Proceedings of the 1999
Haskell Workshop

Erik Meijer (editor)

UU-CS-1999-28
Friday October 9th, 1999, Paris, France






Proceedings of the 1999 Haskell Workshop

UU-CS-1999-28

Erik Meijer (editor)

Friday October 1st, 1999, Paris, France



1999 Haskell Workshop

The purpose of the workshop is to discuss experience with Haskell, and possible
future developments of the language.

The lively discussions at the 1997 Haskell Workshop in Amsterdam about the
future of Haskell led to the definition of Haskell’98, giving Haskell the stability
that has so far been lacking. The road ahead to Haskell-2 has many opportuni-
ties for developing and enhancing Haskell in new and exciting ways. The third
Haskell workshop presents six papers on the design, implementation, and use of
Haskell.

The program committee consisted of

e Koen Claessen (Chalmers)

e Byron Cook (OGI)

e Gregory Hager (The Johns Hopkins University)
e Graham Hutton (Nottingham)

e Alexander Jacobson (shop.com)

e Fergus Henderson (Melbourne)

e Sigbjorn Finne (Glasgow)

e Erik Meijer (Utrecht) — chair

e Colin Runciman (York)

e Philip Wadler (Bell Labs, Lucent Technologies)

The Haskell Workshop was held in conjuction with PLI’99 and was sponsored
by INRIA, CNRS, Microsoft Research, Trusted Logic, France Telecom, and the
French Ministere de ’Education Nationale de la Recherche et de 1la Technology.
Additional sponsoring was received by the University Research Programs group
of Microsoft Research Cambridge for the Jake project. The goal of Jake is
to develop a set of Perl and Tcl free conference management tools completely
programmed in Haskell.

Erik Meijer
September 1999



Workshop Program

8:30 - 9:30 PLI Invited talk

Mobility in the Join-Calculus
Georges Gonthier (INRIA Rocquencourt, France)

9:45 - 10:45 Session 1

Typing Haskell In Haskell
Mark Jones (Oregon Graduate Institute, USA)

Haskell library template effort (10 minute slot)
Andy Gill (Oregon Graduate Institute, USA)

10:45 - 11:15 Coffee break

11:15 - 12:45 Session 2

Embedding Prolog in Haskell
Silvija Seres and Mike Spivey (Oxford University, UK)

Logical Abstractions in Haskell
Nancy A. Day, John Launchbury and Jeff Lewis (Oregon Graduate Institute,
USA)

12:45 - 14:30 Lunch

14:30 - 16:00 Session 3

The Syntactical Subtleties of Haskell (Invited Talk)
Simon Marlow (Microsoft Research Cambridge, UK)

Lightweight Extensible Records for Haskell
Mark Jones (Oregon Graduate Institute, USA) and Simon Peyton Jones (Mi-
crosoft Research Cambridge, UK)

16:00 - 16:30 Tea time

16:30 - 18:00 Session 4

A Generic Programming Extension for Haskell
Ralf Hinze (Bonn University, Germany)

Restricted Datatypes in Haskell
John Hughes (Chalmers University, Sweden)

18:00 - 18:30 Session 5
Dependent types: Doing without them (10 minute slot)

Daniel Fridlender (BRICS, Denmark) and Mia Indrika (Chalmers University,
Sweden)

The future of Haskell (Open-mike session)






Typing Haskell In Haskell

Mark Jones (Oregon Graduate Institute, USA)






Typing Haskell in Haskell

Mark P. Jones
Oregon Graduate Institute of Science and Technology
mpjQ@cse.ogi.edu

Haskell Workshop Version: September 1, 1999

Abstract

Haskell benefits from a sophisticated type system, but im-
plementors, programmers, and researchers suffer because it
has no formal description. To remedy this shortcoming, we
present a Haskell program that implements a Haskell type-
checker, thus providing a mathematically rigorous specifica-
tion in a notation that is familiar to Haskell users. We expect
this program to fill a serious gap in current descriptions of
Haskell, both as a starting point for discussions about ex-
isting features of the type system, and as a platform from
which to explore new proposals.

