and handles

type FilePath = String

File and directory names are values of type String, whose precise meaning is operating system de-
pendent. Files can be opened, yielding a handle which can then be used to operate on the contents of
that file.

data Handle

Haskell defines operations to read and write characters from and to files, represented by values of type
Handle. Each value of this type is a handle: a record used by the Haskell run-time system to manage
I/O with file system objects. A handle has at least the following properties:

• whether it manages input or output or both;

• whether it is open, closed or semi-closed;

• whether the object is seekable;

• whether buffering is disabled, or enabled on a line or block basis;

• a buffer (whose length may be zero).

Most handles will also have a current I/O position indicating where the next input or output operation
will occur. A handle is readable if it manages only input or both input and output; likewise, it is
writable if it manages only output or both input and output. A handle is open when first allocated.
Once it is closed it can no longer be used for either input or output, though an implementation cannot
re-use its storage while references remain to it. Handles are in the Show and Eq classes. The string
produced by showing a handle is system dependent; it should include enough information to identify
the handle for debugging. A handle is equal according to == only to itself; no attempt is made to
compare the internal state of different handles for equality.

instance Eq Handle
instance Show Handle

41.2.1 Standard handles

Three handles are allocated during program initialisation, and are initially open.

stdin :: Handle

A handle managing input from the Haskell program’s standard input channel.

stdout :: Handle

A handle managing output to the Haskell program’s standard output channel.

stderr :: Handle

A handle managing output to the Haskell program’s standard error channel.

41.3. OPENING AND CLOSING FILES 283

41.3 Opening and closing files

41.3.1 Opening files

withFile :: FilePath -> IOMode -> (Handle -> IO r) -> IO r

withFile name mode act opens a file using openFile and passes the resulting handle to the com-
putation act. The handle will be closed on exit from withFile, whether by normal termination or
by raising an exception. If closing the handle raises an exception, then this exception will be raised by
withFile rather than any exception raised by act.

openFile :: FilePath -> IOMode -> IO Handle

Computation openFile file mode allocates and returns a new, open handle to manage the file file.
It manages input if mode is ReadMode, output if mode is WriteMode or AppendMode, and both input
and output if mode is ReadWriteMode.

If the file does not exist and it is opened for output, it should be created as a new file. If mode is
WriteMode and the file already exists, then it should be truncated to zero length. Some operating
systems delete empty files, so there is no guarantee that the file will exist following an openFile with
mode WriteMode unless it is subsequently written to successfully. The handle is positioned at the end
of the file if mode is AppendMode, and otherwise at the beginning (in which case its internal position
is 0). The initial buffer mode is implementation-dependent.

This operation may fail with:

• isAlreadyInUseError if the file is already open and cannot be reopened;
• isDoesNotExistError if the file does not exist; or
• isPermissionError if the user does not have permission to open the file.

data IOMode

= ReadMode
| WriteMode
| AppendMode
| ReadWriteMode

See System.IO.openFile

instance Enum IOMode
instance Eq IOMode
instance Ord IOMode
instance Read IOMode
instance Show IOMode
instance Ix IOMode

41.3.2 Closing files

hClose :: Handle -> IO ()

Computation hClose hdl makes handle hdl closed. Before the computation finishes, if hdl is
writable its buffer is flushed as for hFlush. Performing hClose on a handle that has already been
closed has no effect; doing so is not an error. All other operations on a closed handle will fail. If
hClose fails for any reason, any further operations (apart from hClose) on the handle will still fail as
if hdl had been successfully closed.

284 CHAPTER 41. SYSTEM.IO

41.3.3 Special cases

These functions are also exported by the Prelude.

readFile :: FilePath -> IO String

The readFile function reads a file and returns the contents of the file as a string. The file is read
lazily, on demand, as with getContents.

writeFile :: FilePath -> String -> IO ()

The computation writeFile file str function writes the string str, to the file file.

appendFile :: FilePath -> String -> IO ()

The computation appendFile file str function appends the string str, to the file file.

Note that writeFile and appendFile write a literal string to a file. To write a value of any printable
type, as with print, use the show function to convert the value to a string first.

main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])

41.3.4 File locking

Implementations should enforce as far as possible, at least locally to the Haskell process, multiple-reader
single-writer locking on files. That is, there may either be many handles on the same file which manage
input, or just one handle on the file which manages output. If any open or semi-closed handle is managing a
file for output, no new handle can be allocated for that file. If any open or semi-closed handle is managing
a file for input, new handles can only be allocated if they do not manage output. Whether two files are the
same is implementation-dependent, but they should normally be the same if they have the same absolute path
name and neither has been renamed, for example.

Warning: the readFile operation holds a semi-closed handle on the file until the entire contents of the file
have been consumed. It follows that an attempt to write to a file (using writeFile, for example) that was ear-
lier opened by readFile will usually result in failure with System.IO.Error.isAlreadyInUseError.

41.4 Operations on handles

41.4.1 Determining and changing the size of a file

hFileSize :: Handle -> IO Integer

For a handle hdl which attached to a physical file, hFileSize hdl returns the size of that file in 8-bit
bytes.

hSetFileSize :: Handle -> Integer -> IO ()

hSetFileSize hdl size truncates the physical file with handle hdl to size bytes.

41.4. OPERATIONS ON HANDLES 285

41.4.2 Detecting the end of input

hIsEOF :: Handle -> IO Bool

For a readable handle hdl, hIsEOF hdl returns True if no further input can be taken from hdl or for
a physical file, if the current I/O position is equal to the length of the file. Otherwise, it returns False.

NOTE: hIsEOF may block, because it has to attempt to read from the stream to determine whether
there is any more data to be read.

isEOF :: IO Bool

The computation isEOF is identical to hIsEOF, except that it works only on stdin.

41.4.3 Buffering operations

data BufferMode

= NoBuffering buffering is disabled if possible.
| LineBuffering line-buffering should be enabled if possible.
| BlockBuffering (Maybe Int) block-buffering should be enabled if possible. The size of

the buffer is n items if the argument is Just n and is other-
wise implementation-dependent.

Three kinds of buffering are supported: line-buffering, block-buffering or no-buffering. These modes
have the following effects. For output, items are written out, or flushed, from the internal buffer ac-
cording to the buffer mode:

• line-buffering: the entire output buffer is flushed whenever a newline is output, the buffer over-
flows, a System.IO.hFlush is issued, or the handle is closed.

• block-buffering: the entire buffer is written out whenever it overflows, a System.IO.hFlush is
issued, or the handle is closed.

• no-buffering: output is written immediately, and never stored in the buffer.

An implementation is free to flush the buffer more frequently, but not less frequently, than specified
above. The output buffer is emptied as soon as it has been written out.

