Haskell Workshop
Sponsored by ACM SIGPLAN
Held in conjunction with ICFP97
Amsterdam
Saturday, June 7, 1997






i) & R A . aan s

Haskell Workshop

Sponsored by ACM SIGPLAN and held in conjunction with ICFP97, Amster-
dam, Saturday, June 7, 1997

The definition of Haskell 1.4 has recently been released, but it is clear that there are many
exciting opportunities ahead for developing and enhancing the language. Some of these will be
in direct response to needs demonstrated by large-scale applications written in Haskell, or by
Haskell being used in novel and interesting ways. Other developments will be driven by more
theoretical considerations, whether they are moving in the direction of increased expressibility
or, alternatively, simplifications to the language by recognizing unifying concepts. The purpose
of the workshop is to provide a forum where possible future development directions for Haskell
may be discussed.

The program committee consisted of
» Lennart Augustsson (Chalmers)
* Mark Jones (Nottingham)

» John Launchbury (OGI) - Chair
* Erik Meijer (Utrecht)

* John Peterson (Yale)

+ Satnam Singh (Glasgow)

* Peter Thiemann (Tuebingen)

and [ thank them for their work in reviewing and selecting the papers. [ also thank the organizers
of ICFP97 for taking care of the local arrangements.

J. Launchbury
May 1997




Workshop Program

Session 1. Chair: Lennart Augustsson

9:00-9:30. Type Classes: an exploration of the design space. Simon Peyton Jones, Mark Jones,
and Erik Meijer

9:30-10:00. Polymorphic Extensible Records for Haskell. Benedict R. Gaster
10:00-10:30. The Design and Implementation of Mondrian. Erik Meijer and Koen Claessen

10:30-11:00. BREAK

R SR B R BB =EE

Session 2. Chair: John Peterson

11:00-11:30. Reactive Objects in a Functional Language. Johan Nordlander and Magnus
Carlsson

11:30-12:00. Debugging Reactive Systems in Haskell. Amr Sabry and Jan Sparud
12:00-12:30. Bulk Types with Class. Simon Peyton Jones

12:30-2:00. LUNCH

Session 3. Chair: Peter Thiemann

2:00-2:30. Disposable Memo Functions. Byron Cook and John Launchbury

2:30-3:00. Green Card: a foreign language interface for Haskell. Simon Peyton Jones, Thomas
Nordin, and Alastair Reid

3:00-3:30. Heap Compression and Binary I/O in Haskell. Malcolm Wallace and Colin Runciman

3:30-4:00. BREAK

Session 4. Chair: John Launchbury

4:00-5:30. Open-mike Session: What next for Haskell? Participants are invited to make 5-
minute statements on the future development of Haskell. These will be grouped by topic,
and while the statements are limited to five minutes, any ensuing discussion is not. Anyone
who wants to make a statement should indicate their desire in advance of the session.




Type classes: an exploration of the design space

Simon Peyton Jones

University of Glasgow and Oregon Graduate Institute

Mark Jones
University of Nottingham

Erik Meijer
University of Utrecht and Oregon Graduate Institute

May 2, 1997

Abstract

When type classes were first introduced in Haskell they
were regarded as a fairly experimental language feature, and
therefore warranted a fairly conservative design. Since that
time, practical experience has convinced many programmers
of the benefits and convenience of type classes. However, on
occasion. these same programmers have discovered examples
where seemingly natural applications for type class overload-
ing are prevented by the restrictions imposed by the Haskell
design.

[t is possible to extend the type class mechanism of Haskell
in various ways to overcome these limitations. but such pro-
posals must be designed with great care. For example. sev-
eral different extensions have been implemented in Gofer.
Some of these, particularly the support for multi-parameter
classes, have proved to be very useful, but interactions be-
tween other aspects of the design have resulted in a type
system that is both unsound and undecidable. Another illus-
tration is the introduction of constructor classes in Haskell
1.3, which came without the proper generalization of the no-
tion of a context. As a consequence. certain quite reasonable
programs are not typable.

In this paper we review the rationale behind the design of
Haskell's class system, we identify some of the weaknesses
in the current situation, and we explain the choices that we
face in attempting to remove them.

1 Introduction

Type classes are one of the most distinctive features of
Haskell (Hudak et al. {1992]). They have been used for an
impressive variety of applications, and Haskell 1.3' signif-
icantly extended their expressiveness by introducing con-
structor classes {Jones [1995a]).

All programmers want more than they are given, and many
people have bumped up against the limitations of Haskell’s
class system. Another language. Gofer (Jones [1994]), that
has developed in parallel with Haskell, enjoys a much more
liberal and expressive class system. This expressiveness is
definitely both useful and used, and transferring from Gofer

!The current iteration of the Haskell language is Haskell 1.4, but
it is identical to Haskell 1.3 in all respects relevant to this paper.

to Haskell can be a painful experience. One feature that is
particularly often missed is multi-parameter type classes —
Section 2 explains why.

The obvious question is whether there is an upward-
compatible way to extend Haskell's class system to enjoy
some or all of the expressiveness that Gofer provides. and
perhaps some more besides. The main body of this paper
explores this question in detail. [t turns out that there are
a number of interlocking design decisions to be made. Gofer
and Haskell each embody a particular set, but it is very
useful to tease them out independently, and see how they
interact. Our goal is to explore the design space as clearly
as possible. laying out the choices that must be made. and
the factors that affect them. rather than prescribing a par-
ticular solution {Section 4). We find that the design space
is rather large: we identify nine separate design decisions.
each of which has two or more possible choices. though not
all combinations of choices make sense. In the end. however,
we do offer our own opinion about a sensible set of choices
(Section 6).

A new language feature is only justifiable if it results in a
simplification or unification of the original language design.
or if the extra expressiveness is truly useful in practice. One
contribution of this paper is to collect together a fairly large
set of examples that motivate various extensions to Haskell's
type classes.

2 Why multi-parameter type classes?

The most visible extension to Haskell type classes that we
discuss is support for multi-parameter type classes. The pos-
sibility of multi-parameter type classes has been recognised
since the original papers on the subject (Kaes [1988]; Wadler
& Blott [1989]), and Gofer has always supported them.

This section collects together examples of multi-parameter
type classes that we have encountered. None of them are
new, none will be surprising to the cognescenti, and many
have appeared inter alia in other papers. Our purpose in
collecting them is to provide a shared database of motivating
examples. We would welcome new contributions.




2.1 Overloading with coupled parameters

Concurrent Haskell (Peyton Jones, Gordon & Finne [1996])
introduces a number of types such as mutable variables
MutVar, “synchronised” mutable variables MVar, channel
variables CVar, communication channels Channel, and skip
channels SkipChan, all of which come with similar opera-
tions that take the form:

newX :: a -> I0 (X a)
getX :: X a->10a
putX :: X a->a->1I0 O

where X ranges over MVar etc. Here are similar operations
in the standard state monad:

newST :: a -> ST s (MutableVar s a)
getST :: MutableVar s a -> ST s a
putST :: MutableVar s a -> a => ST s ()

These are manifestly candidates for overloading; yet a single
parameter type class can't do the trick. The trouble is that
in each case the monad type and the reference type come as
a pair: (IO, MutVar) and (ST s, MutableVar s). What we
want is a multiple parameter class that abstracts over both:

class Monad m => VarMonad m v where

new :: a -> m (v a)
get :: va->ma
put :: va->a->m ()

instance VarMonad I0 MutVar where ....

instance VarMonad (ST s) (MutableVar s) where ...

This is quite a common pattern, in which a two-parameter
type class is needed because the class signature is really over
a tuple of types and where instance declarations capture di-
rect relationships between specific tuples of type construc-
tors. We call this overloading with coupled parameters.

Here are a number of other examples we have collected:

¢ The class StateMonad (Jones [1995]) carties the state
around naked. instead of inside a container as in the
VarMonad example:

class Monad m => StateMonad m s where
getS :: m s
putS :: 8 ->m ()

Here the monad m carries along a state of type s; getS
extracts the state from the monad, and putS overwrites
the state with a new value. One can then define in-
stances of StateMonad:

newtype State s a = State (s -> (a,s))
instance StateMonad (State s) s where ...

Notice the coupling between the parameters arising
from the repeated type variable s. Jones [1995] also
defines a related class, ReaderMonad. that describes
computations that read some fixed environment

class Monad m => ReaderMonad m e where
env :: e ->ma ->ma
getenv :: m e

newtype Env e a = Env (e -> a)
instance ReaderMonad (Env e) e where ...

o Work in Glasgow and the Oregon Graduate Institute

on hardware description languages has led to class dec-
larations similar to this:

class Monad ct => Hard ct sg where
const :: a -> ct (sg a)
opl :: (@ => b) -> 3g a -> ct (sg b)
op2 :: (@a->b ->¢) ->sga->s8gb ->ct

instance Hard NetCircuit NetSignal where ...
instance Hard SimCircuit SimSignal where ...

Here, the circuit constructor, ct is a monad, while
the signal constructor, sg, serves to distinguish values
available at circuit-construction time (of type Int, say)
from those flowing along the wires at circuit-execution
time (of type SimSignal Int, say). Each instance of
Hard gives a different interpretation of the circuit; for
example, one might produce a net list, while another
might simulate the circuit.

Like the VarMonad example, the instance type come as
a pair: it would make no sense to give an instance for
Hard NetCircuit SimSignal.

o 2 The Haskell prelude defines defines the following two

functions for reading and writing files

readFile ::
writeFile ::

FilePath -> I0 String
FilePath -> String -> I0 ()

Similar functions can be defined for many more pairs
of device handles and communicatable types, such as
mice, buttons. timers, windows, robots, etc.

readMouse :: Mouse -> I0 MouseEvent
readButton :: Button -> IO ()

readTimer :: Timer -> I0 Float
sendWindow :: Window ~> Picture -> I0 ()
sendRobot :: Robot ~> Command -> I0 ()
sendTimer :: Timer -> Float -> I0 ()

These functions are quite similar to the methods
get :: VarMonad rm => r a -> m a and put ::
VarMonad r m => r a -> a -> m () of the VarMonad
family, except that here the monad m is fixed to I0 and
the choice of the value type a is coupled with the box
type v a. So what we need here is a multi-parameter
class that overloads on v a and a instead:

class I0Device handle a where
receive :: handle -> I0 a
send :: handle -> a -> I0 a

(Perhaps one could go one step further and unify class
I0Device r a and class Monad m => StateMonad m
r into a three parameter class class Monad m =>
Device m r a.)

*This example was suggested by Enno Scholz.

(s ¢)



o ® An appealing application of type classes is to de-
scribe mathematical structures, such as groups, fields,
monoids, and so on. But it is not long before the need
for coupled overloading arises. For example:

class (Field k, AdditiveGroup a)
=> VectorSpace k a where
@* :: k ->a->a

Here the operator @* multiplies a vector by a scalar.

2.2 Overloading with constrained parame-
ters

Libraries that implement sets, bags, lists, finite maps, and so
on, all use similar functions (empty, insert, union, lookup,
etc). There is no commonly-agreed signature for such li-
braries that usefully exploits the class system. One reason
for this is that multi-parameter type classes are absolutely
required to do a good job. Why? Consider this first attempt:

class Collection ¢ where

empty :: c a

insert :: a ->ca->c a

union :: ca~->ca->ca
.etc...

The trouble is that the type variable a is universally quan-
tified in the signature for insert, union, and so on. This
means we cannot use equality or greater-than on the ele-
ments, so we cannot make sets an instance of Collection,
which rather defeats the object of the exercise. By far the
best solution is to use a two-parameter type class, thus:

class Collection ¢ a where

empty :: c a

ingsert :: a ~>ca->c¢ a

union :: ca->ca=->c¢ a
.etc...

The use of a multi-parameter class allows us to make in-
stance declarations that constrain the element type on a
per-instance basis:

instance Eq a => Collection ListSet a where
empty = ...
insert a xs = ...
..etc..

instance Ord a => Collection TreeSet a where
empty = ...
insert x t = ...
..etc. ..

The point is that different instance declarations can con-
strain the element type, a, in different ways. One can look
at this as a variant of coupled-parameter overloading (dis-
cussed in the preceding section). Here, the second type
in the pair is constrained by the instance declaration (e.g.
“Ord a =>..."), rather than completely specified as in the
previous section. In general. in this form of overloading, one
or more of the parameters in any instance is a variable that

3This example was suggested by Sergey Mechveliani.

serves as a hook, either for one of the other arguments. or
for the instance context and member functions to use.

The parametric type classes of Chen, Hudak & Odersky
[1992] also deal quite nicely with the bulk-types example,
but their assymetry does not suit the examples of the pre-
vious section so well. A full discussion of the design choices
for a bulk-types library is contained in Peyton Jones [1996].

2.3 Type relations

One can also construct applications for multi-parameter
classes where the relationships between different parame-
ters are much looser than in the examples that we have
seen above. After all, in the most general setting, a multi-
parameter type class C could be used to represent an arbi-
trary relation between types where, for example, (a,b) is in
the relation if, and only if, there is an instance for (C a b).

¢ One can imagine defining an isomorphism relationship
between types (Liang, Hudak & Jones {1993]):

class Iso a b where
iso :: a ->b
osi :: b -> a

instance Iso a a where iso = 1id

o One could imagine overloading Haskell’s fieid selectors
by declaring a class

class Hasf a b where
f::a->b

for any field label f. So if we have the data type
Foo = Foo{foo :: Int}, we would get a class decla-
ration class Hasfoo a b where foo :: a -> b and
an instance declaration

instance Hasfoo Foo Int where
foo (Foo foo) = foo

This is just a cut-down version of the kind of extensible
records that were proposed by Jones (Jones [1994]).

These examples are “looser” than the earlier ones, because
the result types of the class operations do not mention all the
class type variables. In practice, we typically find that such
relations are too general for the type class mechanisms, and
that it becomes remarkably easy to write programs whose
overloading is ambiguous.

For example, what is the type of iso ’a’ == iso ’b’? The
iso function is used at type Char -> b, and the resulting
values of iso ’a’ and iso ’b’ are compared with (==) used
at type b -=> b -> Bool. However this intermediate type
is completely unconstrained and hence the resulting type,
(Eq b, Iso Char b) => Bool, is ambiguous. One runs into
similar problems quickly when trying to use overloading of
field selectors. We discuss ambiguity further in Section 3.7.




2.4 Summary

In our view, the examples of this section make a very per-
suasive case for multi-parameter type classes, just as Monad
and Functor did for constructor classes. These examples
cry out for Haskell-style overloading, but it simply cannot
be done without multi-parameter classes. :

3 Background

In order to describe the design choices related to type classes
we must briefly review some of the concepts involved.

3.1 Inferred contexts

When performing type inference on an expression, the type
checker will infer (2) a monotype, and (b) a contexrt, or set
of constraints, that must be satisfied. For example, consider
the expression:

\xs -> case xs of
8 -> False
(y:ys) => y >z 1 (y==2 && ys==[z])

Here, the tvpe checker will infer that the expression has the
following context and type:
Context: {Ord a.Eq a.Eq [al}
Type: [a] -> Bool

The constraint Ord a arises from the use of > on an element
of the list. y; the constraint says that the elements of the list
must lie in class Ord. Similarly, Eq a arises from the use of
== on a list element. The constraint Eq [a] arises from the
use of == on the tail of the list; it says that lists of elements
of type a must also lie in Eq.

These typing constraints have an operational interpretation
that is often helpful, though it is not required that a Haskell
implementation use this particular operational model. For
each constraint there is a corresponding dictionary— a col-
lection of functions that will be passed to the overloaded op-
erator involved. In our example, the dictionary for Eq [al
will be a tuple of methods corresponding to the class Eq. [t
will be passed to the second overloaded == operator, which
will simply select the == method from the dictionary and
apply it to ys and [z]. You can think of a dictionary as
concrete, run-time “evidence” that the constraint is satis-

fied.

3.2 Context reduction

Contexts can be simplified, or reduced, in three main ways:

1. Eliminating duplicate constraints. For example, we can
reduce the context {Eq r, Eq 7} to just {Eq r}.

2. Using an instance declaration. For example, the
Haskell Prelude contains the standard instance dec-
laration:

instance Eq a => Eq [a] where ...

TV (P) C dom(8)
instance C => P where ...

35(C) - 8(P) (inst)

TV (P) C dom(8)
class C => P where ...

8(P)H 9(C) (super)

P
Q

Q
P

N

{mono)

q:

PHQ QWR (trans)

PH R

Figure 1: Rules for entailment

This instance declaration specifies how we can use an
equality on values of type a to define an equality -on
lists of type [a]. In terms of the dictionary model, the
instance declaration specifies how to construct a dic-
tionary for Eq [a] from a dictionary for Eq a. Hence
we can perform the following context reduction:

{Ord a.Eq a.Eq [al]} — {0Ord a.Eq a}

We say that a constraint matches an instance declara-
tion if there is a substitution of the type variables in
the instance declaration head that makes it equal to
the constraint.

3. Usting a class declaration. For example, the class dec-
laration for Ord in the Haskell Prelude specifies that
Eq is a superclass of Ord:

class Eq a => Ord a where ...

What this means is that every instance of Ord is also
an instance of Eq. In terms of the dictionary model.
we can read this as saying that each Ord dictionary
contains an Eq dictionary as a sub-component. So the
constraint Eq ais implied by Ord a, and it follows that
we can perform the following context reduction:

{Ord a,Eq a} —+ {0rd a}

More precisely, we say that Q entails P, written Q ¥ P, if
the constraints in P are implied by those in Q. We define
the meaning of class constraints more formally using the def-
inition of the entailment relation defined in Figure 1. The
first two rules correspond to (2) and (3) above'. The sub-
stitution 8 maps type variables to types; it allows class and
instance declarations to be used at substitution-instances of
their types. For example, from the declaration

instance Eq a => Eq [a] where ...

*Notice that in (inst), C and P appear in the same order on
the top and bottom lines of the rules, whereas they are reversed in
(super). This suggest an infelicity in Haskell’s syntax, but one that
it is perhaps too late to correct!



we can deduce that {Eq 7} H {Eq [r1}, for an arbitrary
type 7°. The remaining rules explain that entailment is
monotonic and transitive as one would expect.

The connection between entailment and context reduction
is this: to reduce the context P to P’ it is necessary (but
perhaps not sufficient) that P’ # P. The reason that en-
tailment is not sufficient for reduction concerns overlapping
instances: there might be more than one P’ with the prop-
erty that P’ = P, so which should be chosen? Overlapping
instance declarations are discussed in Section 3.6 and 4.4.

3.3 Failure

Context reduction fails, and a type error is reported, if there
is no instance declaration that can match the given con-
straint. For example, suppose that we are trying to reduce
the constraint Eq (Tree 7), and there is no instance decla-
ration of the form

instance ... => Eq (Tree ...) where

Then we can immediately report an error, even if r contains
type variables that will later be further instantiated, because
no further refinement of r can possibly make it match. This
strategy conflicts slightly with separate compilation, because
one could imagine that a separately-compiled library might
not be able to “see” all the instance declarations for Tree.

Arguably, therefore. rather than reporting an error message.
context reduction should be deferred (see Section 4.3). in the
hope that an importing module will have the necessary in-
stance declaration. However, that would postpone the pro-
duction of even legitimate missing-instance error messages
until the “main” module is compiled (when no further in-
stance declarations can occur), which is quite a serious dis-
advantage. Furthermore. it is usually easy to arrange that
the module that needs the instance declaration is able to
“see” it. If this is so, then failure can be reported immedi-
ately, regardless of the context reduction strategy.

3.4 Tautological constraints

A tautological constraint is one that is entailed by the empty
context. For example, given the standard instance dec-
larations, Ord [Int] is a tautological constraint, because
the instance declaration for Ord [al, together with that for
0rd Int allow us to conclude that {} # {Ord [Intl}.

A ground constraint is one that mentions no type variables.
It is clear that a ground constraint is erroneous (that is,
cannot match any instance declaration), or is tautological.
It is less obvious that a tautological constraint does not have
to be ground. Consider

35In Gofer, an instance declaration instance P => C whers ...
brings about the axiom C H- P, because the representation in Gofer
of a dictionary for C contains sub-dictionaries for P. In retrospect,
this was probably a poor design decision because it is not always very
intuitive. Moreover, it was later discovered that this is incompatible
with overlapping instances: while either one is acceptable on its own,
the combination results in an unsound type system. The Gofer type
system still suffers from this problem today because of concerns that
removing support for either feature would break a lot of existing code.

instance Eq a => Foo (a,b) where

and let us assume for the moment that overlapping instance
declarations are prohibited (Section 4.4). Now suppose that
the context {Foo (Int,t)} is subject to context reduction.
Regardless of the type t, it can be simplified to {Eq Int}
(using the instance declaration above), and thence to {}
(using the Int instance for Eq). Even if t contains type
variables, the constraint Foo (Int,t) can still be reduced
to {}, so it is a tautological constraint.

Another example of one of these tautological constraints
that contain type variables is given by this instance dec-
laration:

instance Monad (ST s) where ...

This declares the state transformer type, ST s, to be a
monad, regardless of the type s.

If, on the other hand, overlapping instance declarations are
permitted, then reducing a tautological constraint in this
way is not legitimate, as we discuss in Section 4.4.

3.5 Generalisation

Suppose that the example in Section 3.1 is embedded in a
larger expression:

let
f = \xs -> case xs of
] -> False
(yiys) =>y >z 1|
(y==z %& ys==[z])
in

Having inferred a type for the right-hand side of £, the type
checker must generalise this type to obtain the polymorphic
type for £f. Here are several possible types for £:

f :: (Qrd a) => [a] ~> Bool
f :: (Ord a, Eq a) => [a] -> Bool
f :: (Ord a, Eq a, Eq [a]) => [a] -> Bool

Which of these types is inferred depends on how much con-
text reduction is done before generalisation, a topic we dis-
cuss later (Section 4.3). For the present, we only need note
(a) that there is a choice to be made here, and (b) that the
time that choice is crystallised is at the moment of general-
isation.

What we mean by (b) is that it makes no difference whether
context reduction is done just before generalising £, or just
after inferring the type of the sub-expression (ys==[z]), or
anywhere in between; all that matters is how much is done
before generalisation.

3.6 Overlapping instance declarations

Consider these declarations:

class MyShow a where
myShow :: a -> String




instance MyShow a => MyShow [a] where
myShow = myShowl

instance MyShow [Char] where
myShow = myShow2

Here, the programmer wants to use a different method for
myShow when used at [Char] than when used at other types.
We say that the two instance declarations overlap, because
there exists a constraint that matches both. For example,
the constraint MyShow [Char] matches both declarations. In
general, two instance declarations

instance P1 => Q1 where ...
instance P2 => Q2 where ...

are said to overlap if Q1 and Q2 are unifiable. This defini-
tion is equivalent to saying that there is a constraint  that
matches both Q1 and Q2. Overlapping instance declarations
are illegal in Haskell, but permitted in Gofer.

When, during context reduction, a constraint matches two
overlapping instance declarations, which should be chosen?
We will discuss this question in Section 4.4, but for now we
address the question of whether or not overlapping instance
declarations are useful. We give two further examples.

3.6.1 “Default methods”

One application of overlapping instance declarations is to
define “default methods™. Haskell has the following stan-
dard classes:

class Monad m where
(>>=) ::ma=->(a->mb) ->mb
return :: a -> m a

class Functor f where
map :: (a->b) ->fa->fb

Now, in any instance of Monad, there is a sensible definition
of map, an idea we could express like this:

instance Monad m => Functor m where
map f m = [f x | x <~ m]

These instance declarations overlap with all other instances
of Functor. (Whether this is the best way to explain that
an instance of Monad has a natural definition of map is de-
batable.)

3.6.2 Monad transformers

A second application of overlapping instance declarations
arises when we try to define monad transformers. The idea
is given by Jones [1995]:

“In fact, we will take a more forward-thinking
approach and use the constructor class mecha-
nisms to define different families of monads, each
of which supports a particular collection of sim-
ple primitives. The benefit of this is that. later,
we will want to consider monads that are simulta-
neously instances of several different classes, and

hence support a combination of different prim-
itive features. This same approach has proved
to be very flexible in other recent work (Jones
[1995a); Liang, Hudak & Jones [1995]).”

To combine the features of monads we introduce a notion
of a monad transformer; the idea is that a monad trans-
former t takes a monad m as an argument and produces a
new monad (t m) as a result that provides all of the com-
putational features of m, plus some new ones added in by the
transformer t.

class MonadT t where
lift :: Monad m => m a -> t m a

For example, the state monad transformer that can add
state to any monad:

newtype StateT s m a = StateT (s -> m (a,s))

instance MonadT (StateT s) where ...
instance Monad m
=> StateMonad (StateT s m) s where ...

Critically, we also need to know that any properties enjoyed
by the original monad. are also supported by the trans-
formed monad. We can capture this formally using:

instance (MonadT t, StateMonad m s)
=> StateMonad (t m) s where
update f = lift (update f)

Note the overlap with the previous instance declaration,
which plays an essential role. Defining monad transformers
in this way allows us to build up composite monads, with
automatically generated liftings of the important operators.
For example:

£ :: (StateMonad m Int, StateMonad m Char)
=> Int -> Char -> m (Int,Char)
fxy = do x’ <~ update (const x)

y’ <- update (const y)
return (x’,y’)

Later, we might call this function with an integer and a char-
acter argument on a monad that we’ve constructed using the
following:

type M = StateT Int (ErrorT (State Char))

Notice that the argument of the StateT monad trans-
former is not State Char but rather the enriched monad
(ErrorT (State Char)), assuming that ErrorT is another
monad transformer. Now, the overloading mechansims will
automatically make sure that the first call to update in £
takes place in the outermost Int state monad, while the sec-
ond call will be lifted up from the depths of the innermost
Char state monad.

3.7 The ambiguity problem

As we observed earlier, some programs have ambiguous typ-
ings. The classic example is (show (read s)), where differ-
ent choices for the intermediate type (the result of the read
might lead to different results). Programs with ambiguous
typings are therefore rejected by Haskell.
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Preliminary experience, however, is that multi-parameter
type classes give new opportunities for ambiguity. Is there
any way to have multi-parameter type classes without risk-
ing ambiguity? OQur answer here is “no”. One approach
that has been suggested to the ambiguity problem in single-
parameter type classes is to insist that all class operations
take as their first argument a value of the class's type (Oder-
sky, Wadler & Wehr {1995]). Though it is theoretically at-
tractive, there are too many useful classes that disobey this
constraint (Num, for example, and overloaded constants in
general), so it has not been adopted in practice. It is also
not clear what the rule would be when we move to con-
structor classes, so that the class’s “type” variable ranges
over type constructors.

If no workable solution to the ambiguity problem has been
found for single parameter classes, we are not optimistic that
one will be found for multi-parameter classes.

4 Design choices

We are now ready to discuss the design choices that must be
embodied in a type-class system of the kind exemplified by
Haskell. Our goal is to describe a design space that includes
Haskell, Gofer, and a number of other options beside. While
we express opinions about which design choices we prefer,
our primary goal is to give a clear description of the design
space, rather than to prescribe a particular solution.

4.1 The ground rules

Type systems are a huge design space. and we only have
space to explore part of it in this paper. In this section we
briefly record some design decisions currently embodied in
Haskell that we do not propose to meddle with. Our first
set of ground rules concern the larger setting:

o We want to retain Haskell’s type-inference property.

e We want type inference to be decidable; that is, the
compiler must not fail to terminate.

e We want to retain the possibility of separate compila-
tion.

¢ We want all existing Haskell programs to remain legal,
and to have the same meaning.

e We seek a coherenttype system; that is, every different
valid typing derivation for a program leads to a result-
ing program that has the same dynamic semantics.

The last point needs a little explanation. We have already
seen that the way in which context reduction is performed
affects the dynamic semantics of the program vta the con-
struction and use of dictionaries (other operational models
will experience similar effects). It is essential that the way in
which the typing derivation is constructed (there is usually
more than one for a given program) should not affect the
meaning of the program.
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Next, we give some ground rules about the form of class
declarations. A class declaration takes the form:

class P=>C ay...a, where {op:@Q=>71;...}

(If multi-parameter type classes are prohibited, then n =
1.) If S B1...3m is one of the constraints appearing in the
context P, we say that S is a superclass of C. We insist on
the following:

e There can be at most one class declaration for each
class C.

o Throughout the program, all uses of C are applied to
n arguments.

® a) ...xan must be distinct type variables.

e TV(P) C {ai,...,an}. That is. P must not mention
any type variables other than the a,.

o The superclass hierarchy defined by the set of class
declarations must be acyclic. This restriction is not ab-
solutely necessary, but the applications for cyclic class
structures are limited, and it helps to keep things sim-
ple.

Next, we give rules governing instance declarations, which
have the form:

instance P => C' 7, ... T, where ...

We call P the instance contezt. 71, . ... Tn the instance types.
and C 71 ... 7. the head of the instance declaration. Like
Haskell. we insist that:

e TV(P) C |JTV(m); that is. the instance context must
not mention any type variables that are not mentioned
in the instance types.

We discuss the design choices related to instance declara-
tions in Sections 4.3 and 4.7.

Thirdly, we require the following rule for types:

o If P =>ris a type, then TV(P) C TV(r). If the
context P mentions any type variables not used in 7
then any use of a value with this type is certain to be
ambiguous.

Fourthly, we will assume that, despite separate compilation.
instance declarations are globally visible. The reason for this
is that we want to be able to report an error if we encounter
a constraint that cannot match any instance declaration.
For example, consider

£ x="’¢c’ +x

Type inference on f gives rise to the constraint (Num Char).
If instance declarations are not globally visible, then we
would be forced to defer context reduction. in case f is
called in another module that has an instance declaration
for (Num Char). Thus we would have to infer the following
type for f:

£ :: Num Char => Char -> Char




Instead, what we really want to report an immediate error
when type-checking f.

So, if instance declarations are not globally visible, many
missing-instance errors would only be reported when the
main module is compiled. an unacceptable outcome. (Ex-
plicit type sigatures might force earlier error reports, how-
ever.) Hence our ground rule. In practice, though, we can
get away with something a little weaker than insisting that
every instance declaration is visible in every module — for
example, when compiling a standard library one does need
instance declarations for unrelated user-defined types.

Lastly, we have found it useful to articulate the following
principle:

¢ Adding an instance declaration to well-typed program
should not alter either the static or dynamic seman-
tics of the program, except that it may give rise to
an overlapping-instance-declaration error (in systems
that prohibit overlap).

The reason for this principle is to support separate compila-
tion. A separately compiled library module cannot possibly
“see” all the instance declarations for all the possible client
modules. So it must be the case that these extra instance
declarations should not influence the static or dynamic se-
mantics of the library, except if they conflict with the in-
stance declarations used when the library was compiled.

4.2 Decision 1: the form of types

Decision 1: what limitations, if any, are there on the form
of the context of a type? In Haskell 1.4. types {whether
inferred, or specified in a type signature) must be of the
form P => r, where P is a simple contert. We say that a
context is simple if all its constraints are of the form C a.
where C is a class and « is a type variable.

This design decision was defensible for Haskell 1.2 (which
lacked constructor classes) but seems demonstrably wrong
for Haskell 1.4. For example. consider the definition:

g = \xs -> (map not xs) == xs

The right hand side of the definition has the type
£ Bool -> Bool, and context {Functor f,Eq (f Bool)}®.
Because of the second constraint here, this cannot be re-
duced to a simple context by the rules in Figure 1, and
Haskell 1.4 rejects this definition as ill-typed. In fact, if we
insist that the context in a type must be simple, the function
g has many legal types (such as [Bool]l -> Bool), but no
principal, or most general, type. If, instead, we allow non-
simple contexts in types, then it has the perfectly sensible
principal type:

g :: (Functor £, Eq (f Bool)) => f Bool -> Bool

In short, Haskell 1.4 lacks the principal type property,
namely that any typable expression has a principal type;
but it can be regained by allowing richer contexts in types.
This is not just a theoretical nicety — it directly affects the
expressiveness of the language.

®The definition of the class Functor was given in Section 3.6.1.

Similar problems occur with multi-parameter classes if we
insist that the arguments of each constraint in a context
must be variables — a natural generalization of the single-
parameter notion of a simple context. For example, one
can imagine inferring a context such as {StateMonad I0 a},
where « is a type variable. If we then want to generalise
over a, we would obtain a function whose type was of the
form StateMonad I0 a => 7. If such a type was illegal.then,
as with the previous example, we would be forced to reject
the program even though it has a sensible principal type in
a slightly richer system.

The choices for the allowable contexts in types seem to be
these:

Choice 1a (Haskell): the context of a type must be sim-
ple (with some extended definition of “simple”).

Choice 1b (Gofer): there are no restrictions on the con-
text of a type.

Choice lc: something in between these two. For example,
we might insist that the context in a type is reduced
“as much as possible”. But then a legal type signature
might become illegal if we introduced a new instance
declaration (because then the type signature might no
longer be reduced as much as possible).

4.3 Decision 2: How much context reduc-
tion?

Decision 2: how much contest reduction should be done be-
fore generalisation? Haskell and Gofer make very different
choices here. Haskell takes an eager approach to context
reduction, doing as much as possible before generalisation,
while Gofer takes a lazy approach, only using context reduc-
tion to eliminate tautological constraints.

[t turns out that this choice has a whole raft of consequences,
as Jones [1994, Chapter 7] discusses in detail. These con-
sequences mainly concern pragmatic matters, such as the
complexity of types, or the efficiency of the resulting pro-
gram. It is highly desirable that the choice of how much
context reduction is done when should not affect the mean-
ing of the program. It is bad enough that the meaning of the
program inevitably depends on the resolution of overload-
ing (Odersky, Wadler & Wehr [1995]). [t would be much
worse if the program’s meaning depended on the exact way
in which the overloading was resolved — that is, if the type
system were incoherent (Section 4.1).

Here, then, are the issues affecting context reduction.

1. Contert reduction usually leads to “simpler” contexzts,
which are perhaps more readily understood (and writ-
ten) by the programmer. In our earlier example, Ord a
is simpler than {0rd a,Eq a,Eq [al}.

Occasionally, however, a “simpler” context might be
less “natural®. Suppose we have a data type Set with
an operation union, and an Ord instance (Jones [1994,
Section 7.1]):
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data Set a = ...

union :: Eq a => Set a -> Set a ~> Set a

instance Eq a => Ord (Set a) where ...
Now, consider the following function definition:

f x y = if (x<=y) then y else x ‘union‘ y
With context reduction, £’s type is inferred to be

£ :: Eq a => Set a -> Set a -> Set a
whereas without context reduction we would infer

£ :: Ord (Set a) => Set a ~> Set a -> Set a
One can argue that the latter is more “natural” since
it is clear where the Ord constraint comes from, while

the former contains a slightly surprising Eq constraint
that results from the unrelated instance declaration.

2. Contert reduction often, but not always. reduces the

number of dictionaries passed to functions. In the run-
ning example of Section 3. doing context reduction be-
fore generalisation allowed us to pass one dictionary to
£ instead of three.

Sometimes. though. a “simpler” context might have
more constraints {i.e. more dictionaries to pass in
a dictionary-passing implementation). For example.
given the instance declaration:

instance (Eq a, Eq b) => Eq (a,b) where ...

the constraint Eq (a,b) would reduce to {Eq a.Eq b},
which may be “simpler”, but certainly is not shorter.

. Context reduction eliminates tautological constraints.

For example, without context reduction the function
double = \x -> x + (x::Int)

would get the type
double :: Num Int => Int -> Int

This type means that a dictionary for Num Int will be
passed to double, which is quite redundant. It it in-
variably better to reduce {Num Int} to {}, using the
Int instance of Num. The “evidence” that Int is an
instance of Num takes the form of a global constant
dictionary for Num Int. {This example uses a ground
constraint, but the same reasoning applies to any tau-
tological constraint.)

4. Delaying context reduction increases sharing of dictio-

naries. Consider this example:

let
fxsy=1xs> [yl
in

f xsy && £ xs z

Haskell will infer the type of £ to be:

o

f :: 0rd a => [a] -> a -> Bool

A dictionary for Ord a will be passed to £, which will
construct a dictionary for Ord [a]. In this example,
though, £ is called twice, at the same type, and the two
calls will independently construct the same Ord [a]
dictionary. We could obtain more sharing (i.e. effi-
ciency) by postponing the context reduction, inferring
instead the following type for £:

£ :: 0rd [a] => [a] -> a -> Bool

Now f is passed a dictionary for Ord [al, and this
dictionary can be shared between the two calls of f.

Because context reduction is postponed until the top
level in Gofer, this sharing can encompass the whole
program, and only one dictionary for each class/type
combination is ever constructed.

. Type signatures interact with context reduction.

Haskell allows us to specify a type signature for a func-
tion. Depending on how context reduction is done, and
what contexts are allowed in type signatures, this type
might be more or less reduced than the inferred type.
For example, if full context reduction is normally done
before generalisation. then is this a valid type signa-
ture?

f :: Eq [a]l => ...

That is. can a type signature decrease the amount of
context reduction that is performed? In the other di-
rection, if context reduction is not usually done at gen-
eralisation, then is this a valid type signature?

f :: Eqa=>...
where f's right-hand side generates a constraint

Eq {a]? That is, can a type signature increase the
amount of context reduction that is performed?

. Context reduction is necessary for polymorphic recur-

sion. One of the new features in Haskell 1.4 is the
ability to define a recursive function in which the re-
cursive call is at a different type than the original call,
a feature that has proved itself useful in the efficient en-
coding of functional data structures (Okasaki [1996]).

For example, consider the following non-uniformly re-
cursive function:

£ :: EQa=>a->a ~>Bool
f xy=1if x == y then True
else £ [x] [yl

It is not possible to avoid all runtime dictionary con-
struction in this example, because each call to recur-
sive f must use a dictionary of higher type, and there
is no static bound to the depth of recursion. It fol-
lows that the strategy of defering all context reduc-
tion to the top level, thereby ensuring a finite number
of dictionaries, cannot work. The type signature is
necessary for the type checker to permit polymorphic
recursion, and it in turn forces reduction of the con-
straint Eq [a] that arises from the recursive call to
£.




7. Contezt reduction affects typability. Consider the fol-
lowing (contrived) program:

data Tree a = Nil | Fork (Tree a) (Tree a)

£ x = let silly y = (y==Nil)
in x+1

If there is no Eq instance of Tree, then the program is
arguably erroneous, since silly performs equality at
type Tree. But if context reduction is deferred, silly
will, without complaint, be assigned the type

silly :: Eq (Tree a) => a -> Bool

Then, since silly is never called, no other type error
will result. In short, the definition of which programs
are typable and which are not depends on the rules for
context reduction.

8. Contest reduction conflicts with the use of overlapping
instances. This is a bigger topic, and we defer it until
Section 4.4.

Bearing in mind this (amazingly large) set of issues, there
seem to be the following possible choices:

Choice 2a (Haskell. eager): reduce every context to a
simple context before generalisation. However. as we
have seen, this may mean that some perfectly reason-
able programs are rejected as being ill-typed.

Choice 2b (lazy): do no context reduction at all until the
constraints for the whole program are gathered to-
gether; then reduce them. This is satisfyingly decisive.
but it gives rise to pretty stupid types, such as:

(Eq a, Eq a, Eq a) => a -> Bool
(Num Int, Show Int) => Int -> String

Choice 2¢ (Gofer, fairly lazy): do context reduction be-
fore generalisation. but refrain from using rule {(inst)
except for tautological constraints. If overlapping in-
stances are permitted, then change “tautological” to
“ground”. A variant would be to refrain from using
(super) as well.

Choice 2d (Gofer + polymorphic recursion): like 2c,
but with the added rule that if there is a type sig-
nature, the inferred context must be entailed by the
context in the type signature, and the variable being
defined is assigned the type in the signature through-
out its scope. This is enough to make the choice com-
patible with polymorphic recursion, which 2c is not.

Choice 2e (relaxed): leave it un-specified how much con-
text reduction is done before generalisation! That is,
if the actual context of the term to be generalised is
P, then the inferred context for the generalised term
is P or any context that P reduces to. The same rule
for type signatures must apply as in 2d, for the same
reason. To avoid the problem of item 7 we can require
that an error is reported as soon as a generalisation
step encounters a constraint that cannot possibly be
satisfied (even if that constraint is not reduced).

We should note that 2b-e rule out Choice la for type signa-
tures. Furthermore (as we shall see in Section 4.4), Choices
2a and 2e rule out overlapping instance declarations.

The intent in Choice 2e is to leave as much flexibility as pos-
sible to the compiler (so that it can make the most efficient
choice) while still giving a well-defined static and dynamic
semantics for the language:

¢ So far as the static semantics is concerned, when con-
text reduction is performed does not change the set of
typable programs.

¢ Concerning the dynamic semantics, in the absence of
overlapping instance declarations, a given constraint
can only match a unique instance declaration.