1 Introduction

Haskell! benefits from one of the most sophisticated type
systems of any widely used programming language. Unfor-
tunately, it also suffers because there is no formal specifica-
tion of what the type system should be. As a result:

e It is hard for Haskell implementors to be sure that their
compilers and interpreters accept the same programs
as other implementations. The informal specification
in the Haskell report [10] leaves too much room for
confusion and misinterpretation. This leads to genuine
discrepancies between implementations, as many sub-
scribers to the Haskell mailing list will have seen.

e It is hard for Haskell programmers to understand the
details of the type system, and to appreciate why
some programs are accepted when others are not. For-
mal presentations of most aspects of the type system
are available in the research literature, but often ab-
stract on specific features that are Haskell-like, but not
Haskell-exact, and do not describe the complete type
system. Moreover, these papers often use disparate and
unfamiliar technical notation and concepts that may be
hard for some Haskell programmers to understand.

e It is hard for Haskell researchers to explore new type
system extensions, or even to study usability issues that
arise with the present type system such as the search
for better type error diagnostics. Work in these areas
requires a clear understanding of the type system and,
ideally, a platform on which to build and experiment

1Thr0ugh0ut, we use ‘Haskell’ as an abbreviation for ‘Haskell 98°.

with prototype implementations. The existing Haskell
implementations are not suitable for this (and were not
intended to be): the nuts and bolts of a type system
are easily obscured by the use of specific data structures
and optimizations, or by the need to integrate smoothly
with other parts of an implementation.

This paper presents a formal description of the Haskell type
system using the notation of Haskell itself as a specification
language. Indeed, the source code for this paper is itself an
executable Haskell program that is passed through a custom
preprocessor and then through IXTEX to obtain the typeset
version. The type checker is available in source form on
the Internet at http://www.cse.ogi.edu/"mpj/thih/. We
hope that this will serve as a resource for Haskell implemen-
tors, programmers and researchers, and that it will be a first
step in eliminating most of the problems described above.

One audience whose needs may not be particularly well met
by this paper are researchers in programming language type
systems who do not have experience of Haskell. (We would,
however, encourage anyone in that position to learn more
about Haskell!) Indeed, we do not follow the traditional
route in such settings where the type system might first be
presented in its purest form, and then related to a more
concrete type inference algorithm by soundness and com-
pleteness theorems. Here, we deal only with type inference.
It doesn’t even make sense to ask if our algorithm computes
‘principal’ types: such a question requires a comparison be-
tween two different presentations of a type system, and we
only have one. Nevertheless, we believe that the specifica-
tion in this paper could easily be recast in a more standard,
type-theoretic manner and used to develop a presentation of
Haskell typing in a more traditional style.

The code presented here can be executed with any Haskell
system, but our primary goals have been clarity and simplic-
ity, and the resulting code is not intended to be an efficient
implementation of type inference. Indeed, in some places,
our choice of representation may lead to significant over-
heads and duplicated computation. It would be interesting
to try to derive a more efficient, but provably correct imple-
mentation from the specification given here. We have not
attempted to do this because we expect that it would ob-
scure the key ideas that we want to emphasize. It therefore
remains as a topic for future work, and as a test to assess
the applicability of program transformation and synthesis to
complex, but modestly sized Haskell programs.



Another goal for this paper was to give as complete a de-
scription of the Haskell type system as possible, while also
aiming for conciseness. For this to be possible, we have
assumed that certain transformations and checks will have
been made prior to typechecking, and hence that we can
work with a much simpler abstract syntax than the full
source-level syntax of Haskell would suggest. As we ar-
gue informally at various points in the paper, we do not
believe that there would be any significant difficulty in ex-
tending our system to deal with the missing constructs. All
of the fundamental components, including the thorniest as-
pects of Haskell typing, are addressed in the framework that
we present here. Our specification does not attempt to deal
with all of the issues that would occur in the implementa-
tion of a full Haskell implementation. We do not tackle the
problems of interfacing a typechecker with compiler front
ends (to track source code locations in error diagnostics,
for example) or back ends (to describe the implementation
of overloading, for example), nor do we attempt to formal-
ize any of the extensions that are implemented in current
Haskell systems. This is one of things that makes our spec-
ification relatively concise; by comparison, the core parts of
the Hugs typechecker takes some 90+ pages of C code.

Regrettably, length restrictions have prevented us from in-
cluding many examples in this paper to illustrate the defini-
tions at each stage. For the same reason, definitions of a few
constants that represent entities in the standard prelude, as
well as the machinery that we use in testing to display the
results of type inference, are not included in the typeset ver-
sion of this paper. Apart from those details, this paper gives
the full source code.