Similarly, input occurs according to the buffer mode for the handle:

• line-buffering: when the buffer for the handle is not empty, the next item is obtained from the
buffer; otherwise, when the buffer is empty, characters up to and including the next newline char-
acter are read into the buffer. No characters are available until the newline character is available
or the buffer is full.

• block-buffering: when the buffer for the handle becomes empty, the next block of data is read into
the buffer.

• no-buffering: the next input item is read and returned. The System.IO.hLookAhead operation
implies that even a no-buffered handle may require a one-character buffer.

The default buffering mode when a handle is opened is implementation-dependent and may depend on
the file system object which is attached to that handle. For most implementations, physical files will
normally be block-buffered and terminals will normally be line-buffered.

286 CHAPTER 41. SYSTEM.IO

instance Eq BufferMode
instance Ord BufferMode
instance Read BufferMode
instance Show BufferMode

hSetBuffering :: Handle -> BufferMode -> IO ()

Computation hSetBuffering hdl mode sets the mode of buffering for handle hdl on subsequent
reads and writes.

If the buffer mode is changed from BlockBuffering or LineBuffering to NoBuffering, then

• if hdl is writable, the buffer is flushed as for hFlush;

• if hdl is not writable, the contents of the buffer is discarded.

This operation may fail with:

• isPermissionError if the handle has already been used for reading or writing and the imple-
mentation does not allow the buffering mode to be changed.

hGetBuffering :: Handle -> IO BufferMode

Computation hGetBuffering hdl returns the current buffering mode for hdl.

hFlush :: Handle -> IO ()

The action hFlush hdl causes any items buffered for output in handle hdl to be sent immediately to
the operating system.

This operation may fail with:

• isFullError if the device is full;

• isPermissionError if a system resource limit would be exceeded. It is unspecified whether
the characters in the buffer are discarded or retained under these circumstances.

41.4.4 Repositioning handles

hGetPosn :: Handle -> IO HandlePosn

Computation hGetPosn hdl returns the current I/O position of hdl as a value of the abstract type
HandlePosn.

hSetPosn :: HandlePosn -> IO ()

If a call to hGetPosn hdl returns a position p, then computation hSetPosn p sets the position of hdl
to the position it held at the time of the call to hGetPosn.

This operation may fail with:

• isPermissionError if a system resource limit would be exceeded.

data HandlePosn

41.4. OPERATIONS ON HANDLES 287

instance Eq HandlePosn
instance Show HandlePosn

hSeek :: Handle -> SeekMode -> Integer -> IO ()

Computation hSeek hdl mode i sets the position of handle hdl depending on mode. The offset i is
given in terms of 8-bit bytes.

If hdl is block- or line-buffered, then seeking to a position which is not in the current buffer will first
cause any items in the output buffer to be written to the device, and then cause the input buffer to be
discarded. Some handles may not be seekable (see hIsSeekable), or only support a subset of the
possible positioning operations (for instance, it may only be possible to seek to the end of a tape, or to
a positive offset from the beginning or current position). It is not possible to set a negative I/O position,
or for a physical file, an I/O position beyond the current end-of-file.

This operation may fail with:

• isIllegalOperationError if the Handle is not seekable, or does not support the requested
seek mode.

• isPermissionError if a system resource limit would be exceeded.

data SeekMode

= AbsoluteSeek the position of hdl is set to i.
| RelativeSeek the position of hdl is set to offset i from the current position.
| SeekFromEnd the position of hdl is set to offset i from the end of the file.

A mode that determines the effect of hSeek hdl mode i.

instance Enum SeekMode
instance Eq SeekMode
instance Ord SeekMode
instance Read SeekMode
instance Show SeekMode
instance Ix SeekMode

hTell :: Handle -> IO Integer

Computation hTell hdl returns the current position of the handle hdl, as the number of bytes from
the beginning of the file. The value returned may be subsequently passed to hSeek to reposition the
handle to the current position.

This operation may fail with:

• isIllegalOperationError if the Handle is not seekable.

41.4.5 Handle properties

Each of these operations returns True if the handle has the the specified property, or False otherwise.

hIsOpen :: Handle -> IO Bool

hIsClosed :: Handle -> IO Bool

288 CHAPTER 41. SYSTEM.IO

hIsReadable :: Handle -> IO Bool

hIsWritable :: Handle -> IO Bool

hIsSeekable :: Handle -> IO Bool

41.4.6 Terminal operations

hIsTerminalDevice :: Handle -> IO Bool

Is the handle connected to a terminal?

hSetEcho :: Handle -> Bool -> IO ()

Set the echoing status of a handle connected to a terminal.

hGetEcho :: Handle -> IO Bool

Get the echoing status of a handle connected to a terminal.

41.4.7 Showing handle state

hShow :: Handle -> IO String

hShow is in the IO monad, and gives more comprehensive output than the (pure) instance of Show for
Handle.

41.5 Text input and output

41.5.1 Text input

hWaitForInput :: Handle -> Int -> IO Bool

Computation hWaitForInput hdl t waits until input is available on handle hdl. It returns True as
soon as input is available on hdl, or False if no input is available within t milliseconds. Note that
hWaitForInput waits until one or more full characters are available, which means that it needs to do
decoding, and hence may fail with a decoding error.

If t is less than zero, then hWaitForInput waits indefinitely.

This operation may fail with:

• isEOFError if the end of file has been reached.

• a decoding error, if the input begins with an invalid byte sequence in this Handle’s encoding.

hReady :: Handle -> IO Bool

Computation hReady hdl indicates whether at least one item is available for input from handle hdl.

This operation may fail with:

41.5. TEXT INPUT AND OUTPUT 289

• System.IO.Error.isEOFError if the end of file has been reached.

hGetChar :: Handle -> IO Char

Computation hGetChar hdl reads a character from the file or channel managed by hdl, blocking until
a character is available.

This operation may fail with:

• isEOFError if the end of file has been reached.

hGetLine :: Handle -> IO String

Computation hGetLine hdl reads a line from the file or channel managed by hdl.

This operation may fail with:

• isEOFError if the end of file is encountered when reading the first character of the line.

If hGetLine encounters end-of-file at any other point while reading in a line, it is treated as a line
terminator and the (partial) line is returned.

hLookAhead :: Handle -> IO Char

Computation hLookAhead returns the next character from the handle without removing it from the
input buffer, blocking until a character is available.

This operation may fail with:

• isEOFError if the end of file has been reached.

hGetContents :: Handle -> IO String

Computation hGetContents hdl returns the list of characters corresponding to the unread portion of
the channel or file managed by hdl, which is put into an intermediate state, semi-closed. In this state,
hdl is effectively closed, but items are read from hdl on demand and accumulated in a special list
returned by hGetContents hdl.

Any operation that fails because a handle is closed, also fails if a handle is semi-closed. The only
exception is hClose. A semi-closed handle becomes closed:

• if hClose is applied to it;

• if an I/O error occurs when reading an item from the handle;

• or once the entire contents of the handle has been read.