4.4 Decision 3: overlapping instance dec-
larations

Decision 3: are instance declarations with overlapping (but
not identical) instance types permitted? (See Section 3.6.)

If overlapping instances are permitted, we need a rule that
specifies which instance declaration to choose if more than
one matches a particular constraint. Gofer’s rule 1s that the
declaration that matches most closely is chosen. In general,
there may not be a unique such instance declaration, so
further rules are required to disambiguate the choice — for
example, Gofer requires that instance declarations may only
overlap if one is a substitution instance of the other.

Unfortunately, this is not enough. As we mentioned above,
there is a fundamental conflict between eager {(or unspeci-
fied) context reduction and the use of overlapping instances.
To see this. consider the definition:

let

£ x = myShow (x++x)
in
(f "¢", f [True,False])

where myShow was defined in Section 3.6. If we do (full) con-
text reduction before generalising £, we will be faced with a
constraint MyShow [a], arising from the use of myShow. Un-
der eager context reduction we must simplify it, presumably
using the instance declaration for MyShow [al, to obtain the

type
f :: MyShow a => a -> String

If we do so, then every call to £ will be committed to the
myShow! method. However, suppose that we first perform
a simple program transformation, inlining £ at both its call
sites, to obtain the expression:

"(myShow "c", myShow [True,False] [True,False])

Now the two calls distinct calls to myShow will lead to the
constraints MyShow [Char] and MyShow [Bool] respectively;
the first will lead to a call of myShow2 while second will lead
to a call of myShowl. A simple program transformation has
changed the behaviour of the program!




Now consider the original program again. If instead we de-
ferred context reduction we would infer the type:

£ :: MyShow [a] => a -> String

Now the two calls to f will lead to the constraints
MyShow [Char] and MyShow [Bool] as in the inlined case,
leading to calls to myShow2 and myShowl respectively. I[n
short, eager context reduction in the presence of overlapping
instance declarations can lead to premature committment to
a particular instance declaration, and consequential loss of
simple source-language program transformations.

Overlapping instances are also incompatible with the reduc-
tion of non-ground tautological constraints. For example,
suppose we have the declaration

instance Monad (ST s) where ...

and we are trying to simplify the context {Monad (ST r)}. It
would be wrong to reduce it to {} because there might be
an overlapping instance declaration

instance Monad (ST Int) where

This inability to simplify non-ground tautological con-
straints has. in practice. caused Gofer some difficulties
when implementing lazy state threads (Launchbury & Pey-
ton Jones [1995]). Briefly, runST insists that its argument
has type Ya.ST o 7, while the argument tvpe would be in-
ferred to be Monad (ST a) => ST o 7.

To summarise, if overlapping instances are permitted, then
the meaning of the program depends in detail on when con-
text reduction takes place. To avoid loss of coherence. we
must specify when context reduction takes place as part of
the type system itself.

One possibility is to defer reduction of any constraint that
can possibly match more than one instance declaration.
That restores the ability to perform program transforma-
tions, but it interacts poorly with separate compilation. A
separately-compiled library might not “see™ all the instances
of a given class that a client module uses, and so must con-
servatively assume that no context reduction can be done at
all on any constraint involving a type variable.

So the only reasonable choices are these:

Choice 3a: prohibit overlapping instance declarations.

Choice 3b: permit instance declarations with overlapping,
but not identical, instance types, provided one is a
substitution instance of the other; but restrict all uses
of the (inst) rule {Figure 1) to ground contexts C, P.
This condition identifies constraints that can match
at most one instance declaration, regardless of what
further instance declarations are added.

4.5 Decision 4: instance types

Decision 4: in the instance declaration
instance P => C 11 ... Tn where .

what limitations, if any, are there on the form of the instance
types, T ... Th?
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Haskell 1.4 has only single-parameter type classes, hence
n = 1. Furthermore, Haskell insists that the single type
T is a simple type; that is, a type of the form T ar...am,
where T is a type constructor and ai ... an are distinct type
variables. This decision is closely bound up with Haskell’s
restriction to simple contexts in types (Section 4.2). Why?
Because, faced with a constraint of the form (C (T 7)) there
is either a unique instance declaration that matches it (in
which case the constraint can be reduced), or there is not (in
which case an error can be signaled). [f 7 were allowed to
be other than a type variable then more than one instance
declaration might be a potential match for the constraint.
For example, suppose we had:

instance Foo (Tree Int) where ...
instance Foo (Tree Bool) where ...

(Note that these two do not overlap.) Given the constraint
(Foo (Tree a)), for some type variable a, we cannot decide
which instance declaration to use until we know more about
a. If we are generalising over a, we will therefore end up
with a function whose type is of the form

Foo (Tree ) => r

Since Haskell does not allow such types (because the con-
text is not simple). it makes sense for Haskell also to restrict
instance types to be simple types. If types can have more
general contexts, however, it is not clear that such a restric-
tion makes sense.

We have come across examples where it makes sense for
the instance types not to be simple types. Section 3.6.1
gave examples in which the instance type was just a type
variable, although this was in the context of overlapping
instance declarations. Here is another example':

class Liftable f where

1ift0 :: a -> f a
liftt :: (a=>b) -> f a ->f b
1ift2 :: (a=>b=>¢c) > fa->f b ->fc

instance (Liftable f, Num a) => Num (f a) where

fromInteger = 1ift0 . fromInteger
negate = 1lift1l negate
(+ = 1ift2 (+)

The instance declaration is entirely reasonable: it says
that any -liftable” type constructor f can be used to con-
struct a new numeric type (f a) from an existing numeric
type a. Indeed, these declarations precisely generalises the
Behaviour class of Elliott & Hudak [1997], and we have en-
countered other examples of the same pattern. (You will
probably have noticed that 1ift1 is just the map from the
class Functor; perhaps Functor should be a superclass of
Liftable.) A disadvantage of Liftable is that now the
Haskell types for Complex and Ratio must be made instances
of Num indirectly, by making them instances of Liftable.
This seems to work fine for Complex, but not for Ratio. In-
cidentally, we could overcome this problem if we had over-
lapping instances. thus:

instance (Liftable f, Num a) => Num (f a) where ...

instance Num a => Num (Ratio a) where ...

Another reason for wanting non-simple instance types is

"Suggested by John Matthews.




when using old types for new purposes. For example®, sup-
pose we want to define the class of moveable things:

class Moveable t where
move :: Vector -> t -> ¢t

Now let us make points moveable. What is a point? Perhaps
just a pair of Floats. So we might want to write

instance Moveable (Float, Float) where ...
or even

type Point = (Float, Float)
instance Moveable Point where ...

Unlike the Liftable example, it is possible to manage with
simple instance types, by making Point a new type:

newtype Point = MkPoint Float Float
instance Moveable Point where ...

but that might be tiresome (for example, unzip split a list
of points into their x-coordinates and y-coordinates).

Choice 4a (Haskell): the instance type(s) 7 must all be
simple types.

Choice 4b: each of the instance types i is a simple type
or a type variable, and at least one is not a type vari-
able. {The latter restriction is necessary to ensure that
context reduction terminates.)

Choice 4c: at least one of the instance types 7 must not
be a type variable.

Choice 4c would permit the Liftable example above. [t
would also permit the following instance declarations

instance D (T Int a) where ...
instance D (T Bool a) where ...

even if overlapping instances are prohibited (provided. of
course, there was no instance for D (T a b)). [t would also
allow strange-looking instance declarations such as

instance C [[a -> Int]] where ...

which in turn make the matching of a candidate instance
declaration against a constraint a little more complicated
(although not much).

If overlapping instances are permitted, then it is not clear
whether choices 4b and 4c lead to a decideable type system.
If overlapping instances are not permitted then. seem to be
no technical objections to them, and the examples given
above suggest that the extra expressiveness is useful.

4.6 Decision 5: repeated type variables in
instance heads

Decision 3: in the instance declaration

instance P =>C 7, ...T, where ...

8Suggested by Simon Thompson.

can the instance head t; contain repeated type variables?

This decision is really part of Decision 4 but it deserves.

separate treatment.

Consider this instance declaration, which has a repeated
type variable in the instance type:

instance ... => Foo (a,a) where ...

In Haskell this is illegal, but there seems no technical rea-
son to exclude it. Furthermore, it is useful: the VarMonad
instance for ST in Section 2.1 used repeated type variables,
as did the Iso example in Section 2.3.

Permitting repeated type variables in the instance type of
an instance declaration slightly complicates the process of
matching a candidate instance declaration against a con-
straint, requiring full matching (i.e. one-way unification,
a well-understood algorithm). For example, when matching
the instance head Foo (a, @) against a constraint Foo (11, 12)
one must first bind a to 7, and then check for equality be-
tween the now-bound a and ;.

Choice 5a: permit repeated type variables in an instance
head.

Choice 5b: prohibit repeated type variables in an instance
head.

4.7 Decision 6: instance contexts

Decision 6: in the instance declaration
instance P => C 1, ... Th where ...

what limitations, if any, are there on the form of the instance
context, P?

As mentioned in Section 4.1. we require that TV (P) C
UTV(T,). However, Haskell has a more drastic restriction:
it requires that each constraint in P be of the form C a
where a is a type variable. An important motivation for
a restriction of this sort is the need to ensure termination
of context reduction. For example, suppose the following
declaration was allowed:

instance C {[a]] => C [a] where ...

The trouble here is that for context reduction to terminate
it must reduce a context to a simpler context. This instance
declaration will “reduce” the constraint (C [r]1) to (C [[r]]),
which is more complicated, and context reduction will di-
verge. Although they do not seem to occur in practical
applications. instance declarations like this are permitted in
Gofer—with the consequence that its type system is in fact
undecidable.

In short, it is essential to place enough constraints on the
instance context to ensure that context reduction converges.
To do this. we need to ensure that something “gets smailer”
in the passage from C 7 ... 7, to P. Haskell’s restriction to
simple contexts certainly ensures termination, because the
argument types are guaranteed to get smaller. In princi-
ple, instance declarations with irreducible but non-simple
contexts might make sense:
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instance Monad (t m) => Foo t m where ...

We have yet to find any convincing examples of this. How-
ever, if context reduction is deferred (Choices 2b,c) then we
must permit non-simple instance contexts. For example:

data Tree a = Node a [Tree a]
instance (Eq a, Eq [Tree a]) => Eq (Tree a) where
(==) (Node v1 ts1) (Node v2 ts2)
= (vl == v2) && (tsl == ts2)

Here, if we are not permitted to reduce the constraint
Eq [Tree al, it must appear in the instance context.

Lastly, if the constraints in P involve only type variables,
when multi-parameter type classes are involved we must also
ask whether a single constraint may contain a repeated type
variable, thus:

instance Foo a a => Baz a where ...

There seems to be no technical reason to prohibit this.

Choice 6a: constraints in the context of an instance dec-
laration must be of the form C «a, ...an, with the o;
distinct.

Choice 6b: as for Choice 6a, except without the require-
ment for the a; to be distinct.

Choice 6c: something less restrictive. but with some way
of ensuring decidability of context reduction.

L d
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4.8 Decision
mitted

: what superclasses are per-

Decision 7: in a class declaration.
class P=>C a;...an where {op::Q=>71;... }

what limitations, beyond those in Section 4.1, are there on
the form of the superclass contert, P? Haskell restricts P
to consist of constraints of the form D 3;...8m, where 3;
must be a member of {a1,...,an}, and all the 3; must be
distinct. But what is wrong with this?

class Foo (t m) => Baz t m where ...
Also in this case, there seems to be no technical reason to

prohibit this.

Choice Ta: constraints in the superclass context must be
as in Haskell, i.e. the constraints are of the form
D ay...an, with the a; distinct, and a subset of the
type variables that occur in the class head.

Choice Tb: no limitations on superclass contexts, except
those postulated in Section 4.1.

4.9 Decision 8: improvement

Suppose that we have a constraint with the following prop-
erties:
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e it contains free type variables;
e it does not match any instance declaration®

e it can be made to match an instance declaration by in-
stantiating some of the constraint’s free type variables;

e no matter what other (legal) instance declarations are
added, there is only one instance declaration that the
constraint can be made to match in this way.

If all these things are true, an attractive idea is to improve
the constraint by instantiating the type variables in the con-
straint so that it does match the instance declaration. This
makes some programs typable that would not otherwise be
so. [t does not compromise any of our principles, because
the last condition ensures that even adding new instance
declarations will not change the way in which improvement
is carried out.

Improvement was introduced by Jones [1995b]. A full dis-
cussion is beyond the scope of this paper. The conditions
are quite restrictive, so it is not vet clear whether it would
improve enough useful programs to be worth the extra effort.

Choice 8a: no improvement.

Choice 8b: allow improvement in some form.

Choice 8b would obviously need further elaboration before
this design decision is crisply formulated.

4.10 Decision 9: Class declarations

Decision 9: what limitations, if any, are there on the con-
texts in class-member type signatures? Presumably class-
member type signatures should obey the same rules as any
other type signature. but Haskell adds an additional restric-
tion. Consider:

class C a where
opl :: a -> a
op2 :: Eqa=>a->a

In Haskell, the type signature for op2 would be illegal. be-
cause it further constrains the class type variable a. There
seems to be no technical reason for this restriction. It is sim-
ply a nuisance to the Haskell specification, implementation.
and (occasionally) programmer.

Choice 9a (Haskell): the context in a class-member type
signature cannot mention the class type variable; in
addition, it is subject to the same rules as any other
type signature.

Choice 9b: the type signature for a class-member is sub-
ject to the same rules as any other type signature.

9Recall that matching a constraint against an instance declaration
is a one-way unification: we may instantiate type variables from the
instance head, but not those from the constraint.



5 Other avenues

While writing this paper, a number of other extensions to
Haskell’s type-class system were suggested to us that seem
to raise considerable technical difficulties. We enumerate
them in this section, identifying their difficulties.

5.1 Anonymous type synonyms

When exposed to multi-parameter type classes and in par-
ticular higher order type variables, programmers often seek
a more expressive type language. For example, suppose we
have the following two classes Foo and Bar:

k1 a -> a
k2 b ->b

class Foo k1 where f ::
¢lass Bar k2 where g ::

and a concrete binary type constructor
data Baz ab = ...

Then we can easily write an instance declaration that de-
clares (Bar a) to be a functor, thus:

instance Functor (Baz a) where
map = ...

But suppose Baz is really a functor in its first argument.
Then we really want to say is:

type Zab b a = Baz a b
instance Functor (Zab b) where
map = ...

However, Haskell prohibits partially-applied tvpe synon-
myms, and for a very good reason: a partially-applied type
synonym is, in effect, a lambda abstraction at the type level,
and that takes us immediately into the realm of higher-order
unification, and minimises the likelihood of a decidable type
system (Jones [1995a, Section 4.2]). It might be possible to
incorporate some form of higher-order unification {e.g. along
the lines of VMiller {1991]) but it would be a substantial new
complication to an already sophisticated type system.

5.2 Relaxed superclass contexts

One of our ground rules in this paper is that the type vari-
ables in the context of a class declaration must be a subset
of the type variables in the class head. This rules out dec-
larations like:

class Monad (m s) => StateMonad m where
get :: ms s
set :: s ->ms ()

The idea here is that the context indicates that m s should
be a monad for any type s. Rewriting this definition by
overloading on the state as well

class Monad (m s) => StateMonad m s where
get :: ms s
set :: s ~>ms ()
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is not satisfactory as it forces us to pass several dictionaries,
say (StateMonad State Int, StateMonad State Bool)
where they are really the same. What we really want is
to use universal quantification:

class (forall s. Monad (m s))
=> StateMonad m where
get :: m s s
set :: 8 ~>ms ()

but that means that the type system would have to han-
dle constraints with universal quantification — a substantial
complication.

Another ground rule in this paper is the restriction to acyclic
superclass hierarchies. Gofer puts no restriction on the form
of predicates that may appear in superclass contexts, in par-
ticular it allows mutually recursive class hierarchies. For ex-
ample, the Iso class example of Section 2.3 can be written
in a more elegant way if we allow recursive classes:
class Iso b a => Iso a b where iso :: a => b

The superclass constraint ensures that when a type a is iso-
morphic to b, then type b is isomorphic to a. Needless to
say that such class declarations easily give lead to an unde-
cidable type system.

5.3 Controling the scope of instances

One sometimes wishes that it was possible to have more
than one instance declaration for the same instance type,
an extreme case of overlap. For example, in one part of the
program one might like to have an instance declaration

instance Ord T where { (<) = lessThanT }
and elsewhere one might like
instance Ord T where { (<) = greaterThanT }

As evidence for this., notice that several Haskell standard
library functions (such as sortBy) take an explicit compar-
ison operator as an argument. reflecting the fact that the
Ord instance for the data type involved might not be the
ordering you want for the sort. Having multiple instance
declarations for the same type is, however, fraught with the
risk of losing coherence; at the very least it involves strict
control over which instance declarations are visible where.
[t is far from obvious that controlling the scope of instances
is the right way to tackle this problem — functors, as in ML,
look more appropriate.

5.4 Relaxed type signature contexts

In programming with type classes it is often the case
that we end up with an ambiguous type while we
know that In fact it is harmless. For example. know-
ing all instance declarations in the program. we might
be sure that the ambiguous example of Section 2.3
iso 2 == iso 3 :: (Eq b, Iso Int b) => Bool has the
same value, irrespective of the choice for b. [s it possible
to modify the type system to deal with such cases?



8 Conclusion

Sometimes a type system is so finely balanced that virtually
any extension destroys some of its more desirable proper-
ties. Haskell’s type class system turns out not to have the
property - there seems to be sensible extensions that gain
expressiveness without involving major new complications.

We have tried to summarise the design choices in a fairly
un-biased manner, but it is time to nail our colours to the
mast. The following set of design choices seems to define
an upward-compatible extension of Haskell without losing
anything important:

o Permit multi-parameter type classes.

e Permit arbitrary constraints in types and type signa-
tures (Choice 1b).

e Use the (inst) context-reduction rule only when forced
by a type signature. or when the constraint is tauto-
logical (Choice 2d). Choice 2e is also viable.

o Prohibit
{Choice 3a).

overlapping instance declarations

e Permit arbitrary instance types in the head of an in-
stance declaration, except that at least one must not
be a type variable (Choice 4c).

o Permit repeated type variables in the head of an in-
stance declaration (Choice 3a).

o Restrict the context of an instance declaration to men-
tion type variables only (Choice 6b).

¢ No limitations on superclass contexts (Choice 7b}.
¢ Prohibit improvement (Choice 3a).

e Permit the class variable(s) to be constrained in class-
member type signatures {Choice 9b).

Our hope is that this paper will provoke some well-informed
debate about possible extensions to Haskeil’s type classes.
We particularly seek a wider range of examples to illustrate
and motivate the various extensions discussed here.
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Abstract

This paper describes an extension of Haskell that sup-
ports extensible records, with a full complement of poly-
morphic operations. It is a practical system which can
be understood and implemented as a natural extension
of Haskell. The proposed extensions have been imple-
mented as pari of the ITugs development system, and
seem Lo work well in practice.

1 Introduction

Datatypes play an important role in all but the mosl
(rivial of programming tasks. For example, consider a
program specification which requires that a selection of
geometric shapes be iransformed in variety of different,
ways. It is reasonable, even with only this informal
description, to imagine a collection of new datalypes,
one for each geometric shape, each of which may have
a number of associated attributes. But how are such
types represented in a program? In functional lan-
guages like Iaskell [19], and Standard ML [15] prod-
ucts provide support for defining datalypes, allowing
a selection of data items Lo be grouped together. [or
example, a datatype represenling the geometric shape
point, might be represented by the following Ilaskell
definition:

data Point = MkPoint Int Int.

Although adequate, this definition is not particularly
easy Lo work with in practice. For example, it is easy to
confuse fields when they are accessed by position within
a product.

To avoid these problems, the programming languages
Haskell and Standard ML allow components of products
to be identified using names drawn from some set, of la-
bels. Haskell 1.3 provides support for labelled products
by allowing a datatype declaration to include field la-
bels for components of the datatype. For example, the

Point type described above might be defined more at-
tractively as:

data Poinl = MkPoint {z = Inl, y :: Int}.

Alternatively, Standard ML supports a more general no-
tion of record types, which considers labelled products
as separate entities from datatype declarations. In this
setting, our Poin!t example can be reformulated ash:

type Point = Rec {z ::Inl, y:: Inl}.

Although Siandard ML does not require that we pre-
define a type synonym for Poinl, in practice, it does
provide a useful way of documenting one’s intentions.

Both Haskell and Standard ML provide mechanisms
allowing field names to be used in the construction and
selection of record components without concern for the
overall structure of the datatype. For example, Haskell
ensures that, for each new label, a function working as
a selector for that component is introduced at the top-
level. Unfortunately, this has the undesirable side effect
of forcing any two datalypes defined within the same
scope, to use mutually exclusive field names. For exam-
ple, returning again to the notion of geometric shapes,
a datatype definition for circles including components
z, y, and r representalive of the circle’s centre point
and radius respectively, might be defined as:

data Circle = MkCircle {z :: Int, y :: Int, r:: Int}.

However, this definition is not valid if defined in the
same scope as the Poinl shape described above. More-
over, datatypes defined in separate modules sharing com-
mon field names may only be used in the same names-
pace with careful use of qualified names. Standard ML
avoids imposing similar restrictions on record fields, by
requiring that the type of a record r is uniquely deter-
mined at compile-time. In effect, each different record

1o emphasize the notion of record types, we choose to incorporate
a record constructor, Rec, where in fact the actual Standard ML
definition is: type Point = {z : Int, y : Int}.




type that includes an [ field comes with its own method
for extracting the value of that field. By requiring that
the record Lype can be determined during type check-
ing, the overloading that results from using the same
notation for each of these operations is easily resolved.

An unfortunate consequence of the restrictions im-
posed on record types by both the Haskell and Standard
ML type systems is that operations provided for manip-
ulating records are less flexible than might be expected.
For example, consider operations to extract the centre
point of a given shape. We might reasonably expect
that polymorphism would provide the ability to define
a single definition for all shapes:

cenlre shape = (shape .z, shape.y),

where (_.z) denotes selection of the field z from some
arbitrary record. However, although both Haskell and
Standard ML provide support for polymorphic defini-
tions, no support is provided for the analogous idea
of polymorphism over fields, which allows unimportant
labels to be ranged over by a single variable. It is
the requirement that record lypes be completely deter-
mined at, compile-time—enforced by the application of
constructors in [askell, and by user specified type an-
notations in Standard ML—thal limil operalions over
records to monomorphic type. A further weakness of
the Iaskell and Standard ML record systems is that no
support, is provided for eztensibility; there are no gen-
eral operators for adding and removing fields in a record
value, for example. The following definition, which is
nol, legal in either [Taskell or Standard ML, shows how
extensibilily might be applied to allow an additional
colour field to be incorporated into arbitrary shape val-
ues:

colour ¢ shape = (colour = c|shape),

where the operator (colour = _|_) denoles the extension
of an arbitrary record with a new field colour.

1.1 This paper

This paper presenls an alternative proposal for records
in ITaskell?, by combining ideas that have been used in
previous work to develop a practical type system. In
particular, it supports extensible records, with a full
complement of polymorphic operations. For example,
the point and circle shapes described above can be re-
formulated as:

type Shape r = Rec {z :: Int, y :: Int|r}
type Circle = Shape {rad :: Int}.

2The record system discussed in this paper would be equally suit-
able for an extension of Standard ML. However, the type system is
based on the notion of qualified types, which is the core type system
of Haskell, and as such, Haskell seems an obvicus choice.

Here record type extension, denoted by {/:: _|_}, pro-
vides us with the ability to define Circle as an extension
of the type Shape which includes at least the fields » and
y; i.e., a value of type Shape is at least a value of type
Point introduced above. Intuitively, a value of type
Circle contains all the fields of a Shape, plus an extra
component rad. In fact, we might have done equally
well to define Circle as:

type Circle = Rec {z = Ind, y :: Ini, r = Int].

The combination of extensibility, and the ability to de-
fine polymorphic operations over records provides us
with the functionality to define, and type correctly, the
definition of cenire described above:

centre i Rec{z ::Int, y:: Inl |7}
— (Int, Int)
cenire shape = (shape .z, shape.y)

Note, that unimportant fields (e.g., the radius compo-
nent of a circle) are bound to the variable r.

This paper provides an informal presentation of ex-
tensible records for [Taskell and refrains from in depth
discussion of related record calculi. In particular we do
not consider proposals for exiending Standard ML with
similar record operations, for example Rémy [21, 22]
and Ohort [18]. For an in deplh, formal treatment of
the record system proposed in ihis paper, including a
discussion of relaled work, the interested reader might
look at (aster and Jones’ paper introducing a record
and variant caleuli for qualified types [6].

We conclude ihis section by outlining the main sub-
Jjects covered in the remaining parts of this paper:

¢ Section 2 provides an informal overview of our pro-
posal for extensible records in Haskell. A number
of basic record operalions are considered, which
are nalural generalizations of operators that are
already present in Ilaskell.

o Section 3 describes an implementation for extensi-
ble records. Analogous to the standard notion of
class constrainls represenling implicit dictionary
paramelers, field constraints are considered as ev-
idence for offsets into a given record.

o Section 4 considers a number of pragmatic issues
concerning the integration of extensible records
into Haskell. In particular, any serious proposal
extending Haskell with new primitive datatypes,
must consider the general framework of deriving
instances for standard classes (e.g., equality), and
must address questions of syntax, and pattern match-
ing.

o Section 5 concludes, summarizing some possibili-
ties for future work.




2 Basic record operations

Record Lypes are defined by application of the construc-
tor Rec to well-formed rows, which are themselves con-
structed by extension, starting from the empty row, {}.
A row may be thought of as partial function from labels
to simple types. It is convenient to introduce abbrevia-
tions for rows obtained in this way:

{hom, o em v = {hem] e rh b
{hory, oo, Lemal = {hom, o L B

Note, however, that we treat rows, and hence record
types, as equals if they include the same fields, regard-
less of the order in which those fields are listed. Intu-
itively, a record of type Rec {l :: a| rf} is like a pair
whose first component is a value of type «, and whose
second component is a record of type Rec r. This moti-
vates our choice of basic operations, which correspond
closely to the projection and pairing functions of Haskell
product types. There is, however, one complication; we
do not, allow repeated uses of any label within a partic-
ular row, so the expression {/ :: a|rf} is only valid if {
does not appear in r. This is reflected by prefixing each
of the types below with a predicale (r\{), pronounced
“r lacks {”:

e Selection: to extract the value of a fleld I
(L) s (P\) = Ree {l 2o rff — «.
o Resiriction: Lo remove a field labelled [:
(=D (r\D) = Rec {l = a|r} — Rec 7.
e Dxtension: to add a field [ Lo an existing record:

(I=_]) = (r\l) = a — Rec r — Rec {l : | r}.

A predicate of the form (r\/) prevents a record r being
extended with a field already present, but no analogous
operation is provided at the level of types. However,
although record lypes containing multiple occurrences
of the same label are legal (e.g., Rec {l :: Bool, 1 :: Int]}
is a valid type), they are uninhabited®, and as such, it
is impossible to construct proper values with the ap-
propriate type. In praclice a compiler may incorporate
static checks to avoid record types with multiple labels
within module boundaries. For example, consider the
following type definitions:

type Foo r = Rec {l: Int|r}
type Foo' = [Foo {l:: Bool}.

3The primitive operation for record extension insures, by means of
a predicate r\l, that a record is only ever extended with a field not
already present.

Expanding Foo’ gives the type expression
Rec {1 :: Bool, ! :: Int],

which can be flagged as a error al, compile-time.

We can use Lhe basic operalions described above
to implement a record updale operation which, unlike
datatypes with labelled.fields, does not restrict the type

of the updated field:
(L:i=_10) = (P\l)= a— Rec {l::3]|r}
— Rec {1 a|r}
(I'=z|r) = (I==2|r=1).

As a concrete example of these operations, and high-
lighting the use of extensibility, consider a hierarchy of
algebraic structures in which monoids (structures with
asel. and an associative binary operation) form the base
of the hierarchy, and group and ring structures are de-
fined as extensions of monoids and groups, respectively.
A group supports all operations of a monoid plus an
inverse, and a ring supports all operations of a group-
plus some of its own. Given, an appropriate implemen-
tation of this hierarchy, a user might reasonably expect
to define operalions, requiring only the funciionality of
monoids, over all algebraic struciures. Figure 1 provides
an implementation of this hierarchy in terms of exten-
sible records, accompanied by sample implementations,
for the integers.

type Monoid v v = Rec { plus::iv — v — v,
id:v|rf

type Group v r = Monoid v {inv = v — v|r}

type Ring v r = Group v { mull :v—v—wv,

one . v | rf

iMonoid 0 Monoid Int {}

iMonoid = (plus = (+),id =0)

iGroup o Group Int {}

iGroup = (inv = negate|iMonoid)

iRing . Ring Int {}

iRing = (mull = (x), one = 1|iGroup)

Figure 1. Example algebraic hierarchy

The standard list function sum, for computing the
sum of a list, can now be recast. in terms of any monoid:

sum o Monoid @ v — [o] — «
sum mon = foldr (mon.plus) (mon.id)




Here, r ranges over rows containing zero or more fields,
which in the case when the function sum is applied to
iGroup, r is bound to the single field negate. Thus ex-
tensibility captures a form of sub-typing that is also
present, although in a slightly different form, in the
Maskell class system. HHowever, we believe that this
notion of sub-typing is present in a number of differ-
enl, programming situations, many of which are more
suited to extensibility than they are to obscure encod-
ings using the class mechanism.

Extensibility provides a simple form of inheritance,
more commonly found in object-oriented languages (23,
2, 1]. Hughes and Sparud [7], have shown thal the
[Maskell class system provides an alternative form of
inheritance, which can be utilized to encode object-
oriented features. It remains to be seen whether records
with extensibility will provide a practical plaiform for
incorporating object-oriented features into Haskell.

3 Record implementation

This section explains how the daia structures and op-
erations described in the previous section can be im-
plemented. We focus on the implementation of record
extension, (! = -].), which. aside from record selection.
is probably the most frequently used basic operation.
A naive approach would be to represent a record by an
association list, pairing labels with values. This would
allow simple implementations for each of Lhe basic op-
erations, with the type system providing a guarantee
that the same field would never appear more lhan once
in a given record. A major disadvantage is that it does
not allow constant time access to record components.

To avoid these problems, we will assume instead that
a record value is represented by a contiguous block of
memory thal contains a value for each individual field.
To select a particular component r./ from a record r,
we need to know the offset of the [ field in the block of
memory representing r. Languages without polymor-
phic selection will usually only allow an expression of
the form r.{ if the offset value, and hence the structure
or even the full type of r, as in Ilaskell, is known at
compile-time.

However, il is not actually necessary to know the
position of every field at compile-time; instead, we can
treat unknown offsets as implicit parameters whose val-
ues will be supplied at run-time when the full types of
the records concerned are known. This is essentially the
compilation method that was used by Ohori [18], and
also suggested, independently, by Jones [8]. Assuming
records are implemented as arrays of equally sized cells,
in which record fields are stored consistently with re-
spect Lo some total ordering on labels, the extension

operator, (I = _|.), can be implemented by a function
AiAv.Ar.pezt i v r, using the extra parameter ¢ to sup-
ply the offset, at. which the value v is to be inserted into
the record r. For example, the expression:

(inv = negale | iMonoid)
can be implemented by compiling it to
(AiAv. Ar.pext © v r) 1 negale iMonoid,

assuming a lexicographical ordering on labels. The re-
sulting expression, pert 1 negale iMonoid, can be im-
plemented by simple copying procedures, allowing the
correct insertion of the value negale. This process is
captured diagrammatically by the following diagram:

G
% N

l 0 lnegatel (+) ’

Note, thal all fields with labels considered less than
the label being inserted, remain in the same position in
the array, while all fields following the inserted field are
shifted up one position. Record restriciion can be im-
plemenied in a similar fashion, where instead of larger
field labels being shifted up one position they are shifted
down one.

Of course, there are run-time overheads in calcu-
lating and passing offset. values as extra paramelers.
However, an aliractive feature of our system is that
these costs are only incurred when the extra flexibility of
record extension and polymorphic selection is required.
Operalions like record extension and restriction will, in
general, be implemented by copying. Optimizations can
be used lo combine mulliple extensions or restrictions
of records, avoiding unnecessary allocation and initial-
ization of intermediate values. For example, a compiler
can generate code thal will allocate and initialize the
storage for a record (z = 1,y = 2,z = 3) in a single
step, rather than a sequence of three individual allo-
cations and extensions as a naive interpretation might
suggest..

The typechecker gathers and simplifies the predi-
cates generated by each use of an operalor on records.
For example, if iMonoid is a value of type Monoid Int {},
then an expression like iMonoid.id will generate a single
constraint, {plus :: Int}\id. Predicates like this, involv-
ing rows whose structure is known at compile-time, are
easily discharged by calculating the appropriate offset
value. Obviously, a compiler can use this information to
produce efficient code by inlining and specializing Lhe
selector funclion, (..id).

It is possible thal our more general (reatment of
record operations could result in compiled programs




that are littered with unwanted offset parameters; ex-
perience with our prototype implementation will help
to substantiate or dismiss these concerns. In any case,
there are simple steps that can be taken to avoid such
problems. For example, a compiler might reject any
definition with an inferred type containing predicates,
unless an explicit. lype signature has been given to signal
the programmer’s acceptance. This is closely related to
the monomorphism restriction in Haskell and Lo pro-
posals for a value restriction in Standard ML [24, 13].

4 Pragmatic Issues

Previous sections highlighted a number of shortcomings
with the current solution for records in Haskell, and
proposed a system of polymorphic extensible records,
naturally extending the Haskell type system. However,
hitherto we have avoided considering the more prag-
matic issues, which often arise with proposed exten-
sions to non-trivial languages, such as [laskell. In this
section we consider three parucularly important prac-
tical concerns for extensible records in Ilaskell. Sec-
tion 4.1 considers the question of paittern malching over
records. Section 4.2 highlights the difficulty in selecting
a suitable syntax. Section 4.3 presents extensions of the
[Taskell class mechanisni, to allow for derived instances
of equality and text operations over records.

4.1 Pattern matching

As with other dalalypes in Iaskell, pattern matching
is often a natural way Lo extract the components of a
record. For example, considering again the algebraic
hierarchy of Section 2, pallern matching provides an
alternative definition for the funciion sum:

sum i Monoid a r — [a] — «
sum (plus = p,id = i|r) = foldr p 1.

Intuitively an expression of the form sum e is evaluated
from left to right, first. evaluating the pallern bindings
for p and ¢, and then binding all other components to
the pattern r. More generally we can explain the se-
mantics of pattern matching over records using a trans-
lation of the form:

\(l:p|r)—+e_é_\z—-caser.lof
p — casez—/[of
r o — e

Nole that, although we propose that the source level use
of record restriction be restricted to patterns only (see
Section 4.2), our implementation of pattern matching
requires record restriction as a primitive notion. How-
ever, such uses do nol introduce any new syntactical
problems.

4.2 Issues of Syntax

Unquestionably, choosing an appropriate syntax plays
an important role in the success or failure of program-
ming language features. TFor example, Ilaskell allows
pattern matching on the left hand side of function bind-
ings, which in turn provides a convenient mechanism
for describing inductive definitions. If however, pattern
matching was supported only within the case construct,
then inductive definitions may not seem as attractive.

Section 2 introduced a syntax for record types and
operations, which overlapped with that of Haskell. For
example, record selection was written using the sym-
bol (.), which is already used for function composition
in Haskell. The fact that we use the symbols { and }},
which are not defined by Haskell’s lexical syntax, com-
plicates malters even further.

Any discussion of syntax for extensible records in
Haskell, musi consider whether records as described by
the Haskell 1.3 report are to be retained. If not retained,
then the syntax for record types can be simply that of
Section 2, replacing the symbols { and } with { and
} respectively. As the system presented in Lhis paper
supports the record operations of Ilaskell, we believe
that il is not unreasonable to consider replacing one by
Lthe other.

We now iLurn our allention to the question of syntax
for record values. Our main concern is that the syn-
tax of Section 2 introduces ambiguities when consid-
ered wilh respect to Ilaskell’s syntax. Unfortunately,
although record extension integrates smoothly, this is
not the case for either record selection or restriction.
In practice we have found only a few applications for
record restriction, and in such cases pattern matching
over records has proven adequate. [n contrast, record
selection appears in all but the most trivial of record
applications, and although paltern malching provides
an alternative, we believe thal this operalion must be
supporied using a convenient notation.

Record selection in Standard ML [15] is represented
by the appropriate label prefixed by (he symbol #.
Thus selection of the field [ of a record r is denoted
by the expression #! r. owever, having experimented
with this notation, we found that importani program
details were often hard to visualize. With this in mind,
we strongly believe that (_.[) is the correcl notation
for record selection. This leaves us with the impor-
tant question of what to do aboul function composition,
which is denoted by the symbol (.) in current versions
of Haskell. It may come as a surprise to the reader
that, in fact, we propose thal function composition be
represented by the symbol #, even though we felt it fo
be inappropriate for record selection. Moreover, since
function composition is in fact an instance of Lhe [Taskell




class Funclor, al type ((—)«), it could be predefined as
part of the Funclor class:

class Funcior f where

# ¢ (=8 —~(fa—=[5

Function composition is defined simply as an instance
of this class:

instance Funclor ((—) «) where

(f#9)z = [flg2)

Fortunately, associativity for function composition is
preserved. To see this, recall that the following equation
is satisfied by any functor [12]:

(F#DHFL=FF#(g#h),

for which f, ¢ and h are of the appropriate types. In-
stantiating the different. uses of (#) to function compo-
sition, of the appropriate types, gives the equality *:

f.g). h=f_ (9. h),

which is precisely the required associativity law.

Figure 2 contains our proposed extensions for the
[Taskell grammar, which itself appears in appendix B of
the [askell report, [19].

A more long term perspeciive for adopting an alter-
native record proposal for Ilaskell, might involve con-
sidering tuples of type (r,---, ) Lo be shorthand for
records of type Rec {1 7y, -+, n 2 7y }. A similar rela-
tionship between tuples and records has been adopted
by Standard ML [15], and seems to provide a number
of praciical benefits, nol least a general mechanism for
seleciing arbitrary components of tuples.

4.3 Records and the Haskell class system

Often, the design and implementation of a new datatype
requires more than just specifying the datatype defini-
tion itself. For example, one must ask questions such as:
Is equality defined over elements of the new datatype?
Are elements of this type printable? And so on. Al-
though many of these questions will be related to spe-
cific applicalions, there is a class of operalions that arise
for almost all datatypes (e.g., equality).

To ease the programming burden, ITaskell provides
a number of predefined (ype classes for operations such
as equality and printing, for which instances can be de-
rived automatically by the compiler. This section con-
siders how an implementation might automatically de-
rive instances of the Iq and Show classes over records.

4We return briefly to denoting function composition as (.), in order
to help the discussion.

An obvious first, attempt, at defining equality over
records might involve having the compiler generate in-
stance declarations of the form:

instance (EFq (Rec r), Eq «) = (Rec {{ :: | r}) where

r==71" = (rd==rD&&(r-l==r"=1),

for each record extension with a field [. However, even
if we overlook the fact that Iaskell does not support
contexts of the form shown here, this does not give a
well-defined notion of equality. To see this consider the
expression:

(z:lO,y:_L) == (1':20,;/:30),

where L is a diverging term of type Inl. Evaluating
this expression from left to right results in the boolean
value False. However, we consider rows equal modulo
reordering of fields, thus applying commutativity and
evaluating from left to right gives L for the above equal-
ity. Thus if we are not, careful when deriving equality
over records, then it is possible that different implemen-
talions may produce differing results. The problem lies
in the fact that rows, and thus records, are considered
equal modulo reordering of fields.

The clue (o resolving this problem lies in Section 3,
where the well-formedness of record compilation was
guaranteed by considering a total ordering on labels.
Intuitively, equality over records is well-defined if cor-
responding pairs of fields are compared in precisely the
order delermined by their labels in the record type that
we are concerned with. Operalionally, one can think of
record equalily as: given any {wo records of Lhe same
type, construct an ordered list of pairs, in which the first
element of each pair is the string for a particular label
and the second is a (delayed) boolean lest of equality
for the values associated with a given label. The follow-
ing class definition captures this notion of equality over
records:

class FqRecRow r where
eqRecRow Rec r — Rec r — [(String, Bool)].

To ensure that the definition of equality, over records,
is well-defined, an implementation must guaraniee that
instances of this class can only be generated internally,
on application of the extension operator.