We expect the program described here to evolve in at least
three different ways.

e Formal specifications are not immune to error, and so
it is possible that changes will be required to correct
bugs in the code presented here. On the other hand,
by writing our specification as a program that can be
typechecked and executed with existing Haskell imple-
mentations, we have a powerful facility for detecting
simple bugs automatically and for testing to expose
deeper problems.

e As it stands, this paper just provides one more inter-
pretation of the Haskell type system. We believe that it
is consistent with the official specification, but because
the latter is given only informally, we cannot establish
the correctness of our presentation here in any rigorous
manner. We hope that this paper will stimulate dis-
cussion in the Haskell community, and would expect to
make changes to the specification as we work towards
some kind of consensus.

e There is no shortage of proposed extensions to the
Haskell type system, some of which have already been
implemented in one or more of the available Haskell
systems. Some of the better known examples of
this include multiple-parameter type classes, existential
types, rank-2 polymorphism, extensible records. We
would like to obtain formal descriptions for as many of
these proposals as possible by extending the core spec-
ification presented here.

It will come as no surprise to learn that some knowledge
of Haskell will be required to read this paper. That said,

[ Description | Symbol | Type |
kind k, ... Kind
type constructor | tc, ... Tycon
type variable v, ... Tyvar
- “fixed’ fy--

— ‘generic’ g, .-

type t, ... Type
class ¢y ... Class
predicate D, q, ... | Pred

— ‘deferred’ d, ...

— ‘retained’ Ty ...

qualified type qt, ... QualType
scheme SCy ... Scheme
substitution Sy ... Subst
unifier Uy oo Subst
assumption a, ... Assump
identifier i, ... Id

literal I ... Literal
pattern pat, ... | Pat
expression e, f,... | Ezpr
alternative alt, ... Alt
binding group by, ... BindGroup

Figure 1: Notational Conventions

we have tried to keep the definitions and code as clear and
simple as possible, and although we have made some use
of Haskell overloading and do-notation, we have generally
avoided using the more esoteric features of Haskell. In ad-
dition, some experience with the basics of Hindley-Milner
style type inference [5, 9, 2] will be needed to understand
the algorithms presented here. Although we have aimed to
keep our presentation as simple as possible, some aspects of
the problems that we are trying to address have inherent
complexity or technical depth that cannot be side-stepped.
In short, this paper will probably not be useful as a tutorial
introduction to Hindley-Milner style type inference!

2 Preliminaries

For simplicity, we present the code for our typechecker as
a single Haskell module. The program uses only a handful
of standard prelude functions, like map, concat, all, any,
mapM , etc., and a few operations from the List library:

module TypingHaskellInHaskell where
import List (nub, (\\), intersect, union, partition)

For the most part, our choice of variable names follows the
notational conventions set out in Figure 1. A trailing s on
a variable name usually indicates a list. Numeric suffices or
primes are used as further decoration where necessary. For
example, we use k or k' for a kind, and ks or ks’ for a list
of kinds. The types and terms appearing in the table are
described more fully in later sections. To distinguish the
code for the typechecker from program fragments that are
used to discuss its behavior, we typeset the former in an
ttalic font, and the latter in a typewriter font.

Throughout this paper, we implement identifiers as strings,
and assume that there is a simple way to generate new iden-



tifiers dynamically using the enumld function:

type Id = String

enumld Int — Id

enumld n = “v” +H show n
3 Kinds

To ensure that they are valid, Haskell type constructors are
classified into different kinds: the kind * (pronounced ‘star’)
represents the set of all simple (i.e., nullary) type expres-
sions, like Int and Char — Bool; kinds of the form ki — ko
represent type constructors that take an argument type of
kind k; to aresult type of kind k». For example, the standard
list, Maybe and IO constructors all have kind % — %. Here,
we will represent kinds as values of the following datatype:

data Kind = Star | Kfun Kind Kind
deriving Eq

Kinds play essentially the same role for type constructors as
types do for values, but the kind system is clearly very prim-
itive. There are a number of extensions that would make
interesting topics for future research, including polymorphic
kinds, subkinding, and record/product kinds. A simple ex-
tension of the kind system—adding a new row kind—has
already proved to be useful for the Trex implementation of
extensible records in Hugs [3, 7].

4 Types

The next step is to define a representation for types. Strip-
ping away syntactic sugar, Haskell type expressions are ei-
ther type variables or constants (each of which has an associ-
ated kind), or applications of one type to another: applying
a type of kind k1 — k2 to a type of kind k; produces a type
of kind k»:
data Type = TVar Tyvar
| TCon Tycon
| TAp Type Type
| TGen Int
deriving Eq

data Tyvar = Tyvar Id Kind
deriving Eq

data Tycon = Tycon Id Kind
deriving Eq

The following examples show how standard primitive
datatypes are represented as type constants:

tChar = TCon (Tycon “Char” Star)

tArrow = TCon (Tycon “(->)” (Kfun Star
(Kfun Star
Star)))

A full Haskell compiler or interpreter might store additional
information with each type constant—such as the the list of

constructor functions for an algebraic datatype—but such
details are not needed during typechecking.