Once a semi-closed handle becomes closed, the contents of the associated list becomes fixed. The
contents of this final list is only partially specified: it will contain at least all the items of the stream
that were evaluated prior to the handle becoming closed.

Any I/O errors encountered while a handle is semi-closed are simply discarded.

This operation may fail with:

• isEOFError if the end of file has been reached.

290 CHAPTER 41. SYSTEM.IO

41.5.2 Text output

hPutChar :: Handle -> Char -> IO ()

Computation hPutChar hdl ch writes the character ch to the file or channel managed by hdl. Char-
acters may be buffered if buffering is enabled for hdl.

This operation may fail with:

• isFullError if the device is full; or

• isPermissionError if another system resource limit would be exceeded.

hPutStr :: Handle -> String -> IO ()

Computation hPutStr hdl s writes the string s to the file or channel managed by hdl.

This operation may fail with:

• isFullError if the device is full; or

• isPermissionError if another system resource limit would be exceeded.

hPutStrLn :: Handle -> String -> IO ()

The same as hPutStr, but adds a newline character.

hPrint :: Show a => Handle -> a -> IO ()

Computation hPrint hdl t writes the string representation of t given by the shows function to the
file or channel managed by hdl and appends a newline.

This operation may fail with:

• System.IO.Error.isFullError if the device is full; or

• System.IO.Error.isPermissionError if another system resource limit would be exceeded.

41.5.3 Special cases for standard input and output

These functions are also exported by the Prelude.

interact :: (String -> String) -> IO ()

The interact function takes a function of type String->String as its argument. The entire input
from the standard input device is passed to this function as its argument, and the resulting string is
output on the standard output device.

putChar :: Char -> IO ()

Write a character to the standard output device (same as hPutChar stdout).

putStr :: String -> IO ()

Write a string to the standard output device (same as hPutStr stdout).

41.5. TEXT INPUT AND OUTPUT 291

putStrLn :: String -> IO ()

The same as putStr, but adds a newline character.

print :: Show a => a -> IO ()

The print function outputs a value of any printable type to the standard output device. Printable types
are those that are instances of class Show; print converts values to strings for output using the show
operation and adds a newline.

For example, a program to print the first 20 integers and their powers of 2 could be written as:

main = print ([(n, 2ˆn) | n <- [0..19]])

getChar :: IO Char

Read a character from the standard input device (same as hGetChar stdin).

getLine :: IO String

Read a line from the standard input device (same as hGetLine stdin).

getContents :: IO String

The getContents operation returns all user input as a single string, which is read lazily as it is needed
(same as hGetContents stdin).

readIO :: Read a => String -> IO a

The readIO function is similar to read except that it signals parse failure to the IO monad instead of
terminating the program.

readLn :: Read a => IO a

The readLn function combines getLine and readIO.

292 CHAPTER 41. SYSTEM.IO

Chapter 42

System.IO.Error

module System.IO.Error (
IOError, userError, mkIOError, annotateIOError, isAlreadyExistsError,
isDoesNotExistError, isAlreadyInUseError, isFullError, isEOFError,
isIllegalOperation, isPermissionError, isUserError, ioeGetErrorString,
ioeGetHandle, ioeGetFileName, IOErrorType, alreadyExistsErrorType,
doesNotExistErrorType, alreadyInUseErrorType, fullErrorType,
eofErrorType, illegalOperationErrorType, permissionErrorType,
userErrorType, ioError, catch, try

) where

42.1 I/O errors

type IOError = IOError

Errors of type IOError are used by the IO monad. This is an abstract type; the module
System.IO.Error provides functions to interrogate and construct values of type IOError.

userError :: String -> IOError

Construct an IOError value with a string describing the error. The fail method of the IO instance of
the Monad class raises a userError, thus:

instance Monad IO where
...
fail s = ioError (userError s)

mkIOError :: IOErrorType
-> String -> Maybe Handle -> Maybe FilePath -> IOError

Construct an IOError of the given type where the second argument describes the error location and
the third and fourth argument contain the file handle and file path of the file involved in the error if
applicable.

293

294 CHAPTER 42. SYSTEM.IO.ERROR

annotateIOError :: IOError
-> String -> Maybe Handle -> Maybe FilePath -> IOError

Adds a location description and maybe a file path and file handle to an IOError. If any of the file
handle or file path is not given the corresponding value in the IOError remains unaltered.

42.1.1 Classifying I/O errors

isAlreadyExistsError :: IOError -> Bool

An error indicating that an IO operation failed because one of its arguments already exists.

isDoesNotExistError :: IOError -> Bool

An error indicating that an IO operation failed because one of its arguments does not exist.

isAlreadyInUseError :: IOError -> Bool

An error indicating that an IO operation failed because one of its arguments is a single-use resource,
which is already being used (for example, opening the same file twice for writing might give this error).

isFullError :: IOError -> Bool

An error indicating that an IO operation failed because the device is full.

isEOFError :: IOError -> Bool

An error indicating that an IO operation failed because the end of file has been reached.

isIllegalOperation :: IOError -> Bool

An error indicating that an IO operation failed because the operation was not possible. Any computa-
tion which returns an IO result may fail with isIllegalOperation. In some cases, an implemen-
tation will not be able to distinguish between the possible error causes. In this case it should fail with
isIllegalOperation.

isPermissionError :: IOError -> Bool

An error indicating that an IO operation failed because the user does not have sufficient operating
system privilege to perform that operation.

isUserError :: IOError -> Bool

A programmer-defined error value constructed using userError.

42.1.2 Attributes of I/O errors

ioeGetErrorString :: IOError -> String

ioeGetHandle :: IOError -> Maybe Handle

ioeGetFileName :: IOError -> Maybe FilePath

42.2. TYPES OF I/O ERROR 295

42.2 Types of I/O error

data IOErrorType

An abstract type that contains a value for each variant of IOError.

instance Eq IOErrorType
instance Show IOErrorType

alreadyExistsErrorType :: IOErrorType

I/O error where the operation failed because one of its arguments already exists.

doesNotExistErrorType :: IOErrorType

I/O error where the operation failed because one of its arguments does not exist.

alreadyInUseErrorType :: IOErrorType

I/O error where the operation failed because one of its arguments is a single-use resource, which is
already being used.

fullErrorType :: IOErrorType

I/O error where the operation failed because the device is full.

eofErrorType :: IOErrorType

I/O error where the operation failed because the end of file has been reached.

illegalOperationErrorType :: IOErrorType

I/O error where the operation is not possible.

permissionErrorType :: IOErrorType

I/O error where the operation failed because the user does not have sufficient operating system privilege
to perform that operation.

userErrorType :: IOErrorType

I/O error that is programmer-defined.