The instance for the empty row can be predefined,
in a suitable library, as:

instance FqRecRow {} where
eqRecRow _ - = []

Now, providing thal suitable implementations are
constructed on each application of record extension, we



label —  varid

rowvar — lyvar

|  rowvar

alype —
|  Rec row

fexp —  [fezp]dexp

row —  {label; :: typeq, - -, label, o lypen} (n>0)
| {labely :: typey, - -, label, = type, | row} (n > 1)

dexp —  dezp.label (record selection)
| aexp
aexp —_
| (labely = expy, - -, label, = exp,) (n>0)
| (labely = expy,- - -, label, = expy|exp)  (n > 1)
(l])(ll, — .
| (labely = paty, - -, label, = paly) (n>0)

| (labely = paly, -, label, = paly | pal) (n>1)

(field names)

(row variables)

(row variables)

(record type)

(function application)

can safely define a single, general, instance for equalily
over records:

instance EqRecRow r = Eq (Rec r) where
r ==y = all {map snd (eqRecRow z y))

Derivable instances may be defined similarly for the
classes Ord and, Show. For example, Figure 3 contains
an implementation for showing record values®. Analo-
gous with the function eqRecRow, described above, the
function showRecRow generales an ordered list of pairs
for a given record. The second component of each pair
represenis the showable value associated with a given

label [.

5 Conclusion

We have described a natural extension to Haskell, that
is flexible enough to allow polymorphic extensible records.
This system generalizes the current Haskell and Stan-
dard ML record systems, allowing polymorphic opera-
tions over records and extensibility. A prototype im-
plementation has been incorporated into Hugs, an im-
plementation of Haskell 1.3 [9]. Our experience to date
shows that the implementation works well in practice.
There are a number of areas for further work:

5 Following the discussion of Section 4.2 the composition of func-
tions is represented by (#) :: (o — 3) — (v — &) = v — 5.

Figure 2: Proposed syntax for extensible records in [Taskell

o First class polymorphism and extensible records:
Receni. work by Liufer and Odersky [17], Jones [11],
and Garrigue and Rémy [5] has shown thal a type
system based upon let-polymorphism (14, 3, 4] can
be extended to allow polymorphic values as first
class citizens. A common theme in this work is the
requirement, that hints are provided to the type in-
ference system (for example, polymorphic values
can be constructed by application of constructor
functions). It is our belief that such hints may
be provided by the construction and deconstruc-
tion of record values and on going work is showing
promising results.

o First class modules for Haskell: 1t has long been
realized that the Standard ML module system pro-
vides a range of software engineering benefils over
that of the Maskell module system. It is to this
end, that we are interested in unifying and combin-
ing the record system described in this paper, with
Jones’ [10] mechanism for modules using parame-
terized signatures, with the long term objective of
incorporating firsl class modules into Haskell.

o A new approach to datatypes: Gaster and Jones [6]
have shown that the type system providing sup-
port for the operations introduced in Section 2 not
only supports extensibility over records, but also
provides this functionality for variants. To this




instance ShowRecRow r = Show (Rec r)} where

showsPrec d = showFields#showRecRow

showlields
showFields []
showlields zs

[(String, ShowS)) — ShowS
showString “()”

showChar /('

foldrl comma (map fld zs)
showChar ")

FHH MO0

a#tshowString ©, "#b
showString s#showChar ' =" #v

comma a b

fid (s, v)

class ShowRecRow r where
showRecRow Rec r — [(Siring, ShowS)]

instance ShowRecRow {} where

showRecRow - = []

Figure 3: Functions to “show” record values

end, we are inleresied in developing the ideas in
this paper into a general framework for extensible
datatypes in [Taskell.

o Object-oriented programming in [laskell: Section 2
noled that extensibility is closely related to in-
heritance found in languages based on an object-
oriented methodology. A general notion of exten-
sibilily is captured through our use of rows, which
potentially may be suitable for object-oriented ex-
tensions of Iaskell. For example, a constructor
Obj might be used to describe objects with a given
row of methods {16, 20].
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Abstract

The Haskell dialect Mondrian is designed using the explicit
philosophy of keeping things simple and consistent. Mon-
drian generalizes some of Haskell's (too) complex constructs.
and adds a few simple new ones. This results in a small, in-
tuitively comprehensible language with an object oriented
flavor.

In this paper. we will present the design decisions we made
for Mondrian. Furthermore, some of Mondrian's language
constructs will be defined by translations into Haskell.

1 Introduction

In the preface of the Haskell report [13] the hope is expressed
that extensions or variants of the language will appear that
incorporate experimental features. The language Mondrian
is such an experiment. Mondrian evolved from Haskell by
deleting and combining some of Haskell’s more complicated
constructs and adding a few simple new ones. Unlike the
language Pizza [29], which is designed as a strict superset
of Java [8], the major concern in designing Mondrian has
been to keep the language as basic and down to the bare
essence as possible, even if this implied breaking compati-
bility with Haskell. We do define Mondrian by translating
it into Haskell.

The hype about object-oriented programming is not without
cause. Viewing the world as a collection of interacting ob-
jects is conceptually very natural. When it comes down to
programming the behavior of objects in an imperative lan-
guage, however, we miss the abstraction mechanisms offered
by functional languages, and we are less enthousiastic. Mon-
drian combines algebraic data types and type classes into a
naive (no real subtyping) object-oriented type system, so
that it becomes possible to program in an object-oriented
style within the functional paradigm. Mondrian does not
pretend to be a real object-oriented language. All type-
checking remains covariant and “message not understood”
runtime errors are not prevented by the type checker. Fun-
damentally though. Haskell suffers from the very same prob-

lem in the sense that the compiler does not reject partial
functions defined using pattern matching, something that is
not normally perceived as a typing issue.

Types are significant in the programming process. Most of
us share the experience that once we have the types right.
the program is correct. Therefore it is a pity that in Haskell
the abstraction mechanisms on the level of types fall short
when compared to those on the level of expressions. On the
term level we have let-expressions to name program frag-
ments. and \-expressions and application to parametrize
over program fragments. We should be able to use these on
the type level as well. Instead of Haskell’s primitive mecha-
nism of type synonyms. Mondrian has a full functional lan-
guage available on the level of types. but we push the borders
just a little bit to keep things as simple as possible.

If we think that it is a good idea that programmers doc-
ument their code by supplying explicit type signatures for
function definitions. their programming language should en-
courage this by providing convenient mechanisms to give
type annotations. In particular, the programmer should be
able to specify types of locally defined functions that are
polymorphic in some type variables and monomorphic in
others. Mondrian follows SML by introducing scoped tvpe
variables.

As an experiment the syntax of Mondrian modules is made
consistent with that of value definitions. Identifiers that
are exported must be marked as such at their declaration
instead of writing them as arguments in the module heading.
From a software engineering point of view this leads to more
weakly coupled code. In the current situation, changing the
name of an identifier requires changing a name in the export
list as well. We do not consider the lack of explicit module
interfaces to be a problem. In contrary, module interfaces
should be generated automatically by a program browser.

At the implementation level, a novel aspect of Mondrian
is the use of Pure Type Systems [10] as a typed interme-
diate language [24]. Instead of having three different lit-
tle languages for terms, types and kinds, all of which must
support similar operations, it is more convenient to have a
single language that captures all levels, and allows control
over the way levels can interact. A uniform framework like
PTS provides an even greater degree of generality than the
Glasgow Haskell Compiler backend [22], which is based on
the polymorphic lambda calculus.




2 History, motivation and background

Functional programming plays an important role in the com-
puting science curriculum at Utrecht University. For teach-
ing, the disadvantages of functional languages such as slow
speed and large memory consumption are not prohibitive, as
they are for industrial usage. Moreover, the advantages of
functional languages [16] such as abstraction from evaluation
order (lazy evaluation), abstraction from computational pat-
terns (higher-order functions), abstraction from type struc-
ture (polymorphism), and high code density, prove to be of
great didactical value.

In the last few years we have replaced mathematical syntax
by a functional language. in casu Gofer [17], in a number of
courses (1] including Grammars and Parsing, Computer Ar-
chitecture, and Implementations of Programming Languages.
The advantages of implementing ideas in a programming
language instead of in plain mathematics are that they are
type checked and often even executable. In practice, we do
not feel constrained by notational restrictions imposed by
the use of concrete syntax, although it takes a lot of care to
hide unimportant details. On the other hand. it is perhaps
too easy to omit essential details when using mathematical
notation.

As heavy users of functional languages we felt an ever in-
creasing need to have our own implementation of a Haskell-
like language. This would allow us to use the feedback we
get from teaching to improve our programming language di-
rectly, without being dependent on other implementors who
might have different priorities and goals. Understandably
Haskell developers are best served by a stable language and
thus reluctant to change.

Our home grown compiler should be simple, small, exten-
sible, and written in its own source language. Efficiency is
not particularly important. To be competitive with the im-
perative language implementations our students know and
use at home on their PCs (Visual Basic. Visual C++, Vi-
sual J++, Delphi), the implementation should come with a
fancy graphical programming environment.

A second drive for contriving a Haskell dialect is our belief
that in order for functional programming to succeed in the
real world, some support for object orientation is a necessary
(but not sufficient!) condition. As Hughes and Sparud argue
(15], Haskell currently lacks the form of incremental reuse
that is offered by inheritance in object-oriented languages.
Using inheritance you can extend (subclass) a given data
type and then redefine only those operations for which the
extension is significant while reusing the rest.

There are already several implementations of Haskell-like
languages around, most notably the Glasgow (2] and Chalmers
[3] Haskell Compilers, Mark Jones’s Gofer and Hugs systems
[4], Niklas Rdjemo’s Nearly Haskell Compiler [5], and Clean
[6]. So why on earth would anyone want to develop yet an-
other language? The reason is that none of these existing
implementations exactly fits our needs. Though one of the
goals in the design of GHC was to provide a modular founda-
tion that other researchers can extend and develop, the Glas-
gow compiler is much too large and complicated to be used

1 A sufficient condition would be a killer application in which func-
tional programming is clearly superior. We anticipate that using

functional languages, instead of Visual Basic. as glue for COM com-
ponents could be such a domain.

for education. Gofer (and Hugs) are small and simple, but
they are written in C. The NHC system is written in Haskell,
but is optimized for space efficiency. Lastly, the Clean com-
piler is written in C and optimized for both fast compila-
tion and fast target code. Except for Gofer/Hugs, none of
the above implementations has a proper PC/Windows based
programming environment.

We recognize that building a complete implementation from
scratch is a lot of work, and hard to accomplish with the lim-
ited resources we have. Therefore we decided to piggyback
on existing infrastructure as much as possible by compiling
Mondrian into Haskell. Later we hope to target at Henk
[24] as a common intermediate langnuage with GHC. At this
moment Mondrian is in its embryonal stage, and it might
take a long time before it is delivered. Even so, the ideas
ventilated in Mondrian have already prompted the develop-
ment of a typed intermediate language Henk [24] and helped
to keep Haskell on its toes [23, 20, 21].

3 Classes and algebraic data types

Mondrian unifies algebraic tvpes and type classes into a sin-
gle. simple-minded. object-oriented class mechanism. Dic-
tionaries that are used in the Haskell implementation of
type classes [14. 9, 30] are nothing more than algebraic data
tvpes with polymorphic fields. Structures with polymorphic
components are completely standard and already supported
by several existing Haskell implementations [18, 28]. When
class dictionaries are first class values, algebraic data types
can be modeled by a root class with a subclass for each al-
ternative. Let’s see how this all works in some more detail.

As our running example we use a class Student that models

students that carry a name and an address.
class Student where {name, address :: String}

We can use the constructor Student{...} to construct in-

stances of the Student class (values of type Student) by

defining the fields of interest between the braces as in the
following definition of some arbitrary student:

aStudent

= Student
{ address = "4711 NW One Way Street"
; name = "John Doe"
}

Instances of Student can be updated non-destructively. When
John Doe moves, we might want to change his address

aStudent{address = "1478 SW Osprey Drive"}

An update of an object creates a new copy in which the
specified fields are replaced by the indicated values.

Besides construction and update we can also do pattern
matching on class instances. Function showStudent does a
pattern match on the constructor Student{...} to destruct
a student value. It maps an instance of the class Student to
a string”.

2In an object-oriented setting one would define this function as a
method of the Student class, but here we want to discuss the tradi-
tional “pattern matching” view of first class classes



showStudent :: Student -> String
showStudent Student{n = name; a = address}
= ++ ", " ++oa

A field binding is very much like a normal binding found
in a let- or where-clause. In a pattern match the equation
n = name binds the variable n to the actual value of the
field name, in a construction or update the equation name =
"John Doe" binds the field name to the string "John Doe".
There should be only one way to bind variables. In Mon-
drian therefore a field pattern introduces a mutually recur-
sive set of bindings whose scope is the right-hand side of the
definition in which they occur. In a field construction the
scope is restricted within the braces. Here is an alternative
way to write the previous example:

showStudent Student{s = name ++ ", " ++ address}
=s

Field bindings are recursive, thus for example Student {name
= name} binds name to L, as it assign the value of the name
field of the instance under construction to the name field
of the instance under construction. This is tedious when
you want to update a field with a value that depends on
its previous value. But overall regularity is more important
than occasional inconvenience.

Mondrian allows Haskell-style punning of field bindings. The
following definition of function showStudent

showStudent :: Student -> String
showStudent Student{name; address}
= name ++ ", " ++ address

is a shorthand for the first definition we gave for function
shouStudent. In general, an object construction or update
that uses punning on field £

foo{p = e; £}
is translated into
let {f’ = £} in foo{ p=e; £ = £’ }

where £’ is a fresh identifier.

In a pattern match
case e of { ... ;foo{p=e;f}->b;..‘}
a pattern that uses punning is translated into

case e of
{ ...
; foo{f p=e; £2 =€ } -> b vhere £ = {’

}

again, with £’ a fresh name.

As in a Haskell class declaration, we may define a default
value for a method when defining a class. For example we
can give instances of Student the default name "John Doe”.

class Student where
{ name :: String; name = "John Doe"
; address :: String

}

In this case when the field name is omitted in the construc-
tion of a student instance, its name method is automati-
cally initialized to the default string "John Doe". In general.
given a class declaration

class C vhere {f :: A; £ = a; g :: B}

an object construction C{p = e} where field £ is not bound
in pattern p, is translated into

let {f = a; p = e} in C{f; g}

3.1 Subclasses but no subtyping

We can make a subclass PhD of students that are working
towards a PhD thesis by extending the Student class with
an extra field topic that contains the topic of the student’s
PhD thesis.

class Student => PhD where { topic :: String }

An instance of PhD has all the methods of Student plus the
extra method topic of type String, for example

jl

= PhD{ name = "Jeff Lewis"
; address = "QOGIL"
; topic = "ADL"
}

An object of class PhD is permitted wherever a Student ob-
ject is required. In particular an instance of PhD can match a
pattern that expects a Student. Thus the call showStudent
j1 evaluates to the string "Jeff Lewis, 0GI", even though
function showStudent was defined by pattern matching on
the superclass Student{...}. By taking this decision. we
nose-dive right into the sticky tarpit of subtyping.

Suppose we define a function changeAddress that updates
the address of any object that has an address field.

changeAddress this = \new -> this{address = new}

When we use function changeAddress to update the address
of a PhD student, we expect that the resulting value still is
a PhD student, i.e., the value of changeAddress jl "PSU"
is j1{address = "PSU"} and has type PhD. So the question
is what should be the type of function changeAddress? On
the one hand the argument type should be Student, so that
it accepts every subclass instance with an address field. On
the other hand the result type should definitively not be
Student as this means that we lose static knowledge of the
fact that updating the address of an object does not modify
its dynamic type.

The design of a typesystem that deals with subtyping, higher-
order functions, and objects is a formidable challenge, and
requires heavy-duty type theoretical apparatus {7]. For the
sake of simplicity we took an extreme design decision: Mon-
drian effectively has no notion of subtyping! This implies
that a value of a superclass can be used whenever a value
of one of its subclasses is required. We recognize that this
choice may give rise to runtime errors. However, we only
allow runtime errors that can be captured by a dynamic
type-check on the constructor of an object. Such errors are




of the same nature as division by zero, incomplete case dis-
tinction and other runtime errors caused by partial functions
in Haskell.

Another reason for taking such an extreme cut at subtyping
is that this is dictated by the translation of classes. The
translation of Mondrian classes into Haskell proceeds in two
stages. In the first stage, the class hierarchy is flattened by
taking its transitive closure (sometimes this process is called
dictionary flattening). The methods of a class class § => R
where ... are added to any class class (T,R) => C uhere

that has R as one of its superclasses, after which R is
replaced by S in the set of superclasses of C, i.e. class
(T,S) => C where .... Provided that any two classes that
appear in the same superclass set have a common super-
class, this process partitions the set of all class declara-
tions into groups of a root class class R where methodsR
and a number of immediate subclasses class R => C where
methodsC. Such a group can immediately be translated into
a normal data declaration data R = R methodsR | ... |
C methodsR methodsC. For example, the class hierarchy

class P where {a :: A}

class P => Q where {b :: B}
class P => R where {c¢ :: C}
class (Q,R) => S where {d :: D}

is flattened into the algebraic data type

data P
= P{a :: A}
| Q{a :: A, b :: B}
| R{a :: A, ¢ :: C}
| S{a :: A, b :: B, ¢ :: C, d :: D}

If we have an inheritance tree of depth d, then the cor-
responding algebraic data type is a factor d bigger. This
economy of writing, together with the fact that when alge-
braic data types and classes are merged there is one concept
less to learn, is an important advantage of Mondrian classes
over traditional Haskell.

3.2 Recursive classes

Now that the previous section teached us how Mondrian
classes can be transformed into ordinary algebraic data types,
it is easy to see how to encode algebraic data types using
classes: just construct a class hierarchy that maps onto the
desired algebraic datatype. To model recursive data types
we need classes that have methods that return class values.
The standard example of lists with elements of type a follows
by declaring a base type List a and two subclasses Cons a
of non-empty lists over type a and Nil a of empty lists over
a.

abstract class List a

final class List a => Nil a

final class List a => Cons a where
{ head :: a

; tail :: List a

}

The class List a® is only needed as a root class for the

subclasses Nil and Cons, but we do not want to build or

31f a class has no methods, we may omit its where {} part.

use objects of class List a itself. This intention is captured
by declaring List as an abstract class. Also if we really
want to model sum-of-product data types the classes Nil
and Cons cannot be subclassed any further, so we prevent
this by declaring them final. However, this does not pre-
vent us from adding new subclasses to List a itself. To
cope with this Mondrian uses the normal Haskell data type
syntax, i.e.

data List a
= Nil

| Cons{ head :: a ; tail :: List a }

List objects can be built by using the constructor functions
Nil and Cons, for example

ones = Cons{ head = 1; tail = ones }

Since lists are so common, Mondrian follows Haskell in pro-
viding the usual “square bracket delimited elements sepa-
rated by commas” syntactic sugar for lists.

An interesting consequence of the encoding of Haskell data
types in terms of an abstract base class and subclasses for
each alternative is that the type of partial functions on data
types can become more informative. For example the func-
tion head has type Cons a -> List a, which indicates that
it expects a non-empty list and returns a possibly empty
list. As in Haskell we can apply head to an empty list (as
the least common superclass of Cons a and Nil a is List
a) with a runtime error as result. Thus, also in Haskell
“message not understood” runtime errors are not prevented
by the type checker. and Haskell suffers from the very same
problem as Mondrian's lack of proper subtyping. In other
words, the Haskell type checker does not reject partial func-
tions defined using pattern matching, something that is not
normally perceived as a typing issue.

3.3 Late binding

Overloading using typeclasses is one of Haskell’s most dis-
tinctive features. When a member function of a class is
used in a definition, this shows up as a constraint in the
type of that definition. This definition is then considered as
an implicit member function of the class in question as well,
so that when it is used in other definitions the “infection”
spreads. For example if we start with the (simplified) class
Eq with member function (==):

class Eq a where { (== :a ->a -> Bool }

and use it in the linear search function search

search a = foldr ((11) (== a)) False

the inferred type for search will be Eq a => a -> [a] ->
Bool. Any function that subsequently uses search also gets
a constrained type involving Eq.

From an implementation point of view, the type search ::
Eq a => a -> {a] -> Bool tells us that function search is
transformed by the compiler into function that passes the
dictionary for Eq a as an explicit argument:

search’ :: Eq a -> a -> List a -> Bool
search’ Eq{(==)} a
= foldr (({1) . (== a)) False




Haskell style overloading can be regarded as just syntactic
sugar for implicit dictionary passing. But in practice, this
sugar is genuinely needed. Without it, programming would
become a bitter activity.

In reality matters are slightly more complicated than sketched
just now. Haskell uses class- and instance- declarations to
reduce (simplify) contexts inferred by the type checker. Sup-
pose we define the function null as = (as == []), then
Haskell infers the type null :: Eq a => [a]l -> Bool, by
using the instance declaration

instance Eq a => Eq [a] where
{03 == = True
; (a:as) == (b:bs) a ==b & as == bs
; as == bs False

to reduce the needed context Eq [a] to Eq a. Using the
same mechanism, contexts can be eliminated by using prim-
itive instance declarations such as instance Eq Int where
.... To see how class declarations are used to simplify con-
texts in Haskell. we introduce a subclass 8rd a of class Eq
a:

class Eq a => Ord a where
{ (k=) :: a => a -> Bool
}

Since every instance of Ord a has an (==) method, we can
simplify the constraint (Eq a, Ord a) to Ord a. For a more
extensive discussion on type classes we refer to a proposal for
liberating the Haskell class system {23}, which also contains
supplementary pointers to relevant work.

When used as variables, field names such as (==) or address
of class Student act as overloaded functions of type Eq a =>
a -> a -> Bool and Student => String respectively. Dic-
tionary translation proceeds as in Gofer [19] or {23, choice 2c
or 2d], that is, no instance specific context reduction takes
place. Not surprising, given the fact that Mondrian has no
explicit instance declarations. In Mondrian instance decla-
rations are just value definitions for (functions from objects
to) objects.

We lied when we said that Gofer does not use instance dec-
larations to simplify contexts. In fact, Gofer uses ground
instance declarations to eliminate contexts. Otherwise there
it would simply be impossible to evaluate expressions that
still expect a dictionary argument. In Mondrian, the pro-
grammer has to supply the right dictionaries explicitly. To
accommodate for this, Mondrian provides field selector func-
tions for every class method. For example, the class decla-
ration Student automatically introduces a toplevel postfix
operator (.address) of type Student -> String defined as

(.address) :: Student -> String
Student{address}.address = address

Future subclassing of Student respects the expected behav-
ior of field selection due to the way pattern matching works:
it extracts the address field of any Student instance.

Selector functions are not restricted to member functions;
any overloaded function f :: P => t can be used as a
selector (.f) P -> t. Conversely, any (non-member)
function that is defined as a selector (.f) P -> tcan
be used as an overloaded function £ P => t. The only

difference with class methods is that the latter are automat-
ically provided.

In Haskell the standard prelude function sortBy takes an ex-
plicit comparison operator as an argument, instead of relying
on overloading. Why? Because in Haskell it is not possible
to have more than one instance declaration for the same in-
stance type. Using Mondrian’s selector function mechanism
we can use implicit dictionary passing, and at the same time
have full control over the dictionary argument.

reverse :: Ord a -> Ord a
reverse ord = ord{ (<=) = flip (ord.(<=)) }

sort :: Ord a => [a] ~> (a]
sort = ...
revsort :: Ord a => [a] -> [a]

ord.revsort = (reverse ord).sort

We believe that by eliminating instance declarations and
keeping implicit dictionary passing, Mondrian retains the
good aspects of Haskell's type classes while avoiding the
bad such as unresolved overloading, overlapping instances
etc. In fact, we can completely separate the idea of late
binding from that of typeclasses. something that we hope to
explore in the future.

3.4 Multiple argument classes

In Gofer subclasses can have more arguments than their base

class. For example the class of state monads has an addi-

tional state parameter s and an update operation update
(s => s) -> m s on that state

class Monad m where

{bind :: ma~->(a->mb) ->mbd
; result :: a ->m a
}

class Monad m => StateMonad m s where
{ update :: (s ->s) ->m s }

This provides a challenge to the typesystem. The problem
is that after we have used an object of the class StateMonad
m s as an object of its superclass Monad m we have not only
lost static knowledge of the type s, but also the dynamic
knowledge. It is not possible to recover type s by pattern
matching on the constructor StateMonad. Another route via
which this problem shows up is in the flattening of classes.
We cannot translate the above class hierarchy into

data Monad m
= Monad{ bind :: ma -> (a ->mb) ->mbd
; result :: a ~> m a
}
| StateMonad{update (s => s) -> m s}
since function update is not polymorphic in s. Treating s
as an existential type looks more promising. But, to keep
things simple we demand that subclasses have the same type
arguments as their superclass.




3.5 Differences with Haskell

There are some differences between Mondrian's classes and
Haskell’s data types with field labels. In Haskell field binders
are separated by commas and class signature declarations
and default definitions by semicolons. In Mondrian we have
used the class instead of the data type syntax.

In Haskell a constructor with labeled fields may be used
as an ordinary constructor. Following the 0-1-co-rule [25],
Mondrian has only classes with labeled fields. If you do not
want to write field bindings, you can use punning instead.

Field bindings in Mondrian are consistent with value def-
initions and pattern bindings. Variables being bound are
always on the left of an =-sign. To construct a Student in-
stance with the name field bound to the value "John" one
writes Student{name = "John"}. To destruct a Student
and bind the value of its name field to variable n one writes
Student{n = name}. In Haskell one would write in this lat-
ter case Student{name = n}.

In order to unify all the contexts in which value bindings
may occur we made a rigorous decision: there are no ir-
refutable patterns in Mondrian. The only exception are
products, which are irrefutable by default. Whenever you
write a pattern it will be matched. Thus the function call
joe Student{name = "John"} will fail. when function joe
is defined as

joe x = let Student{name = "Joe"} = x in True

In Haskell joe Student{name = "John"} will succeed and
return True. In Mondrian, the dynamic semantics of a
(nonrecursive) let-binding let p = e in e’ is the same as
(\p -> e’) e. This restores the Principle of correspon-
dence [33], which is not valid in Haskell. Lazy matching on
products is just enough to make mutually recursive variable
bindings work.

To make conforming pattern bindings more convenient, Mon-
drian has a pattern-aware where clause, that skips to the
next alternative when one of its pattern binding fails, in-
stead of just giving up as a let does. Thus the function
call joe Student{name = "John"} will return False, when
function joe is defined as

joe x = True where Student{name = "Joe"} = x
joe x = False where Student{name} = x

In general we have that a definition f p = a where q = b;
f r = c where s = d is equivalent to £ x = case x of p
-> (case b of q -> a; . -> f’ x); . -> f’ xwithf’ x
= case x of r -> (case d of s -> ¢). By this decision,
the operational behaviour of where clauses has become more
complicated than in Haskell, but we think that this is jus-
tified by an increase in expressive power. At the time of
writing this paper, Simon Peyton Jones [21] has proposed
to extend Haskell style guards from an expression to a list
of qualifiers as in a list comprehension. This gives roughly
the same expressive power as pattern-aware where clauses,
but at a considerable lower cost. In this proposed extension
to Haskell function joe would read:

True
False

joe x | Student{name = "Joe"} <- x
joe x | Student{name} <- x

4 Object encoding

Faithful encoding of objects using records and functions is
known to be very difficult [7]. We use the standard example
of Point and ColorPoint to illustrate the naive encoding of
objects that first comes to mind. Since we do not have sub-
typing, this solution works. If a method of some class wants
to access or modify some of its methods, it takes itself as an
explicit argument. This is similar to type bound procedures
in Oberon [27], where class methods take the receiver object
as an explicit argument. In Mondrian, we write:

class Point where
{ pos :: (Int,Int); pos = (0,0)
; move :: Point => (Int,Int) ~-> Point
; move this{(x,y) = pos} (dx,dy)
= this{pos = (x+dx,y+dy)}
}

If we later extend Point to ColorPoint by adding a color
field

class Point => ColorPoint where
{ color :: Color; color = White

}

then the move method of class Point moves an instance of
class ColorPoint as well since the definition of method move
assumes only the presence of a pos field.

When invoking the method move we must pass the point
to be moved itself as an additional argument: p.move p
(dx,dy). Here we recognize the doubling combinator. since
we will use it so often we introduce special syntax for method
invocation as well:

xB#f = x.f x

Moving a point p can now be written elegantly as p#move
(dx,dy).

Besides the two class modifiers abstract and final that we
already encountered, we also have two method modifiers.
The modifier protected indicates that a field is only visible
in its class and all subclasses thereof, and thus it may never
appear on the left of an =-sign in either a field match, update
or construction outside a class declaration. The modifier
static indicates that a field is fixed statically at compile
time, and cannot be updated at run time, and thus may
never appear to the left of an =-sign in a field construction
or update. A static method without a default definition is
rather useless. In the class Point we might want to restrict
access to the position pos by declaring it protected and
prevent the move method from being changed by declaring
it static.

class Point where
{ protected pos
; pos = (0,0)
; static move :: Point -> (Int,Int) -> Point
; move this{(x,y) = pos} (dx,dy)
= this{ pos = (x+dx,y+dy) }

(Int,Int)

}

The advantage of static methods is that they are shared by
all class instances. The disadvantage of declaring a method
static is that we cannot overwrite it in different instances.
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If we want to change it anyway we have to define a new sub-
class that provides a new default definition for the method.

Besides the notion of this, most object-oriented languages
also know the notion of super. Just as with this Mondrian
has no hidden mechanism for providing super, but it is easy
enough: one has access to the default methods of a class C
by just using C{}. Unfortunately, this is not robust, since
the choice of C is context dependent.

We think that Mondrian provides enough support to ex-
press most of the typical object-oriented programming id-
jom. This falls short in that the encoding is not typesafe
and that it is perhaps a bit weird that updating an object is
implemented by constructing a whole new object and leav-
ing it up to the garbage collector to eventually remove the
original object. This is inevitable because we have no im-
plicit updatable state in a pure functional language.

4.1 Eight-queens in Mondrian

In his book on object-oriented programming {12], Timothy
Budd gives object-oriented programs for the well know eight
queens problem in several languages. It turns out that the
program in Mondrian is more concise than any of the pro-
grams given in the book. Don’t get this wrong, the example
is not supposed to convince you of the fact that the Mon-
drian solution is more concise than the one in Haskell [11]
(which, by the way, is also a perfectly valid Mondrian pro-
gram):

queens number_of_queens
= qu number_of_queens

where
qu O = [[]
qu (m+1) = [ p++[n]
| p<-qu m
, n<-[1..number_of_queens]
, safe pn
]
safe p n

= all not [ check (i,j) (m,n)
| (i,j) <-zip {1..]1 p
]
vhere m = 1 + length p
check (i,j) (m,n)
= j==n || (i+j==m+n) || (i-j==m-n)

q = putStr . layn . map show . queens

although you might argue about which one is more readable.

A Queen carries three instance ‘variables’; the row and column
she is in and her left neighbor. A queen furthermore knows
how to move herself to a safe position (using getSafe and
advance), and whether she can attack a given position to
her right (using canAttack).

class Queen where
{ row, column :: Int
; neighbor :: Queen
; static getSafe :: (Queen -> Queen

; static canAttack :: Queen -> Position -> Bool

; static advance :: (Queen -> Queen

A queen starts at row (.
; row = 0

If a queen can be attacked by her left neighbor at her current
position, she advances quickly to the next position

; getSafe this{ row; columm
; neighbor
}
= if neighbor#canAttack (row,column)
then this#advance
else this

A queen can attack another queen at position (r,c) if that
queen is on the same row or diagonal, or if her neighbor can
attack position (r,c). So actually, the method canAttack
q (r,c) determines wether queen q and all the queens to
her left can attack position (r,c).

; canAttack this{ row; column

; neighbor
Y (zr, ©
= or [ row ==
, rowt{c-column) == r
, row~(c-column) == r

, neighbor#canAttack (r,c)

]

If a queen must advance to the next position but has reached
the end of the board, she has been unable to find a safe
position in this configuration. So she asks her immediate
left neighbor to advance as well and starts again at row =
0. Otherwise she just advances one step. In either case. she
makes sure the new position is safe.

; advance this{ row; column; nb = neighbor }
= (case row + 1 ‘mod‘ n of

{0 -> this{ row = 0
; neighbor = nb#advance
}

; T => this{ row = r }

}

Y#getSafe

In this method we see a disadvantage of mutually recur-
sive field bindings. We are forced to give the old value of
neighbor a name.

To generate the solutions, we put the queens on their colurn
on the board one by one and make sure they are in a safe
position before we place the next queen.

board
= foldr (\c n
-> Queen{ column = c
; neighbor = n
}#getSafe)
ladyDi
[n-1,n-2..0]

The leftmost queen is special, she cannot move or attack
other queens.

ladyDi
= Queen{ getSafe = id
; advance = id
; canAttack = \_ _ -> False

}




We cycle through all possible solutions by repeatedly ad-
vancing the rightmost queen.

solutions

= ( unlines
. map (#show)
. scanl (#) board
) (repeat advance)

The definition of the show function on queens is left to the
reader.

5 Various novelties

So much for classes in Mondrian. We now continue to de-
scribe the more mundane aspects in which Mondrian differs
from Haskell.

5.1 Scoped typevariables

In Haskell. a type expression like b -> (a,b) is interpreted
as ¥V a, b:: b->(a,b) in any context. This cripples
the usefulness of type signatures for local definitions. The
following definition is rejected by the Haskell typechecker
because the given type for g is assumed tobe VY a, b :: b
-> (a,b). which is indeed too general.
f a=gavwhere {g :: b -> (a,b); g b = (a,b)}

In Mondrian we can restrict the type of g to be monomorphic
in a but polymorphicin b, te. g :: Vb . b -> (a,b)
by adding an explicit type declaration £ a -> (a,a) for
function £ as well. This causes the type variable a in the in-
ner declaration g :: b -> (a,b) to become bound to the
type variable a in the outer declaration £ a -> (a,a).
This convention is consistent with classes with polymorphic
fields. In the declaration of Monad m above, the field result

a -> m a is polymorphic in a, but monomorphic in m.
There might be other ways of indicating the scope of type
variables, but we feel that the given alternative fits quite
comfortably with the current Haskell approach for provid-
ing type signatures.

The usual implementation of Hindley-Milner typechecking
already deals with scoping of type-variables internally. Type-
variables that are not in scope of an outer quantifier are
called generic type variables. We only provide a means for
the programmer to specify which type variables are to be
considered non-generic. Standard ML has had scoped type-
variables for years [26, §4.10], and it won’t be long before
GHC supports some form of scoped type variables [20] too.

5.2 Type abstraction and parametrization

In Haskell the abstraction mechanisms on the level of types
fall short when compared to those on the level of expressions.
This is a pity since types play such an important role in the
programming process. Just as we can use let-expressions on
the term level to give a name to program fragments that
occur multiple times and use \-expressions when we do not
want to name a function, we should be able to this on the
type level too. This need becomes even more pressing when

using higher order type variables. For example, consider the
following class of generalized trees:

class Tree f a where
{ nodes :: f (Tree f a)
; value :: a

}

We can then define binary trees by saying type BinTree
a = Tree (\x -> (x,x)) a, if we want Rose trees, we just
write type RoseTree a = Tree List a.

There is already a theoretical framework that allows the
same language on the type level as on the expression level; it
is called F'w. When you consider Haskell as a fragment of the
polymorphic lambda-calculus for which type-reconstruction
is decidable, you may consider Mondrian as a fragment of
Fw for which type-reconstruction is decidable. For the mo-
ment we are conservative and allow only simple functions on
the level of types and no classes and pattern matching.

Again we have taken a very pragmatic approach to avoid
ending up with a complicated type system. The typechecker
tries to normalize type expressions before unifying them. It
does not try to do higher-order unification. Because type
expressions are well-kinded, the reduction of those type ex-
pressions that are legal in Haskell does terminate. Mon-
drian allows more general recursive type expressions, by al-
lowing recursion on types without being ‘protected’ by a
constructor function. This introduces the risk of nontermi-
nation of the tvpe-checker. Now, we can define the second
order type constructor Rec :: (* => %) => * that takes
the fixed point of a type constructor as follows

type Rec f = £ (Rec f)

A type expression like Rec (\x -> x) does not terminate.
but the type expression Rec (\x -> (Int,x)) does, and de-
notes the type of infinite Int streams.

5.3 Modules

In spirit with keeping the language as small as possible,
Mondrian’s module system is the smallest subset of Haskell’s
module system that is powerful enough so that almost ev-
ery Haskell module can be simplified into a Mondrian-style
module.

A module is a collection of type and function declarations
that serves as a unit of compilation and delimits a names-
pace. Mondrian modules cannot be mutually recursive. A
module can offer its declarations to other modules by export-
ing them. A module can use declarations exported by other
modules by importing them. Wher a module imports an-
other module it automatically imports all entities exported
by that module. All imported names have to be qualified.

In so far there is no difference between Haskell modules, ex-
cept for the ban on mutually recursive modules. We like the
modesty of the Haskell module system, but not its syntax.
In Haskell the identifiers to be exported are repeated as ‘ar-
guments’ in the module heading, while imported modules
are written as ‘declarations’ in the module body. Dually, in
Mondrian imported modules are written as arguments in the
module heading and exported identifiers are marked public
at their definition. Identifiers that are not marked public
or protected are visible to any other definition within their
defining module. but are invisible outside that module.



module RecTypes where
{ public type Rec f = £ (Rec f)

; in :: f (Rec f) -> Rec f
; out :: Rec £ -> f (Rec £)
; public in = id

; public out = id

}

A type declaration in a module is always opaque outside
that module. Exporting the type only allows you to use
it in a type-expression in the importing module. In Gofer
terms it is like a restricted type synonym with all functions
that are defined within the module in its in list. Thusin a
module that imports RecTypes the type constructor Rec is
a constant and the functions in :: f (Rec £) -> Rec f
and out :: Rec £ -> £ (Rec f) must be used as explicit
type coercion functions.

6 Conclusion and Related work

We started creating Mondrian by trying to generalize some
of the constructs of Haskell. At every point in the design
process. we tried to keep things as simple as possible. As
we showed in this paper. we ended up with a small and el-
egant language, with surprisingly powerful object-oriented-
like properties. Some of the thus begotten ideas are already
adapted by others. But Mondrian is still in its childhood
phase: we think we can still generalize some of the con-
structs, and make the language even more expressive, simple
and clear.

Our work differs from related work on object-oriented exten-
sions for SML {32. 31] in that adding OO features to Haskell
was not our goal per se, but rather surfaced as a consequence
of the fact that we unified and simplified Haskell’s notions
of type classes and algebraic data types. Mondrian has no
built-in support for classes and objects. but requires that
the programmer takes care of the object encoding. Notwith-
standing this conceptual difference. we think our work could
greatly benefit from carefully studying these alternative ap-
proaches.
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Abstract

We present an extension to Haskell which supports reactive,
concurrent programming with objects, sans the problematic
blocking input. We give a semantics together with a nurm-
ber of programming examples, and show an implementation
based on a preprocessor and a library implementing seven
monadic constants.

1 Introduction

With the advent of Haskell 1.3 the monadic I/O model has
become well established [PH96]. At the top level, a Haskell
program is now a sequence of imperative commands that
transforms a state consisting of the real world and/or some
program state into a final configuration. In a pure state
transformational approach, carrying a monolithic program
state around is likely to complicate modular design; how-
ever, this problem can to a large extent be circumvented by
introducing first-class references in the monadic framework
[LJ94]. Taken together, these additions make the resulting
Haskell programs — on the top level at least — more and
more reminiscent of programs written in traditional imper-
ative languages like Pascal.

Just like I/O in traditional languages, though, straight-
forward monadic I/O imposes a rather rigid structure on
environment interaction. Especially, when a program says
“read input”, the outside world has nothing to do but to fol-
low order, since otherwise execution is effectively stuck. Ex-
amples of this scenario are numerous, the average computer
user is probably all too familiar with primitive programs
that continuously alternate between telling the user what to
do and reading back responses. It goes without saying that
putting programs structured this way in the context of an
inherently concurrent and nondeterministic environment is
bound to be problematic.

In their POPL '96 paper, Peyton Jones, Gordon, and
Finne identify the need for semantically wvisible concur-
rency to alleviate these problems [PGF96]. Their pro-
posed language, Concurrent Haskell, allows multiple execu-
tion threads to be initiated, and provides a mechanism for
synchronisation and communication between such threads
via atomically-mutable state variables. Thus, when one
thread blocks for input, another thread can be created that
maintains the capability of interacting with the environ-

ment in alternative ways. As with the sequential I/O model
of Haskell, a central property of Concurrent Haskell is a
stratified semantics that limits non-determinism and state-
manipulation to the top-level of a program, while leaving
the purely functional semantics of expression evaluation un-
affected.

Undeniably, the primitives offered by Concurrent Haskell
are at a very low level. This choice has been deliberate,
though, since the purpose of these primitives is really to act
as basic building blocks in the construction of various higher-
level abstractions. However, as far as mastering concurrency
is concerned, this situation is not very much different from
the challenge that faced Algol programmers equipped with
pointers and semaphore libraries three decades ago [Dij65].
That is, while important properties like liveness and mu-
tual exclusion certainly can be maintained in a Concurrent
Haskell system, there is nothing in the language that im-
poses such a structure on programs. This is a rather para-
doxical quality for a purely functional language, which has
deliberately abandoned low-level features like assignments
and jumps in order to impose good structure on ordinary,
non-concurrent computations.

What one ideally would like to see is a language that,
in the spirit of Concurrent Haskell, combines the virtues of
explicit concurrency and unobstructed functional program-
ming, but which also commits itself to some top-level form
that can be found both abstract and flexible, as well as in-
tuitively appealing. In this paper we make an experimental
attempt towards this goal, by means of a Haskell extension
based on the notion of reactive objects. As a slight nod to the
object-oriented community, we call our extension O'Haskell.

2 Reactive Objects

Our approach to concurrency in O’Haskell starts out from
an identification of a state and a process. This means
that there can be no state-container without an associ-
ated thread of control in our language, neither can there
be any control threads without associated local states. Such
a state/process combination is called an object, and in the
sequel we will use this term interchangeably with our notion
of a process.

The code of an object is an expression in the monad
O's (), which is a refinement of Haskell’s interaction monad




10 () into an reacting state monad with a state type s.! To
improve the readability of expressions in this monad, we
provide an extension to the do-syntax of Haskell 1.3 that
allows the state of an object to be inspected and assigned
in a Pascal-like manner.

The crucial difference between the 10 monad and our
replacement is now the following: whereas the value
return () represents a terminated program/process in
Haskell/Concurrent Haskell, we will interpret this value as
an inactive process that just passively maintains its state.
Such a process may indeed become runnable in the future,
since the monadic code of an object can be extended with
new fragments (using the standard operator >>) by the re-
ception of messages. These messages can be of two forms:
either an asynchronous action, that lets the sender continue
immediately and thus introduces concurrency, or a syn-
chronous request, which allows a value to be passed back to
the waiting sender. In both cases, the receiving object reacts
by starting a reduction of its updated monadic expression,
which will, in the absence of a non-terminating reduction,
eventually restore the receiver to an inactive state again.
A significant feature of this scheme is that the actions and
requests of an object implicitly form a critical region.

Objects are introduced using a template, which defines
the initial state of an object together with a communication
interface. Executing a template expression in the O monad
creates a new object that is an instance of the template,
which is the O'Haskell equivalent of forking off a process.
The following code fragment defines a template for a simple
counter object:

newCounter =
template
val := 0
with
( action
val ;= val + 1
» request
return val
)

In this case, the communication interface consists of an asyn-
chronous action that increments the counter, and a syn-
chronous request for reading its current value. The silly
program below illustrates how a counter object is created
and then passed an increment message, before its current
value is requested. At the end of the sequence the new
counter is actually forgotten, and will become garbage.

main = do
(inc,read) €<= newCounter
inc
one < read
return ()

Synchronous and asynchronous message sending are the only
communication primitives offered by O'Haskell, and neither
of these blocks the sender more than temporarily.? This

'The absence of the letter I in the name of our monad is not
coincidental!

2See section 6.1 for a further discussion on the validity of this
statement.

means that indefinite blocking for input is confined to the
passive case only, where any defined message may be re-
ceived. As a consequence, an O'Haskell program cannot
impose any order on the events it is set to handle, and the
liveness of a system will be upheld by default. These are
properties that we consider extremely important for the ro-
bustness of a concurrent system. We actually take the ab-
sence of blocking input commands as our definition of the
term reactive, and consider it to be the most significant fea-
ture of our concurrency proposal. We will return to this
issue several times in the coming sections.

3 Semantics

In our presentation of the formal semantics of O'Haskell we
will assume the existence of an operational semantics for ex-
pression evaluation, with a small step reduction relation .
For the sake of completeness we give such a semantics in ap-
pendix A, but it should be kept in mind that the exposition
that will follow does not depend on the actual choices made
in this definition. In particular, our concurrency extension
should be equally applicable to a call-by-value language.

3.1 Syntactic transformations

We begin by transforming away the explicit naming of state
variables and the template syntax, as shown in figure 1.
The translation is parameterised over a tuple-pattern p,
which matches the state introduced by the closest enclos-
ing template expression. If no template is in scope, p equals
(). Only the interesting cases are shown, the translation
extends trivially to the whole expression syntax. We do
however restrict vartables bound by let and \ to be distinct
from the variables in p.

After translation, our concurrency extension is visible
only in the presence of seven primitive constants, of which
four are the common state monad operations recast to our
O type:

return @ t—> Ost

>»= @ Ost—=> (t—=>0st)—> Ost'
set s> 0s{)

get i Oss

As usual we write @ > b as a shorthand for a >»= \_ — b.

The remaining three constants correspond to the action,
request, and template constructs, respectively. These con-
stants all involve a second built-in type Ref s, which is the
type of primitive reference values that uniquely determine a
particular object at run-time.

new = s —> (Refs'—>1t) = Ost
act @ Refs’ > O0s' () > Os ()
req i Refss > Os't > Ost

References in O’Haskell bear some resemblance to Concur-
rent Haskell’s MVars, although it should be observed that
a reference is used to identify a process rather than some
passive storage location or synchronisation point. This view
is influenced by the Actors programming model, which re-
gards the agents/processes as the sole identity-carrying en-
tities during a computation [Agh86].

References are mostly accessed indirectly, however, via
the actions and requests an object exports through its com-
munication interface. The common case where an interface
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Figure 1: Translation of syntactic sugar

completely hides the existence of its underlying reference
value is therefore directly supported by our syntactic sugar,
by the implicit binding of a variable self in the body of a
template. This corresponds to what John Reynolds calls
procedural abstraction, where information hiding is achieved
by partially applying an access procedure to the structure
that needs protection [Rey94].>

The counter example discussed in the section 2 looks as
follows in its desugared variant:

newCounter =
new 0 \self =
( act self
(get >>= \val —> set (val+1))
, req self
(get >>= \val —> return val)

main =
newCounter >»= \(inc,read) —
inc >
read >= \one =
return ()

3.2 Dynamic semantics

We now turn to the dynamic aspects of O’Haskell. The
stratified semantics approach that is an important part of
Concurrent Haskell will be repeated here, although the ac-
tual language we define will of course be different. We have
tried, though, to use a formulation that as far as possible
follows the presentation of Concurrent Haskell, in order to
simplify comparison.

First we need to specify that >=, act, and req are strict
in their first argument, and that >>= reduces in the usual

3Reynolds’s contrasting notion, type abstrection. would mean ex-
posing the object reference and its state type in the interface and
then encapsulating that knowledge within some scope by means of an
existential type.

monadic manner. We do this by extending appendix A with
further evaluation contexts and an evaluation rule.

£ = .. | E»=a]atf |reqf
BinDp returna »= b — ba

Next we define a small language of process terms, that will
enable us to capture the state of a complete O'Haskell sys-
tem.

P : al Atomic process (object)
P || P' Parallel composition
vn.P Reference generation

The atomic process a,',’1 corresponds to our notion of an ob-
ject referenced by n, executing a monadic expression a in
the state b. This form is restricted by the requirement that
if b s, then n - Ref s and a = O s (). Furthermore,
we require that no pair of objects are tagged with the same
reference n. Our reaction rules introduced below all obey
these restrictions.

Following the polyadic w-calculus we also adopt the
chemical solution metaphor, which uses a structural congru-
ence relation = to abstract away from syntactical differences
between equivalent process terms [Mil91, BB90]. Using this
metaphor we may safely assume that any pair of objects in a
system that are willing to interact can be brought together
syntactically (as if they were molecules floating around in
a chemical solution). The definition of = from [Mil91] is
immediately applicable to our process terms; we include the
relevant rules in appendix B.

We are now ready to define how a solution of processes
may evolve. This is captured by means of a reaction relation
— between process terms. Thanks to the generality of the
chemical framework we only have to specify the axioms of
—: a non-deterministic relation between arbitrary complex
process terms is automatically obtained by incorporating the
structural reaction rules of the m-calculus (recapitulated in
appendix C). In the definition of — we sometimes take the
liberty of matching against atomic processes using a simpli-
fied pattern a,; this should be interpreted as an assertion




M o=
EvaL Gn
SET Mset b];,
GET Mget]s
New Mnew a b)m
EGo Mlact m alm
Act Mlact n alm || bn
REQ Mireqn alm || bn
REPLY M[_syn]m || M'[_rep ma]a

(1| M>»=a
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—  Mreturn a]}
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vn.(M(return (bn)|m || (return ())2)
where n ¢ FN(lhs)

(Mfreturn ()] » a)m
Mlreturn OO || (B > a)n

M_syn]m || (b >> a >>= _rep m)n
Mreturn a]m || M'{return ()]

Figure 2: Semantics of reaction

that the state component of process n is the same on both
sides of a rule. Figure 2 shows the axioms of —.

The first rule, EvaL, connects the semantics of reaction
with the semantics of expression evaluation. This rule will in
particular enable reduction of monadic expressions that are
redexes according to the BIND rule above. However, BIND
only allows a return expression on its left hand side, which
is necessary to preserve the semantics of —. The remaining
constants in the O monad must be dealt with directly by —.
We therefore define the notion of a reaction context M to
single out the head of a sequence of >»= applications in an
atomic process. Using M, the SET and GET rules implement
the standard semantics of a state monad.

Process creation is defined by NEw. Note that new pro-
cesses are born in an inactive state. Axiom EGO captures the
case where the sender and the receiver of an asynchronous
message are identical, while the general case is handled by
AcT. Since arriving code fragments are appended to the
receiver irrespective of its current activities, our semantics
actually specifies a message buffer for each object.

The final and most complex case is synchronous commu-
nication, which is defined in terms of two internal constants,
-syn and _rep, that are not accessible to the programmer.
REQ differs from AcCT by the attachment of _rep to the mes-
sage sent, and by putting the sender in a blocking state.
Rule REPLY will subsequently be applicable to resolve this
situation, provided that the receiver never loops indefinitely
and never sends a req back to the waiting process. The im-
pact of these preconditions, and their relevance to our claim
that O'Haskell supports liveness by default is discussed in
section 6.1.

Direct programmer access to _syn and _rep would be
problematic for at least the following reasons: (1) both
constants are hard to type in a way that is sound in gen-
eral, and (2) unrestricted use of _syn would immediately
destroy the reactive character of our language. Note also
that req is not redundant; it cannot be faithfully simulated
by asynchronous messages in two directions, since the origi-
nal sender has no means of filtering out a reply before han-
dling other messages that might be pending. What req actu-

ally offers is a very restricted, but convenient form of input,
whose termination does not depend on any external events
that have yet to occur. This stands in contrast to the read
primitive of most traditional languages, which returns only
at the will of a potential user.

We exemplify our semantic rules by showing how the
desugared counter example of section 3.1 reduces. The pro-
gram environment, which is supposed to initiate execution,
is modelled as a process m with an empty state ()} and an
initial monadic expression main. To reduce clutter, we only
write out v-binders where they are introduced, and skip triv-
ial applications of rules EVAL and BIND. For the same rea-
son, some eager evaluation is also implicitly performed.

Ym.main,

— EvaL (1)
(newCounter >»= (inc,read) = ...)m

— EvaL (2)
(new 0 \self — (actself ... reqself ...) »= .. ),

— NEwW (3)
vn.(return ((\self = ..)n) »= .. )m || (return ())S
— EvaL 4)
(actn (get »= ...) > req ...)m || (return ())2

— Act (5)
(reqn .. )m || (get >= \val = set ((val+1)))?

— GET (6)
(reqn ..)m || (set (0+1))7

- SET (7)
(reqn (get >= ...) »= .. ) || (return ()}

— REQ (8)
(Lsyn »= .. ) || (get >= ... >= _rep m)}

— GET (9)
(syn = . ) || (return 1 >>= _rep m)}

— EvaL (10)
(Lsyn »= . ) || (Lrep m 1)}

— REPLY (11)
(return 1 >>= \one —> return ()., || (return ())%

— EvaL (12)

(return ())m || (return ()}

To illustrate the non-determinism inherent in the reaction




relation we give an alternative reduction sequence for steps
7-8 above, which also shows buffering of a message to an
active object.

: (6)
(reqn (get »= ...)..)m || (set (0+1))3
— REQ ™
(_syn »= .. )m || (set (0+1) > get »>= ...)%
— SET (8)
(syn >= 2. )m | (get »= . )}

We have not developed any theory around our semantics so
far, although this would certainly be an interesting research
project. The similarities between our formulation and the
presentation of Concurrent Haskell are so strong, however,
that we expect the main results about the latter language to
directly carry over to our case. This includes the important
property that the deterministic, purely functional semantics
of expression evaluation (—) is not affected by its inclusion
into a non-deterministic, imperative context (—).

4 Typing issues

Like monadic operators in general, actions, requests, and
templates are first-class values in O'Haskell. This means,
intuitively, that it should be possible to send a communi-
cation interface along from one object to another, to ob-
tain dynamically evolving communication patterns. Unfor-
tunately, the typings given to our primitive constants given
in the previous section severely limit this possibility. The
problem has to do with instantiating the state component
of the O monad. Recall that for an action value this type
stands for the internal state of the sender, so the problems
we encounter are not an indication of insufficient object en-
capsulation. Still, the state component is necessary in gen-
eral, since it ensures that all code fragments of an object
read and assign to the same type of state. What is problem-
atic is that all interesting action values in O’Haskell will be
lambda-bound, and thus subject to monomorphic instanti-
ation only. The net result is that communication interfaces
can only be shared between objects that have the same in-
ternal state type!

There might be several ways out of this dilemma, in-
cluding the first-class structures proposed by Mark Jones
[Jon96], or the use of explicit, polymorphic coercion func-
tions that get the static typings right but behave as the
identity function at runtime. We have found, though, that
the object-oriented concept of subtyping solves the problem
very neatly, and we will present our program examples in the
next section using the alternative typings that this solution
gives rise to.

Our approach to subtyping in polymorphic languages is
covered in detail in [Nor97}; for the purposes of this paper it
suffices to know that subtyping relations between type con-
stants must be explicitly declared by the programmer, via
polymorphic subtype azioms. In this spirit, our concurrency
primitives can be given more precise types if the following
types and subtype axioms are provided as built-in:

Templatet < Ost
Action < Os()
Requestt < Ost

The alternative typings for new, act, and req now become

new : s—> (Refs —> t) = Templatet
act = Refs —> Os() = Action
req i Refs = Ost —> Requestt

We argue informally that this refinement is sound, since
none of the constants above reads or writes the local state
of its executing object. Hence, the narrow types we have
introduced may be safely promoted to the state monad O s,
for any state s. What the subtyping axioms allow us to do
is to choose this s anew at each occurrence of a particular
constant.

Struct-like types still have their place in O’Haskell,
though, because of their natural correspondence to the idea
of a communication interface. They also fit quite nicely
into our subtyping machinery, although we will not exploit
this aspect here. Appendix D contains an extension of core
Haskell with struct values that we will rely on in the next
section. Taking both structures and subtypes into account,
here is (finally) our preferred formulation of the by now well-
known counter program:

struct Counter =
inc :: Action
read :: Request Int

newCounter :: Template Counter
newCounter =
template
val :== 0
with struct
inc = action
val ;= val + 1
read = request
return val

main = do
¢ < newCounter
c.inc
one <« c.read
return ()

5 Examples

Classical examples used as a test-bed for new concurrency
proposals are mainly concerned with coordination problems,
e.g. how shared, mutable data can be protected from
concurrent access, and commaunication problems, e.g. how
buffers, channels, and the like can be built from avail-
able primitives. However, these problems often have less
relevance to the class of message-based languages where
O’'Haskell belongs. So, let us from the outset emphasise
that O’Haskell directly supports the following basic needs:

o Critical sections. A shared data structure is equiva~
lent to an object in our model, and the actions and
requests an object provides are mutually exclusive.
Thus, the code fragments that constitute these services
can be considered as automatically protected critical
sections.

o Message buffering. Our semantics for message send-
ing already provides unbounded buffering of messages.




This means that there is no need to implement sep-
arate queuing mechanisms when the ordering of mes-
sages sent must be preserved. We believe that the vast
majority of buffer applications used in existing concur-
rent systems fits into this many-to-one communication
pattern.

e A signal system. The use of signals to synchronise
various events in a system is greatly simplified in our
model, since actions have first-class status, and objects
are only temporarily in a state where they cannot re-
spond to any input.

Other, more specific communication and synchronisation re-
quirements may of course occur in practice, but our experi-
ence with the language so far suggests that the programming
style enforced by O'Haskell is surprisingly flexible, and that
problems which initially seem to call for both blocking in-
put commands and shared state variables often benefit from
a reactive reformulation. Subsections 5.2 and 5.3 describe
how some classical synchronisation facilities can be encoded
in O'Haskell. We will, however, begin this section at the
other end of the spectrum, by sketching a framework for a
high-level application: an event-driven, interactive program
with a graphical user interface.

5.1 Event-driven, interactive programs

Graphical user interfaces are standard on today's personal
computers, and with them has come a stvle of programming
that can be characterised as event-driven. In traditional lan-
guages, this style consists of structuring a program around
an event-loop, which repeatedly does a blocking system-call
to get the next event-structure, performs case-analysis on
this structure, and then executes one of its branches de-
pending on the actual event received. In the normal case,
these branches never perform any blocking operations them-
selves; all input to the program is concentrated to the top
of the event-loop.

Evidently, O'Haskell natively supports this programming
style. From the view of the operating system, an application
is nothing more than a process that responds to a certain set
of events/messages, and the application, in turn, just sees
the operating system as a process with another, specific com-
munication interface. A (greatly simplified) specification of
these interfaces might look like this:

struct GUIApp =
redraw :: Action

click :: Point = Action
drag :: Point — Action
key  : Char —> Action

struct Window =

size  :: Request Point

resize :: Point —> Action

clear :: Action

line :: Point = Point — Action

someGUIApp :: Window — Template GUIApp

Here, someGUIApp can be a terplate for any kind of interac-
tive program; the only thing an operating system (which is
supposed to instantiate the template) needs to know is that

the resulting process supports the GUlApp interface, and the
template implementor, in turn, must only assume that there
will be some Window interface available at runtime, where
drawing commands can be sent. We like to call this division
of responsibilities communication by contract.

So far the normal case. But what about exceptions to
this scheme, for example when a graphical application needs
to present a dialog box, or a popup menu, which has to
consume all input until it closes? Is this not a situation
where a blocking input abstraction would be helpful?

A reactive approach to this problem needs to make a
clear distinction between opening a popup menu, say, and
reacting on its completion. The former activity is naturally
modelled as sending a message, while the latter part is equiv-
alent to the arrival of a message. Since actions are first-class
values, the code that creates a popup menu object could eas-
ily be parameterised with respect to the actions that handle
selection. So, if we assume that the service of creating and
opening a popup menu is available through some WindMgr
interface, and that the click-handling code of our graphical
application asks for this service, a reactive solution could
follow this outline:

struct WindMgr =

popup :: Point = [(String,Action)] —> Action

click pt = action
windmgr.popup pt
[ ("Foo" action 4)
, ("Bar" action B) ]

The important thing to notice here is that code fragments
A and B above are only lexically within the scope of click
— there is no “subroutine” relationship implied, and the
execution of click will be over as soon as the popup message
is sent. In due course of time, one of the actions at A or
B will be executed, provided that the user chooses to select
anything at all from the menu. A nice consequence of this
reactive scheme is that our graphical application will still
be able to respond to any message directed to it while the
popup menu is open. This is really as it should be: there is
no reason why, for example, redrawing a window should be
postponed just because there is a special form of graphical
input device open in front of it.

5.2 Semaphore encoding

A semaphore is a synchronisation device that in its simplest
form is just a “token” that can be claimed and released, and
where the claiming operation may block if the token is not
available [Dij65]. According to our definition, a semaphore
is clearly not a reactive abstraction, but as we have men-
tioned, O'Haskell provides both synchronisation and com-
munication by more abstract means.

However, there might be situations where the implemen-
tation of synchronisation mechanisms is actually a part of
the programming problem, for example in the simulation of
a railway system. Hence it might be necessary to encode
semaphores reactively, and we need to show how this can be
done.



The key step towards a reactive implementation is to
lift out the client code that is supposed to run after a suc-
cessful claim, and put it into a separate action. Then the
responsibility for triggering this action can be put on the
semaphore, quite similar to the continuation passing style
sometimes used in functional languages to encode stateful
computations.

Here is the semaphore implementation:

struct Semaphore =
claim :: Action —> Action
release :: Action

semaphore:: Template Semaphore

semaphore =
template
active := False
wakeup = (]
with struct

claim grant = action
if not active then
active := True
grant
else
wakeup = wakeup + [grant]
release = action
case wakeup of
i —> active := False
wiws —> wakeup 1= ws; w

One can imagine many variations on this theme, e.g. letting
claim be a boolean request that returns True in the successful
case instead of triggering grant. This would allow a client to
take special action if the claim is granted immediately.

5.3 Queue encoding

An alternative to the many-to-one buffering mechanism in-
herent in O'Haskell would be a many-to-many communi-
cation scheme, where data is communicated via a distin-
guished queue process. In order to implement such a queue
in O'Haskell, however, we need to reconsider the remove op-
eration, since it is supposed to block if no data is available.
The reactive way of removing an item must be a two-phase
operation: first a consumer announces its readiness to re-
ceive some data, then, perhaps later on when data has ar-
rived, the queue process sends a message with the data to
the consumer process. The code looks as follows:

struct Queue a =
insert » a —> Action
announce :: (a = Action) —> Action

queue :: Template (Queue a)

queue =
template
packets := {]
servers := []
with struct

insert p = action
case servers of
0 —> packets := packets ++ [p]
$:1s5  —> servers :=ss; s p

announce s = action
case packets of
1] —> servers := servers ++ [s]
p:ps — packets := ps; s p

producer q =
template
with let produce = action
X € ... produce an T
q.insert x
produce
in produce

consumer q =
template

with let consume x = action
. X ... consume T
g.announce consume
in g.announce consume

main = do
q < queue
pl < producer q
p2 < producer q
cl < consumer g
c2 < consumer g
pl; p2; cl; 2

Note that this “polarity switch” of the remove operation
does not really clutter up the code: it is still as symmetrical
as it would be in a language with blocking read operations.
Turning the queue into a bounded buffer would mainly just
require switching the polarity of the insert operation as well.
The real benefit of this reactive encoding is that all processes
involved can easily be extended to handle additional mes-
sages, without affecting the basic communication pattern.

5.4 Interrupt Service Routines

As an example of how the concept of a hardware interrupt
fits into the reactive style, we give an implementation of a
timer process, that allows its clients to “sleep” for a specified
number of ticks. Sleeping should be interpreted reactively,
however, meaning that a process passively awaits any mes-
sage, one of which will signal that a certain amount of time
has passed. This action must be supplied as a parameter
to the timer each time a timing task is started. We do not
specify the communication interface for the timer process as
a struct value, since one of its actions, tick, is only meant to
be installed in some interrupt vector table, and the other,
start, should preferably be made available through some gen-
eral, operating-system-like interface that we do not wish to
consider any further.

newTimer =
template
time := 0
pend :=[]
with let

start t sig = action
pend := insert (time+t,sig) pend




check.pending = do
case pend of
(t,sig):pend’ | time >=t —>

pend := pend’

sig

check_pending
_—> done

tick = action
time ;= time + 1
check_pending

in (start, tick)

A notable feature of this example is the use of a recursive
procedure in the interrupt service routine tick. Such a call
is completely local to a process, and cannot be interspersed
with other messages. Compare this with the recursive mes-
sage sending that is performed by the producer processes of
section 5.3.

It is interesting to see that safe communication between
an interrupt service routine and an ordinary process (a
rather tricky task in most programming languages) can be
handled with the same mutual exclusion machinery that is
used in ordinary interprocess communication. The reason
behind this is that, in effect, all messages are modelled as
interrupts in O’Haskell, and it does not matter whether some
of them are actually generated by hardware.

5.5 A telnet client

‘We conclude this section with a slightly larger example: a
rudimentary implementation of a Telnet client. The result-
ing code has a very appealing structure, centered around the
intuitive fact that the state of a Telnet process is its current
connection. Wehave not implemented any Telnet-specific
handshaking, though, since that would just mean repeating
the pattern used in the handling of open/close acknowledge-
ments.

struct Connection =

send :: Packet = Action
close :: Action
peer :» Request Host

struct Client =
connected :: Connection = Action

deliver :: Packet —> Action
closed 1 Action
struct Tep =
open . Host = Port —> Client — Action
listen :: Port = Client = Action

struct Telnet =
connect :: Host —> Action
keypress :: Char —> Action
disconnect:: Action

teinet :: Tcp —> Screen —> Template Telnet
telnet tcp screen =
template
you_server := Nothing
with et me_client = struct
connected ¢ = action
you_server := Just c
screen.puts "[Connected]\n”
deliver pkt = actign
screen.putc (mkchar pkt)
closed = action
you_server := Nothing
screen.puts " [Disconnected]\n"
in struct
connect host = action
tcp.open host telnet_port me_client
keypress ch = action
case you_server of
Just ¢ —> c.send (mkpkt ch)
Nothing —> screen.beep
disconnect = action
case you.server of
Just ¢ —> c.close
Nothing —> done

The type definitions used in this example clearly demon-
strate the principle of communicating by contract. Notice
how the use of a connection is effectively prohibited until
it is established (by splitting the interface to Tcp into two
struct types). Note also how the Telnet process exhibits two
different interfaces at the same time, depending on which
level in the protocol hierarchy it is seen from. Finally, one
interesting consequence of the reactive implementation is
actually visible in the body of keypress, where the user is
notified by a beep if characters are entered before a reliable
connection has been established. This would not have been
so straightforward in a language that had modelled tcp.open
as a blocking input operation.

6 Discussion

6.1 Liveness

The decision to abolish blocking input commands is a rad-
ical one, but as we have seen, the program structure that
emerges as a result has some interesting merits. As we have
mentioned, it keeps programmers from imposing any order
on the events that a program is set up to handle, and it
makes the important liveness property hold by default.
The latter property needs some clarification. What we
really would like to state is that every active object in an
O’Haskell system is guaranteed to react to any message in
a finite amount of time, but clearly there are some precon-
ditions that must hold for such a statement to be true.
Firstly, an object that is stuck in a cycle of objects
blocked on synchronous requests to each other will never re-
act to any more messages. However, this is a detectable ex-
ception on the same level as division by zero, and one which
is highly unlikely to occur in practice due to the relative
sparseness of requests that we anticipate in real programs.
Secondly, an object which calls a non-terminating recur-
sive procedure will obviously not be able to proceed. But
this is an instance of the problem of guaranteeing termina-
tion in general, and we see no reason to treat the O type




specially in this respect. It is worth noting here that the
liveness of an O'Haskell system does not depend on any non-
terminating properties that must be proved (c.f. [HPS96]).
With these observations in mind, we feel justified in
claiming that an O’Haskell program upholds the liveness
property by default, that is, liveness holds trivially for all
processes unless the programmer constructively destroys it
by writing inherently erroneous code. It is our belief that
O’Haskell in this sense is less sensitive to programming mis-
takes, than a language where the liveness property crucially
depends upon active cooperation from the programmer.

6.2 Preserving message ordering

Our choice to specify that messages should be queued is
also worth some comments. Common practice in concur-
rent languages is to leave this issue unspecified, in order to
facilitate distributed implementations across an unreliable
network [PGF96, Agh86]. We base our decision on the fol-
lowing arguments:

e Many simple programs would be unduly complicated
if message ordering was not preserved (c.f. the counter
example in section 2).

e Processes on an unreliable network can be conveniently
accessed via a library of local prozy objects. These
proxies can present a reliable or an unreliable connec-
tion, at the free choice of the implementor. Imple-
menting a proxy is greatly simplified, however, if com-
munication with the local clients is order preserving.

o The only operation which cannot be faithfully simu-
lated by a proxy is the synchronous request. Thus, a
network object will need to have a more limited inter-
face than a corresponding local one. This is a necessary
restriction if we consider liveness to be important, and
blocking input to be harmful. On the other hand, if
the network in question is considered so reliable that
a blocking input operation really would have done no
harm, then the network can equally well be made a
part of the language implementation, since it guaran-
tees the language semantics.

7 Implementation

Since O’Haskell is defined as an extension to ordinary
Haskell, it has turned out to be straightforward to build
a compiler for O'Haskell by performing just the syntactic
transformations in figure 1, and providing the seven prim-
itive constants of the O monad in a library module. We
actually have two implementations of this module at the
moment; one being written in pure Haskell using a datatype
with constructors for each primitive. This has allowed us
to program the reaction semantics in figure 2 by pattern
matching, but has resulted in a rather inefficient implemen-
tation. In addition, not all semantic rules can be typed
in pure Haskell, which we have circumvented using explicit
type casts.

It turns out that a more pragmatic implementation, that
also uses concurrent evaluation, can actually be built from
the primitives provided by Concurrent Haskell. These primi-
tives are available in Lennart Augustsson’s eminent 2nd gen-
eration Haskell compiler (HBCC) [Aug96], which also pro-
vides “real”, first class structures 4 la Mark Jones, to our

delight. This implementation is short and is included below,
as it might help the Concurrent Haskellate reader in under-
standing certain aspects of O'Haskell’s reactive semantics.
To make a complete comparison between the two lan-
guages, we also provide a translation from Concurrent
Haskell into O’Haskell, which can be found in appendix E.

7.1 O’Haskell in Concurrent Haskell

The type of objects is built on top of the IO monad, and
supplies commands with a mutable variable that holds the
local state.

type O st ={0Vars—> 10t

The type O is recognised as the standard reader monad.*

returnO a = \_—> return a
m ‘'bind0O'f =\v—>doa€e myv
fav

The state-related operations boils down to accessing and
manipulating the mutable variable supplied to the com-
mands.

get = \v = readlOVar v
set s = \v = writelOVar v s

The type of object references encapsulates a message queue
(called channel in [PGF96]) of commands to be executed by
the object.

type Refs = Chan (O s ())

Sending an asynchronous action to an object implies writing
the command to this object’s channel.

actrc¢ =\_.—> putChanrc

The synchronous request is a little more involved, here we
create a temporary MVar to mediate the answer.

reqrc = \_—> do ans ¢« newMVar
putChanr
(\Ww—=>doa<ecv
putMVar ans a)
takeMVar ans

Each object has an associated server thread which forever
reads commands from the object channel and executes them.

objproc :: 10Var s = Chan (Os ()) = 10 ()
objproc vr = do c & getChanr

cv

objproc v r

The last primitive to define is new, which creates a fresh
mutable variable for the state, and a new command queue.
Finally, new forks off a server thread for the new object.

new s iface = \_—> dov ¢« newlOVar s
r < newChan
forklO (objproc v r)
return (iface r)

4To avoid any confusion regarding overloading, we let O'Haskell’s
basic monad operations be denoted by returnO and bindO in this
subsection.




8 Related work

Much work has been done in extending functional languages
with concurrency features. Within the lazy functional com-
munity, stream-based approaches have a fairly long tradition
[Sto86, Tur87, Hen82, HC95]. A common characteristic of
these solutions is that communication is directed towards
a particular process, and that all input streams for a pro-
cess are merged into one before reception. This means that
stream-based processes do not constrain the order in which
different messages are received, a feature quite similar to
the reactive property of our proposal. The drawback of the
stream-based school is that it requires a rather heavy use of
disjoint sum types in the merging of messages, and that the
coupling between output and input is very loose, thus ruling
out synchronous constructions like our requests.

The connection between a stream processor and an
O’Haskell object can be illustrated by considering the type
SP (Either a b) (Either ¢ d) (taken from the Fudgets library
for concurrent programming in Haskell [HC95]). This type
stands for a stream processor which reacts to messages of
type a or b by outputting messages of type ¢ or d. Such
a stream processor is naturally modelled in O'Haskell as a
template parameterised over a pair of output actions, pre-
senting an interface with the input actions:

(¢ = Action,d = Action) —>
Template (a —> Action,b —> Action)

A different approach is to separate the concept of a process
and a communication destination. This is the common view
in most process calculi, and it has been adapted in many
functional languages as well [PGF96, Sch95, Rep92, Car86,
Hol83]. An immediate benefit of these systems is that most
message typing problems disappear, even for very complex
communication patterns. However, since a channel (as we
might collectively call the passive communication points)
must be addressed explicitly in both the send and receive
operations, the ability to simultaneously wait for any kind
of message is lost. One remedy is to introduce the choice
operator known from process calculi {Mil91], but its com-
plexity generally makes it hard to implement efficiently, and
great care must also be taken to avoid loss of abstraction
when it is used [Rep92]. Choice-free encodings of object-like
structures using multiple threads and locks are described in
(PT94], while Concurrent Haskell seems to assume tagging
by means of a datatype in its encoding of iterated choice
[PGF96]. What O'Haskell offers is direct support for reac-
tive reception of synchronous and asynchronous messages of
multiple types, without the need for multiplexing by tag-
ging, or coordination by additional processes.

Our unified view of objects as processes stems from
the Actor model [Agh86]. Like objects in this model, an
O’Haskell object can basically do three things in reaction to
a message: (1) send messages, (2) create objects, and (3)
update its local state. In the Actor model, these activities
all occur in parallel, and reaction is thus atomic. We allow
a sequence of operations in each action body, partly because
this blends better with the monadic framework, and partly
because we consider sequential imperative programming to
be quite natural and something we wish to support. Fur-
thermore, while state change in the pure Actor model is
equivalent to specifying a replacement behaviour, we rely
exclusively on state variables, which has the desired effect
of making the state of an object decoupled from the set of
messages it is willing to receive.

Erlang and UFO are two functional languages that are
also influenced by the Actor model [AVWW96, Sar93]. Er-
lang endorses a sequential view of processes like we do, but
relies on tail calls to keep a process alive, and utilises an
untyped, Prolog-like pattern-matching mechanism to spec-
ify a current set of accepted messages. UFO is typed and
has encapsulated state variables, but the object/process cor-
respondence is vague and sequencing comes from data de-
pendence only. Message acceptance can furthermore be re-
stricted by manipulating predefined pseudo-variables. Nei-
ther of these languages can be called reactive in our meaning
of the word.

An interesting characterisation of concurrency proposals
for functional languages is of course whether they are able
to preserve a pure semantics of expression evaluation. Of
the works cited above, [HC95, Tur87, Sto86, PGF96, Sch95,
Hol83] belong to this category, while [Hen82, Rep92, Car86,
AVWW96, Sar93] do not. As we have mentioned before,
retaining an unobstructed evaluation semantics has been one
of the primary goals in the design of O'Haskell.

There is a host of concurrent object-oriented languages
that might relate to O'Haskell in the sense that they support
both concurrency and some typical object-oriented features
(see e.g. [AYW93]). We are not yet ready to comment on
these in any detail; however, it seems to us that many con-
current object-oriented designs are mostly concerned with
maximising parallelism, in order to achieve good perfor-
mance on massive multiprocessors [Pap92]. This might be
the reason why it is hard to find any well-developed notion
of functions in these proposals. Like the designers of Con-
current Haskell, we take the standpoint that performance-
enhancing parallelism should be semantically transparent, a
task for which pure functional languages are ideally suited
[Ham94].

Objects in O’Haskell bear some resemblance to the
monitor concept developed by Hoare [Hoa74]. Monitors
were introduced to automatise the typical pattern where a
semaphore is always released by the same process that has
claimed it, as a means of protecting a critical section. The
other distinct use of a semaphore, as identified by Dijkstra
in [Dij68], feeds input to a particular process by means of
a counting semaphore which is exclusively claimed by the
receiver. This latter requirement is handled in a monitor
by explicitly managed condition variables, something which
significantly complicates the monitor semantics. We might
say that our objects generalise the ordinary use of a monitor
to cater for the input-feeding needs as well.

Reactive is a term coined by Pnueli and further used
by Berry and Benveniste to describe systems that main-
tain an interaction with their environments ([Pnu86, BB91].
The word is also sometimes seen as a synonym for the syn-
chronous approach to deferministic reactive programming
advocated by the latter authors. Although execution of an
O’Haskell program is neither deterministic nor synchronised
by a global clock, we think that our somewhat narrow defi-
nition of the term is still appropriate. The reason for this is
that, in common with the synchronous school, an O'Haskell
system can always be considered to react “immediately” just
by utilising a sufficiently fast processor.

The work reported in this paper is an extension and re-
formulation of previous work by the first author [Nor95)].



9 Conclusion and further work

In this paper we have defined an extension to Haskell that
supports semantically visible concurrency by means of reac-
tive objects. The core of our approach is a deviation from the

common view of a process as a long thread of control inter-’

spersed with active resting points, towards the more object-
oriented notion of a process as a collection of unordered,
terminating code fragments connected by a common muta-
ble state. Our communication primitives notably lack any
blocking input facilities — a central feature of our reactive
model is that all input to a process is confined to the pas-
sive, resting state that every object returns to when it is not
executing.

We have developed a prototype implementation, which
has enabled us to run several quite interesting example pro-
grams. Our experience with the language and the program-
ming style it supports is encouraging, still the obvious path
for further work starts with the development of more realis-
tic applications that will tell us whether this reactive style,
that looks very promising in the small, scales up.

Another branch of work concerns the language imple-
mentation. We would like to integrate the subtyping ap-
proach in [Nor97] with the preprocessor, and do a direct
implementation of the library primitives in terms of the un-
derlying runtime machinery.

Even though we believe that most O'Haskell programs by
default uphold the reactive property, it might be interesting
to investigate possibilities to formally guarantee this {and
other properties), for example by using a more informative
type system.
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E Concurrent Haskell in O’Haskell

To complement the encoding of O'Haskell given in section 7,
we also provide a translation in the other direction: Concur-
rent Haskell’s primitives implemented in our language. We
consider the following 1O operations:

returnlO ta—>10a

bindIOQ 210a—=>(a—=>10b)—10b
forklO 210 () =10 ()

newMVar 10 (MVar a)

putMVar @ MVara—>a— 10 ()
takeMVar © MVara—> 10 a

The 10 monad in implemented as a composition of a contin-
uation monad and a reader monad, reflecting the fact that
any expression of type IO ¢ might involve indefinite blocking,
so we must be able to produce action values for the currently
executing process on the fly.

typel0a  =Ref()>(a—>0(0(0)—=>000

returnfOa =\_c—>ca

m 'bindlO'f =\sc—>ms(\a—=>fasc)

Forking off a process is interpreted as the creation of a state-
less object exporting a single action-valued interface, which
is immediately triggered. Note the use of the implicitly
bound variable self.

forklO p =\_c —> do o « template




An MVar becomes a special kind of object, with the follow-
ing interface:

struct MVar a =
put : a —> Request ()
take 2 (a —> Action) = Action

The intention is that put updates the state of its MVar with
a new item, while take announces the readiness of some pro-
cess to consume an eventual item stored inside the MVar
(c.f. section 5.3). A Request, rather than an Action, is nec-
essary in the type of put in order to mimic the error-handling
semantics of Concurrent Haskell.

Assuming there is a template mvartempl for creating
MVar objects, the implementation of newMVar and putMVar
is straightforward:

newMVar = \.c —> do v ¢« mvartempl
cv

putMVarva = \.c—> dov.puta

c()

Since executing takeMVar marks the end of the currently
executing process fragment, the translation does not call
the given continuation, but wraps it up in an action value
using the Ref identity of the currently executing process.
This action is sent to the MVar in question. and the calling
process enters a resting state.

takeMVar v = \s ¢ = v.take (\a = act s (c 3))

Finally we give the code for mvartempl. It is a variant of
the queue encoding in section 3.3 that limits the number of
stored items to at most one. Types for the state variables
are included as a reading aid, but we have to put these
inside comments since we do not (yet) support scoped type
variables.

mvartempl :: Template (MVar a)

mvartempl =
template
val := Nothing -- Maybe a
takers := [] -- {a = Action]
with struct

put a = request
case takers of
[] — case val of

Nothing —> val := Just a
Just — error "putMVar"
tits—> ta
takers ;= ts
take t = action
case val of
Nothing —> takers := takers -+ [t]
Just a —>ta

Judging from the sheer amount of code required, the transla-
tion of Concurrent Haskell into O’Haskell looks slightly more
complex than the converse encoding. It should be borne in
mind, though, that the interpretation in section 7 also in-
volves an implementation of the abstract data type Chan,
which roughly corresponds to the encoding of MVars above.
We therefore conclude that neither language can be coined
more ‘expressive’ or ‘basic’ than the other.
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Abstract

We support the use of Haskell in two classes of applications.