42.3 Throwing and catching I/O errors

ioError :: IOError -> IO a

Raise an IOError in the IO monad.

296 CHAPTER 42. SYSTEM.IO.ERROR

catch :: IO a -> (IOError -> IO a) -> IO a

The catch function establishes a handler that receives any IOError raised in the action protected by
catch. An IOError is caught by the most recent handler established by catch. These handlers are
not selective: all IOErrors are caught. Exception propagation must be explicitly provided in a handler
by re-raising any unwanted exceptions. For example, in

f = catch g (\e -> if IO.isEOFError e then return [] else ioError e)

the function f returns [] when an end-of-file exception (cf. isEOFError) occurs in g; otherwise, the
exception is propagated to the next outer handler.

When an exception propagates outside the main program, the Haskell system prints the associated
IOError value and exits the program.

try :: IO a -> IO (Either IOError a)

The construct try comp exposes IO errors which occur within a computation, and which are not fully
handled.

Bibliography

[1] J. Backus. Can programming be liberated from the von Neumann style? A functional style and its
algebra of programs. CACM, 21(8):613–641, August 1978.

[2] Unicode Consortium. Unicode standard. http://unicode.org/standard/standard.html.

[3] H.K. Curry and R. Feys. Combinatory Logic. North-Holland Pub. Co., Amsterdam, 1958.

[4] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Conference Record
of the 9th Annual ACM Symposium on Principles of Programming Languages, pages 207–12, New
York, 1982. ACM Press.

[5] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. The Java Series. Addison-
Wesley, 1997.

[6] R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of the American
Mathematical Society, 146:29–60, December 1969.

[7] International Standard ISO/IEC. Programming languages – C. 9899:1999 (E).

[8] MP Jones. A system of constructor classes: overloading and implicit higher-order polymorphism.
Journal of Functional Programming, 5(1):1–36, January 1995.

[9] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall, second
edition, 1988.

[10] Sheng Liang. The Java Native Interface: Programmer’s Guide and Specification. Addison Wesley,
1999.

[11] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1996.

[12] P. Penfield, Jr. Principal values and branch cuts in complex APL. In APL ’81 Conference Proceedings,
pages 248–256, San Francisco, September 1981.

[13] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Proceedings of 16th ACM
Symposium on Principles of Programming Languages, pages 60–76, Austin, Texas, January 1989.

297

http://unicode.org/standard/standard.html

298 BIBLIOGRAPHY

Index
Index entries that refer to nonterminals in the Haskell syntax are shown in an italic font. Code entities are
shown in typewriter font. Ordinary index entries are shown in a roman font.

!, 42
!!, 51, 117, 118
$, 51, 75, 107, 112
$!, 75, 107, 112
&&, 51, 73, 107, 112
(,), 74
(,,), 74
(), see trivial type and unit expression
*, 51, 82, 83, 106
**, 51, 83, 84, 106
+, 51, 82, 83, 106, see also n+k pattern
++, 51, 117
-, 51, 82, 83, 106, see also negation
., 51, 74, 106, 112
.&., 167
/, 51, 82, 83, 106
/=, 51, 77, 107, 146
:, 51, 74
::, 28
<, 51, 77, 107, 146
<=, 51, 77, 107, 146
=<<, 81, 107, 111
==, 198, 202, 282
==, 51, 77, 107, 146
>, 51, 77, 107, 146
>=, 51, 77, 107, 146
>>, 51, 80, 89, 107
>>=, 156, 158
>>=, 51, 80, 89, 107
@, see as-pattern
[] (nil), 74
\, see lambda abstraction
\&, 12
\a, 12
\b, 12
\f, 12
\n, 12
\r, 12
\t, 12
\v, 12
⊥, 16
ˆ, 51, 84, 106, 111
ˆˆ, 51, 84, 106, 111
_, see wildcard pattern

\\, 201
%, 209
˜, see irrefutable pattern

abbreviated module, 62
abs, 83, 84
abstract datatype, 41, 71
accum, 163
accumArray, 162, 163
acos, 83
acosh, 83
addForeignPtrFinalizer, 246
addForeignPtrFinalizerEnv, 246
aexp, 16, 20–22, 139
algebraic datatype, 40, 63, 145
alignment, 269, 270
alignPtr, 264
all, 192
all, 121
alloca, 251, 261
allocaArray, 256
allocaBytes, 251
alt, 23, 140
alts, 23, 140
ambiguous type, 48, 57
and, 192
and, 121
ANY, 8, 130
any, 192
any, 8, 130
any, 121
ANYseq, 8, 130
ap, 160
apat, 28, 140
appendFile, 284
appendFile, 89, 128
AppendMode, 283
application, 18

function, see function application
operator, see operator application

approxRational, 210
approxRational, 84, 85
arithmetic operator, 82
arithmetic sequence, 21, 74

299

300 INDEX

Array, 163
array, 162, 163
as-pattern (@), 29, 30
ascDigit, 8, 130
ascii, 12, 131
ASCII character set, 7
ascLarge, 8, 130
ascSmall, 8, 130
ascSymbol, 8, 130
asin, 83
asinh, 83
asTypeOf, 116
atan, 83
atan2, 84, 85
atanh, 83
atype, 37, 138

basic input/output, 87
binding, 35

function, see function binding
pattern, see pattern binding
simple pattern, see simple pattern binding

Bits, 167
bitSize, 167, 168
BlockBuffering, 286
body, 62, 137
Bool, 262, 264
Bool (datatype), 73, 112
boolean, 73
boolean guard, 22, 24
bottom, 4, 16
Bounded, 235, 236
Bounded (class), 81

derived instance, 47, 147
bounds, 162
break, 196
break, 120
btype, 37, 138

case expression, 23
castPtr, 264
castPtrToStablePtr, 268
castStablePtrToPtr, 268
catch, 279, 296
catch, 90, 127
catMaybes, 206
cdecl, 36, 44, 137
cdecls, 36, 44, 137
ceiling, 84, 85
Char, 172, 175, 264
Char (datatype), 73, 113

char, 12, 131
character, 73

literal syntax, 11
character set

ASCII, see ASCII character set
transparent, see transparent character set

charesc, 12, 131
class, 36, 44
class, 39, 138
class assertion, 39
class declaration, 44, 63

with an empty where part, 45
class environment, 40
class method, 36, 37, 45, 46
closecom, 8, 130
closure, 69
cname, 65, 137
cntrl, 12, 131
coercion, 85
comment, 9

end-of-line, 9
nested, 9

comment, 8, 130
compare, 77, 146
complement, 167
con, 17, 140
concat, 158
concat, 117
concatMap, 117
conditional expression, 19
conid, 9, 10, 131
conop, 17, 141
const, 74, 112
constr, 41, 138
constrs, 41, 138
constructor class, 36
constructor expression, 37
consym, 10, 131
context, 39
context, 39, 138
context reduction, 55
cos, 83
cosh, 83
cosine, 85
CString, 230
curry, 74, 116
Curry, Haskell B., iii
CWchar, 232
cycle, 194
cycle, 119

INDEX 301

dashes, 8, 130
Data (module), 123
data constructor, 41
data declaration, 25, 41
datatype, 40

abstract, see abstract datatype
algebraic, see algebraic datatype
declaration, see data declaration
recursive, see recursive datatype
renaming, see newtype declaration

dclass, 41, 138
decimal, 11, 131
decl, 36, 52, 137
declaration, 35

class, see class declaration
datatype, see data declaration
default, see default declaration
fixity, see fixity declaration
import, see import declaration
instance, see instance declaration
within a class declaration, 44
within a let expression, 22
within an instance declaration, 46

decls, 36, 137
decodeFloat, 84, 85
default class method, 45, 46, 149
default declaration, 48
delete, 201, 202
deleteBy, 201, 202
deleteFirstsBy, 201, 202
deRefStablePtr, 267, 268
derived instance, 47, 145, see also instance decla-

ration
deriving, 41, 138
digit, 8, 130
div, 51, 82, 83, 106
divMod, 83
do expression, 25, 89
Double, 242, 264
Double (datatype), 82, 84, 115
drop, 195, 203
drop, 120
dropWhile, 195
dropWhile, 120

eAGAIN, 227
eINTR, 226
Either (datatype), 75, 113
either, 75, 113
elem, 197
elem, 51, 117, 121

elemIndex, 198
elemIndices, 198
encodeFloat, 84, 85
entity, 61
Enum, 181, 213, 236, 242
Enum (class), 48, 79

derived instance, 47, 146
enumFrom, 79
enumFromThen, 79
enumFromThenTo, 79
enumFromTo, 79
environment

class, see class environment
type, see type environment

eOK, 225
EQ, 75
Eq, 225, 236, 242, 282
Eq (class), 77, 81

derived instance, 47, 146
Errno, 222, 225
error, 4, 16
error, 205
error, 16, 116
escape, 12, 131
even, 83, 110
eWOULDBLOCK, 227
exception handling, 90
ExitFailure, 279
exitFailure, 279
ExitSuccess, 279, 280
exitSuccess, 280
exitWith, 279, 280
exp, 16, 18, 19, 22, 23, 25, 28, 139
exp, 83, 84
expent, 139
exponent, 84, 85
exponentiation, 84
export, 63, 137
export list, 63
exports, 63, 137
expression, 4, 15

case, see case expression
conditional, see conditional expression
let, see let expression
simple case, see simple case expression
type, see type expression
unit, see unit expression

expression type-signature, 28, 48

fail, 293
fail, 80, 90

302 INDEX

False, 159, 192, 197, 285, 287, 288
False, 73
fatype, 139
fbind, 26, 140
fdecl, 36, 138
fexp, 16, 18, 139
field label, see label, 41

construction, 26
selection, 26
update, 27

fielddecl, 41, 138
FilePath (type synonym), 89, 127
filter, 158, 197
filter, 117
finalizerFree, 252
find, 197
findIndex, 198
findIndices, 198
fixity, 17
fixity, 36, 50, 138
resolution, 142
fixity declaration, 45, 46, 50
flip, 74, 112
Float, 242, 264
Float (datatype), 82, 84, 114
float, 11
floatDigits, 84, 85
Floating, 236, 242
Floating (class), 81, 83
floating literal pattern, 30
floatRadix, 84, 85
floatRange, 84, 85
floatToDigits, 274
floor, 84, 85
fmap, 163
fmap, 80
foldl, 159, 191, 193
foldl, 118
foldl1, 191
foldl1, 118
foldM, 159
foldr, 191, 193, 194
foldr, 119
foldr1, 191
foldr1, 119
ForeignPtr, 245–247
forM, 157
formal semantics, 3
formfeed, 8, 130
forM_, 157
fpat, 28, 140

fpats, 28
Fractional, 236, 242
Fractional (class), 17, 81, 83
free, 251–253
freeStablePtr, 267, 268
fromEnum, 79
fromInteger, 17, 82, 83
fromIntegral, 181, 213
fromIntegral, 84, 86, 111
fromJust, 206
fromMaybe, 206
fromRational, 17, 82, 83
frtype, 139
fst, 74, 116
ftype, 139
function, 74
function binding, 51, 52
function type, 38
functional language, iii
Functor, 155, 156, 163
Functor (class), 80
functor, 80
funlhs, 139
FunPtr, 264, 265

gap, 12, 131
gcd, 83, 84, 110
gcon, 17, 140
gconsym, 17, 141
gdpat, 23, 140
gdrhs, 52, 139
gendecl, 36, 44, 50, 138
generalization preorder, 40
generator, 22
genericDrop, 203
genericIndex, 203
genericLength, 203
genericReplicate, 204
genericSplitAt, 203
genericTake, 203
getArgs, 277
getChar, 88, 127
getContents, 284, 291
getContents, 88, 128
getEnv, 277
getErrno, 226, 227
getLine, 291
getLine, 88, 127
getProgName, 277
graphic, 8, 130
group, 196, 202

INDEX 303

groupBy, 196, 202
GT, 75
gtycon, 37, 46, 138
guard, 23
guard, 23, 52, 139
guards, 23, 31
guards, 23, 52, 139

Handle, 288
HandlePosn, 286
Haskell, iii, 3
Haskell kernel, 4
hClose, 283
head, 117
hexadecimal, 11, 131
hexit, 8, 130
hFileSize, 284
hFlush, 283, 286
hGetBuffering, 286
hGetChar, 289, 291
hGetContents, 289, 291
hGetLine, 289, 291
hGetPosn, 286
hiding, 65
Hindley-Milner type system, 4, 36, 54
hIsEOF, 285
hIsSeekable, 287
hLookAhead, 289
hPrint, 290
hPutChar, 290
hPutStr, 290
hReady, 288
hSeek, 287
hSetBuffering, 286
hSetFileSize, 284
hSetPosn, 286
hShow, 288
hTell, 287
hWaitForInput, 288

id, 74, 112
idecl, 36, 46, 137
idecls, 36, 46, 137
identifier, 9
if-then-else expression, see conditional expression
impdecl, 65, 137
impdecls, 62, 137
impent, 139
import, 65, 137
import declaration, 64
impspec, 65, 137

index, 185
infixexp, 16, 19, 139
init, 118
inits, 196
inlining, 151
inRange, 185
insert, 202, 203
insertBy, 202
inst, 46, 138
instance declaration, 45, 46, see also derived in-

stance
importing and exporting, 67
with an empty where part, 45

Int, 172, 175, 181, 190, 203, 213, 264, 275
Int (datatype), 82, 84, 114
Int16, 181, 269
Int32, 181, 269
Int64, 181, 269
Int8, 181, 269
Integer, 168, 209
Integer (datatype), 84, 114
integer, 11
integer literal pattern, 30
Integral, 203, 204, 209, 236, 273–275
Integral (class), 81, 83
interact, 290
interact, 88, 128
intercalate, 190
intersect, 201, 202
intersectBy, 201, 202
intersperse, 190
IO, 158, 226, 227, 246, 259, 281, 288, 291, 293–