First, we note that although Haskell is well-suited for
stream-oriented applications, like reactive systems, most im-
plementations lack tools for locating subtle errors like dead-
locks. To support the use of Haskell in such applications,
we have designed and implemented a debugger with an intu-
itive graphical interface. The debugger simplifies the task of
locating deadlocks by providing users with a mostly declara-
tive view of programs as systems of recursive equations over
streams.

Second, we investigate the use of Haskell in the imple-
mentation of the debugger. As expected. this effort re-
quires a variant of Haskell, currently used in the intermedi-
ate phases of Haskell compilers, that combines call-by-need
semantics with computational effects. To support robust
programming in this system-oriented variant, we formalize
the semantics of handleable exceptions in a call-by-need lan-
guage.

1 Streams and Deadlocks

As Kahn showed in 1974 [23], any deterministic network
of processes can be modeled using recursive equations over
streams. Such networks occur in telephones, missiles, and
many other embedded reactive programs. The stream model
corresponds in spirit to the electrical engineer’s concept of
a signal-processing system [1] and thus provides a natural
formalism for the design, specification, and verification of
these networks [11]. Additionally, stream-based specifica-
tions are directly executable in a variety of high-level lan-
guages. Examples of languages that elegantly support com-
putations over streams include modern lazy functional lan-
guages such as Haskell [19], hardware-description langunages
such as MHDL [7] (an extension of Haskell), data-flow pro-
gramming languages such as Lucid [4, 5], and synchronous
programming languages such as Esterel [9, 10], Lustre [12],
and Signal [8].

These languages have been remarkably successful in sup-
porting the rapid development of reliable systems. First,
streams (lazy lists) are the fundamental and most widely
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supported data structure in most of these languages. Sec-
ond synchronization is dealt with automatically: program-
mers are only required to specify sets of recursive functions
over streams without having to worry about many tedious
and error-prone details. Indeed Caspi and Pouzet [13] re-
port that some of the programs running on the Airbus A320
have been obtained in this way. Also Broy et al. [11] use
this methodology for the development of various distributed
systems.

Despite its appeal, programming with streams is quite
subtle. A common mistake consists of writing a system of
recursive equations over streams whose fixed point is seman-
tically undefined [32]. Operationally this error may mani-
fest itself in terms of an obscure error message from the
compiler or an equally obscure error message from the run-
time system. For example, when suspecting a deadlock, our
liveness analysis [22] returns a large (and incomprehensible)
list of unsatisfied constraints. As another example, typi-
cal Haskell implementations, e.g., the *hbc’ compiler from
Chalmers University, detect and report deadlocks with the
message “Runtime error: Black hole detected in eval
zap,” which gives about as much information as the infa-
mous C error message “Segmentation fault.”

In fact, one can usually locate the sources of segmenta-
tion faults using a C debugger but this is not even the case
for black holes: users get little debugging support from typi-
cal Haskell implementations. Furthermore, conventional de-
bugging techniques for imperative languages such as setting
breakpoints, single-stepping, tracing, and watching variables
are not particularly suited for locating deadlocks occurring
in lazy functional languages {15, 16, 29, 33] or synchronous
languages [14]. Indeed our own personal experience in speci-
fying reactive systems in Haskell quickly convinced us of the
need for a special-purpose debugging technology specifically
tailored towards computations over streams.

This paper reports on the design and implementation
of such a debugger in the context of the Haskell compiler
‘hbc.” The debugger has an intuitive graphical user inter-
face, and can be used to quickly pinpoint the sources of
many deadlocks. Experience with the implementation indi-
cates that the system works remarkably well for small but
realistic programs. The debugger nicely complements our
formal liveness analysis [22] providing users with a useful
set of tools for developing reactive programs.

Like many system-level Haskell programs, the implemen-
tation of the debugger relies on expressions with side-effects.
Since Haskell bans such expressions, programmers that need
this functionality either write low-level routines in C orin an




ad hoc variant of Haskell that integrates computational ef-
fects with the call-by-need semantics. Recently Launchbury
and Peyton Jones [24] convincingly argued for the second
approach: i

“Should we outlaw interleaveSTon the grounds
that it is insufficiently well behaved? Not neces-
sarily. Outlawing interleaveST would simply
drive its functionality underground rather than
prevent it happening. For example, we want to
have lazy file reading. If it cannot be imple-
mented in Haskell then it will have to be imple-
mented “underground” as a primitive operation
written in C or machine code. The same goes for
unique-supply trees and lazy arrays.

Implementing such operations in C does not make
them more hygienic or easy to reason about. On
the contrary, it is much easier to understand,
modify and construct variants of them if they are
implemented in a Haskell library module than if
they are embedded in the runtime system”[24,
p.43].

We therefore study a variant of Haskell with call-by-
need semantics and handleable exceptions. This variant of
Haskell is reminiscent of the informal Haskell dialect used by
some programmers, at their own risk, to implement genera-
tion of new names [6], memoization {20], non-deterministic
choice [21] and other paradigms that are not expressible in a
modular way in a purely functional language. [t is also rem-
iniscent of the intermediate language of Haskell compilers
like the Glasgow Haskell compiler, that implement monadic
state by updates on a global shared store.

The next section motivates the use of streams in pro-
gramming reactive systems. Section 3 discusses conventional
debugging techniques and explains why they are unsuitable
for our purpose. Section 4 presents a realistic example that
uses Haskell to write the controller for a small industrial
production cell. The example deadlocks due to a subtle bug
that we unintentionally introduced in our first attempt at
writing the code. We illustrate the user’s interface of the de-
bugger and show how a simple debugging session fixes the
problem. Section 5 provides the details of the implementa-
tion of the debugger, and reveals that the implementation
requires handleable exceptions. Section 6 presents the se-
mantics of such exceptions in a call-by-need language. Fi-
nally Section 7 puts our work in perspective by explaining
its weaknesses and charting ideas for future development.

2 Programming Reactive Systems

Reactive systems are programs that must continuously react
to external stimuli from their surrounding environment {17].
For example, a digital filter is usually specified as a weighted
sum of the n last samples of the input signal. The following
diagram depicts such a filter:
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The block D stands for a delay element. The triangles rep-
resent elements that scale every value in the stream by the
corresponding number.

It is relatively straightforward to transliterate the filter
to working Haskell code. The first step comsists in imple-
menting the intended semantics of each block:

sum {(x : x8) (y : y8) = (x + y)
delay x = tail x
weight w = map (w*)

I sum Xs ys

Having specified the blocks, it remains to write a set of
mutually recursive equations over streams that reflects the
interconnections of the network:

filter i0 = i5

where i1 = sum i0 (weight 6 i2)
i2 = delay i0
i3 = sum i1 (weight 9 i4)
i4 = delay i2
i = sum i3 (weight 2 i6)
i6 = delay i4

Note that the generation of this last plece of code can be
easily automated given the diagram: it only depends on
the interconnections between the components, not on their
semantics.

The above development process is simple, natural, and
elegant. But one must not get carried away; there are some
limitations! Consider the following diagram specifying a ba-
sic flip-flop circuit with nand gates and the program pro-
duced by naively following our development process:

SS

I8

I
o

nand (1 : xs) (1 : ys) =
nand (_ : xs) (_ : ys)

: nand xs ys
: nand xs ys

[}
-

ff rs ss = (qs, notqs)
where gs = nand ss notgs
notgs = nand rs gs

Although the physical flip-flop device works, our program
doesn’t. And in fact pure Haskell appears ill-suited for such
asynchronous circuits.

However, despite its limitations the stream model is suit-
able for many applications and is at the core of more ex-
pressive formalisms that accommodate asynchronous events,
real-time, non-determinism, etc.

3 Related Work

To understand the contribution of our work, it is necessary
to review the available debugging tools for Haskell in gen-
eral and stream computations in particular. But first it
is worth noting that most implementations of synchronous
langunages include debuggers and simulation environments in
which users can experiment with the code. The widespread
use of such tools reinforces our claim that they are essential




in a programming environment that supports computations
over streams.

The lazy (demand-driven) evaluation of functional lan-
guages schedules computations depending on the demands
for their results. This evaluation mechanism is hard to pre-
dict and to relate to the source code of the program, and
hence is not well suited for conventional debuggers that op-
erate at a low level of abstraction that is closer to the ma-
chine code than to the source program. This led researchers
to propose declarative debugging as a viable strategy for de-
bugging lazy functional programs {27, 28, 29].

One promising declarative debugging technique is algo-
rithmic debugging [30, 33, 34]. Algorithmic debugging is a
two phase process. First, the program is run and an execu-
tion dependence tree is built. Then, this tree is interactively
traversed. Each node in the tree corresponds to a function
call and its result. While traversing the tree (in a top-down
manner), the system asks, for each node, if the result of the
corresponding function call is correct or not. Based on the
answers the programmer gives, the system chooses which
function call to show next. A bug has been found when the
result of a function call is erroneous and all children nodes
are correct. The method requires that the functions have
no side effects, which makes it suitable for pure functional
languages.

The ability to view the value of any expression in a pro-
gram execution, and the expressions on which that value
depends, is generally useful for debugging many lazy func-
tional programs. Unfortunately, it is not of much help when
debugging stream computations. To understand a compu-
tation that deadlocks while manipulating several streams, it
is crucial to:

o understand the sequence of events that led to the dead-
lock, and

e have a view of all the relevant streams at the point in
which the deadlock occurred.

Algorithmic debugging abstracts away from time and does
not faithfully report the evaluation steps in the order in
which they actually happened. Furthermore, users of an
algorithmic debugging tool never have a global view of the
computation in which they can keep track of several streams
at once. These properties make algorithmic debugging un-
suitable for locating deadlocks in stream computations.

4 Controlling An Elevating Table

We present a simplified version of the actual ﬁrogram frag-
ment that spurred the idea of the new debugger.

4.1 The Program

Figure 1 shows a small fragment of a case-study production
cell [26]. This fragment is concerned with the implementa-
tion of the controller of a simple elevating table and testing
it with a simulated hardware environment. The table is ini-
tially in a low position. When the controller detects an input
blank, it issues an Up command to the motor interface. This
abstract command is implemented by the interface using a
low-level protocol that reads sensors and emits control sig-
nals {actuators) to a motor. The block Env simulates the
actual environment. Assuming the environment operates
correctly, the controller eventually receives an acknowledg-
ment, delivers the blank to the next device (a robot arm),

and issues a Down command to lower the table to its initial
position. The Down command is implemented by the inter-
face using a protocol similar to the one implementing Up;
when the Down command is acknowledged the controller is
ready to accept more input blanks.

We will give the precise implementation of the protocols
implementing the commands Up and Down. First we formally
describe the sets of messages that are required by the spec-
ification of the table [26]:

data MotorCmd = Up | Down
data Sensor = Low Bool | High Bool
type SensorVector = (Sensor,Sensor)
data Actuator = MotorUp | MotorDown

| MotorStop | GetStatus

The specification of the system requires the existence of
two sensors that identify the current location of the ta-
ble. For example, when the table is in the low position,
the sensors are (Low True, High False). The controller
can only access the current values of the sensors by issuing
a GetStatus control signal; changes to the sensors between
GetStatus signals are undetected by the controller. Finally,
the motor that moves the table can be controlled using three
self-explanatory control signals: MotorUp, MotorDown, and
MotorStop.

The above description yields the following code for an
idealized environment:

env acs = loop acs (Low True, High False) where
loop (ac:acs) currentSensors =
case ac of
GetStatus -> currentSensors :
loop acs currentSensors
MotorUp -> loop acs (Low False, High True)
MotorDown -> loop acs (Low True, High False)
MotorStop -> loop acs currentSensors

The environment code assumes that the table is initially in
the low position and repeatedly looks at the current control
signal in the actuators stream. If the signal is GetStatus,
then the current values of the sensors are returned. Other-
wise the appropriate action is performed, possibly modifying
the current values of the sensors.

It remains to perform the calculation of the actuators
stream in the module Interface:

actuators = GetStatus : emit motorCmds sensors
where emit (Up:mcs) ss = goU mcs ss
emit (Down:mcs) ss = goD mcs ss

goU mcs ((Low _, High True) : ss) =
MotorStop : emit mcs ss

goU mcs ((Low _, High ) : ss) =
MotorUp : GetStatus : goU mcs ss

goD mcs ((Low True, High _) : ss) =
MotorStop : emit mcs ss

goD mcs ((Low _, High _) : ss) =
MotorDown : GetStatus : goD mcs ss

First the code issues a GetStatus signal to get the initial
values of the sensors. Then we start a loop that examines
the current abstract command and the current values of the
sensors and emits the appropriate actuators. In a realistic
environment, the actuators would not be immediately ac-
knowledged and the controller might have to loop several
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Figure 1. Elevating Table

times until the sensors confirm that the actuator signal has
been acknowledged.

The main program reflects the interconnections in Fig-
ure 1. To test the program fragment independently, let’s
assume that the stream of motorCmds consists of an infinite
sequence of alternating Up and Down commands:

motorCmds = Up : Down : motorCmds
actuators = interface motorCmds sensors
sensors = env actuators

Note how the definitions of sensors and actuators are mu-
tually recursive.

The current code is overly simplified because it ignores
the remainder of the production cell, and even ignores some
aspects of the elevating table like the fact that it should ro-
tate left and right while moving up and down. Nevertheless,
the code captures the essence of our initial implementation
of the elevating table including the fact that it contains a
subtle error causing the system to deadlock! Because of the
simplifications, the bug may be obvious at this time, but it
certainly wasn’t obvious in the complete program (around
600 lines of Haskell).

4.2 Finding the Deadlock

Our debugger operates at a high-level of abstraction that re-
flects the source program itself. Instead of getting lost in de-
tails about lazy evaluation, our debugging technique main-
tains the illusion of a mostly declarative computation ex-
pressed as a fixed point of recursive equations over streams.

We start by illustrating the user’s point of view by going
through a possible debugging session for the elevating table
code. To find the source of the deadlock the user must
identify the relevant streams of interest. This information
is used by the debugger to keep track of, and display the
sequences of values that belong to these streams. In our
case, we only have three streams and we state that we are
interested in all of them.

When running the program under the control of the de-
bugger, the window in Figure 2 appears (initially empty).
The user then can interact with the computation by click-
ing on the buttons Next. Each click returns the next value
on the corresponding stream as well as all values on the
other streams on which it depends. In our example, the first

click on the stream actuators returned the value GetStatus
without demanding any other values on the other streams. A
second click on the same stream returned the values MotorUp
and GetStatus. These two values can only be produced if
a command Up is issued on the stream motorCmds and the
sensors indicate that the table is in the low position. After
the next click the computation has proceeded to the point
where the table is in the high position and the motor is
ordered to stop. When attempting to process the Down com-
mand, the next click displays the symbol L in the columns
for the streams of sensors and actuators indicating a cyclic
dependency between the next two values, i.e., a deadlock.

Even before examining the code for bugs, we can imme-
diately note one important fact: each GetStatus signal on
the stream of actuators produces the current values of the
sensors on the next click. The first two GetStatus signals
have been processed and acknowledged and no values can
appear on the stream of sensors unless a new GetStatus
signal is issued. It is also clear that the deadlock occurs
at a point in the neighborhood of the code that issues the
MotorStop signal and the error manifests itself immediately
after consuming the command Down. Looking back at the
relevant piece of code we find:

actuators = GetStatus : emit motorCmds sensors
where emit (Up:mcs) ss = goU mcs ss
emit (Down:mcs) ss = goD mcs ss

(%) goU mcs ((Low _, High True) : ss) =
MotorStop : emit mcs ss
goU mcs ((Low _, High _) : ss) =
MotorUp : GetStatus : goU mcs ss

goD mcs ((Low True, High _) : ss) =
MotorStop : emit mcs ss

goD mcs ((Low _, High _) : ss) =
MotorDown : GetStatus : goD mcs ss

In the line marked (*) we see that after issuing the signal
MotorStop, we proceed to the emit loop which consumes a
Down command, and then attempts to access the stream of
sensors without any intervening GetStatus signals. Thus
one way to fix the code would be to simply add a GetStatus
signal after stopping the motor {in both lines that stop the
motor):
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Figure 2. A Sample Debugging Session

actuators = GetStatus : emit motorCmds sensors
where emit (Up:mcs) ss = goU mcs ss
emit (Down:mcs) ss = goD mcs ss

goU mcs ((Low _,High True):ss) =
MotorStop:GetStatus:emit mcs ss

goU mcs ((Low _,High _):ss) =
MotorUp:GetStatus:goU mcs ss

goD mcs ((Low True,High _):ss) =
MotorStop:GetStatus:emit mcs ss

goD mcs ((Low _,High _):ss) =
MotorDown:GetStatus:goD mcs ss

And indeed the code now works just fine. A proof that the
new code does not produce deadlocks is outside the scope
of this paper but could be achieved either by compiling the
code to a finite state machine or subjecting it to our liveness
analysis [22].

5 Implementing the Debugger

Having argued that the debugger would be useful to include
in a programming environment for Haskell, we turn our at-
tention to the details of our current implementation in the
context of the Chalmers Haskell compiler ‘hbc.’

5.1 Background

The fundamental philosophy behind lazy evaluation [18] is
that expressions are not evaluated unless their values are
demanded. The initial demand usually starts from the top
level routine that seeks to print the answer of the program.
During debugging, the initial demand starts when the user
clicks on one of the streams. In both cases the demands are

propagated until they reach an expression that is already
evaluated. Such an expression is said to be in weak head nor-
mal form (whnf). Examples of expressions in whnf include
integers, A-expressions, and pairs. Generally speaking an ex-
pression that consists of a constructor applied to arbitrary
(possibly unevaluated) argument expressions is in whnf. For
example, the expression (1+2 : £ xs) is in whnf, since it
consists of a top level constructor (:), an unevaluated head
1+2, and an unevaluated tail £ xs.

Lazy evaluation is viable because ouce an expression has
been evaluated, there is no need to re-evaluate it again.
Since the language is purely functional, all subsequent eval-
uations of an expression are guaranteed to return the same
result as the first, and hence are useless. This property im-
mediately implies that it is impossible to write a Haskell ex-
pression that evaluates to True the first time, and to False
the second time.

A deadlock occurs in a lazy functional program when
the evaluation of an expression needs its own value to pro-
ceed. An obvious way of detecting deadlocks is thus to mark
an expression as being under evaluation when its evaluation
starts. If the value of such a marked expression is needed,
we have a deadlock. Most compilers for lazy functional lan-
guages mark expressions in this way and can indeed detect
deadlocks at run-time albeit with an obscure error message
about black holes.

5.2 Global View

The debugger consists of a number of stream agents and
a top level coordinator. A stream agent is responsible for
evaluating and displaying the elements of one stream. The
graphical representation of each stream agent is as shown in
Figure 2.

The top level coordinator and the stream agents inter-




act as follows. When the button Next of a stream agent is
clicked, the agent tries to evaluate the next element of the
stream. It then sends a notification message to the coordi-
nator. Upon receipt of such a notification, the coordinator
sends a broadcast message to all stream agents, to which
each agent responds by checking for, and displaying, the
evaluated elements on its stream.

5.3 Peeking at Streams

To perform their jobs, the stream agents need to peek at
streams to see how many elements are already evaluated to
whnf. Unfortunately, in a lazy functional language it is not
possible to look at a stream to see how many elements have
been produced. In fact, it is by looking at them that they
will be produced, since there is demand for them! So when
inspecting a stream, the agent would want to see the stream
as a read-only data structure.

For this reason we have implemented a new primitive
function peek that takes an argument and returns a value
of type EvalStatus:

data EvalStatus = Evaluating | Closure | Evaluated
peek :: a -> EvalStatus

Clearly the above function is not pure and hence is not ex-
pressible in Haskell. Indeed, it may return different answers
when called with the same argument twice. This function is
not available to programmers.

Using peek we define a function safeInitialLlist that
takes a stream as argument, and returns the initial list
of already evaluated elements in the stream, a flag saying
whether the stream has become deadlocked or not, and the
stream itself (except for the initial evaluated segment):

safeInitiallist :: [a]l -> ([al, Bool, [al)
safeInitiallist xs =
case peek xs of
Evaluating -> ([J], True, xs)
Closure -> ({1, False, xs)
Evaluated ->
case xs of
y:ys => let (zs, b, ws) = safelnitiallist ys
in (y:zs, b, ws)

0 -> (0, False, [1)

5.4 Recovering from Fatal Errors

A fatal error is one which normally terminates a program
with an error message, e.g., a division by zero or a deadlock.
Since our debugger is part of the same program as the ap-
plication, we certainly don’t want such errors to abort the
debugger. To be able to recover from such faults and get
some clues on which part of the source code is responsible
for the fault, we introduce a pair of functions catch and
throw:

throw :: String -> a
catch :: a => (String -> a) -> a

that provide a simple form of exception handling. The se-
mantics of these extensions is presented in the next section.

Intuitively, they are used as follows. The compiler is
modified so that all fatal errors call throw with an appro-
priate error message. These errors are caught (handled) by
the debugger. For example, the evaluation of result below
produces 42:

result = catch (f []) handler
f (x:x8) = x + f xs
handler errMsg = 42

Otherwise, when not debugging, there will be no active

catchand the program would terminate with the usual error
message: "No match in f£".

6 Call-by-Need & Exceptions

" Consider a small functional call-by-need language extended

with exceptions.

Definition 6.1 (Syntax) The set of terms includes:

MN == V|M+N|z|MN
| throw M | catch M N
V o= n|iz.M

In other words, the language extends the pure A-calculus
with a representative set of constants including numbers
and addition as well as two expressions for throwing and
handling exceptions. The intended semantics of throw and
catch is the usual one [35] adapted to a call-by-need lan-
guage. Given an expression M, the evaluation of (throw M)
aborts the computation and returns M. The evaluation
of (catch M V) where N is a handler proceeds as follows.
First evaluate M to whnf; if this evaluation terminates nor-
mally then its result is the value of the entire catch expres-
sion. Otherwise if the evaluation of A throws an exception,
the handler is called with the thrown expression as an argu-
ment.

Definition 6.2 (Syntax of Types) The set of types is in-
ductively defined as follows:

r o= Int|7T—1r'

The typing rules for our language are in Figure 3. We let T
scope over type environments (partial mappings from vari-
ables to types). A type judgment I' - e : 7 means that under
the assumptions in the type environment I', expression e has
type 7.

The typing rules for the functional core are standard.
The typing rules for throw and catch are similar to the ones
found in SML [37] but, for simplicity, we have restricted all
thrown expressions to be of type Int.

If typechecking guarantees anything, it is that some ob-
viously faulty terms are not typable.

Definition 6.3 (Faulty Terms) An expression is faulty if
it s containg one of the following subterms:

e n M, or
o Az MY+V, or

o V 4+ (Az.M).

It is easy to confirm that faulty terms are not typable.
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TC'kcatchM N: 7

Figure 3. Typing Rules

6.1 Evaluation Contexts

Because of the lazy semantics of the language, the definition
of the axioms is intertwined with the definition of evaluation
contexts {2, 3]. Intuitively, “needed” variables within sub-
terms correspond to those variables that occur in evaluation
context positions. Therefore, we define evaluation contexts
first before defining the semantics of the language.

Definition 6.4 (Evaluation Contexts E) The set is in-
ductively defined as:

E = [1] EM | (Az.E) M | (Az.Elz]) £
| E4+M|n+ E|catch B W

The first four clauses are identical to the ones for the pure
call-by-need calculus. They have the following intuitive ex-
planation. The context EM reflects the fact that the func-
tion position of an application is needed. The next two con-
texts make the call-by-need nature of the language evident:
arguments to functions are not evaluated when the function
is called. Indeed, we first attempt to evaluate the body of
the function without touching the argument. Only if the
body of the function “needs” the value of the parameter, do
we start processing the argument.

The contexts £+ M and n+ E state that both arguments
to an addition are needed: first the left one, then the right
one. In the presence of exceptions and handlers, this order
is clearly significant. Finally the context catch £ M reflect
our informal understanding of the semantics of a catch ex-
pression which first attempts to evaluate the first argument.
The second argument (the handler) is only needed if the
evaluation of the first argument throws an exception.

6.2 Axioms
We are almost in a position to define the semantics of our

language. We begin by identifying a syntactic category of
terms that are answers and how to observe them.

Definition 6.5 (Answers) An answer A is one of the fol-
lowing terms:

A = V|throw M | (Az.A) M

When observed, answers yield the following output to users:

obs(n) = n
obs(Az. M) = "Procedure"
obs(throw M) = "Uncaught Exception”
obs((Az.A) M) = obs(A)

Our definition of answers extends the usual definition for
the pure call-by-need calculus by adding an additional kind
of answers for uncaught exceptions.

We can now specify the semantics of the language via
the set of axioms in Figure 4. The first three axioms are
essentially the axioms of the pure call-by-need calculus. The
next three axioms specify the semantics of exceptions. A
throw expression aborts any context other than a catch.
The value of a catch expression is either the value of the
first argument or the result of applying the handler to the
value thrown by the first argument.

The following proposition guarantees that the definitions
of evaluation contexts, faulty expressions, and axioms are
consistent and complete.

Proposition 6.1 FEvery closed term is either an answer,
faulty, or can be uniquely decomposed into an evaluation
contezt and a redes.

6.3 Evaluator

The above axioms can be used in any context to transform
programs (perhaps for optimization purposes). They can
also be used to specify an evaluator by orienting them from
left to right and always choosing the redex that occurs in
the hole of the evaluation context.

Definition 6.6 The call-by-need evaluator is defined as fol-
lows: eval(M) = B if M —* A and obs(A) = B, where
M —— N if and only if:

o M = E[R),

o R = R is an aziom of Figure 4 (R must be the left
hand side), and

s N = E[R].

6.4 Connection to Call-by-Name

Clearly the semantics of a call-by-need with exceptions is
not the same as the semantics of the call-by-name variant.
This is in contrast to the pure functional subset in which
call-by-name reasoning principles like 8 are sound. However
this is no worse than the current intermediate languages of
Haskell compilers, like the Glasgow Haskell compiler, that
use a call-by-need language with assignments to implement
monadic state efficiently. Indeed /3 is also unsound in the
intermediate langnage of the compiler for precisely the same
reason [31, 25].
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Figure 4. Axioms

7 Current Limitations and Future Work

We have presented a novel debugger for reasoning about
the recursive computations over streams usually found in
reactive systems. The debugger appears to work remarkably
well for small programs, but there is a need for further work
to handle larger programs and to formalize the theoretical
foundations of the current implementation or to investigate
different implementation strategies. We expand on these
points in the remainder of the section.

There are three main limitations of the current system.
First, the number of streams that can be simultaneously
debugged is limited by the size of the screen. In practice we
have not found this to be a problem. In large examples, it
is relatively easy to use the debugger to narrow down the
deadlock to a handful of streams.

Second, our implementation relies on impure primitives
that, although confined to the internals of the compiler,
could pollute the source language and break some obvious
program optimizations. For example, the following two defi-
nitions of ones are equivalent in pure Haskell but not equiv-
alent during debugging sessions:
ones = map id (1 : ones)
ones = 1 : ones

To see the difference consider the call (safeInitialList
ones). Using the first definition of ones, the result is a triple
of the form ([], False, ones). Using the second definition
of ones, the call (and hence the debugger itself) diverges!
To avoid such situations, a fully evaluated stream cannot
be used during debugging sessions. Indeed in the elevating
table example, the definition that we used for motorCmds is
actually:
motorCmds = map id (Up : Down : motorCmds)

This trick of inserting map id around trivial stream defi-
nitions works fine with the current version of the ‘hbe’ com-
piler but is unsatisfactory. A smart compiler that is un-
aware of the debugger can certainly optimize (map id e) to
e since they are equivalent in pure Haskell. A better solu-
tion would be to integrate the debugger and the compiler
in a programming environment which would require them
to agree on a common representation for streams such as
motorCmds above.

As another example, addition is commutative in pure
Haskell, i.e., M + N = N + M. This equivalence no longer
holds in the presence of catch and throw. The evaluation
of result below produces 5 or 6 depending on the order of
evaluation of the arguments to +:

result = catch (f ()) handler
£ () = throw "L" + throw "R"
handler errMsg = if errMsg=="L" then 5 else 6

General programmers do not have access to catch and throw
and this situation does not seem to occur in the current de-
bugger. Nevertheless a proof of safety would be interesting.
This situation is reminiscent of the use of assignments in
the implementation of monadic state without affecting the
purity of the source language [24. 25].

Third, the debugger can only cope with streams defined
at the top level of the program. Thus if we have a large pro-
gram in which one function uses locally defined streams. we
cannot debug the program until these streams are globally
defined at the top level. Such a change may require a major
restructuring of the program, and may even be impossible
in certain circumstances. This problem is a general Haskell
problem: it is impossible to perform any computational ef-
fect (e.g., printing) as a side-effect of evaluating an expres-
sion. Instead computational effects must be propagated to
the top level either explicitly or by using a monad [36]. This
is the major limitation of the debugger; we are actively seek-
ing a solution to this problem.

Finally, we have started an investigation of the seman-
tics of computational effects in call-by-needs languages since
we believe that this will lead to more robust programs, and
will formalize some of the ad hoc, informal, and potentially
unsafe programming practices in system-level Haskell pro-
grams.
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Abstract

Bulk types — such as lists, bags, sets, finite maps. and priority queues — are ubiquitous
in programming. Yet many languages don’t support them well. even though they have
received a great deal of attention, especially from the database community. Haskell is
currently among the culprits.

This paper has two aims: to identify some of the technical difficulties. and to attempt to
address them using Haskell's constructor classes.

This paper appears in the proceedings of the 1997 Haskell Workshop, Amsterdam, 7 June
1997. A slightly earlier version appears in the (electronic) proceedings of the 1996 Glasgow
Functional Programming Workshop:

http://www.dcs.gla.ac.uk/fp/workshops/fpw96/Proceedings96.html

1 Introduction

Functional programs use a lot of lists, but often a list is actually used to represent:

a stack, a queue, a deque, a bag, a set, a finite map (by way of an association list
of (key,value) pairs), or a priority queue.

Using lists for all of these so-called bulk types is bad programming style for two reasons:

1. The type of the object does not specify its invariant (e.g. in a set there are no duplicates)
and its expected operations (e.g. lookup in a finite map). The lack of these invariants
makes the program harder to understand, harder to prove properties about, and harder
to maintain.

2. Operations on lists may be less efficient, or perhaps even in a different complexity class,
than operations on a suitably optimised abstract data type. For example, list append




(++) takes time linear in the size of its first argument, whereas it is easy to implement an
ordered sequence ADT with constant-time concatenation®.

Everyone knows this, but everyone still uses lists! Why? Because lists are well supported
by the language: they admit pattern matching, there is built-in syntax (list comprehensions),
and there is a rich library of functions that operate over lists. Even experienced functional
programmers knowingly write an O(n?) algorithm where an O(n) algorithm would do, because
it is just so convenient to use lists and append them rather than to design and implement and
use an abstract data type.

Why, then, aren’t there well-engineered libraries to support sets, bags, finite maps, and so on?
Many decent attempts have been made, notably C++’s standard template library (STL) - see
Section 3 - but all have technical difficulties. This paper identifies some of these difficulties and
attacks them using Haskell’s type classes.

2 The problem with bulk types

The central difficulty with bulk types is their degree of polymorphism. First, there are many
different sorts of collections — lists, sets, queues, and so on. Second, one such sort may have
many different possible representations — lists, trees, hash tables. and so on. Lastly, each such
representation may have many different element types — integers, booleans, characters, pairs,
and so on.

A language that supports polymorphism allows the programmer to write a single algorithm
that can be used in many “essentially similar” situations. For example, suppose we want to
construct the list (or set, or bag) of leaves of a tree, where the tree is defined by the following
data type:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
Here is a possible algorithm that works for a tree with Int leaves, constructing a set of Ints:

leavesSetInt :: Tree Int -> SetInt
leavesSetInt (Leaf a) singletonSetInt a
leavesSetInt (Branch t1 t2) = leaves tl1 ‘unionSetInt‘ leaves t2

This code assumes the existence of the following set construction functions:

singletonSetInt :: Int -> SetInt
unionSetInt :: SetInt -> SetInt —-> Setlnt

There are two ways in which this program can be made more polymorphic:

Element polymorphism Firstly, it is obvious that code of precisely the same form would be
required for a tree of booleans. We would like to be able to generalise leaves like this:

At least, it is easy if one is prepared to give up O(1) head and tail functions. It is possible, albeit somewhat
more complex, to support append, head and tail all in constant (amortized) time (Okasaki [1995]).




leavesSet :: Tree a -> Set a
leavesSet (Leaf a) singletonSet a
leavesSet (Branch ti1 t2) leaves t1 ‘unionSet‘ leaves t2

To make this work we would need to have these set operations:

singletonSet :: a -> Set a
unionSet :: Set a -> Set a -> Set a

Bulk-type polymorphism Suppose that we have a second data type, OrdSet, that uses a
different representation from that of Set — perhaps Set represents the set as a list with
no duplicates, while OrdSet uses a balanced tree, for example. The function to gather the
leaves of a tree into an OrdSet will be of just the same form as that for Set. The same
is true if we want to collect the leaves into a bag, or a priority queue, or a list. Ideally,
then, we would like to make leaves more polymorphic still, something like this:

leaves :: Tree a -> ¢ a -- where c is a bulk type
leaves (Leaf a) singleton a
leaves (Branch t1 t2) = leaves tl ‘union‘ leaves t2

1)

where the bulk-type constructors are now something like:

singleton :: a => ¢ a -- where ¢ is a bulk type
union :: ca=>ca->ca-—- where c is a bulk type

The trouble is that neither of these two generalisations is straightforward. We discuss each in
turn.

2.1 Element polymorphism

Consider the goal of making leaves polymorphic in the elements of the Set. The tidiest kind
of polymorphism, parametric polymorphism, works when the very same source code will work
regardless of the argument type. It is supported by many modern programming languages,
including C4+, ML, and Haskell?. If we were collecting the leaves of a tree into a list, then we
could use parametric polymorphism very easily:

leavesList :: Tree a -> [a]
leavesList (Leaf x) = singletonlList x
leavesList (Branch t1 t2) = leavesList tl1 ‘unionList‘ leavesList t2

Here, unionList has type [a] -> [al -> [al: it is just list append, commonly written ++.

The trouble arises with sets, because we cannot make a union operation that works on sets
whose elements of arbitrary type. To remove duplicates we must at least have equality on the
set elements! Furthermore, equality may not be enough:

?In the case of ML and Haskell, this polymorphism extends to the executable code too; that is. the same
executable code works regardless of the argument type. In the case of C++, using templates one can have a
single source-code function, but the compiler must instantiate it separately for each type at which it is used.




o If the element type admits only equality, then determining whether an element is a member
of the set must take linear time.

o If the element type supports a total order then a tree (balanced or otherwise) may be
more appropriate, and set membership can be determined in logarithmic time.

e If the element type admits a hash function, then the set might be represented by a hash
table, or — in a purely-functional language where persistent data structures® are the rule
— by a tree indexed on the hash key.

e [f the element type has a one-to-one function mapping elements to integers, then radix-
based tree representations become possible.

One way out of this dilemma, taken by Java for example, is to decide that every data type
supports equality, together with ordering and/or a hash function. This is simple but crude —
what about equality of functions. for example? A cleaner solution, adopted by ML for equality,
and generalised in Haskell by type classes, is to use a tvpe system that allows type variables to
be qualified by the operations they support. Thus. in Haskell we can give the following type
for union on a set data tvpe that required only equality:

unionSet :: (Eq a) => Set a -> Set a -> Set a

This type specifies that the element type, a, must lie in the class Eq*. The class Eq is defined
like this:

class Eq a where
(==) :: a -> a =-> Bool
(/=) :: a -> a -> Bool

The declaration says that types that are instances of Eq must provide operations (==) and (/=)
with the given types. For each data type that we want to be in Eq we must give an instance
declaration that defines (==) and (/=) at that type. For example:

instance Eq Int where
=y =x ‘eqlnt‘ y
=y = not (x ‘eqInt‘ y)

X
X

~ i

#

instance (Eq a, Eq b) => Eq (a,b) where
(a1,b1) == (a2,b2) = (al==a2) && (b1==b2)

Given this type for unionSet, the type of leavesSet is now inferred to be:

leavesSet :: (Eq a) => Tree a -> EgSet a

%A data structure is “persistent” if, following an update, the old version of the data structure is still available
(Okasaki [1996]). .

*Strictly speaking, the semantics of union does not require the elimination of duplicates — that could be
postponed until the set is observed by a membership test or by enumerating its elements. However. nothing
fundamental is changed by such an implementation decision so in this paper we will stick with the naive view
that union requires equality.




If our Set type required ordering as well as equality, we would simply replace (Eq a) by (Ord a)
in the above types.

2.1.1 Other approaches

ML has equality types built in, but not ordered types, so the Haskell solution is not available in
ML. (Restricting to equality only would be unreasonable, because sets based only on equality
are hopelessly inefficient.) The solution adopted by some ML libraries is to make Set into a
functor:

functor Set( ORD:0ORD_SIG ) : SET

That is, Set is a functor taking an ordering as its argument, and producing a set structure
(i.e. module) as its result. One can thereby construct efficient set-manipulation functions for
particular element types:

IntSet Set IntOrd
CharSet = Set CharQOrd

but now the leaves function has to mention either IntSet.unionor CharSet.union — leaves
cannot be polymorphic in the element type. To solve this. leaves must be defined in a functor
that takes the Set structure as argument. and so on.

2.2 Bulk-type polymorphism
Next. we consider how to generalise leaves to work over arbitrary bulk types. To begin with

we will consider only types — such as lists. queues, and stacks — that are truly parametric in
their element types.

2.2.1 Using type classes

We start off with one union operation for each collection type, each of which has quite different
code to the others:

unionList :: [a] =-> [a] -> [a]
unionQueue :: Queue a -> Queue a -> Queue a
.etc...

In order to generalise leaves. we earlier informally suggested the type:
leaves :: Tree a -> ¢ a -- where c is a bulk type

We are suggesting here that leaves is polymorphic in c. the bulk type constructor. The
polymorphism is not parametric, however, because each union operation uses different code;
leaves should call a different union operation for each type. This is exactly what type classes
are for! Perhaps we could write:

[



leaves :: (Bulk c¢) => Tree a => c a
where Bulk is the class of bulk types, defined thus:

class Bulk ¢ where

empty 11 Cc a
singleton :: a => ¢ a
union i ca->ca->ca

Now we can give an instance declaration for each Bulk type:

instance Bulk [] where -- [] is the List type constructor
empty = []
singleton x = [x]
union = (++)

instance Bulk Queue where

empty = emptyQueue
singleton = singletonQueue
union = unionQueue

All of this is legal Haskell, but notice that c is a variable that ranges over type constructors
rather than types. This sort of higher-kind quantification is a fairly straightforward but powerful
extension of the Hindley-Milner type system (Jones [1995]). It can be used in ordinary data
type declarations but, as we shall see. it is particularly useful in Haskell’s system of classes,
which are thereby generalised from type classes to constructor classes.

Alas, things go wrong when we try to deal with non-parametric element types. We cannot give
an instance declaration:

instance Bulk Set where

empty = emptySet
singleton = singletonSet
union = unionSet

because unionSet has the wrong type! It requires that the element type be in Eq, whereas the
overloaded union operator does not.

2.2.2 Other approaches

A possible alternative approach is to use ad hoc polymorphism. The symbol union would stand
for a whole family of union operations, each with a different type. The choice of which to use
would be made statically by the compiler, based on local type information. ML uses this sort
of overloading for numeric operators, and so does C++, Ada, and other languages. The small
disadvantage of ad hoc overloading is that one may need to write type signatures to specify
which type to use; “small” because writing type signatures is a Good Idea anyway.

The big disadvantage is that one cannot write generic operations over collections. For example,
we could write leaves thus:



leaves (Leaf a)
leaves (Branch t1 t2)

singleton a
leaves t1 ‘union‘ leaves t2

but the compiler would have to resolve the union to unionList, or unionQueue or unionSet,
or whatever. This resolution might be done implicitly, or by requiring the programmer to add
a type signature; but however it is done leaves will only work on collections of one type. An
exact copy of the code, with a different type signature, would deal with one more type, and so
on. Every time you add a new collection type you would need to add a new copy of leaves.
(Or perhaps the compiler could automatically make them all for you, in which case the issue is
one of code size.)

2.3 Adaptive representations

There is a third issue which adds yet more spice to the challenge of implementing bulk types:
that of choosing an appropriate representation. The appropriate representation of a collection
depends on:

1. The size of the collection.
2. The relative frequency of the operations supported by the bulk type.

3. The operations that are available on the underlying element type.

Of course, we can simply dump the problem in the programmer’s lap, by providing a large
variety of different set data types, and leaving the choice to the programmer. (This is pre-
cisely what STL does.) A more attractive alternative is to make the bulk type choose its own
representation.