295
IO (datatype), 75, 114
IOError, 225–227, 293–296
IOError (datatype), 75, 127
ioError, 90, 127
irrefutable pattern, 23, 30, 31, 53
isAscii, 174
isDigit, 173
isEOF, 285
isEOFError, 289, 296
isFullError, 290
isHexDigit, 175
isIllegalOperation, 294
isInfixOf, 197
isJust, 206
isLower, 174
isNothing, 206
isPermissionError, 290
isPrefixOf, 197

304 INDEX

isSigned, 167
isSuffixOf, 197
isUpper, 174
iterate, 193
iterate, 119
Ix, 161, 185
ixmap, 163

join, 158
Just, 194, 196, 205, 206, 285
Just, 75

kind, 37, 38, 41, 42, 46, 58
kind inference, 38, 41, 42, 46, 58

label, 25
lambda abstraction, 18
large, 8, 130
last, 118
layout, 12, 131, see also off-side rule
lcm, 83, 84, 111
Left, 75
length, 190, 203
length, 118
let expression, 22

in do expressions, 25
in list comprehensions, 21

lex, 78, 124
lexeme, 8, 130
lexical structure, 7
lexp, 16, 139
libraries, 70
liftM, 160
liftM2, 160
linear pattern, 18, 28, 52
linearity, 18, 28, 52
LineBuffering, 286
lines, 200
lines, 120
list, 20, 38, 74
list comprehension, 21, 74
list type, 38
listToMaybe, 206
literal, 8, 130
literal pattern, 30
literate comments, 135
log, 83, 84
logarithm, 84
logBase, 83, 84
lookup, 197
lookup, 121
lpat, 28, 140

LT, 75

magnitude, 84
Main (module), 61
main, 61
malloc, 252, 253, 261
mallocArray, 255
mallocArray0, 255
mallocBytes, 252, 253
mallocForeignPtr, 247, 248
map, 190, 193, 206
map, 117
mapAccumL, 193
mapAccumR, 193
mapAndUnzipM, 158
mapM, 157
mapM, 81, 111
mapMaybe, 206
mapM_, 157
mapM_, 81, 111
max, 77, 146
maxBound, 235
maxBound, 81, 147
maximal munch rule, 9, 12, 129
maximum, 192
maximum, 121
maximumBy, 192, 203
Maybe, 205, 206, 262
Maybe (datatype), 75, 113
maybe, 205
maybe, 75, 113
maybeToList, 206
method, see class method
min, 77, 146
minBound, 235
minBound, 81, 147
minimum, 192
minimum, 121
minimumBy, 192, 203
mod, 51, 82, 83, 106
modid, 10, 62, 131, 137
module, 61
module, 62, 137
Monad, 155, 156, 293
Monad (class), 25, 80
monad, 25, 80, 87
MonadPlus, 155
monomorphic type variable, 31, 56
monomorphism restriction, 56
mplus, 156
mzero, 159

INDEX 305

name
qualified, see qualified name
special, see special name

namespaces, 4, 10
ncomment, 8, 130
negate, 18, 82, 83
negation, 16, 18, 19
newconstr, 43, 138
newForeignPtr, 246
newForeignPtrEnv, 246
newline, 8, 130
newtype declaration, 29–31, 43
NoBuffering, 286
not, 73, 112
notElem, 197
notElem, 51, 117, 121
Nothing, 194, 196–198, 205, 206, 262, 274
Nothing, 75
nub, 201, 202
nubBy, 201, 202
null, 118
nullFunPtr, 265
nullPtr, 226, 227, 252, 262, 264
Num, 203, 236, 242
Num (class), 17, 48, 81, 83
number, 81

literal syntax, 11
translation of literals, 17

Numeric (module), 123
numeric type, 82
numericEnumFrom, 115

octal, 11, 131
octit, 8, 130
odd, 83, 110
off-side rule, 12, see also layout
op, 17, 50, 141
opencom, 8, 130
openFile, 283
operator, 9, 10, 18
operator application, 18
ops, 36, 50, 138
or, 192
or, 121
Ord, 236, 242
Ord (class), 77, 81

derived instance, 47, 146
Ordering (datatype), 75, 114
otherwise, 73, 112
overloaded functions, 36
overloaded pattern, see pattern-matching

overloading, 44
defaults, 48

partition, 198
pat, 28, 52, 140
pattern, 23, 28

@, see as-pattern
_, see wildcard pattern
constructed, see constructed pattern
floating, see floating literal pattern
integer, see integer literal pattern
irrefutable, see irrefutable pattern
linear, see linear pattern
n+k , see n+k pattern
refutable, see refutable pattern

pattern binding, 51, 53
pattern guard, 24
Pattern Guards, 23
pattern-matching, 28

overloaded constant, 31
peek, 269, 270
peekByteOff, 269
peekElemOff, 269
permutations, 191
pi, 83
poke, 261, 269
pokeByteOff, 269
pokeElemOff, 269
polar, 178
polymorphic recursion, 50
polymorphism, 4
pragmas, 151
precedence, 41, see also fixity
Prelude

implicit import of, 70
Prelude (module), 70, 106
PreludeBuiltin (module), 106, 127
PreludeIO (module), 127
PreludeList (module), 117
PreludeText (module), 123
principal type, 40, 50
print, 284, 291
print, 88, 127
product, 192
product, 121
program, 8, 130
program structure, 3
properFraction, 84, 85
Ptr, 245, 246, 264, 265, 269
putChar, 88, 127
putStr, 291