Items (1) and (2) have been fairly well studied. Clever algorithms have been developed that
adapt the representation of a data type based on its size and usage (Brodal & Okasaki [1996];
Chuang & Hwang [1996]; Okasaki [1996]). It is less obvious how to tackle item (3). How can
we build an implementation of Set that chose its representation based on what operations are
available on the elements? We return to this question in Section 3.3.

2.4 Summary

In this section we have reviewed various approaches to manipulating bulk types in polymorphic
fashion. The bottom line is that “nothing quite works”. Bulk types seem quite innocent, but
the combination of polymorphism in both element and bulk types, and the non-parametric
nature of both, conspire to defeat even the most sophisticated type systems.

3 First design: the XOps route

In this section we turn to our first solution, based on the most promising of the approaches
reviewed, namely constructor classes. The solution we present has the merit of being imple-
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mentable in standard Haskell (1.3), but it has some shortcomings that we will address in our
second solution (Section ).

Like C++'s STL, we identify two main groups of bulk types:

1. Sequences, where the order of insertion is significant (e.g. one can extract the most
recently inserted element), but where no operations need be performed on the elements
themselves.

2. Collections, where the order of insertion is unimportant, but where the elements must
admit at least equality and preferably some other operations®.

3.1 Sequences

A sequence contains a linear sequence of zero or more elements. The order of insertion and
removal of elements is significant. and elements can be added or removed at either end. Exam-
ples of sequences are: lists, catenable lists®, stacks. queues. deques. They all support the same
set of operations. but they differ in the complexity bounds for these operations.

Figures 1 and 2 defines a module Sequence whose main declaration is a type class, also called
Sequence. that defines the set of operations on sequences. The names of the operations are
chosen to be compatible with Haskell’s current nomenclature for lists. front and back return
both the first (respectively, last) element of the sequence. together with the remaining sequence:
they return Null if the sequence is empty. The SeqView type is used as the return type for both
of these functions: you can think of front and back as providing a head-and-tail-like “view”
of each end of the sequence.

The fold functions, along with length. filter. partition, reverse, are straightforward
generalisations of their list counterparts. They can all readily be defined in terms of either front
or back. Indeed, each of them has a default method in the class declaration, indicating that
an instance of Sequence may (but is not compelled to) provide a method for these operations.
The reason for this decision is that for at least some instances of Sequence (snoc-lists, say) the
default definition of some functions (foldr, in this case) is likely to be outrageously inefficient.
Making these functions into class methods gives the implementor the option (though not the
obligation) of providing more efficient definitions.

The standard classes MonadPlus and Functor are superclasses of Sequence: that is, any type
in Sequence must also be in MonadPlus and Functor. Both of the latter are defined by the
Haskell 1.3 prelude. Figure 3 gives their definitions, except that we have added cons and snoc
to the class MonadPlus. They can both be implemented in terms of ++, as their default methods
show, but for many types they can be more efficiently implemented directly.

All the operations of the standard classes Monad. MonadZero, MonadPlus, and Functor make
sense for sequences: ++ appends two sequences; map applies a function to each element of a

3STL refers to these as “associative containers”.
®Catenable lists support constant-time append.



module Sequence where
data SeqView s a = Null | Cons a (s a)

empty :: Sequence s => s a
empty = zero

singleton :: Sequence s => a => s a
singleton x = return x

fromList :: Sequence s => [a] -> s a
fromList xs = foldr ((++) . returmn) zero Xxs

toList :: Sequence s => s a -> [a]
toList s = foldr (:) (1 s

class (Functor s, MocnadPlus s) => Sequence s where
null :: s a -> Bool

front :: s a -> SeqView s a

back :: 8 a -> SeqView s a

(t1) :: s a->Int -> a

update :: s a => Int -> a ~=> s a

foldr :: (a ->b ->b) -=>b ->s a->b
foldrl :: (a -> a =>a) -> s a -> a
foldl :: (b ->a->b) =>b ->sa->b
foldll :: (a => a ->a) -> s a -> a
length :: s a => Int

elem :: (Eq a) => a -> s a => Bool
filter :: (a => Bool) -> s a -> s a
partition :: (a -> Bool) => s a -> (s a, s a)

reverse :: s a -> s a

Figure 1: The sequence class




-- Default methods
foldr k z xs = case front xs of
Null -> z
Cons x xs -> x ‘k‘ foldr k z xs
foldrl k xs = case back xs of
Cons x xs -> foldr k x xs
foldl k z xs = case front xs of
Null -> z
Cons x xs -> foldl k (z ‘k‘ x) xs
case front xs of
Cons x xs -> foldl k x xs

foldll k xs

length xs = foldr (\_ n -> n+1) O xs
filter p xs = foldr f zero xs
where £ x ys | p x = x ‘cons‘ ys
| otherwise = ys
partition p xs = (filter p xs, filter (not.p) xs)
reverse xs = foldl (flip.cons) zeroc xs
elem x xs = foldr ((ll) . (==) x) False xs

Figure 2: The sequence class, continued

class Monad m where
(>>=) ::ma->(a->mb) ->mb
return :: a ->m a

class (Monad m) => MonadZero m where
Zero :: m a

class (MonadZero m) => MonadPlus m where

(##) ::ma->ma->nma

cons :: a ->sa->s a

snoc :: s a->a->sa

cons x xs = (return x) ++ xs -- Not yet in 1.3
snoc xs x = xs ++ (return x) -- Not yet im 1.3

class Functor m where
map :: (a->b) ->ma ->mb

Figure 3: Monad and functor classes
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sequence; zero is the empty sequence; return forms a singleton sequence; and >>= takes a
function that maps each element of a sequence to a new sequence, and concatenates the results.

Because sequences lie in the class Monad we can use the do notation to describe sequence-valued
expressions. For example:

do { x<-xs; y<-ys; return (x,y) }

will deliver the sequence composed of all (x,y) pairs, where x is drawn from the sequence xs and
y is drawn from ys. The same applies to Haskell’s comprehension notation, which also defines
an expression over any monad. For example, this comprehension defines the same sequence as
that above.

[(x,y) | x<-xs, y<-ys]

A great deal of work has been done on the connection between bulk types and comprehension
syntax, especially in the context of database queries and their optimisation (Buneman et al.
[1994]; Trinder [1991]; Trinder & Wadler [1989]; Wadler [1992]).

Lastly, the Sequence module contains a couple of ordinary declarations that give more collection-
oriented names to the monadic functions zero and return. namely empty and singleton
respectively.

3.2 Collections

We observed earlier that the problem with collections is that the union operation may impose
different constraints on the element type. depending on which collection we are dealing with.
Our solution is very simple. namely to give them all the same type. First we define a new class
X0Ops, the class of element operations, thus:

class XDps.a where

xEq 1t a ->a -> Bool

xCmp  :: Maybe (a -> a -> Ordering) -- Three-way comparison

xHash :: Maybe (a -> Int) -- Hash function; could be many-one
xToInt :: Maybe (a -> Int) -- Injection; guaranteed one-one

(Ordering is a standard Haskell data type with three constructors, LT, EQ and GT.) The point
about XOps is that it tells not only how to (say) compare two elements, but also whether such
a comparison is available. The equality operation, however, is mandatory, so it is not wrapped
in a Maybe type’. For example, for a particular type T, we might have an instance declaration:

instance XOps T where

xEq = (==)
xCmp = Just cmpT
xHash = Nothing

"We could make Eq a superclass of XOps instead of having xEq, but it is sometimes convenient to define a
non-standard equality for collection operations — see Section 3.6 — and it is confusing to have non-standard
instances of Eq.



xToInt = Nothing
to say that T had a comparison operation, cmpT, but no xHash or xToInt operation.
Next, we define the class Collection, of collections, like this:

class Collection ¢ where
empty :: C a
insert :: XOps a => a ->c a -> ¢ a
...and much more...

We will add many further operations shortly. We use empty for both collections and sequences,
relying on the use of qualified names (such as C.empty) to distinguish them when necessary.

With these definitions, it is now possible to give a fully-respectable type to leaves:
leaves :: (Collection c, XOps a) => Tree a => ¢ a

Notice that, unlike the Sequence class. we cannot make MonadPlus and Functor into super-
classes of Collection. Why not? Because for collections we cannot give sufficiently polymor-
phic definitions for ++ and >>=. To perform these operations we will need the constraint XOps t
on the element type t — but that would not fit the signature of the classes MonadPlus and
Functor.

3.3 Instances of Collection

Next, suppose we have a datatype. OrdSet that implements sets using trees, making use of an
ordering operation on the set’s elements. We can make QrdSet, the type of ordered sets (whose
implementation depends on an element ordering), an instance of Collection thus:

instance Collection OrdSet where
empty = Empty
insert x t = case xCmp of
Just cmp -> insertTree cmp x t
Nothing -> error "OrdSet.insert"

(Here we are assuming the existence of a suitable data type of Trees, with operations insertTree

to insert an element.) An obvious sadness is that if we try to build an OrdSet of things that
only admit equality then we will only get a runtime error, not a compile-time type error. Whilst
this is undoubtedly sad, we will see shortly how to design set datatypes that cannot fail in this
way. Furthermore, it is worth remembering that most programs contain quite a few functions
with incomplete patterns. To take a simple example:

head :: [a] -> a
head (x:xs) = x
head [] = error "head"

Of course, head is only called when (we think that) we know the argument is a non-empty
list. It would be nice if the type system proved this, and one could imagine more sophisticated
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type systems that could (Freeman & Pfenning [1991]), but Haskell and ML are certainly not
rendered unusable by the possibility of such runtime errors. The error in insert is arguably in
this class.

However, it would really be best to avoid even the possibility of run-time failure, and we can do
this by building a Set data type that chooses its representation based on the available operations
on elements. Here is a sketch of one possible implementation:

data Set a =
| List [a] -- No duplicates
!

instance Collection Set where
empty = Empty

insert x Empty
= case xCmp of
Just cmp -> Tree (Branch x Empty Empty)
Nothing =-> List [x]

insert x (List xs) = List (insertlist xEq x xs)

insert x (Tree t)
= case xCmp of
Just cmp -> Tree (insertTree cmp X t)

The point of the game is that insert dynamically selects which representation to use in the
Empty case depending on whether or not there is a comparison operation. Notice. crucially, that
the extraction of cmp in the final equation for insert cannot fail. because one of the arguments
is already a Tree, and it could only have become so by virtue of the Empty equation deciding
that there was a comparison operation.

Not only have we eliminated runtime errors, but we have also delegated to the abstract data
type the choice of representation. This is a rather attractive property. When computing with
sets, most programmers do not want to have to look up the operations that are available
for the element type, and choose which set implementation to use depending on the answer.
Being able to use a single type, Set, and having the implementation choose the representation
automatically is a big advantage. Of course, we are still free to fix a particular representation
by using a simpler, more specific set implementation (such as OrdSet).

3.4 Efficiency

The generic Set implementation sketched above is just a start. A real implementation would
be rather cleverer.
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e Very small sets should probably be represented by lists even if ordering is available. This
is easily programmed.

e A good compiler should be able to create specialised instances of insert at widely-used
types. For example, if it sees that insert is often used at the type

insert :: String -> Set String -> Set String

then it can create a specialised version of insert, in which ¢ is fixed to Set and a is fixed
to String, and hence the comparison operations ought to be turned into inline code.

There are two other efficiency concerns about Set that turn out to be relatively unimportant:

e The implementation of insert has to choose which equation to use based on which
constructor it finds in its second argument. However, in most implementations the major
cost is doing pattern-matching {and hence forcing evaluation) at all; it is very little more
expensive to choose between equations based on the constructor found.

e One might worry that every call to insert has to pattern-match on xCmp to extract the
comparison operation. which carries an efficiency cost. This can be done once and for all
when a tree is first built:

data Tree a = Tree (a->a->0rdering) -- Comparison
Int -- Size
(TreeR a)

data TreeR a = Empty | Branch a (TreeR a) (TreeR a)

On the whole, though, this is probably a bad thing to do. If the implementation fetches
the ordering function from the tree, it is less likely that the compiler will be able to prove
that for some given type. Int say, the ordering function is bound to be cmpInt. So it may
be less easy for the compiler to generate improved code when the types are known.

3.5 Taking collections apart

The operations on collections we have suggested so far (empty, insert, union) only deal with
constructing collections. What about taking collections apart? The obvious thing to do is
to augment class Collection with a homomorphism over the constructors of the collection.
Since our “constructors” (so far) are empty and insert the obvious homomorphism to add to
Collection is:

class Collection ¢ where

fold :: (a->b->b) => b ->c a ->b

14




—

module Collection where

class Collection ¢ where

empty :: c a

null :: ¢ a -> Bool

size i ¢ a => Int

singleton :: (XOps a) => a -> c a

fromList :: (XOps a) => [a] -> c a

tolist :: c a -> [a]

fold :: (a=>b=>b) > b ->ca-~->b

foldil :: (a=>b=>b) -> ca -> b

filter :: (XOps a) => (a => Bool) -> ca ->c a
partition :: (XOps a) => (a => Bool) -> ¢ a => (c a,c a)
elem :: (XOps a) => a => ¢ a —> Bool

flatMap :: (XOps b) => ca -> (@ => ¢cb) =>cb

insert :: (XOps a) => a->ca->ca

insertWith :: (XOps a) => (a->a->a) -> a->ca->c a
insertk :: (XOps k) => k -> a => ¢ (Pr k v) -> c (Pr k v)
union :: (XOps a) => ca->ca->ca

unionWith :: (XOps a) => (a->a->a) ->ca->ca->ca

delete :: (XOps a) =>a ->ca->ca

deletek :: (XOps k) => k => c (Pr k v) => ¢ (Pr k v)
lookup :: (XOps k) => k => ¢ (Pr k v) -> Maybe v
intersect, without :: (XOps a) => c a =>c a ->c a

Figure 4: The collection class




-- Default methods (part of class declaration)
size ¢ = fold (\_ n -> n+1) 0 ¢
null ¢ = size ¢ ==

singleton x = insert x emptyC

fold (:) [0 ¢
insertList xs emptyC

tolist ¢
fromList xs

filter p ¢ = fold f empty ¢
where
fxrl|px
| otherwise
partition p ¢ = (filter p ¢, filter (not.p) c)

x ‘insert‘ r
T

elem x ¢ = fold (\y r -> if (x==y) then True else r) False ¢

flatMap ¢ f = fold (union.f) empty c

insertWith (A\x y -> y)
unionWith f ¢ (singleton x)
insert (k:>x) c

insert
insertWith f x ¢
insertK k x ¢

1]

unionWith (\x y -> y)
fold (insertWith f) cl1 <2

union
unionWith f c1 c2

delete x ¢ = filter (/= x) ¢
deleteK k ¢ delete (k :> error "Collection.deleteK") ¢

without cl 2 = filter (\x -> not (elem x c2)) ci1
intersect ci c2 filter (\x -> elem x c2) ct

1]

—-- Standard functions defined using class operations

insertList,deletelist :: (XOps a) => [a] -> c a -> ¢ a
insertlList xs ¢ = foldr insert c xs

deletelist xs ¢ = foldr delete ¢ xs

unionlist, intersectLlist :: XOps a) => [c a] -> c a
unionlList cs = foldr union empty cs

intersectlist c¢s foldr!l intersect cs

Figure 5: The collection class continued
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The question is, of course, what meaning we should give to a call such as (fold (=) 0 s)
where s is a set. Since (=) is not commutative such a call is nonsense. There is no way out
of this. All we can do is specify in any particular instance of Collection what property fold
assumes of its arguments. For example, for sets and bags fold’s first argument should be
left-commutative (i.e. f z (f y a) = f y (f = a)), but there may be instances of Collection
for which this property need not hold (ones which guarantee to apply fold to their elements
in sorted order, for example). For arguments that do not satisfy the required properties, fold
delivers a result based on an unspecified ordering of the elements of the collection.

fold is a compositional form of what in STL is called an iterator. It lays out the collection in
some order, ready to be operated on by some consuming function.

This fold is a catamorphism if we regard a collection as built by the constructors (empty,
insert). An equally valid alternative set of constructors is (empty, singleton, union), leading
to a different catamorphism:

fold’ :: (b=->b->b) -> (a=>b) => b -> c a ->b

These two algebras have been explored by Buneman et al. {1995], who use the terminology
sr_add for fold. and sr_comb for fold’. We have chosen to use fold because it is easier to
use than fold’ — only two arguments need be provided.

As we have seen. fold is a bit too powerful because in order to be well defined we have to
assume undecidable properties of its argument. Buneman et al. [1995] also discusses ways to
avoid this by instead using a function they call ext, but which we called f1atMap in Figure 4.
The advantage of ext/flatMap is that it requires no particular properties of its argument; vet
using it one can define a bunch of useful functions.

3.6 Finite maps

Finite maps (in various guises) are ubiquitous in functional programs. In mathematics, a
function (or map) is defined by a set of ordered (argument,result) pairs. The natural thing to
do is therefore to represent a finite map by a set of ordered pairs, thus:

type FM k v = Set (Pr k v)
data Pr k v = k :> v deriving( Show )

instance (Eq k) => Eq (Pr k v) where

instance (XOps k) => XOps (Pr k v) where
(k1:>v1) ‘xEq‘ (k2:>v2) = k1 ‘xEq‘ k2
xCmp = case xCmp of
Just cmp -> Just (\(k1:>v1) (k2:>v2) -> k1 ‘cmp‘ k2)
Nothing -> Nothing
...similarly the other operations...




Here, (k :> v) is a key-value pair, read “k maps to v’. Comparison of a key-value pair is done
solely on the basis of the key. It is crucial that we use a new data type for key-value pairs,
rather than using the built-in pair constructor, because the latter has equality and ordering
instances that look at both components of the pair, not just the first.

A Set of key-value pairs, with comparison done on this basis, is a finite map. All that is needed
to complete the picture is to add some crucial functions to the Collection class:

class Collection ¢ where

...as before...

insertWith :: (XOps a) => (a->a-»a) -=>a ->ca ->c a
unionWith :: (XOps a) => (a->a->a) > ca->ca->c a
lockup :: (XOps k) => k -> ¢ (Pr k v) -> Maybe v

The “With” variants have a function that combines values that compare as equal when doing
insertion or union. This is very important when those values are equal because they have equal
keys, but we might wish (for example) to add the second component of the pairs.

A disadvantage of this approach is that every instance of Collection must, in principle, provide
an implementation of lookup. While doing so is always possible — indeed one could write a
default declaration for lookup using fold — it is not desirable because for many instances of
Collection a lookup might be wildly inefficient and inappropriate.

3.7 The complete class

Figures 4 and 3 give the complete definition of the collections module. There are several points
to note:

e The type of elem is a bit more specific than the default method requires. Again, this
is to allow an implementor to make a more efficient elem that exploits the ordering on
elements.

o If the representation of a non-empty collection always included the necessary comparison
operations (see item (1) in Section 3.4), it would be possible to give many operations
a rather simpler type, by omitting the (XOps a) context. Doing so would place more
constraints on the implementor, so we have refrained from doing so.

e tolList is a pretty dodgy looking operation because (:) is not left-commutative. Never-
theless, lists are so ubiquitous (albeit perhaps less so once these libraries are in place!)
that it may be more convenient to use toList followed by a list operation rather than a
single more respectable fold. The final result may (indeed should) still be independent
of the order in which the fold chose to lay out the collection.

4 Second design: multi-parameter constructor classes

Our first design was written in standard Haskell, but it has three fundamental deficiencies:

18



e It defers to run time some checks that one might intuitively expect to be statically checked.

e It separates sequences and collections entirely, whereas one might have expected that they
would share common operations.

e It does not separate (say) lists, from FIFOs, from deques. These are all in class Sequence
and provide the same operations, but one might prefer the type system to express the
idea that FIFOs have more operations than lists, and deques than FIFOs.

Our second design, which we give in much less detail than the first, overcomes both these
objections, but at the expense of stepping outside standard Haskell by using multi-parameter
constructor classes. In the view of the author, the clean way that multi-parameter constructor
classes turn out to accommodate bulk types is a very persuasive reason for extending Haskell
to embrace them, just as monads provide the key motivation for adding constructor classes.

4.1 The key idea

The key idea is very simple. Suppose we (re-)define the class of collections like this:

class Collection ¢ a where

size i ¢ a ~-> Int

empty :: c a

cons tta=>ca->ca

union :: ca->ca->ca

fold :: (a=>b=->b) => b -> ca ->b
filter :: (a=>Bool) => c a -> c a
partition :: (a=>Bool) -> c a => (c a, ¢ a)

Notice that Collection has two parameters: ¢, the type constructor of he collection, and a. the
element type. Notice too that insert has no XOps constraint. The type of cons, for example,
is now:

cons :: Collection c a =>a ~>ca->ca
The interesting part comes when we define instances of Collection:

instance Collection [] a where

empty = (]
insert = (:)
..and so on...

instance Ord a => Collection OrdSeq a where
empty = emptylree
insert = insertTree
..and so on...

The exciting thing is that now we can provide instance-specific constraints on the element type.
In the first instance declaration, for lists, no constraints are placed on a, so insert can be used
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on lists without placing any constraints on the element type. In contrast, the second instance
declaration specifies that the element type a must be in class Ord, just what is needed to allow
the use of insertTree (here assumed to have type Ord a => a -> Tree a -> Tree a) to
define insert.

This simple extension solves at a stroke both of the deficiencies of our first design:

e Things that “should” be checked statically are checked statically. In particular, an at-
tempt to use an OrdSet with an element type that has no ordering will provoke an error
at compile time rather than at run time.

e The same class embraces both collections with constraints on the elements, and collections
with none (termed sequences of the first design). There is no need for both a filter on
sequences and a separate filter on collections; plain filter will work on both.

[t remains possible to have adaptive representations for collections, using the same XOps class
as before, thus:

instance XOps a => Collection Set a where
...as before...

This instance declaration makes clear that the type Set of adaptive sets requires its element
type to be in class XOps. The implementation can now be given exactly as before.

Notice that MonadZero and Functor are not superclasses of Collection, as they were of
Sequence, because not all instances of Collection could be instances of Monad since the latter
requires operations polymorphic in the elements. We can still make particular bulk types (the
polymorphic ones) instances of Monad. of course, by giving a suitable instance declaration, so we
are not giving up the possibility of using monad comprehensions to create and filter collections.

4.2 Using the class hierarchy

[t seems obvious that sequences should have all the operations that unordered collections have,
and some more besides. Now that the operations in Collection apply to sequences as well
as unordered collections, we can use the class hierarchy to express precisely the inheritance we
want:

class (Collection s a) => Sequence s a where

snoc i s a->a->s a

first :: s a -> SeqView s a

last :: s a -> SeqView s a

foldl :: (b=>»a~>b) -> b -> s a ->b
reverse :: s a => 3 a

There are now quite a few design decisions to make. For example:

e Does one want one class that supports front but not back. another that supports back
but not front, and a third that combines these capabilities? Or is it best to have one
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class (such as the Sequence just defined above) that has both. After all, one can get the
last element of a list — it’s just rather inefficient to do so.

e Should cons (implying “add an element to the front” for sequences, and just “add an
element” for unordered collections) be in Collection, and snoc (“add an element to
the back”) in Sequence, or should both be in Sequence, with some other subclass of
Collection having a neutral insert for unordered collections?

e Similar questions arise for fold and its directional cousins foldr and foldl.

e Should every collection support union when for some it may be a constant time operation
while for others it is an O(N) operation?

The answers to these questions are not obvious, but the the collection classes of Smalltalk and
C++ provide a good deal of guidance. For example, Smalltalk’s collection-class hierarchy looks
like this:

Collection
Bag
Set
Dictionary
Sequencable collection
Interval
LinkedList
OrderedCollection
SortedCollection
ArrayedCollection
Array

4.3 Finite maps

Finite maps can be still handled exactly as described in Section 3.6, but multi-parameter type
classes opens up another intriguing possibility:

class Collection (c k) a => FM ¢ k a where
extend :: k > a ->cka->cka
lookup :: cka->c¢c->k->a

This declares the three-parameter type class FM, parameterised over c, the type constructor of
the map, k, the key type, and a, the value type. It requires that the partial application of ¢ to
k is a collection type constructor. Now all the collection operations work on finite maps, but
the latter add two new operations, extend and (!!) (i.e. lookup).

One advantage of this approach is that it makes it possible to include Haskell's standard arrays
in FM — which is nice, because arrays are plainly finite maps:

instance Ix k => FM Array k a where
lookup = (!!)
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Of course, Haskell arrays don’t support extend or any of the operations in Collection, so one
might change the hierarchy to look like this:

class Indexable ¢ k a whers
lookup :: cka->c->k ->a

class (Collection (c k) a, Indexable c k a) => FM ¢ k a where
extend :: k =>a->cka->cka

Again, there are many possible design choices.

4.4 Summary

Multi-parameter constructor classes seem to be just what is needed to make a clean job of
bulk types. What we have done here is only to sketch the basic idea. A considerable amount
of design work remains to flesh it out into a concrete design. even assuming the existence of
multi-parameter constructor classes.

5 Related work

There is a large literature on collection types, also known as bulk types. Tannen [1994] gives a
useful bibliography, from a database perspective. Buneman et al. {1995] explores the algebra
and expressiveness of algebras based on (empty, insert) and (empty, singleton. union).

C++ has a well-developed library called the Standard Template Library (STL) which is specif-
ically aimed at collection types (Stepanov & Lee [1994]). There are major differences from the
work described here. Rather than a collection being a value which can be combined with other
similar values, it is regarded as a container into which new values can be placed. There is no
equivalent of fold; instead iterators are provided, which specify a location within a container.
It does handle polymorphism, however, using C++ templates; when a collection is declared one
specifies both the element type and the comparison operation to use.

Parametric type classes (Chen, Hudak & Odersky [1992]) have similar power to multi-parameter
constructor classes. Indeed Chen’s thesis uses bulk types as the main motivating example for
parametric type classes (Chen [1994]).

6 Summary

Designing suitable signatures for bulk types is surprisingly tricky. The number of different kinds
of collection, and the number of possible implementations of each kind of collection, makes it
rather unattractive to use distinct names for the operations of each. Furthermore, if we do so
we cannot write polymorpic algorithms; that is, algorithms that work regardless of which kind
of collection is involved.
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The first design proposed here exploits type classes to obtain a substantial amount of polymor-
phism. Algorithms can be polymorphic over the elements of the collection, the implementation
of the collection, and the nature of the collection.

Apart from the use of type classes, the two key design decisions are these:

o At first sight it seems attractive to unify all bulk types into a single class. We propose
instead to use two classes, one for sequences and one for collections. Sequences are
parametric in their element type, and are sensitive to insertion order, while the reverse
holds for collections.

e We solve the typing problems of collections with the XOps class, thereby requiring a small
amount of run-time type-checking (at least when the types are not statically known).
Whilst it is not perfect, this can be turned to our advantage by allowing the programmer
to design data types that choose their representation based on the operations available
for the element type.

The second design uses multi-parameter type classes to unify sequences and unordered collec-
tions into a single class hierarchy. It seems to be a noticeably cleaner solution. but requires a
signficant extension to Haskell.

An attractive property of both designs is the possibility of writing adaptable implementations.
that automatically choose their representation based on the operations available on the under-
lying data type.
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Abstract

We formalize the meaning of lazy memo-functions in Haskell
with an extension to the lazy A-calculus. Haskell's computa-
tional model. The semantics enable reasoning about memo-
ization's effect on space and time complexity. Based on the
semantics, we present a prototype implementation that re-
quires no changes to the garbage-collector: memo-tables are
simply reclaimed when no references to them remain.

1 Introduction

A memo-function remembers the arguments to which it has
been applied. together with the result. If applied to a re-
peated argument. memo-functions return the cached an-
swer rather than recomputing it from scratch. Memoization
improves the time complexity of algorithms with repeated
computations — but can consume vast amounts of mem-
ory. Some implementations of memoization use heuristic
cache replacement policies (such as LRU or FIFO) to manage
memory. Although implementations try to minimize space
consumption. in their essence, memo-functions trade better
runtime performance for worse space behavior.

Programmers are accustomed to these sorts of trade-offs:
“Should I cache this value or is it too big to keep around?”
Many programmers develop principles on which to base such
decisions. But when memo-functions use heuristic purging,
the old reasoning principles may no longer apply. Values
might be removed from the memo-table if they have a cer-
tain type, or size, or are not used frequently enough. To
make matters worse, the cache replacement policies make
assumptions about evaluation strategy. However, there is
one form of purging known to work well in Haskell: garbage-
collection.

Can memoization be integrated into Haskell such that
memo-tables are managed like other values in the heap? We
show that it can. What’s more, we give a formal semantics
for memoization that is compatible with Haskell’s underly-
ing computational model, and where the garbage-collection
rule can reclaim obsolete memo-functions and the space their
tables consumed.

The key idea in this paper is to adapt Hughes’ research
on lazy memoization[7] and provide a polymorphic function:

memo :: Eval a => (a -> b) -> (a => b)

*The authors are supported by a contract with Air Force Material
Command (F19628-93-C-0069).

raduate Institute

When applied to a function memo returns an equivalent mem-
oized function. When all references to this new function
have been dropped, the garbage-collector is able to reclaim
the function and its table. It is in this sense that memo
functions are disposable.

To provide a concrete example of using memo. consider
applying the factorial function to each element in a list.

map fact [17,8,17,17,17,8]

Clearly, recomputing (fact 17) four times is inefficient.
This can be remedied by mapping a memoized version of
fact down the list:

map (memo fact) (17,8,17,17,17,8]

Once the expression has been reduced. no references to the
memoized fact will remain. The garbage collector can then
reclaim it and its memo-table. Of course. in this trivial
example we could have explicitly cached the repeated com-
putations with a let but. as we will demonstrate later. this
technique doesn’t scale to larger programs.

We have developed a prototype implementation of the
semantics. appropriately named Huggies, by extending the
Hugs Haskell interpreter. Huggies demonstrates that, in the-
ory, there need be no direct connection between the garbage-
collector and memo. and our implementation required no
changes to the Hugs garbage-collector (we discuss compact-
ing collectors later). Using heap profiles, we will show that
Huggies can garbage-collect disposable memo-functions.

2 Applications of Memoization

In this section we demonstrate the utility of memo-functions
by addressing two problems in areas of recent research.
Both examples involve specification languages embedded in
Haskell. Although specifications are concisely expressed in
pure functional languages. the resulting programs often con-
tain computational redundancies. The programs typically
must be modified to enhance their computational content.
However, the very changes that improve efficiency also ob-
scure structure and degrade maintainability.

2.1 Parsers

If interpreted directly with recursive descent. presentations
of grammars often contain repeated computations. Typi-
cally an efficient parser is based on a transformed grammar.
In some cases, rather than redesigning the grammar, a
memoized parser can be about as fast. As a simple example,
consider the grammar for arithmetic expressions:




term = factor +factor
|  factor -factor
|  factor

factor := expr =* expr
|  expr / expr
| expr

expr = number
| (term)

Using Hutton and Meijer’'s parser combinators(8] the
corresponding naive parser is:

naiveTerm = binary factor '’ factor
+++ binary factor ’/’ factor
+++ factor

where

factor = Dbinary expr ’+’ expr
+++ binary expr ’-’ expr
+++ term

expr = num +++ bracketed naiveTerm

Unfortunately, naiveTerm is slow.. When parsing the
expression "(({1-2)-2)-3)", naiveTerm first traverses
"((1-2)-2)" before discovering that the next character is
not a "*’. It throws away the parse and begins anew only to
repeat the process several more times. Of course, the parser
and grammar could be restructured to explicitly cache in-
termediate values, but a simpler transformation would be to
memoize factor and expr:

term () = trm
where
trm = binary factor ’'x’ factor
+++ binary factor '/’ factor
+++ factor
factor = memoParser (
binary expr '+’ expr
+++ binary expr ’-’ expr
+++ term )
expr = memoParser (num +++ bracketed trm)

memoParser (Parser f) = Parser (memo f)

The memoized parser, while perhaps a bit slower than the
restructured parser, has reasonable time complexity. More
importantly, the program remains maintainable because the
transformation has preserved the original structure.

Notice that term is not itself a memo-function. When
applied to (), it returns a parser which builds local
memo-functions. While parsing, the local memo-tables are
bounded by the size of the input string. Once the string is
parsed, (term ()) becomes garbage, along with any memo-
functions.

It is tempting to define the parser at the top-level:

term’ = term ()

However, term’ will build its local memo-functions only
once. In Huggies, term’ will persist throughout the lifetime
of the program. The more term’ is used, the more heap it
will consume.

2.2 Animation Combinators

Reactive Behavior Modeling in Haskell[3] (RBMH) is a lan-
guage in development at Microsoft for describing multi-
media interactive animation. RBMH is a suite of combi-
nators and simple behaviors from which programmers can
build complex behaviors. The abstraction of combinators
and behaviors can lead to programs with repeated compu-
tations — especially since behaviors are functions on time:

Lo

data Behavior a = B(Time -> (a, Behavior a))

In RBMH, references to behaviors are easily duplicated, re-
sulting in redundant sampling. For example, (+) is over-
loaded on behaviors such that, when b and ¢ are behaviors,
the expression (b + ¢) reduces to:

B(\t -> let (x,b’) = at t b
(y,c’) =at t c
in (x + y, b? + ¢’))

where at returns the value of b at time t. However, b + b
does not reduce to:

B(\t -> let (x,b’) = at t b
in (x + x, b’ + b’))

as you might hope. Instead, (at t b) is computed twice:

B(\t -> let (x,b’) at t b
(y,c’) =at t b
in (x +y, b’ + ¢”))

The overloaded (+) could remove this redundancy by mem-
oizing (at t):

B(\t ~> let at’ = memo (at t)
(x,b’) = at’ b
(y,c’) = at’ ¢

in (x + y, b’ + ¢"))

Is at’ disposable? Yes: once x. y, b’. and ¢’ are computed
no references to at’ will remain.

3 Semantics

In this section. we provide an operational semantics for mem-
oization in Haskell by extending the lazy A-calculus. The
power of the operational semantics is that it gives neither a
trivial denotational meaning, nor a meaning based on stack
pointers. program counters, and jumps. The semantics cap-
tures the essence of memoization at the right level of abstrac-
tion: it is detailed enough to be useful. and simple enough
that it does not obscure meaning.

3.1 Lazy Semantics

The syntax of the source language is defined as:

e € Erpns u=zlvlclea |
let {zi=ei1;...}ine
a € Atoms =zl n
v € Values =n|Az.e
¢ € Constants := + | — |
n,m,p € Numbers =
A € Heaps
fig.z,y,2,t € Variables
p € Enuvs n={...(z,y)...}]| @

3.2 Memo Semantics

Terms in the semantics are formed of pairs (e | "), where ¢
is an expression and [ is a heap. The semantic rules of the
lazy A-calculus are given in Figures 1 and 2 as a relation =
and — between terms. The semantics contain the following
meta-operations:

ely/x]

U : a-renaming with fresh variables

: substitution of y for occurrences of r in e.



(memo f|T') —>(Az. accesstz|T, t—(f,2)) (memo)
(e‘F>—+(eI|A> (acceSSE)
{accesstx |, z+—re) — (accesstzr|Q, rere )
if e is not a value
(accesstr |, z—+n)—> (accesstn |, z-n) (access™)
(accesstn|T, t—=(f,p)) — (pn)|T, t=>(fp)) (accessS™)
if n&€domp
(accesstn|L, t=(f,p)) — (2T, t=(fipu{(nz)}), 2= fn) (access®™)
if n ¢ dom p
(accesstz [T, x> dwe, t = (fip)) — (p(z) [T, £ dwe, t=(fp)) (access€?)
if £ €dom p
(accesstr |, £ dwe, tw(f,p)) — (2| s dwe t= (fipu{(r.2)}), 2 f 1) {access®*)
if £ € dom p
Figure 3: Semantics of Memo
((Are)y|T) — {ely/e] | T) (app?) (el r=e) = {e]|D) (gc)
if r is not reachable from e
(elD)— (1) .
(eyT) —(eyla) (app") (e|T) — (e |a) 4
Ty = Tay el

(ylT.ymuv) — (6|, y—v) (var’)
where ¢ is v with all bound
variables renamed to fresh
names

(e|T)y—(e'1A)

(yTT, y=e) —(yld, y=e')

(var®)

(let z=eine |[T) — (e |T, z=e) (let)

(n+m|l) —(p|D)

where p=m +n

(plus™)

(ell (e'1a
(n+e|l"g——_—>+(n+e')|.d) (plus’)

(er|T) — (el |A) -
RIS (plus™)

Figure 1: Lazy A-calculus Semantics

The lazy A-calculus models Haskell's evaluation strategy
by sharing computations and halting reduction when outside
Js are encountered. The sharing is achieved through two
constraints on reduction:

Figure 2: Lazy A-calculus with Garbage-collection

o Functions can only be applied to atomic values like inte-
gers and variables. This prevents arbitrary expressions
being substituted into function bodies. For example,
the reduction (Az.z + z)(3+3) — (3+3) + (3+3)is
not allowed because it would duplicate the computation
3+3.

o Before replacing a variable with its heap value, the
value must be in weak head normal form. For example,
the expression 3 + 3 must be reduced in the heap first
before substituting it for r: {z+ x|z~ 3+3) —
(z+z|zm6)—(6+6|r—6)

We maintain the invariant that all binding sites bind dis-
tinct names. Whenever a term is suplicated (in a (var®)
rule) we a-rename with fresh names.

To define memoization we extend the A-calculus with the
constant memo and language construct access:

c € Constants := ... | memo
e € Erxpns = | accesstx

Initial terms should not contain access expressions —
access should only be introduced by reduction.

Figure 3 extends the semantics with rules for memo and
access. The semantics use the additional meta-operations:

x € X : set membership. The sets contain mixtures of
variable names and numbers (i.e. atomic values).




p(x) : the corresponding value for z in the memo-table p

pU{(z,y)} : extension of the memo-table p with the tuple
(z,y); £ may not appear in the domain of p

The basic point is that if a memo-function is applied to an
argument already in the table, then the already-computed
value is returned. If the function is applied to a new value
then it is placed into the table along with a reference to the
answer.

When memo is applied to a variable y (and notice that memo
can only be applied to variables) the computation is replaced
by (Az.access ¢ ), where ¢ is a reference to the tuple (y, @)
in the heap. When an access expression is reduced, the
memo-table is potentially updated.

The behavior of memo-functions depends critically on the
sharing of the lazy A-calculus. Performance is lost if re-
ductions can duplicate expressions containing applications
of memo. For example, the expression (Af.f 3 + f 5)(memo g)
should evaluate to (access t 5 + access ¢t 3) and not
({memo g) £ 5 + (memo g)¢ 3).

We are now able to answer this paper’s thesis. We
have defined memo-tables as local variables inside of memo-
functions.  Therefore, when a memo-function becomes
garbage the corresponding memo-table should be garbage
too. Let Efe] be an expression containing . If { E{let f =
memo g ine'l | [ ) = (e ]| A, f = Ar.access t z. t —
(f.p) ) and (Ar.access t r) is not reachable from e. then
(el A, fr> Araccess ¢z, t— (fip) ) = (el A)
Because memo is the only rule introducing references to ¢.
and the access rules do not duplicate references to ¢, then
all references to t are in the form access ¢t r. Therefore, if
access ¢ r is not reachable from e. then ¢ is not reachable
from e: and both f and ¢ can be removed from the heap by
an application of (gc).

In this paper we do not explore the properties of the ex-
tended semantics. A proof showing that memo f is denota-
tionally equivalent to a strict f would be a very strong result
— and one we would like to pursue.

[t might also be fruitful to abstract the semantics of memo
over the computational model. By specifving the require-
ments of the underlying model, rather than relying on the
particular properties of the lazy A-calculus. the meaning of
memoization could be applicable in many settings. For ex-
ample, can the semantics be adapted to SML, or a strictness
neutral language like Henk?

3.3 Example Reduction

Figure 4 provides a top-level reduction sequence for the term
(let g =memo f ing 5 + g 5 | ') The arrows are an-
notated with the rules of the sub-reduction used to establish
each reduction. The (gc) step is important. After the ex-
pression has been reduced to ( 16 + z | ...) any extra heap
space is thrown away. We assume f 5 = 16 for concreteness.

4 Implementation

Huggies provides a proof-of-concept. and is far from optimal.
Huggies clearly implements our semantics. and is a starting
point from which future refinements can be based.

The function memo is written in Haskell as the composition
of several non-standard primitives. The primitives represent
the pieces of the semantics that are impure.

4.1 Memoizing in Standard Haskell

Before extending the language with memo. it is useful to see
how we might memoize functions in standard Haskell. Us-
ing the example in Section 1 we can build a new function,

fastMap, that uses a memo-function while traversing the list
and assumes that the list contains integers between 0 and 96:

fastMap :: (Int -> b) -> [Int] -> [b]
fastMap £ list = runST (
do g <- memoST f
mapM g list

memoST :: (a -> b) -> ST s (a -> ST s b)
memoST £ =
do t <- newArray (0,97) Nothing
return (\x -> accessST t x)
where
accessST t x =
do let w = x ‘mod‘ 97
a <~ readArray t w
case a of
Nothing -> do let z = £ x
writeArray t w (Just z)
return z
Just y -> return y

The example can now be re-written as:
fastMap fact [17,8,17,17,17,3]

In this expression, (fact 17) is calculated only once.
What's more. the expression is purely functional.