306 INDEX

putStr, 88, 127
putStrLn, 88, 127

qcon, 17, 140
qconid, 11, 131
qconop, 17, 141
qconsym, 11, 131
qop, 17–19, 141
qtycls, 11, 131
qtycon, 11, 131
qual, 22, 140
qualified name, 10, 65, 67
qualifier, 22
quantification, 39
quot, 82, 83, 106
quotRem, 83
qvar, 17, 140
qvarid, 11, 131
qvarop, 17, 141
qvarsym, 11, 131

range, 185
Rational, 275
Read, 236, 242
Read (class), 77

derived instance, 47, 147
read, 291
read, 78, 124
readDec, 274
readFile, 284
readFile, 89, 128
readInt, 274
readIO, 291
readIO, 88
readList, 77, 147
readLn, 291
readLn, 88, 128
ReadMode, 283
readParen, 124
ReadS (type synonym), 77, 123
reads, 78, 124
readsPrec, 77, 147
ReadWriteMode, 283
Real, 236, 242, 273, 274
Real (class), 81, 83
RealFloat, 236, 242, 274, 275
RealFloat (class), 84, 85
RealFrac, 236, 242, 275
RealFrac (class), 84
realloc, 251–253
reallocBytes, 251–253

realToFrac, 84, 86, 111
recip, 83
recursive datatype, 43
refutable pattern, 30
rem, 51, 82, 83, 106
repeat, 194
repeat, 119
replicate, 194, 204
replicate, 119
replicateM, 159
reservedid, 9, 131
reservedop, 10, 131
return, 156
return, 80
reverse, 190
reverse, 121
rhs, 52, 139
Right, 75
rotate, 167–169
rotateL, 167–169
rotateR, 167–169
round, 84, 85

safety, 139
scaleFloat, 84
scanl, 193
scanl, 118
scanl1, 193
scanl1, 119
scanr, 193
scanr, 119
scanr1, 193
scanr1, 119
scontext, 138
section, 10, 19, see also operator application
semantics

formal, see formal semantics
separate compilation, 71
seq, 75, 107, 112
sequence, 81, 111
sequence_, 81, 111
shift, 167–169
shiftL, 167–169
shiftR, 167–169
Show, 236, 242, 282, 288, 291
Show (class), 77

derived instance, 47, 147
show, 284, 291
show, 77, 78
showChar, 124
showInt, 274

INDEX 307

showIntAtBase, 274
showList, 77, 147
showParen, 124
ShowS (type synonym), 77
shows, 290
shows, 78, 124
showsPrec, 77, 147
showString, 124
sign, 84
signature, see type signature
signdecl, 49
significand, 84, 85
signum, 83, 84
simple pattern binding, 53, 57
simpleclass, 39, 138
simpletype, 41–43, 138
sin, 83
sine, 85
sinh, 83
sizeOf, 252, 269
small, 8, 130
snd, 74, 116
sort, 202, 203
sortBy, 202, 203
space, 8, 130
span, 195, 196
span, 120
special, 8, 130
splitAt, 195, 203
splitAt, 120
sqrt, 83, 84
StablePtr, 269
standard prelude, 70, see also Prelude
stdin, 285, 291
stdout, 290
stmt, 25, 140
stmts, 25, 140
Storable, 245, 246, 252, 261, 269
strictness flag, 42
strictness flags, 75
String, 172, 282
String (type synonym), 74, 113
string, 73

literal syntax, 11
transparent, see transparent string

string, 12, 131
stripPrefix, 196
subsequences, 191
subtract, 110
sum, 192
sum, 121

superclass, 44, 45
symbol, 8, 130, 131
synonym, see type synonym
syntax, 129

tab, 8, 130
tail, 118
tails, 196
take, 194, 203
take, 119
takeWhile, 195
takeWhile, 120
tan, 83
tangent, 85
tanh, 83
throwErrno, 227
throwErrnoIf, 226, 227
throwErrnoIfMinus1, 226, 228
throwErrnoIfMinus1Retry, 227
throwErrnoIfMinus1RetryMayBlock,

227
throwErrnoIfMinus1_, 228
throwErrnoIfNull, 227
throwErrnoIfNullRetry, 227
throwErrnoIfRetry, 226, 227
throwErrnoIfRetryMayBlock, 227
throwErrnoIf_, 227
throwIf, 259
throwIfNeg, 259
toEnum, 79
topdecl (class), 44
topdecl (data), 41
topdecl (default), 48
topdecl (instance), 46
topdecl (newtype), 43
topdecl (type), 42
topdecl, 36, 137
topdecls, 36, 62, 137
toRational, 83, 85
touchForeignPtr, 247
transpose, 190
trigonometric function, 85
trivial type, 21, 38, 74
True, 159, 168, 172, 186, 192, 197, 206, 225,

259, 262, 285, 287, 288
True, 73
truncate, 84, 85
try, 296
tuple, 20, 38, 74
tuple type, 38
tycls, 10, 39, 131

308 INDEX

tycon, 10, 131
type, 4, 37, 39

ambiguous, see ambiguous type
constructed, see constructed type
function, see function type
list, see list type
monomorphic, see monomorphic type
numeric, see numeric type
principal, see principal type
trivial, see trivial type
tuple, see tuple type

type, 37, 138
type class, 4, 36, see class
type constructor, 41
type environment, 40
type expression, 37
type renaming, see newtype declaration
type signature, 40, 46, 49

for an expression, see expression type-
signature

type synonym, 42, 46, 63, see also datatype
recursive, 43

tyvar, 10, 39, 131

uncurry, 74, 116
undefined, 16, 116
unfoldr, 194
Unicode character set, 7, 12
UnicodePrims (module), 106
uniDigit, 8, 130
uniLarge, 8, 130
union, 201, 202
unionBy, 201, 202
uniSmall, 8, 130
uniSymbol, 8, 130
unit datatype, see trivial type
unit expression, 21
uniWhite, 8, 130
unlines, 200
unlines, 121
unsafeForeignPtrToPtr, 246, 247
until, 74, 116
unwords, 200
unwords, 121
unzip, 200
unzip, 122
unzip3, 200
unzip3, 122
unzip4, 200
unzip5, 200
unzip6, 200

unzip7, 200
userError, 259, 293, 294
userError, 90, 127

valdefs, 46
value, 4
var, 17, 140
varid, 9, 10, 131
varop, 17, 141
vars, 36, 49, 138
varsym, 10, 131
vertab, 8, 130

when, 159
whitechar, 8, 130
whitespace, 8, 130
whitestuff, 8, 130
wildcard pattern (_), 29
withArray, 257
withArrayLen, 257
withFile, 283
withForeignPtr, 246, 247
Word, 213
Word16, 213, 269
Word32, 213, 269
Word64, 213, 269
Word8, 213, 269
words, 200
words, 120
writeFile, 284
writeFile, 89, 128
WriteMode, 283

xor, 167

zip, 198, 199
zip, 74, 122
zip3, 198
zip3, 122
zip4, 199
zip5, 199
zip6, 199
zip7, 199
zipWith, 158, 199
zipWith, 122
zipWith3, 199
zipWith3, 122
zipWith4, 199
zipWith5, 199
zipWith6, 199
zipWith7, 199
zipWithM, 158, 159

INDEX 309

zipWithM_, 159

	Title page
	Contents
	Preface
	I The Haskell 2010 Language
	Introduction
	Program Structure
	The Haskell Kernel
	Values and Types
	Namespaces

	Lexical Structure
	Notational Conventions
	Lexical Program Structure
	Comments
	Identifiers and Operators
	Numeric Literals
	Character and String Literals
	Layout