4.2 Non-standard Primitives
4.2.1 Memo-tables

Fast memoization depends critically on an efficient imple-
mentation of environment lookup (€ in the semantics). How-
ever, Haskell’s purity stands in the way of fast polymorphic
environments written within the language. Therefore, we
have added the environment type Env to Huggies:

newEnv (a => a => ST s Bool)

-> ST Mem (Env s a b)
readEnv :: Envs ab ->a-> ST Mem (Maybe b)
writeEnv :Envsab->a->b->S8T Mem O

accessEnv :: Env s ab ~>a ->b -> ST Mem b

The underlying implementation is a hash-table where we
hash on based the value of integers, booleans, characters
and floating point numbers, and the location of other values.
Because environments depend on the state of global memory,
ST’s first parameter is instantiated to the constant Mem.

The function newEnv, when passed a stateful equality func-
tion, returns a new environment. Subsequent reads and
writes to the environment use the parameterized equality
function to determine where in the environment the read or
write should be performed.

The function accessEnv is an efficlent composition of
readEnv and writeEnv: but it can be thought of as:

accessEnv e x y =
do r <- readEnv e x
case r of
Nothing -> do writeEnv e x y
return y
Just y’ => return y’

Notice that our implementation of Env and the garbage-
collector are tightly coupled — environments would have to
be rebuilt after each garbage-collection if Hugs compacted
memory. But the interaction between Env and the garbage-
collector is not visable from the defintion of memo.




{let g=memo fingS5S+g5|[)

let

= (g5+¢g35]|T, g memo f)

plust app®,var® ,memo

(g5+9g3|T, g Az.accesstz, t— (f,2))

t e v
plus' .app®,var
——4

{ (A\z.access t 5)5+g 5|, g Az.accesstz, t— (f,2))
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plus! access&n
——4

(z +95|T, g Az.accesstr, t = (f,{(5.2)}), 2= f

wn
~

plua‘ var?

(16 +95| T, g+ Azr.accesstr, t+= (f,{(5.2)}), =— 16)

!

lus” ,app®,var?

P

{16 + (Ar.accesstz)5|T, g Av.accesstr, L= (f.{(3.2)}), == 16)

r 3
plag orp {16 + accesst 3 |T, g Az.accesst r. t— (f. {(5.2)}), = 16)

plus” access€™

plug (18 + |, gwAz.accesst r. t (f{(5.2)}), 16
g8, (16 + | =2 16)

plug” var” (16 + 16|, z—16)

plus™ : ‘

plus {(32|T. 2 18)

Figure 4: Example Reduction

4.2.2 Equality This new primitive has to be used with extreme caution.

Whereas runST will only encapsulate referentially transpar-

ent functions. unsafeST makes no such distinction. This al-

lows the state of a memo-function to flow implicitly through-

out a program’s execution. In the case of memo this effect is

eql :: (Eval a,Eval b) => a => b => ST Mem Bool not observable, but a misuse of unsafeST could easily sub-
vert Haskell’s purity.

As described in Section 1, lazy memo-functions use a dif-
ferent notion of equality depending on the type of the argu-
ments. The primitive function eql implements this behavior:

Notice that eql accepts arguments of different types. We

are in a precarious position with the type system. By us- 4.3 Defining memo
ing eql rather than (==) we have avoided a subtle error that )
could cause programs to crash. To see why this is true, imag- The functions memo and access are thus defined:
ine memoizing the identity function with traditional memo- memo :: Eval a => (a -> b) -> {(a -> b)
ization:
memo f = \x -> access t x
memoEq :: Eq a => (a -> b) -> (a -> b) where
t = (f,emptyEnv)
let f = memoEq id emptyEnv = unsafeST (newEnv eql)
in (£ 5, £ "hello™)
access :: Eval a => (a -> b, Env Mem a b)
If (£ 5) is reduced first then the subsequent reduction of (£ -> (a -> b)
"hello") might cause access to compare 3 and "hello'. access (f,t) x = unsafeST (accessEnv t x (£ x))
Fortunately, eql simply returns False, but (==) is not so
forgiving. 4.4 Recursion
4.2.3 Unsafe State Monad Escape Operator ;\iIemoizing syntactically recursive functions with memo is
clumsy:
The final primitive added to Huggies has the same behavior . .
as runST without the restrictive type: fib = memo mfib
where
unsafeST :: ST s a => a mfib 0 = 1




mfib 1 = 1
mfib n = £fib (n-1) + £ib (n-2)

That £ib has the correct behavior may be seen by an ap-
plication of the semantic rules, but it is far from intuitive.
However, functions that are defined as the fixed point of
functionals can be memoized with memoFix:

memoFix f = let g = f h
h = memo g
inh

Recursive functions, such as Fibonacci, can be written and
then memoized as such:

fibm 0 = 1

fibm 1 =1

fibmn=mr (n-1) + n (n-2)
memofib = memoFix fib

4.5 Dangers of unsafeST

Although unsafeST makes the definition of memo possible, we
are wary of its robustness and portability. Programs written
with unsafeST can exhibit surprising behaviors. The state
monad and runST were carefully designed to avoid functions
like unsafeST — and for good reason. Hidden updatable
state endangers referential transparency. As an example.
we ask the question: does bad () equal bad ()7 Not when
defined as follows:

bad :: () -> Bool
bad = unsafeST (
do v <=~ newVar True
return (\x -> unsafeST (toggle v x))
)

toggle v () =
do x <- readVar v
case x of

True -> do () <~ writeVar v False
return False

False -> do () <- writeVar v True
return True

After each application the value of bad () toggles between
True and False. Much like bad, memoized functions contain
a mutable variable that is updated during applications; how-
ever, because memo was carefully written, memoized func-
tions should preserve equational reasoning. The values that
result in expressions containing unsafeST, therefore, come
with proof obligations to guarantee their safe behavior.

Notice that there is subtle interaction between unsafeST
and lazy state in the definition of toggle. If toggle were
re-written as

toggle v () =
do x <- readVar v
case x of

True -> do writeVar v False
return False

False -> do writeVar v True
return True

then the mutable variable is no longer updated. In this case
the return value of toggle does not depend on the applica-
tion of writeVar and it is simply never performed.

5 Profiling Huggies

We have preliminary evidence that the Huggies garbage-
collector reclaims the memo-tables of disposable memo-
functions. Figure 3 contains heap profiles annotated with the
expressions that were executed while generating them. The
expressions on the left use disposable memo functions. The
expressions on the right use non-disposable memo-functions.
Notice that heap consumption returns to zero in the profiles
on the left — indicating that the garbage-collector success-
fully reclaimed the space.

6 Related Work

6.1 Lazy Memo-functions

Rather than defining memoization, Hughes[7] focused on the
applications of lazy memo-functions and the implementation
issues of obsolescence-based purging optimizations

Hughes proposed that memo-functions be defined with
a language construct rather than a higher-order - function.
In his syntax, the keyword memo was placed in front of the
memo-function’s definition.

memo fib 0 = 1
memo fib 1 =1
memo fib n = fib (n-1) + fib (n-2)

It is easier to define recursive memo-functions in this nota-
tion. but clumsy to use when developing a semantics.

The semantics presented in this paper are compatible with
Hughes's original work. [n fact. we have clarified issues orig-
inally raised in Hughes's paper. For example. Hughes states
the following definition of map creates a local memo-function
that can be garbage-collected after map has been applied:

map £ 1 =m 1
where memo m []
memo m (x:xs)

a

f x: m xs

nou

However. the paper does not develop principles for reason-
ing about when a memo-function can be garbage-collected.
With our semantics (extended with lists), it could be veri-
fied that m is disposable once translated into the appropriate
form:

map f 1 = memoFix m 1
where m g (] =
mg (x:xs) = f x: g xs

6.2 Memoization in LISP and SML

Our research mirrors similar work in LISP([53] and SML[2].
All of the implementations use higher-order functions named
memo that return memo-functions.

How is our research different? The challenge that we have
faced is referential transparency. Both the LISP and SML
implementations were simply defined in the source language;
which is easy to do because they are imperative languages
(with a functional subset). In Haskell. memo must be de-
fined outside of the language with a semantics that is formal
enough to show that referential transparency holds.

6.3 Memo Gofer

van Dalen{15] extended the Gofer interpreter with a very dif-
ferent notion of lazy memo-functions. As in this paper, mem-
oization is provided with a primitive function memo. How-
ever, rather than creating a new function, memo refers to a
global memo-table.

In van Dalen’s Gofer, a memoized Fibonacci is defined as:



0.0 20000 4000.0 6000 0 reductons

map (memo f) [1 .. 100]

where £ x = x+1 and £’

2000 0 4000 0 5000 0 rAqUCHons

papply (expr ())
POCCCCCEUCL=D =) =)= 1) =2)=2) =2)-1) =3} -4) "

map £’ [1 .. 100]

memo f at the top-level
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papply (expr’)
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Figure 5: Heap Profiles of Disposable and Non-disposable Memo-functions

memofib = memo mfib

where
mfib 0 = 1
mfib 1 = 1

nfib n = memo mfib (n-1) + memo mfib (n-2)

Notice that. with the semantics in this paper. memofib would
generate a separate memoized nf ib for each recursive appli-
cation.

7 Conclusions

Based on Hughes's lazy memo-functions we have given mem-
oization a formal meaning. The semantics describe memo-
ization at precisely the right level of abstraction. With the
semantics. it is possible to reason about the space and per-
formance of memo-functions. Perhaps future research can
leverage the semantics and develop better strategies for de-
termining when to memoize.

Huggies is useful because it provides a working prototype
and clarifies implementation issues such as overloading, re-
cursion, and polymorphism. The implementation techniques
used in Huggies. or even the source code. provide a basis for
future refinement.

~
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1 Motivation

A foreign-language interface provides a way for soft-
ware components written in a one language to interact
with components written in another. Programming
languages that lack foreign-language interfaces die a
lingering death.

This document describes Green Card. a foreign-
language interface for the non-strict. purely func-
tional language Haskell. We assume some knowledge
of Haskell and C.

1.1 Goals and non-goals

Our goals are limited. We do not set out to solve the
foreign-language interface in general: rather we intend
to profit from others’ work in this area. Specifically,
we aim to provide the following, in priority order:

1. A convenient way to call C procedures from
Haskell.

2. A convenient way to write COM! software com-
ponents in Haskell, and to call COM compo-
nents from Haskell.

The ability to call C from Haskell is an essential foun-
dation. Through it we can access operating system
services and mountains of other software libraries.

In the other direction, should we be able to write a
Haskell library that a C program can use? In principle
this makes sense but in practice there is zero demand
for it. The exception is that the ability to support
some sort of call-backs is essential, but that is a very
limited form of C calling Haskell.

! Microsoft's Common Object Model (COM) is a language-
independent software component architecture. It allows ob-
jects written in one language to create objects written in an-
other, and to call their methods. The two objects may be
in the same address space, in different address spaces on the
same machine, or on separate machines connected by a net-
work. OLE is a set of conventions for building components on
top of COM.

Should we support languages other than C? The trite
answer is that pretty much everything available as a
library is available as a C library. For other languages
the right thing to do is to interface to a language-
independent software component architecture, rather
than to a raft of specific languages. For the moment
we choose COM, but CORBA? might be another sen-
sible choice.

While we do not propose to call Haskell from C, it
does make sense to think of writing COM software
components in Haskell that are used by clients. For
example, one might write an animated component
that sits in a Web page.

This document, however, describes only (1), the C
interface mechanism.

2 Foreign language interfaces are
harder than they look

Even after the scope is restricted to designing a
foreign-language interface from Haskell to C, the task
remains surprisingly tricky. At first, one might think
that one could take the C header file describing a
C procedure, and generate suitable interface code to
make the procedure callable from Haskell.

Alas, there are numerous tiresome details that are
simply not expressed by the C procedure prototype
in the header file. For example. consider calling a C
procedure that opens a file, passing a character string
as argument. The C prototype might look like this:

int open( char *filename )

Our goal is to generate code that implements a
Haskell procedure with type

open :: String -> IO FileDescriptor

o First there is the question of data representa-
tion. One has to decide either to alter the
Haskell language implementation. so that is

*CORBA is a vendor-independent competitor of COM.



string representation is identical to that of C,
or to translate the string from one representa-
tion to another at run time. This translation is
conventionally called marshalling.

Since Haskell is lazy, the second approach is
required. (In general, it is tremendously con-
straining to try to keep common representations
between two languages. For example, precisely
how does C lay out its structures?)

Next come questions of allocation and lifetime.
Where should we put the translated string? In
a static piece of storage? (But how large a block
should we allocate? Is it safe to re-use the same
block on the next call?) Or in Haskell’s heap?
(But what if the called procedure does some-
thing that triggers garbage collection, and the
transformed string is moved? Can the called
procedure hold on to the string after it returns?)
Or in C's malloc’d heap? (But how will it get
deallocated? And malloc is expensive.)

C procedures often accept pointer parameters
(such as strings) that can be NULL. How is that
to be reflected on the host-language side of the
interface? For example. if the documentation
for open told us that it would do something sen-
sible when called with a NULL string, we might
like the Haskell type for open to be

open :: Maybe String -> I0 FileDescriptor

so that we can model NULL by Nothing.

The desired return type. FileDescriptor, will
presumably have a Haskell definition such as
this:

newtype FileDescriptor = FD Int

The file descriptor returned by open is just
an integer, but Haskell programmers often use
newtype declarations create new distinct types
isomorphic to existing ones. Now the type sys-
tem will prevent, say, an attempt to add one to
a FileDescriptor.

Needless to say, the Haskell result type is not
going to be described in the C header file.

The file-open procedure might fail: sometimes
details of the failure are stored in some global
variable, errno. Somehow this failure and the
details of what went wrong must be reflected
into Haskell’s I0 monad.

The open procedure causes a side effect, so it
is appropriate for its type to be in Haskell’s
10 monad. Some C functions really are func-
tions (that is, they have no side effects), and in
this case it makes sense to give them a “pure”
Haskell type. For example, the C function sin
should appear to the Haskell programmer as a
function with type

w

3in :: Float -> Float

e C procedure specifications are not explicit about
which parameters are in parameters, which out
and which in out.

None of these details are mentioned in the C header
file. Instead, many of them are in the manual page
for the procedure, while others (such as parameter
lifetimes) may not even be written down at all.

3 Overview of Green Card

The previous section bodes ill for an automatic system
that attempts to take C header files and automatically
generate the “right” Haskell functions; C header files
simply do not contain enough information.

The rest of this paper describes how we approach the
problem. The general idea is to start from the Haske!l
type definition for the foreign function. rather than
the C prototype. The Haskell type contains quite a
bit more information; indeed. it is often enough to
generate correct interface code. Sometimes. however.
it is not, in which case we provide a way for the pro-
grammer to express more details of the interface. All
of this is embodied in a program called *“Green Card”.

Green Card is a Haskell pre-processor. It takes a
Haskell module as input, and scans it for Green-Card
directives (which are lines prefixed by “%”). It pro-
duces a new Haskell module as output, and sometimes
a C module as well (Figure 1).

Green Card's output depends on the particular
Haskell implementation that is going to compile it.
For the Glasgow Haskell Compiler (GHC), Green
Card generates Haskell code that uses GHC's primi-
tive ccall/casm construct to call C. All of the argu-
ment marshalling is done in Haskell. For Hugs. Green
Card generates a C module to do most of the argu-
ment marshalling, while the generated Haskell code
uses Hugs's prim construct to access the generated C

. stubs.

For example, consider the following Haskell module:

module M where

%fun sin :: Float -> Float
sin2 :: Float -> Float
sin2 x = sin (sin x)

Everything is standard Haskell except the %fun line,
which asks Green Card to generate an interface to
a {pure) C function sin. After the GHC-targeted
version of Green Card processes the file, it looks like
this®:

3Only GHC aficionados will understand this code. The

whole point of Green Card is that Joe Programmer should
not have to learn how to write this stuff.
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Figure 1: The big picture

module M where

sin :: Float -> Float
sin f = unsafePerformPrimI0 (
case f of { F# f# ->
_casm_ ‘‘%r = sin(%0)’’ f#
‘thenPrimI0° \ r# ->
returnPrimI0 (F# r#)})

sin2 :: Float -> Float
sin2 x = sin (sin x)

The %fun line has been expanded to a blob of grue-
some boilerplate, while the rest of the module comes
through unchanged.

If Hugs were the target, the Haskell source file re-
mains unchanged. but a the Hugs varant of Green
Card would generate output that uses Hugs's prim-
itive mechanisms for calling C. Much of the Green-
Card implementation is, however. shared between
both variants. (We hope. The Hugs variant isn’t even
written.)

4 Green Card directives

Green Card pays attention only to Green-Card direc-
tives, each of which starts with a “%” at the beginning
of a line. All other lines are passed through to the
output Haskell file unchanged.

The syntax of Green Card directives is given in Fig-
ure 2). The syntax for dis is given later (Figure 3).
The form Any, means any symbol except r.

Green Card understands the following directives:

¢ fun begins a procedure specification, which de-
scribes the interface to a single C procedure
(Section 3).

e /dis allows the programmer to describe a new
Data Interface Scheme (DIS). A DIS describes
how to translate, or marshall, data from Haskell
to C and back again (Section 6).

¢ Jiconst makes it easy to generate a collection of
new Haskell constants derived from C constants.

This can be done with %fun. but %const is much
more concise {Section 3.6).

e ’iprefix makes it easy to remove standard pre-
fixes from the Haskell function name. those are
usually not needed since Haskell allows qualified
imports {Section 5.7).

e Procedure specifications can. as we shall see,
contain fragments of C. %#include tells Green
Card to arrange that a specified C header file
will be included with the C code in the proce-
dure specifications when the latter is fed toa C
compiler (Section 8).

A directive can span more than one line, but the con-
tinuation lines must each start with a % followed by
some whitespace. For example:

%“fun draw :: Int -~ Length in pixels
% -> Maybe Int -- Width in pixels
% ->10 O

Haskell-style comments are permitted in Green-Card
directives.

A general principle we have followed is to define a sin-
gle, explicit (and hence long-winded) general mech-
anism, that should deal with just about anything,
and then define convenient abbreviations that save
the programmer from writing out the general mecha-
nism in many common cases. We have erred on the
conservative side in defining such abbreviations; that
is, we have only defined an abbreviation where do-
ing without it seemed unreasonably long-winded, and
where there seemed to be a systematic way of defining
an abbreviation.

5 Procedure specifications

The most common Green-Card directive is a proce-
dure specification. [t describes the interface to a C
procedure. A procedure specification has four parts:

Type signature: %fun (Section 3.1). The %fun
statement starts a new procedure specification,



%const Var [Vary...Var,] Constants n > 1

Program decly, ...decin
Declaration decl — proc
!
|  %dis Var Var;...Var, =dis n>0
| %#include filename
|  %prefix Var
Procedure proc — sig [call] [ccode] [result]
Signature stig — Y%fun Var :: Type
Type type — Var
| Var type
| type -> type
| C(typey,-..typen)
Call call —= ‘Ycall disy...disn
Result result — Y%fail cexp cerp [result]
| Y%result dis
C Ezpression cezp — | Anyy }
| ccode
C Code ccode — Ycode Var
Filename filename — <Var>
I " ‘/’aru

n>1

Scope over cezp
Prefiz to strip from Haskell function names

Name and type

Tuplen >0

In IO Monad

Passed to C
Passed to C

Figure 2: Grammar for Green Card

giving the name and Haskell type of the func-
tion.

Parameter marshalling: %call
(Section 5.2). The %call statement tells Green
Card how to translate the Haskell parameters
into their C representations.

The body: Ycode (Section 3.3). The Y%code state-
ment gives the body and it can contain arbi-
trary C code. Sometimes the body consists of
a simple procedure call, but it may also include
variable declarations. multiple calls, loops, and
so on.

Result marshalling: %result, %fail
{Section 5.4). The result-marshalling state-
ments tell Green Card how to translate the re-
sult(s) of the call back into Haskell values.

Any of these parts may be omitted except the type
signature. If any part is missing, Green Card will fill
in a suitable statement based on the type signature
given in the %fun statement. For example, consider
this procedure specification:

%fun sin :: Float -> Float

Green Card fills in the missing statements like this®:

*The details of the filled-in statements will make more
sense after reading the rest of Section 3

%#fun sin :: Float => Float
%call (float x1)

%code result = sin(x1);
%result (float result)

The rules that guide this automatic fill-in are de-
scribed in Section 3.3.

A procedure specification can define a procedure with
no input parameter, or even a constant (a “proce-
dure™ with no input parameters and no side effects).
In the following example, printBangis an example of
the former, while grey is an example of the latter®:

fun printBang :: I0 ()
%code printf( "t" );

%fun grey :: Colour
%code r = GREY;
%result (colour r)

All the C variables bound in the %call statement or
mentioned in the %result statement, are declared by
Green Card and in scope throughout the body. In the
examples above, Green Card would have declared x1,
result and r.

5When there are no parameters. the %call line can be omit-
ted. The second example can also be shortened by writing a
C expression in the fresult statement; see Section 3.4.




5.1 Type signature

The %fun statement starts a new procedure specifica-
tion.

Green Card supports two sorts of C procedures: ones
that may cause side effects (including [/O), and ones
that are guaranteed to be pure functions. The two are
distinguished by their type signatures. Side-effecting
functions have the result type I0 t for some type t.
If the programmer specifies any result type other than
10 t, Green Card takes this as a promise that the C
function is indeed pure, and will generate code that
calls unsafePerformIO.

The procedure specification will expand to the defini-
tion of a Haskell function, whose name is that given
in the %fun statment, with two changes: the longest
matching prefix specified with a Jprefix (Section 5.7
elaborates)statement is removed from the name and
the first letter of the remaining function name is
changed to lower case. Haskell requires all function
names to start with a lower-case letter (upper case
would indicate a data constructor), but when the C
procedure name begins with an upper case letter it
is convenient to still be able to make use of Green
Card’s automatic fill-in facilities. For example:

%“fun OpenWindow :: Int -> I0 Window

would expand to a Haskell function openWindow
that is implemented by calling the C procedure
OpenWindow.

%prefix Win32
%fun Win320penWindow :: Int -> I0 Window

would expand to a Haskell function openWindow
that is implemented by calling the C procedure
Win320penWindow.

5.2 Parameter marshalling

The %call statement tells Green Card how to trans-
late the Haskell parameters into C values. Its syntax
is designed to lock rather like Haskell pattern match-
ing, and consists of a sequence of zero or more Data
Interface Schemes (DISs), one for each (curried) ar-
gument in the type signature. For example:

%fun foo :: Float -> (Int,Int) -> String ->
%#call (float x) (int y, int z) (string s)

This %call statement binds the C variables x., vy,
z, and s. in a similar way that Haskell's pattern-
matching binds variables to (parts of) a function’s
arguments. These bindings are in scope throughout
the body and result-marshalling statements.

In the Y%call statement., “float”, “int”, and
“string” are the names of the DISs that are used
to translate between Haskell and C. The names of
these DISs are deliberately chosen to be the same as
the corresponding Haskell types (apart from chang-

ing the initial letter to lower case) so that in many
cases, including foo above, Green Card can generate
the %call line by itself (Section 3.5). In fact thereis a
fourth DIS hiding in this example, the (_,_) pairing
DIS. DISs are discussed in detail in Section 6.

5.3 The body

The body consists of arbitrary C code, beginning with
%code. The reason for allowing arbitrary C is that
C procedures sometimes have complicated interfaces.
They may return results through parameters passed
by address, deposit error codes in global variables, re-
quire #include'd constants to be passed as parame-
ters, and so on. The body of a Green Card procedure
specification allows the programmer to say exactly
how to call the procedure, in its native language.

The C code starts a block, and may thus start with
declarations that create local variables. For example:

%code int x, y;
% x = foo( &y, GREY );

Here. x and y are declared as local variables. The local
C variables declared at the start of the block scope
over the rest of the body and the result-marshalling
statements.

The C code may also mention constants from C
header files, such as GREY above. (Green Card’s
%#include directive tells it which header files to in-
clude (Section 8).

5.4 Result marshalling

Functions return their results using a %result state-
ment. Side-effecting functions — ones whose result
type is 10 t — can also use %£ail to specify the fail-
ure value.

5.4.1 Pure functions
The Y%result statement takes a single DIS that de-

scribes how to translate one or more C values back
into a single Haskell value. For example:

I0 O ¥Yfun sin :: Float -> Float

%call (float x)
%code ans = sin(x);
%result (float ans)

As in the case of the %call statement, the “float” in
the %result statement is the name of a DIS, chosen as
before to coincide with the name of the type. A single
DIS, “float”, is used to denote both the translation
from Haskell to C and that from C to Haskell, just
as a data constructor can be used both to construct
a value and to take one apart (in pattern matching).

All the C variables bound in the %call statement,
and all those bound in declarations at the start of the



body, scope over all the result-marshalling statements
{i.e. %result and Yfail).

5.4.2 Arbitrary C results

[n a result-marshalling statement an almost arbitrary
C expression, enclosed in braces, can be used in place
of a C variable name. The above example could be
written more briefly like this®:

%fun sin :: Float -> Float
%call (float x)
%result (float {sin(x)})

The C expression can neither have assignments nor
nested braces as that could give rise to syntactic am-
biguity (Section 2 elaborates).

5.4.3 Side effecting functions

A side effecting function returns a result of type I0 t
for some type t. The I0 monad supports exceptions,
so Green Card allows them to be raised.

The result-marshalling statements for a side-effecting
call consists of zero or more %fail statements, each
of which conditionally raise an exception in the I0
monad, followed by a single %result statement that
returns successfully in the I0 monad.

Just as in Section 3.4, the %result statement gives
a single DIS that describes how to construct the re-
sult Haskell value, following successful completion of
a side-effecting operation. For example:

4fun windowSize :: Window -> I0 (Int,Int)
%call (window w)

%code struct WindowInfo wi;

% GetWindowInfo( w, &wi );

“result (int {wi.x}, int {wi.y})

Here, a pairing DIS is used, with two int DISs inside
it. The arguments to the int DISs are C record se-
lections, enclosed in braces; they extract the relevant
information from the WindowInfo structure that was
filled in by the GetWindowInfo call’.

The %fail statement has two fields. each of which
is either a C variable, or a C expression enclosed in
braces. The first field is a boolean-valued expression
that indicates when the call should fail; the second
is a (char =)-valued that indicates what sort of fail-
ure occurred. If the boolean is true (i.e. non zero)
then the call fails with a UserError in the 10 monad
containing the specified string.

For example:

Afun fopen :: String -> I0 FileHandle
%call (string s)

®It can be written more briefly still by using automatic
fill-in (Section 3.5).

"This example also shows one way to interface to C proce-
dures that manipulate structures.

%code £ = fopen( s );
%“fail {f == NULL} {errstring(errno)}
%result (fileHandle f)

The assumption here is that fopen puts its error code
in the global variable errno, and errstring converts
that error number to a string.

UserErrors can be caught with catch, but exactly
which error occurred must be encoded in the string,
and parsed by the error-handling code. This is rather
slow, but errors are meant to be exceptional.

5.5 Automatic fill-in

Any or all of the parameter-marshalling, body, and
result-marshalling statements may be omitted. If
they are omitted, Green Card will “fill in” plausi-
ble statements instead, guided by the function’s type
signature. The rules by which Green Card does this
filling in are as follows:

e A missing %call statement is filled in with a
DIS for each curried argument. Each DIS is
constructed from the corresponding argument
type as follows:

— A tuple argument type generates a tuple
DIS, with the same algorithm applied to
the components.

~ All other types generate a DIS function ap-
plication (Section 6.1). The DIS function
name is derived from the type of the cor-
responding argument. except that the first
letter of the type is changed to lower case.
The DIS function is applied to as many ar-
gument variables as required by the arity
of the DIS function.

— The automatically-generated argument
variables are named left-to-right as argl,
arg2. arg3. and so on.

o If the body is missing, Green Card fills in a body
of the form:

%coder = f(ay,...,an);
where

— f is the function name given in the type
signature.

~ ai...a, are the argument names extracted
from the %call statement.

— ris the variable name for the variable used
in the %result statement. (There should
only be one such variable if the body is
automatically filled in.)

e A missing %result statement is filled in by a
%result with a DIS constructed from the result
type in the same way as for a %call. The result
variables are named res, res2. res3, and so on.

e Green Card never fills in %fail statements.
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5.6 Constants

Some C header files define a large number of constants
of a particular type. The %const statement provides
a convenient abbreviation to allow these constants to
be imported into Haskell. For example:

%const PosixError [EACCES, ENOENT]

This statement is equivalent to the following %fun
statements:

%fun EACCES ::
%fun ENOENT ::

After the automatic fill-in has taken place we would
obtain:

%fun EACCES :: PosixError
%result (posixError { EACCES })

PosixError
PosixError

%fun ENCENT :: PosixError
%result (posixError { ENOENT })

Each constant is made available as a Haskell value
of the specified type. converted into Haskell by the
DIS function for that type. (It is up to the program-
mer to write a %dis definition for the function — see
Section 6.2.)

5.7 Prefixes

In C ic is common practise to give all function names
in a library the same prefix, to mimmize the impact
on the common namespace. In Haskell we use quali-
fied imports to achieve the same result. To simplify
the conversion of C style namespace management to
Haskell the Yprefix statement specifies which pre-
fixes to remove from the Haskell function names.

module OpenGL where

%prefix OpenGL
“prefix gl

%fun OpenGLInit :: Int -> I0 Window
%“fun glSphere :: Coord -> Int -> I0 Object

This would define the two procedures [nit and Sphere
which would be implemented by calling OpenGLInit
and glSphere respectively.

6 Data Interface Schemes

A Data Interface Scheme, or DIS, tells Green Card
how to translate from a Haskell data type to a C data
type, and vice versa.

6.1 Forms of DISs

The syntax of DISs is given in Figure 3. It is designed
to be similar to the syntax of Haskell patterns. A DIS

=~

takes one of the following forms:

1. The application of a DIS function to zero or
more arqguments. Like Haskell functions, a DIS
function starts with a lower-case letter. DIS
function are described in Section 6.2. Standard
DIS functions include int, float, double; the
full set is given in Section 7. For example:

%fun foo :: This ~> Int -> That
%call (this x y) (int z)

Y%code r = c_foo( x, ¥y, 2 );
%result (that r)

In this example this and that are DIS functions
defined elsewhere.

to

. The application of a Haskell data constructor to
zero or more DISs. For example:

newtype Age = Age Int

“fun foo :: (Age,Age) -> Age
%call (Age (int x), Age (int y))
%code r = foo(x,y);

Aresult (Age (int r))

As the %call line of this example illustrates,
tuples are understood as data constructors, in-
cluding their special syntax. Haskell record syn-
tax is also supported. For example:

data Point = Point { px,py::Int }

%fun foo :: Point -> Point
%call (Point { px = int x, py = int y })

The use of records is also the reason for the re-
striction that simple C expressions can’t contain
assignment. Without this restriction examples
like this would be ambiguous:

Yresult Foo { a = bar x, b = bar y }

Green Card does not attempt to perform type
inference; it simply assumes that any DIS start-
ing with an upper case letter is a data con-
structor, and that the number of argument DISs
matches the arity of the constructor.

3. A C type cast, enclosed in braces, followed by a
C variable name. It only makes sense in a ver-
sion of Haskell extended with unboxed types,
because only they need no translation. Exam-
ples:

%fun foo :: Int# -> I0 ()
%call ({int} x)

data T = MKT Int#
%fun baz :: T => I0 Q)
%call (MkT ({int} x))




adis

tc cexp
tc var
var

ADIS adis — (dis)
!
|
|
| (disy,...disn)

Arg arg — adis
| cezp
|  wvaer

DisFun disfun -+ wvar

TypeCast tc — cezp

Variable var — Var

Cons argy ...argn

DIS dis — disfun argy...argna

l

| Cons{field, =disy, ..
l

Application
Constructor n > 0
. fieldp = disn} Recordn2>1

result only

Bound by Ydis
Tuplen >0

C Ezxpression

Initial letter lower case

Figure 3: DIS grammar

6.2 DIS functions

[t would be unbearably tedious to have to write out
complete DISs in every procedure specification, so
Green Card supports DIS functionsin much the same
way that Haskell provides functions. (The big differ-
ence i1s that DIS functions can be used in “patterns”
— such as %call statements — whereas Haskell func-
tions cannot.)

Green Card supports two sorts of DIS function: DIS
macros (Section 6.2.1) and user-defined DISs (Sec-
tion 6.2.2).

6.2.1 DIS macros

DIS macros allow the programmer to define abbrevi-
ations for commonly-occurring DISs. For example:

newtype This = MkThis Int (Float, Float)
%dis this x y z = MkThis (int x)
(float y, float z)
Along with the newtype declaration the programmer
can write a %dis function definition that defines the
DIS function this in the obvious manner.

DIS macros are simply expanded out by Green Card
before it generates code. So for example, if we write:

%fun £ :: This -> This
%call (this p q r)

Green Card will expand the call to this:

“fun £ :: This -> This
%call (MkThis (int p) (float g, float r))

{In fact. int and float are also DIS macros defined
in Green Card’s standard prelude. so the %call line
is further expanded to:

“fun £ :: This -> This
%call (MkThis (I# ({int} p))
(Ft ({float} q), F# ({float} r)))

The fully expanded calls describe the marshalling
code in full detail; you can see why it would be incon-
venient to write them out literally on each occasion!)

Notice that DIS macros are automatically bidirec-
tional; that is. they can be used to convert Haskell
values to C and vice versa. For example. we can write:

%fun £ :: This -> This

%call (MkThis (int p) (float q, float r))
%code int a, b, c;

% f(p, q, r, %a, &b, &c);

%result (this a b ¢)

The form of DIS macro definitions, given in Figure 3,
is very simple. The formal parameters can only be
variables (not patterns), and the right hand side is
simply another DIS. Only first-order DIS macros are
permitted.

6.2.2 User-defined DISs

Sometimes Green Card’s primitive DISs (data con-
structors) are insufficiently expressive. For recursive
types, such as lists, it is obviously no good to write a
single data constructor.

Green Card therefore provides a “trap door” to allow
a sufficiently brave programmer to write his or her
own marshalling functions. For example:



data T = Zero | Succ T

%fun square :: T -> T
%call (¢ (int x))
%code r = square( x );
%result (t (int r))

Use of t requires that the programmer define two
ordinary Haskell functions. marshall_t to convert
from Haskell to C, and unmarshall_t to convert in
the other direction. In this example, these functions
would have the types:

marshall_t :: T => Int
unmarshall_t :: Int -> T

The functions must have precisely these names:
“marshall_” followed by the name of the DIS, and
similarly for unmarshall. Notice that these mar-
shalling functions have pure types (e.g. marshall_t
has type T -> Int rather than T -> I0 Int). Some-
times one wants to write a marsalling function
that is internally stateful. For example, it might
pack a [Char] into a ByteArray, by allocating a
MutableByteArray and filling it in with the characters
one at a time. This can be done using runST, or even
unsafePerformI0. (These are all GHC-specific com-
ments: so far as Green Card is concerned it is simply
up to the programmer to supply suitably-typed mar-
shalling functions.)

Green Card distinguishes user-defined DISs from DIS
macros by omission: if there 1s a DIS macro defi-
nition for a DIS function £ then Green Card treats
f as a macro., otherwise it assumes f is a user-
defined DIS and generates calls to marshall_t and/or
unmarshall_t.

6.3 Semantics of DISs

How does Green Card use these DISs to convert be-
tween Haskell values and C values? We give an in-
formal algorithm here, although most programmers
should be able to manage without knowing the de-
tails.

To convert from Haskell values to C values, guided by
a DIS, Green Card does the following:

o First, Green Card rewrites all DIS function ap-
plications, replacing left hand side by right hand
side.

e Next, Green Card works from outside in, as fol-
lows:

— For a data constructor DIS (in either po-
sitional or record form), Green Card gen-
erates a Haskell case statement to take the
value apart.

—~ For a user-defined DIS, Green Card calls
the DIS’s marshall function.

— For a type-cast-with-variable DIS, Green
Card does no translation.

Much the same happens in the other direction, except
that Green Card calls the unmarshall function in the
user-defined DIS case.

7 Standard DISs

Figure 4 gives the DIS functions that Green Card pro-
vides as a “standard prelude”.

The “T” variants allow the programmer to specify
what type is to be used as the C representation type.
For example, the int DIS maps a Haskell Int to a C
int, whereas intT {FD} maps a Haskell Int onto a C
value with type FD.

7.1 GHC extensions

Several of the standard DISs involve types that go
bevond standard Haskell:

e Addr is a GHC tvpe large enough to contain a
machine address. The Haskell garbage collector
treats it as a non-pointer, however.

e ForeignObjis a GHC type designed to contain
a reference to a foreign resource of some kind:
a malloc'd structure, a file descriptor. an X-
windows graphic context, or some such. The
size of this reference is assumed to be that of a
machine address. When the Haskell garbage col-
lector decides that a value of type ForeignObj
is unreachable, it calls the object’s finalisation
routine, which was given as an address in the
argument of the DIS. The finalisation routine is
passed the object reference as its only argument.

e The stable DIS maps a value of any type onto
a C int. The int is actually an index into the
stable pointer table, which is treated as a source
of roots by the garbage collector. Thus the C
procedure can effectively get a reference into the
Haskell heap. When stable is used to map from
C to Haskell, the process is reversed.

7.2 DMaybe

Almost all DISs work on single-constructor data
types. [t is much less obvious how to translate values
of multi-constructor data types to and from C. Nev-
ertheless, Green Card does deal in an ad hoc fashion
with the Maybe type. because it seems so important.

The syntax for the maybeT DIS is:
maybeT cexp dis




DIS Haskell C type Comments

int x Int int x

intT ¢t x Int t x

char ¢ Char char ¢

charT t ¢ Char t c

float f Float float f

floatT t £ Float t f

double d Double double d

doubleT t d Double td

bool b Bool int b 0 for False, 1 for True

boolT t b Bool tb

addr a Addr void *a An immovable C-land address

addrT t a Addr t a

string s String char *s Persistence not required in either direction.

foreign x f ForeignObj | void *x, f is the free routine; it takes one parameter,

void *f () namely x. the thing to be freed.
foreignT t x £ | ForeignObj | t x,
void =£()

stable x any int Makes it possible to pass a Haskell pointer
to C, and perhaps get it back later, without
breaking the garbage collector.

stableT t x any t

maybe dis Maybe dis type of dis Converts to and from Maybe's. with 0 as
Nothing

maybeT cexp dis | Maybe dis type of dis Converts to and from Maybe's

Figure 4: Standard DISs

where dis is any DIS, and cexp is a C expression
which represents the Nothing value in the C world.

In the following example, the function foo takes an
argument of type Maybe Int. If the argument value is
Nothing it will bind x to 0; if it is Just a it will bind
x to the value of a. The return value will be Just r
unless r == -1 in which case it will be Nothing,

%fun foo :: Maybe Int -> Maybe Int
%call (maybeT { 0 } (int x))

%code r = foo(x);

Aresult (maybeT { -1 } (int r))

There is also a maybe DIS wich just takes the DIS and
defaults to 0 as the Nothing value.

8 Imports

Green Card “connects” with code in other modules
in two ways:

¢ Green Card reads the source code of any mod-
ules directly imported by the module being pro-
cessed. [t extracts %dis function definitions
(only) from these modules. This provides an
easy mechanism for Green Card to import DIS
functions defined elsewhere.

e [t is often important to arrange that a C
header file is #included when the C code frag-
ments in Green Card directives is compiled.
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The %#include directive performs this delayed
#include. The syntax is exactly that of a C
#include apart from the initial %.

9 Invoking Green Card

The general syntax for invoking Green Card is:
green-card [options] [filename]

Green Card reads from standard input if no filename
is given. The options can be any of those:

--version Print the version number, then exit suc-
cessfully.

~-help Print a usage message listing all available op-
tions, then exit successfully.

--verbose Print more information while processing
the input.

--include-dir <directories> Search the directo-
ries named in the colon (:) separated list for
imported files. The directories will be searched
in a left to nght order.

--fgc-safe Generates code that can use callbacks to
Haskell. This makes the generated code slower.