	Expressions
	Errors
	Variables, Constructors, Operators, and Literals
	Curried Applications and Lambda Abstractions
	Operator Applications
	Sections
	Conditionals
	Lists
	Tuples
	Unit Expressions and Parenthesized Expressions
	Arithmetic Sequences
	List Comprehensions
	Let Expressions
	Case Expressions
	Do Expressions
	Datatypes with Field Labels
	Field Selection
	Construction Using Field Labels
	Updates Using Field Labels

	Expression Type-Signatures
	Pattern Matching
	Patterns
	Informal Semantics of Pattern Matching
	Formal Semantics of Pattern Matching

	Declarations and Bindings
	Overview of Types and Classes
	Kinds
	Syntax of Types
	Syntax of Class Assertions and Contexts
	Semantics of Types and Classes

	User-Defined Datatypes
	Algebraic Datatype Declarations
	Type Synonym Declarations
	Datatype Renamings

	Type Classes and Overloading
	Class Declarations
	Instance Declarations
	Derived Instances
	Ambiguous Types, and Defaults for Overloaded Numeric Operations

	Nested Declarations
	Type Signatures
	Fixity Declarations
	Function and Pattern Bindings
	Function bindings
	Pattern bindings

	Static Semantics of Function and Pattern Bindings
	Dependency Analysis
	Generalization
	Context Reduction Errors
	Monomorphism
	The Monomorphism Restriction

	Kind Inference

	Modules
	Module Structure
	Export Lists
	Import Declarations
	What is imported
	Qualified import
	Local aliases
	Examples

	Importing and Exporting Instance Declarations
	Name Clashes and Closure
	Qualified names
	Name clashes
	Closure

	Standard Prelude
	The Prelude Module
	Shadowing Prelude Names

	Separate Compilation
	Abstract Datatypes

	Predefined Types and Classes
	Standard Haskell Types
	Booleans
	Characters and Strings
	Lists
	Tuples
	The Unit Datatype
	Function Types
	The IO and IOError Types
	Other Types

	Strict Evaluation
	Standard Haskell Classes
	The Eq Class
	The Ord Class
	The Read and Show Classes
	The Enum Class
	The Functor Class
	The Monad Class
	The Bounded Class

	Numbers
	Numeric Literals
	Arithmetic and Number-Theoretic Operations
	Exponentiation and Logarithms
	Magnitude and Sign
	Trigonometric Functions
	Coercions and Component Extraction

	Basic Input/Output
	Standard I/O Functions
	Sequencing I/O Operations
	Exception Handling in the I/O Monad

	Foreign Function Interface
	Foreign Languages
	Contexts
	Cross Language Type Consistency

	Lexical Structure
	Foreign Declarations
	Calling Conventions
	Foreign Types
	Import Declarations
	Export Declarations

	Specification of External Entities
	Standard C Calls
	Win32 API Calls

	Marshalling
	The External C Interface

	Standard Prelude
	Prelude PreludeList
	Prelude PreludeText
	Prelude PreludeIO

	Syntax Reference
	Notational Conventions
	Lexical Syntax
	Layout
	Literate comments
	Context-Free Syntax
	Fixity Resolution

	Specification of Derived Instances
	Derived instances of Eq and Ord
	Derived instances of Enum
	Derived instances of Bounded
	Derived instances of Read and Show
	An Example

	Compiler Pragmas
	Inlining
	Specialization
	Language extensions

	II The Haskell 2010 Libraries
	Control.Monad
	Functor and monad classes
	Functions
	Naming conventions
	Basic Monad functions
	Generalisations of list functions
	Conditional execution of monadic expressions
	Monadic lifting operators

	Data.Array
	Immutable non-strict arrays
	Array construction
	Accessing arrays
	Incremental array updates
	Derived arrays
	Specification

	Data.Bits
	Data.Char
	Characters and strings
	Character classification
	Subranges
	Unicode general categories

	Case conversion
	Single digit characters
	Numeric representations
	String representations

	Data.Complex
	Rectangular form
	Polar form
	Conjugate
	Specification

	Data.Int
	Signed integer types

	Data.Ix
	The Ix class
	Deriving Instances of Ix

	Data.List
	Basic functions
	List transformations
	Reducing lists (folds)
	Special folds

	Building lists
	Scans
	Accumulating maps
	Infinite lists
	Unfolding

	Sublists
	Extracting sublists
	Predicates

	Searching lists
	Searching by equality
	Searching with a predicate

	Indexing lists
	Zipping and unzipping lists
	Special lists
	Functions on strings
	"Set" operations
	Ordered lists

	Generalized functions
	The "By" operations
	User-supplied equality (replacing an Eq context)
	User-supplied comparison (replacing an Ord context)

	The "generic" operations

	Data.Maybe
	The Maybe type and operations
	Specification

	Data.Ratio
	Specification

	Data.Word
	Unsigned integral types

	Foreign
	Foreign.C
	Foreign.C.Error
	Haskell representations of errno values
	Common errno symbols
	Errno functions
	Guards for IO operations that may fail

	Foreign.C.String
	C strings
	Using a locale-dependent encoding
	Using 8-bit characters

	C wide strings

	Foreign.C.Types
	Representations of C types
	Integral types
	Numeric types
	Floating types
	Other types

	Foreign.ForeignPtr
	Finalised data pointers
	Basic operations
	Low-level operations
	Allocating managed memory

	Foreign.Marshal
	Foreign.Marshal.Alloc
	Memory allocation
	Local allocation
	Dynamic allocation

	Foreign.Marshal.Array
	Marshalling arrays
	Allocation
	Marshalling
	Combined allocation and marshalling
	Copying
	Finding the length
	Indexing

	Foreign.Marshal.Error
	Foreign.Marshal.Utils
	General marshalling utilities
	Combined allocation and marshalling
	Marshalling of Boolean values (non-zero corresponds to True)
	Marshalling of Maybe values
	Marshalling lists of storable objects
	Haskellish interface to memcpy and memmove

	Foreign.Ptr
	Data pointers
	Function pointers
	Integral types with lossless conversion to and from pointers

	Foreign.StablePtr
	Stable references to Haskell values
	The C-side interface

	Foreign.Storable
	Numeric
	Showing
	Reading
	Miscellaneous

	System.Environment
	System.Exit
	System.IO
	The IO monad
	Files and handles
	Standard handles

	Opening and closing files
	Opening files
	Closing files
	Special cases
	File locking

	Operations on handles
	Determining and changing the size of a file
	Detecting the end of input
	Buffering operations
	Repositioning handles
	Handle properties
	Terminal operations
	Showing handle state

	Text input and output
	Text input
	Text output
	Special cases for standard input and output

	System.IO.Error
	I/O errors
	Classifying I/O errors
	Attributes of I/O errors

	Types of I/O error
	Throwing and catching I/O errors

	References
	Index