10 Related Work

o A Portable C Interface for Standard ML of New
Jersey, by Lorenz Huelsbergen, describes the

implementation of a general interface to C for
SML/NJ.

o Simplified Wrapper and Interface Generator
(SWIG) generate interfaces from (extended)
ANSI C/C++ function and variable declara-
tions. It can generate output for Tcl/Tk,
Python, Peri5, Perl4 and Guile-iii. SWIG lives
at http://wuw.cs.utah. edu/ beazley/SWIG/

e Foreign Function Interface GENerator (FFI-
GEN) is a tool that parses C header files and
presents an intermediate data representation
suitable for writing backends. FFIGEN lives at
http://wuw.cs.uoregon.edu/ 1th/ffigen/

o Header2Schemeis a program which reads C++-
header files and compiles them into C++ code.
This code implements the back end for a Scheme
interface to the classes defined by these header
files. Header2Scheme can be found at:

Imports. Should the %dis import mechanism be re-
cursive? That is, should Green Card read the
source of all modules in the transitive closure of
the module’s imports?

Structures. Green Card lacks explicit support for
translating structures between C and Haskell.
How important is it? What is the “right” way
to provide such support?

Error handling. The error handling provided by
%failis fairly rudimentary. It isn’t obvious how
to improve it in a systematic manner.

http://www-white.media.mit.edu/ " kbrussel/Header2Scheme/

11 Alternative design choices and av-
enues for improvement

Here we summarise aspects of Green Card that are
less than ideal, and indicate possible improvements.

DIS function syntax. DIS functions are a bit like
Haskell functions (which is why they start with
a lower case letter), but they are also very like
a “view” of a data type; that is, a pseudo-
constructor that allows you to build a value or
pattern-match on it. Maybe, therefore, DIS
functions should start with a capital letter.
{Then user-defined DISs could start with a plain
lower-case letter.) Trivial but important.

Automatic DIS generation. Pretty much every
newtype or single-constructor declaration that
is involved in a foreign language call needs a
corresponding %dis definition. Maybe this %dis
definition should be automated. On the other
hand, there are many fewer data types than pro-
cedures, so perhaps it isn't too big a burden to
define a %dis for each.

User defined DISs. Should user-defined DISs be
explicitly declared. rather than inferred by the
omission of a DIS macro definition? Should it be
possible for the programmer to specify the name
of the marshall/unmarshall functions? (Omit-
ted for now because not strictly necessary.)
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Abstract

Two new facilities for Haskell are described: compres-
sion of data values in memory, and a new scheme for
binary I/O. These facilities, although they can be used
individually, can also be combined because they use the
same binary representations for values. Heap compres-
sion in memory is valuable because it enables programs
to run on smaller machines, or conversely allows pro-
grams to store more data in the same amount of mem-
ory. Binary I/0 is valuable because it makes the file
storage and retrieval of heap data structures smooth
and painless. The combination of heap compression
and binary 1/O allows data transfer to be both fast
and space-efficient.

All the facilities described have been implemented
in a variant of Rdjemo’s nhe compiler. Example appli-
cations are demonstrated, with performance results for
space and speed.

1 Introduction

1.1 Data representation

Implementors of lazy functional languages tend to use
an internal representation of data which is uniform,
based on graphs of heap cells. A value is either atomic,
occupying one unit of space, or it is structured and each
of its components occupies one unit of space, in turn ei-
ther an atomic value or a pointer to another structured
value.

There are good reasons for this memory model. Func-
tional programming systems make little distinction be-
tween values and expressions, so a memory cell must
be capable of representing either form. Also, functions

may be polymorphic and it is therefore very useful for
one unit of memory space to be able to hold a value or
expression of any type, no matter how simple or com-
plex.

However there are various occasions wheun this inter-
nal representation is inconvenient:

1. Static data. Some programs have a large quan-
tity of essentially static data. such as the import
table in a compiler. or the dictionary in a natural-
language processing system. The standard repre-
sentation of this data is somewhat bulky. Also,
the reasons for using the standard representation
do not apply: the data can be fully evaluated early
in the computation (so it contains no expressions),
and its type is also fully known (there is no re-
maining polymorphism). In such a situation, a
more compact representation can allow more data
to be stored. With care, the overhead of garbage
collection can also be reduced.

2. Secondary storage. Some programs perform out-
put with the intention of being able to retrieve the
information from secondary storage in a later in-
put operation. For instance, some compilers gen-
erate interface files which are read back during
later compilation of separate modules; some appli-
cations save large quantities of internal state infor-
mation for later analysis (perhaps by a tracer or
profiler). Haskell’s standard mechanism for I/O
allows program data to be transferred only in a
textual representation. This requires an expensive
translation at both output and input stages. It is
much more convenient to be able to use the same
binary data representation both in memory and
on files, so that I/O can be a cheap bulk transfer
from one to the other. The standard graph repre-
sentation does not lend itself to this approach.

3. Foreign language interfaces. A Haskell pro-
grammer may occasionally wish to call a routine
written in C, for instance to perform a system call.



Data holding the same semantic information is fre-
quently represented differently in each language,
and it must therefore be marshalled before pass-
ing from one to the other. Again, the ability to
define and use a common representation would be
very convenient.

4. Embedded systems. Device control is also re-
lated to I/O. Programs have a high-level view of
certain data structures used for control and mon-
itoring. At some stage these structures must be
mapped onto narrow bitfields within individual ma-
chine registers.

5. Communication. I/O in the form of dynamic
transmission of data between processes, whether
across a network or on the same machine, can be
hindered if it must rely on either a shared memory
model or on textual representations.

In this paper we show how the programmer can have
control over data representation with little compromise
of the high-level abstraction facilities which make func-
tional languages attractive.

We provide a means by which the internal represen-
tation of program data can be specified to a fine-grained
binary level. The type of a value is used to determine
how it can be represented as a sequence of bits. Func-
tions are defined to transfer a value between the stan-
dard graph representation and these compressed bit se-
quences. The two conversion functions form the meth-
ods of a type class. A small set of primitive operators is
used in the definition of the conversion functions. and
the I/O monad is used for sequencing. Instances of the
compression type class can be derived automatically by
the compiler. The programmer can also define custom
instances.

An extension to the I/0 library is also provided, al-
lowing values to be transferred between the functional
program and the rest of the world in compact binary
form.

All the examples and underlying facilities described
in this paper have been implemented using nhc version
1.3 9.

We leave the question of data representations for for-
eign language interfaces and embedded systems control
as interesting lines of future work. (See however our
earlier work on embedded systems [15, 16].)

1.2 Motivation

This work is funded by Canon Research Centre Eu-
rope Ltd., who are developing complex software for new
ranges of products. Functional languages are very at-
tractive for reasons of programmer productivity, the

ease of rapid prototyping, and maintainability of the
emerging software. Together, these benefits can bring a
product to market more quickly, which is a considerable
commercial advantage. Five issues of concern however

are:

1. saving memory space in the final product;

2. achieving fast and efficient I/0;

3. interfacing to other product modules writ-
ten in C/C++;

4. running software in an embedded product;

5. communication between multiple processes.

The most important issue from a commercial per-
spective is probably the first: saving memory leads to
a direct saving on mass-production costs. This sets the
scene for our work on compressing heap data and per-
forming binary I/0O. However, as the introduction has
outlined, one common theme which underlies all five is-
sues is data representation. A declarative solution to
the representation problem has the potential to address
many challenges from the software engineering arena.

2 A Class of Types with Bit-Vector Rep-
resentations

To recap, data in a functional language system is usually
represented as a linked graph structure, where each link
and terminal node typically occupies one machine word.
However, it is possible to use type information about
values to squeeze the representation down to a much
smaller sequence of bits.

2.1 Types and compression

If a type admits just n different values, any value of
that type can be represented within log(n) bits. It is
clear how this can be applied to an enumerated type,
with only nullary constructors. But the same observa-
tion also applies to more structured types. In Haskell a
structured data value of a type T consists of an n-ary
constructor followed by a sequence of n values, each of
which belongs to some type tq..t,;. Hence, a struc-
tured value can be represented in binary form by a vec-
tor of bits. The first portion of the vector identifies the
constructor, and the remainder of the vector is a se-
quence of values, each also represented in binary form.
Where a data type has more than one constructor, dif-
ferent values of the same type may occupy very different
amounts of memory.

Because the precise details of bit-vector representa-
tion differ from type to type, the obvious mechanism to
use is the ad-hoc polymorphism of type classes.



class Compress a where
compress a -> I0 (Bin a)
expand :: Bin a -> a

The type Bin a is an abstract type, implemented
by an extension of the Haskell runtime system. No-
tice that the compress function uses the I/O monad,
whereas the expand function does not. The I/O monad
is used primarily to enforce a correct sequence of op-
erations during compression. Also, compress is strict
in its first argument. It would be no good to us if ob-
jects were compressed lazily, because the whole idea is
to save space; a lazy compress could easily retain a clo-
sure containing the original full-sized value against the
day when the compressed version was used! For the
same reason however, the expansion operation must re-
main pure and lazy. It is not known which components
of the compressed value will be needed in the computa-
tion, and so it does not make sense to enforce strictness
or sequencing via the I/O monad. We discuss these
design choices further in the Future Work section.

2.2 Implementation issues

In order to be able to write instances of Compress, we
introduce the following primitives.

wBin :: Int -> Int -> I0 (Bin a)
rBin :: Int -> Bin a -> (Int, Bin b)

The intuition is that wBin s n writes integer value
n into a bit vector of width s, returning a pointer to the
beginning of the vector. Conversely, rBin s b reads an
integer value of width s bits from the vector b, returning
both the value and a pointer to the remainder of the bit
vector beyond the value that has just been read.

Where are bit vectors stored? For our present pur-
poses, it is convenient to store the vectors off the heap,
in a separate area of memory which is not garbage-
collected. (Again, this pragmatic choice is re-evaluated
in the Future Work section.) When creating a bit vec-
tor, this area of memory is treated like a sequential file
with an internal state determining where to begin writ-
ing the next value. There is no operation to glue two
bit vectors together. Rather, the explicit sequence of
1/0 operations performed during compression ensures
that vectors are placed next to each other. The poly-
morphic return types of wBin and rBin ensure that the
type inference system can regard these simple pointers
as correctly typed. The class system ensures type safety
by always selecting the correct instances of compress
and expand for the values involved in any particular
computation.

2.3 A small example: truth trees

Figure 1 shows a datatype of binary trees of Booleans,
together with the instance definitions needed in order
to compress it, and an example tree t.

In a standard graph representation such as that used
in nhc [9], each Boolean occupies one word, each Branch
occupies three words, and each Leaf occupies one word.
The total space needed to represent t is at worst 27
words, or at best (assuming maximal sharing) 16 words.
Implementations such as Gofer [4] use four words per
Branch, bringing the total to between 32 and 20 words.

Under the bit-packing scheme, one bit is sufficient
to distinguish branches from leaves, and one further bit
distinguishes True from False. In total, the compressed
t occupies exactly 17 bits. This is better than an order
of magnitude saving — the compression ratio is between
15x and 60x, depending on word-size and the extent of
sharing. Clearly this example is a best-case due to the
high compressibility of Booleans, but we shall obtain
very worthwhile compression ratios for more realistic
applications (see section 3).

2.4 Derived and explicit instances

It would be tedious to write explicit Compress instance
definitions for every datatype used in a program. Since
the compression scheme we have described is very reg-
ular, we have modified the nhc compiler to generate
instances of Compress automatically for datatypes with
a deriving clause, for example:

data Tree = Branch Tree Tree
| Leaf Bool
deriving Compress

The programmer is still free to try more aggressive
compression algorithms, by defining custom instances
of the Compress class. We have experimented with al-
ternative coding schemes where a knowledge of the ex-
pected frequency of values can be used to great advan-
tage. For example, we have written a Haskell program
which takes a simple value/frequency table for a type
and generates a Haskell module containing the appro-
priate instance declarations for Huffman compression
[1]. In our experience of specific applications, Huffman
coding can roughly double the compression ratio. There
are other fruitful avenues for compression, especially for
character strings.

2.5 Limitations on compressible values

It can be seen that the compress function is strict. This
means that compression is really only suitable for data
which is largely static: it may be computed once, but



data Tree = Branch Tree Tree
| Leaf Bool

instance Compress Bool where
compress = wBin 1 . fromEnum
expand = toEnum . fst . rBin 1

instance Compress Tree where
compress (Leaf b) =
wBin 1 0 >>= \x->
compress b >>
return x
compress (Branch 1 r) =
wBin 1 1 >>= \x->
compress 1 >>
compress r >>
return x
expand ¢ =
let (i,c’) = rBin 1 ¢ in
case i of
0 -> Leaf (expand c’)
1 -> let (1,c’’) = expand c’
(r,.) = expand c’’
in Branch 1 r

t :: Tree
t = Branch
(Branch
(Branch
(Leaf True)
(Branch (Leaf False)
(Leaf True)))
(Branch (Leaf False)
(Leaf True)))
(Leaf False)

Figure 1: Compression for truth trees. The full bit-
vector for t is 11101100011000100.

it then remains constant and useful for the rest of the
program'’s run. Examples of such applications have al-
ready been noted: a compiler’s import table, a natural-
language dictionary, a program-reduction tracer.

There are some other limitations to the representa-
tion scheme outlined here.

1. During compression, any sharing in the original
structure is lost, because an in-lined copy is made
at every site of the sharing. This is inevitable be-
cause the purpose of compression is to flatten out
the links from the graph structure, keeping only
the terminal values and their sequence. As a re-
sult of this restriction, neither cyclic nor infinite

structures can be compressed.

2. The heap representation of functions cannot be
compressed, since a machine address cannot easily
be reduced in size. However, it is certainly possible
to compress the code itself, expanding it only when
it is needed. Just-in-time dynamic compilation is
showing good results in this area — see for instance
Wakeling’s recent work [14]. The main idea is that
function code is generated in a compact bytecode
representation. This is then expanded at runtime
by an on-the-fly compiler into native code which is
stored temporarily in the heap. When the heap is
full, the native code is thrown away. The bytecode
is re-compiled to native code if it is required again.

3. Compressed values are accessed sequentially. For
instance, in a compressed binary tree one locates
the right subtree by first deciphering the left sub-
tree. This is fine if the left subtree will be used in
the same computation anyway, but in general, ac-
cess to right-lying components is more expensive
than to left-lying components. There are at least
two ways of improving this situation. Firstly, when
constructing a bit-sequence to represent a compo-
nent, one can precede it with a short bit-sequence
representing its length. This costs more space, but
allows unneeded components to be skipped over
quickly. See section 4.4 for a fuller sketch of this
idea in the context of I/O. A second alternative is
to choose the level of data-structure at which com-
pression is best employed. Section 3.3 describes a
judicious choice in an example application, where
the entries at the leaves of a tree are compressed,
but the tree structure itself remains in ordinary
form. If the tree structure still takes up too much
space, one might use an array of binary pointers
instead.

3 Example application: a dictionary of types

For a realistic illustration of the value of runtime heap-
compression of data, we have chosen a small but signifi-
cant part of the nhc Haskell compiler and made a useful
stand-alone tool from it.

When compiling a module which contains import
declarations, nhc reads an interface file for each im-
ported module. The interface file contains only type
declarations, instance declarations, and function names
annotated with their type. These declarations are needed
for type inference in the importing module.

The interface files are stored in textual format (an
issue to which we shall return in a later section), which
is parsed to an internal tree-like structure for represent-
ing types. Under normal circumstances the type data is



data IndTree t =
Leaf t
| Fork Int (IndTree t) (IndTree t)

itind :: Int -> IndTree a -> a
-- itind i it
-~ returns the 1’th entry from the tree it

itmap :: (a->b)
-> IndTree a
-> IndTree b
-- itmap f it

-~ applies the function £ to every leaf in the tree it

(a->10 b)

-> IndTree a

-> I0 (IndTree b)

-- itmapm f t

-- applies the monadic function £ to every leaf in

-~ the tree it, returning the result in the /O monad

itmapm ::

Figure 2: Index tree and operations.

retained for the type-checking phase of compilation and
then discarded. However, we have re-used the interface
parser in writing a browser for the type information.
Interface files are read and stored in a hashed lookup
structure. The user enters function names at an inter-
active command line, and the tool reports the types for
those functions. This is a very simple database applica-
tion, but the database contains recursively structured
information rather than pure text.

3.1 Data structure

For the database, we use a simple indexed binary tree
type IndTree, outlined in Figure 2. In addition to some
standard tree operations, we use a version of itmap em-
bedded within the I/O Monad, called itmapm, which
both ensures that the updated tree is built before the
program continues (as a way of avoiding a build-up
of update-closures [10]), and also permits the mapped
function to be in the I/O monad (for instance compress).

The entries in this tree are buckets of (function-
name, type) pairs. We use a simple hash function on
every name to produce an index into the tree. If two
names collide at the same index, we store both entries
in the same bucket. By choosing an appropriately sized
tree, the average bucket size is small and hence a bucket
can be efficiently represented just as a list.

3.2 Introducing compression

An appropriate level at which to introduce compres-
sion to this lookup structure is on buckets of entries:
whilst the index structure is relatively small and ac-
cessed frequently, the buckets are individually relatively
large and are accessed infrequently. Perhaps an equally
good choice would be to compress only individual en-
tries within buckets.

Figure 3 gives an outline of the main program. We
omit the datatype definitions and requests for derived
instances for strings, pairs, and type declaration trees.
The program first builds the IndTree and then performs
lookup on it. It differs from a compression-less program
only in the definition and use of the monadic function
leafCompress, and a single application of expand, each
shown in bold type.

3.3 Results

We test the type-browsing tool by supplying as input
the interface file for the Standard Prelude, and then re-
questing the type of all 260 prelude functions. We first
compare speeds (running nhc’s byvte-code interpreter on
a 50MHz microSparc processor). The compressed ver-
sion inevitably has a slower access rate than the stan-
dard version. We then compare memory space, finding
the compressed version to be much more compact than
the standard version, as expected.

Time
Without compression, it takes 24.73s to read the
file, parse it, and build the index tree, and a fur-
ther 11.55s to retrieve and display all the entries
in turn. This gives a rate (discounting initialisa-
tion time) of 23.1 entries returned per second, and

a total computation time of 36.30s.
With compression, it takes the same 24.75 seconds

to read the file, parse it, and build the initial index
tree. It takes a further 25.40 seconds to compress
the entries into a new tree, followed by 30.0 seconds
to retrieve and display all the entries in turn. This
gives a rate (discounting initialisation time) of 8.7
entries returned per second, and a total computa-
tion time of 80.15s.
Space

Without compression, the parsing stage uses a peak
of 250kb, followed by a constant usage of 150kb of

heap memory for the lookup stage.
With compression, the parsing stage again uses a

peak of 250kb, followed by a constant usage of
about 8kb of heap memory for the lookup stage,
and about 16kb of off-heap bit vectors, totalling
24kb.



declstree ::

Int -> [Decl TokenlId]
-> I0 (IndTree
[(String, Decl TokenId)])
leafCompress ::
IndTree [(String, Decl TokenId)]
-> 10 '
(IndTree
(Bin
[(String, Decl TokenId)]))
leafCompress = itmapm compress

main =
readFiles ".hi" >>= \inp->
let h = chooseHashTreeSize inp in
declstree h (parsedecls inp)
>>= \pt->
leafCompress pt >>= \cpt->
browse cpt

browse cpt =
untilCatch isEQOFError
(putStr "type browser> " >>
getLine >>= \inp->
mapM_
(putStrLn.showDecl.snd)
(map (select cpt)
(words inp))

select cpt w =
filter
((==w) .fst)
(expand (itind (hash w) cpt))

Figure 3: Type browser tool

In this example application, the compression ratio
is greater than 6x. We have studied some other
applications which demonstrate a broadly similar
compression ratio.

3.4 Issues raised by the example

The main problem with the program as it stands is
that although the compression achieved during lookup
is very worthwhile, the space profile is dominated by
the requirement for a large initial heap before the data
can ever be compressed. A large proportion of both
time and space in the computation are being devoted
to the initial parsing of the text file. The compression
stage also accounts for a significant part of the time,
though this is compensated by the subsequent reduc-

tion in space usage.

One might wonder whether the 250kb of space needed
for parsing a data structure that turns out to need only
150kb is excessive — perhaps due to a poor choice of
parser combinators? In fact the combinators used in
the example, in common with all the components of
nhe, were designed for space efficiency [8]. Even care-
fully crafted text parsers can cause space irregularities:
the difficulty of avoiding them emphasises a need for an
alternative more efficient mechanism.

A possible solution to the space problem would be to
rework the program structure for greater laziness - to
compress as we parse, rather than having two essentially
separate passes over the data.

However, another solution addresses the time prob-
lem as well as the space problem: store the compressed
data directly in a binary file. The text file is parsed and
compressed once; all subsequent uses avoid this stage
and load the binary representation directly. The next
section describes how we have added binary file I/O to
Haskell in a manner analogous to compression.

4 A Class of Types for Binary I/0

It would be very convenient to be able to perform 1/0
directly to/from heap memory, in order to store data
structures in a file for later use by a different run of
the same program, or perhaps to transmit values be-
tween two processes. The linked-graph model of the
heap makes this tricky to implement however [13]. Some
form of flattening is required before a value is amenable
to storage or transmission.

The only current standard Haskell mechanism for
transferring data is by conversion to and from a textual
format, using the Show and Read classes. While having
the benefit of readability, this approach can often be
very inefficient. Good implementations of the Read class
are rare, and programmers still frequently write custom
parsers for their Haskell data. Even these, as we have
seen, can be slow and memory-hungry.

Our scheme for heap data compression offers an al-
ternative flattening operation which follows a uniform
pattern and like the textual classes can be derived auto-
matically for almost any datatype (the restrictions are
noted in an earlier section). A binary I/O library based
on these ideas should be much more efficient than pars-
ing and printing text.

4.1 The programmer’s view

As before, we define a type class for values which can
be transmitted in binary format.



class BinI0 a where
put :: BinHandle -> a -> I0 ()
get :: BinHandle -> I0 a

The type BinHandle is an abstract type analogous
to the ordinary text-file Handle, but specific to binary
files. Like compress, but unlike expand, both put and
get operations return results in the I/O monad, be-
cause here we are dealing with true I/O. Also note that
get does not take a pointer to a value as an argument.
Rather, it reads values from the file sequentially, start-
ing at the current position recorded in the state of the
I/0 monad.

Instances of the BinIO class are written using the
primitives:

putBits :: BinHandle
-> Int -> Int -> I0 O
getBits :: BinHandle

-> Int -> I0 Int

The intuition is that putBits h s n writes integer
value n into a field of width s bits at the current position
in the file denoted by h. Conversely, getBits h s reads
an integer value of width s bits from the current position
in the file h, returning just the value, and implicitly
updating the file pointer.

As before, the explicit sequence of I/O operations
performed during output or input ensures that compo-
nents of a value are placed next to each other in the file,
and read back in the same order.

Various other auxiliary functions are needed to com-
plete the library, such as the operations to open and
close binary files. These just mirror the existing opera-
tions in the textual [/O library.

openBinFile :: FilePath -> IOMode
-> I0 BinHandle
closeBinFile :: BinHandle -> I0 ()

One point worth mentioning is that binary files, like
textual files, are not type safe across runs. That is, one
can write a value to a file as one type and read it back
as another. We do not attempt to address this question
(see however [7]), leaving it to the programmer to do
the sensible thing.

4.2 Implementation of buffering

The buffering required for I/O on binary files is more
complicated than that for textual files. Textual I/O as-
sumes that every value is transferred as a whole number
of bytes, and hence the minimum buffering unit is the
byte. With binary I/O it must be possible to transfer
a single bit at a time.

instance BinIO Bool where
put h =
putBits h 1
get h =
getBits h 1 >>=
return . toEnum

fromEnum

instance BinI0O Tree where
put h (Leaf b) =
putBits h 1 0 >>
put h b
put h (Branch 1 r) =
putBits h 1 1 >>
put h 1 >>
put hr
get h =
getBits h 1 >>= \i->
case i of
0 -> get h >>= return . Leaf
1 -> get h >>= \1->
get h >>= \r->
return (Branch 1 r)

Figure 4: Binary I/O instances for truth trees.

The approach taken in our prototype implementa-
tion is to layer a second buffer on top of the standard
byte-oriented buffers. This second layer consists of a
single byte per file: for output, it accumulates bits un-
til it is full, at which time it is flushed into the ordinary
byte-oriented system; for input, it receives a byte from
the ordinary system, which is then drained bit-by-bit
into the Haskell program. We have implemented this
mechanism as a Haskell module.

4.3 Truth trees revisited

Recall the binary trees of Booleans from section 2.3.
Instance definitions for binary 1/0, using the same bit
encoding as for compression, are shown in Figure 4.
As before, these can be derived automatically by the
compiler.

4.4 Bit transfer between memory and files

There is a broad similarity between the Compress and
BinI0 classes. The same binary representation can be
produced and interpreted by both, whether in memory
or on file. One of our aims in developing binary I/0
was to use this identity of representation to increase the
efficiency of transfer. Yet the situation described so far
permits only values in the standard graph-in-the-heap
representation to be put into files or retrieved. If the



newtype SizedBin a =
SB (Int, Bin a)

class Bin a =>
SizedCompress a where
sizedCompress ::
a -> I0 (SizedBin a)
sizedExpand ::
SizedBin a -> a
sizedCompress v =
compress v >>= \bv->
primBinSize bv >>= \s->
return SB (s,bv)
sizedExpand (SB (s,bv)) =
expand bv

instance BinIQ0 (SizedBin a) where

put h (SB (s,bv)) =
put h s >>
primDirectPut h s bv

get h =
get h >>= \s->
primDirectGet h s >>= \bv->
return (SB (s,bv))

Figure 5: Sized binary values, and efficient bulk 1/0.

compressed representation is wanted in both memory
and file, then the value must ‘pass through’ the standard
representation, suffering the process of two very similar
translations.

So we need an instance of the BinIO class for the
memory-compressed Bin a types, using special primi-
tives to implement the bulk transfer of the binary val-
ues.

instance BinI0 (Bin a) where
put = primDirectPut
get = primDirectGet

But this scheme has a hidden difficulty. Bulk trans-
fer can only be efficient if the size of the value is known.
If the size is not known, then the transfer must remain
interpretive, since Bin a values are of variable size. For-
tunately, this oversight is easy to correct, at the cost of
a little overhead in space. We introduce a new type
of sized binary values, and extend the Compress class
with a subclass SizedCompress which simply attaches
size information to compressed values (see Figure 5).

No other instances of SizedCompress need ever be
written — the default definitions given in the class dec-
laration are sufficient. Our new instance of BinI0 for
all SizedBin a types can now implement bulk transfer
correctly, by placing or reading the size of the binary

value immediately before the value itself. Note that a
size need only be attached to the outermost structure
of a value: the internal structure within a value may
comprise many compressed components stored without
sizes.

The extra space needed for storing size information
could reduce or even cancel the benefit of compression
if applied to many values of only modest size. How-
ever, our intention is that a program should only attach
sizes to larger compressed values involved in bulk I/0.
The larger and more complex a compressed value is,
the more valuable it will be to transfer it in bulk rather
than interpretively, and the smaller the proportion of
space taken up by the size information.

One further, less serious, space cost is associated
with bulk transfer of bits. The problem is a poten-
tial misalignment of values. Imagine the file pointer
is set at bit 3 and the memory compression pointer is
set at bit 6, immediately before a transfer takes place.
It would be possible to fix the alignment byte-by-byte
during the transfer, but this would be detrimental to
efficiency. The alternative is to insist that sized binary
values are exactly aligned to a bvte boundary. On aver-
age, this solution costs 3.3 bits per value, since between
0 and 7 extra bits are needed to pad the value to a
byte boundary. This is a minor cost compared to what
has already been paid to store sizes. In practice, byte-
alignment is easy to implement.

4.5 An extension for random-access file I/O

A more radical way to avoid the remaining costs of bulk
I/O and memory storage for large data structures is
to compute with the data structure held entirely (in
compressed form) in a file. This is a common technique
in the database world. The main requirement over and
above what is already available is the need for random-
access to files of compressed data.

We achieve this by an extension to the binary I/O
class:

class BinI0 a =>
RandomAccessBinIO a where
putAt :: BinHandle
-> a -> I0 (FilePtr a)
getAt :: BinHandle
-> FilePtr a -> I0 a

The intuition for the new operations is that putAt
returns a pointer to the start location of the value, and
getAt uses such a pointer to find the value. Values of
the new abstract type FilePtr a do not refer specif-
ically to any file. At the implementation level, they
contain only a byte offset from the start of the file and
a bit offset within the referenced byte. It is up to the




main =

readFiles ".hi" >>= \inp->

if parsingText then
let h= chooseHashTreeSize inp
declstree h (parsedecls inp)

>>= \pt->
leafCompress pt  >>= \cpt->
sizedCompress cpt >>= \ccpt->
openBinFile "db.dat" WriteMode
>>= \db->

put db ccpt >>
closeBinFile db

else return ()

>>

openBinFile "db.dat" ReadMode
>>= \db->

get db >>= \ccpt->

closeBinFile db >>

let cpt = sizedExpand ccpt in

browse cpt

Figure 6: Direct binary transfer to memory.

programmer to use these file pointers sensibly on the
correct files.

One difficult issue is whether it should be permissi-
ble to read and write the same random-access binary
file. The possibility of intermixed read and write access
does complicate the implementation of buffering still
further. For the moment, we disallow the possibility,
not on point of principle, but to keep things simple.

5 Type dictionary revisited

We return to the type-browser tool of section 3 to il-
lustrate the facilities of binary I/0O. Here are two new
versions of the tool which use file I/0.

5.1 Direct binary transfer to memory

In the first version of the type tool, not only did tex-
tual parsing take a long time, but compression took a
similar amount of time. We can eliminate both of these
stages of the computation by storing the compressed
data structure in a file between program runs. Figure 6
shows the additions to the original program in order to
store the entire data structure into a file, and to reload
it in subsequent runs.

5.2 Layered compression

One point worth noting about this example is the type
of the value stored in the file.

ccpt
SizedBin
(IndTree
(Bin
[(String, Decl TokenId)]))

Not only are the entries at the leaves of the index tree
compressed, but the whole of the index tree itself is com-
pressed too. What happens when a compressed value is
compressed again by virtue of residing within another
value? The bit-vector is simply copied in-line, without
modification. When the outer value is expanded, the
inner compressed values simply remain in compressed
form, true to the type signature. So in this example,
because there are two stages of compression, there are
also two stages of expansion. The result of sizedExpand
ccpt is a tree with a branch structure in the heap but
leaves of compressed entries.

5.3 Indexed binary files

So far the indexed data structure containing compressed
entries has been loaded (one way or another) into mem-
ory. We now illustrate how both the compressed entries
and the indexing structure may be stored in files. The
intention here is to store data entries in one file, but
the file-pointers which reference the data file in a dif-
ferent index file. The index file is flat, containing just
a sequence of file pointers. Lookup proceeds as follows:
first apply the hash function to the string key, giving
an integer n; now read the n'th entry from the index
file; and finally use this value as a pointer into the data
file to retrieve the true compressed entry. This is a
very similar mechanism to that used in many previous
systems, for example, the gdbm library of C database
routines.

Figure 7 shows the version of the program using in-
dexed files. We gloss over the issue of file-pointer arith-
metic here, which is easy to program but tedious to
read. Pointer arithmetic is needed simply to allow the
n'th value of compressed size s to be read from the index
file - that is, starting at the (n-1)*s'th bit.

5.4 Results

To test the new versions of the type-browsing tool we
again supply as input the interface file for the Stan-
dard Prelude, and request the types of all 260 prelude
functions.



treell ::
BinHandle -> BinHandle
~> IndTree
[(String, Decl TokenId)]
-> 10 O
treell datf indf =
itmapm
Av->
sizedCompress v >>= \bv->
putAt datf bv  >>= \fp->
put indf fp)

main =
treell datf indf pt >>
browse datf indf

browse datf indf =
untilCatch isEOFError
(putStr "type browser> " >>
getLine >>= \inp->
mapM_
Aw->
select datf indf w >>=
mapM_
(putStrin.showDecl.snd)
) (words inp)

select datf indf w =
getAt indf (hash w) >>= \fp->
gotAt datf fp >>= \e->
return (filter ((==w).fst)
(sizedExpand e))

Figure 7: Indexed binary files.

Time

Reading the entire structure from binary file into
memory, it takes 0.20s to read the file and perform
a first-stage decompression. and a further 30.24s to
retrieve and display all the entries in turn. This
gives a rate (discounting initialisation time) of 8.6
entries returned per second, and a total computa-
tion time of 30.44s.

When the index structure is stored in and read from
two files, it takes 36.74s to read the text, parse it,
build the initial index tree, and write it out to the
new files, then a further 32.01s to retrieve and dis-
play all the entries in turn. This gives a rate (dis-
counting initialisation time) of 8.1 entries returned
per second, and a total computation time of 68.75s.

initial I/0 time (s) space (kb)

+ data repn. | set-up | queries | set-up | queries
text+heap 24.75 11.55 250 150
text+Dbits 30.13 30.01 250 8+16
binfile+bits 0.20 30.24 10 8+16
text+binfile 36.74 32.01 240 150
none+binfile 0.09 32.01 4 2

Table 1: Time and space costs for different versions
of the type-dictionary program when the type of every
function in the prelude is requested.

When the index structure is kept only in the pre-
computed files, it takes 0.09s to prepare for reading,
and a further 32.01s to retrieve and display all the
entries in turn. This gives a rate (discounting ini-
tialisation time) of 8.1 entries returned per second,
and a total computation time of 32.10s.
Space

When the entire structure is read from a binary
file into memory, there is no initial parsing stage.
Memory usage peaks at 10kb of heap, and averages
at 8kb of heap. plus a constant 16kb of off-heap bit
vectors.

When the index structure is kept only in the pre-
computed files, again there is no parsing stage.
Memory usage peaks at 4.5kb of heap, and averages
at 2.5kb of heap. There no bit vectors in memory.
The files occupy 16kb (data) and 408 bytes (index).

A complete comparison with the earlier versions of
the tool is shown in Table 1. (All figures are for nhc’s
byte-code interpreter measured on a 50Mhz microSparc
processor; we achieve nearly identical speed ratios on a
newer and faster 150Mhz R4000. The compression ratio
of course remains constant across platforms.) It can be
seen clearly that once the initial work has been done to
store a data structure as a binary file, it is much quicker
to read the binary file than to re-parse the textual equiv-
alent. Access to individual entries is slower, because the
work of interpretation has been deferred until the mo-
ment of expansion. Even so, a complete traversal of the
compressed structure takes less time than the original
version of the tool took to parse a text file and then
traverse the lookup structure.

6 Related work

The Haskell language definition, prior to version 1.3,
had a Binary class with two methods, showBin and
readBin, converting data to and from a Bin datatype -
the intended use was primarily for binary file I/0. We
know of no implementations which supported the class,
and the idea has now been dropped from the language



standard. Two improvements on the previous design,
introduced by our classes, are: parameterisation of Bin
on the type being represented; and the choice of either
interpretive I/O direct between uncompressed values in
memory and a binary representation on disk (avoiding
an intermediate binary representation in memory), or
fast transfer of the binary representation.

The hbc compiler has a library which defines a class
for Native conversions. The methods convert between
a value and a list of bytes, which can then be used in
textual I/O. There are three differences from our com-
pression class: the data representation is byte-oriented,
rather than bit-oriented; the byte vectors are otherwise
untyped; and there is no use of monadic sequencing
to control the evaluation order of conversion. The in-
tended use of the Native class is for foreign language
interfaces, and data transmission between processes (ei-
ther via the file system or across a network). Our
scheme permits a flexible style of data compression in
addition to these applications.

Johan Jeuring is working on a polytypic scheme for
data compression {3]. There is a close correspondence
between polytypic programming and type classes. (Jans-
son and Jeuring's language system PolyP [2] is the first
to provide facilities for polytypism.) His method sepa-
rates a value’s structure from its content, compressing
the structural component in a very similar manner to
our scheme, and then relying on standard textual meth-
ods to compress the content.

There is of course a wide literature on compression
algorithms - see for example the comprehensive survey
by Lelewer and Hirschberg [3].

Other work on reducing the amount of space used for
data representation in functional languages (although
without true compression) includes a significant body
of work on unbozing; see for instance [6].

7 Conclusions and Future Work

A declarative approach to bit-level data representation
opens up whole new application areas for functional lan-
guages. We have implemented mechanisms for the fol-
lowing types of computation, and demonstrated exam-
ples of their use:

1. Computing with a large data structure
held in compressed form in memory.

2. Storage and retrieval of a large data struc-
ture to/from a binary file, with full repre-
sentation in memory.

3. Computing with a large data structure
held in compressed form in memory, and
its bulk storage and retrieval to/from a
binary file.

4. Computing with a large indexed data struc-
ture held entirely in files, not in memory.

The compression scheme presented in this paper can
be derived automatically for almost all datatypes, fol-
lowing a standard pattern which gives significant space
savings. However, it also leaves the programmer free to
try more aggressive compression algorithms, by defining
custom instances of the Compress class.

We suggest that typically, the use of heap compres-
sion will be considered by a programmer once the pro-
gram is complete and has been profiled to identify and
correct any space faults [11]. When the profile reveals
that there is still a large amount of data occupying the
heap, and that this data really is needed, the opportu-
nity to compress it should be taken.

Compression and binary I/0 could improve the per-
formance of Haskell compilers. Recall that the type
browser tool initially reads machine-generated interface
files produced by nhc. Réjemo has found through pro-
filing that a significant portion of the time taken to
separately-compile a module is spent in reading inter-
face files for imported modules. If the interface files
were stored as binary files rather than textually, we con-
jecture that the compiler would run consistently faster.
For human readability, a short and fast program to
translate the binary format to text could be provided.

Many other applications could benefit from the abil-
ity to manipulate values in compact and binary rep-
resentations, particularly those where it is desirable to
hold a very large amount of information either in main
memory or on secondary storage. Examples include
databases, natural-language processing, and image pro-
cessing. One application we intend to study fully is a
tracer/debugger for Haskell programs [12]. It is very
difficult to construct a complete trace of a large com-
putation because of the huge amount of space required.
A compressed store makes the task more feasible, espe-
cially if the compressed data structures can be stored
progressively into a random-access file.

Other uses of bit-vector representations that we have
not yet had time to explore include the description of
machine registers for embedded-systems control, and
the marshalling of data for foreign-language interfaces
and inter-process communication. It could be argued
that these latter applications are word- or byte-oriented
rather than bit-oriented. However, the flexibility of rep-
resenting data components at the finest granularity re-
mains useful - for instance consider storing a Huffman-
coded string inside an aligned block of bytes for trans-
mission across a network.

One valid criticism of our compression class is that
it uses the I/O monad, and so the description of binary
representations is somewhat imperative. Since com-



pression is not really doing proper input or output, a dif-
ferent choice, though still retaining the imperative style,
would be to use a state-transformer monad. (However,
the use of the I/O monad does suggest an opportunity
for convergence between compression and binary I/O;
see below). The further possibility of a more declara-
tive description of representations deserves some inves-
tigation. Such a description would perhaps use basic
combinators for juxtaposition (placing two bit vectors
side-by-side), alignment, padding, trimming, and so on.
One difficulty would be the treatment of strictness -
when to force the compression of values.

A second criticism of our compression and binary
I/0 classes is that if instances are hand-written, they
must define functions for conversion in both directions.
This opens the possibility of errors where the value cre-
ated by one operation is not correctly read back by the
other. The two operations are in some sense inverses
of each other. Perhaps a facility to define a single de-
scription of the binary representation should be pro-
vided, from which both conversion operations could be
derived.

This also raises the issue of convergence between the
two classes. Binary I/0 and compression are very simi-
lar, and by default use the same representations. How-
ever, the possibility of error is again introduced because
custom instances written by hand may fail to match
each other. To what extent could the operations be
merged into a single class, perhaps by regarding the
off-heap bit-vector memory as just a special sort of
file? The closest resemblance exists between the classes
RandomAccessBinI0 and Compress, vet there is still at
least one important difference between them, namely
that expand is a pure function while getAt is in the
I/0O monad.

In our implementation we chose to store bit vectors
out of the heap, in a separate area of memory, with-
out garbage collection. As noted above, this lends itself
to the treatment of bit-space as just a special kind of
file. However, a different implementation could allocate
space for bit vectors in the heap, allowing full garbage-
collection of compressed values. This would be attrac-
tive for some applications, for instance a network server
which compresses packets of data for transmission but
then discards them. A heap-based implementation of
bit vectors would cost a small amount of extra space
for tagging the compressed values, and we conjecture
that it could cost a significant amount of speed too. We
intend to develop this alternative design for comparison
with the current system.

Finally, there is a distant possibility that data com-
pression and expansion could be applied to parts of the
heap automatically. Where in our scheme the program-
mer must judiciously select data structures and apply

the compression and expansion functions textually, per-
haps in future the memory management system will
be able to identify long-lived portions of the heap and
transparently compress them during garbage collection,
allowing re-expansion lazily by need.
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