Types of the form T'Gen n represent ‘generic’, or quantified
type variables; their role is described in Section 8.

We do not provide a representation for type synonyms, as-
suming instead that they have been fully expanded before
typechecking. It is always possible for an implementation to
do this because Haskell prevents the use of a synonym with-
out its full complement of arguments. Moreover, the pro-
cess is guaranteed to terminate because recursive synonym
definitions are prohibited. In practice, however, implemen-
tations are likely to expand synonyms more lazily: in some
cases, type error diagnostics may be easier to understand if
they display synonyms rather than expansions.

We end this section with the definition of two helper func-
tions. The first provides a way to construct function types:

infixr 4 ‘fn’
n i Type = Type — Type
a‘fn'b = TAp (TAp tArrow a) b

The second introduces an overloaded function, kind, that
can be used to determine the kind of a type variable, type

constant, or type expression:

class HasKind t where

kind : t— Kind
instance HasKind Tyvar where
kind (Tyvar v k) = k
instance HasKind Tycon where
kind (Tycon v k) = k&
instance HasKind Type where
kind (TCon tc) = kind tc
kind (TVar u) = kind u
kind (TAp t -) = -case (kind t) of

(Kfun _ k) — k

Most of the cases here are straightforward. Notice, however,
that we can calculate the kind of an application (TAp t t')
using only the kind of its first argument ¢: Assuming that
the type is well-formed, ¢ must have a kind k' — k, where &'
is the kind of #' and k is the kind of the whole application.
This shows that we need only traverse the leftmost spine of
a type expression to calculate its kind.

5 Substitutions

Substitutions—which are just finite functions, mapping type
variables to types—play a major role in type inference. In
this paper, we represent substitutions using association lists:

type Subst = [(Tyvar, Type)]

To ensure that we work only with well-formed type expres-
sions, we will be careful to construct only kind-preserving
substitutions, in which variables can be mapped only to
types of the same kind.

The simplest substitution is the null substitution, repre-
sented by the empty list, which is obviously kind-preserving:

nullSubst :: Subst
nullSubst = []



Almost as simple are the substitutions (v ~ #)? that map a
single variable u to a type t of the same kind:

— . Tyvar — Type — Subst
u—t = [(u, )]

This is kind-preserving if, and only if, kind v = kind t.

Substitutions can be applied to types—or to anything con-
taining type components—in a natural way. This suggests
that we overload the operation to apply a substitution so
that it can work on different types of object:

class Types t where
apply :: Subst >t —t
tv it — [Tyvar]

In each case, the purpose of applying a substitution is the
same: To replace every occurrence of a type variable in the
domain of the substitution with the corresponding type. We
also include a function tv that returns the set of type vari-
ables (i.e., Tyvars) appearing in its argument, listed in order
of first occurrence (from left to right), with no duplicates.
The definitions of these operations for Type are as follows:

instance Types Type where
apply s (TVar u) = case lookup u s of
Just t -
Nothing — TVar u

apply s (TAp I'r) = TAp (apply s 1) (apply s 7)
apply s t =t

tv (TVar u) = [u]

tv (TAp 1 r) = tv [l ‘union‘ tv r

tv t

[]

It is straightforward (and useful!) to extend these operations
to work on lists:

instance Types a = Types [a] where
apply s = map (apply s)
tv = nub . concat . map tv

The apply function can be used to build more complex sub-
stitutions. For example, composition of substitutions, spec-
ified by apply (s1QQs2) = apply s1 . apply s2, can be defined
more concretely using:

infixr 4 Q@
(@@) o Subst — Subst — Subst
51QQsy = [(u, apply s1 t) | (u, t)  s2]+H s1

We can also form a ‘parallel’ composition s; + s2 of two
substitutions s; and sz, but the result is ‘left-biased’ because
bindings in s; take precedence over any bindings for the same
variables in s3. For a more symmetric version of this opera-
tion, we use a merge function, which checks that the two sub-
stitutions agree at every variable in the domain of both and
hence guarantees that apply (si1 H s2) = apply (s2 H s1).

2The typeset version of the symbol — is written +-> in the concrete
syntax of Haskell.

Clearly, this is a partial function, which we reflect by ar-
ranging for merge to return a result of type Maybe Subst:

merge © Subst — Subst — Maybe Subst
merge s1 s = if agree then Just s else Nothing
where dom s = map fst s
s = 81 +H 82
agree = all (\v = apply s (T'Var v) ==

apply s> (T'Var v))
(dom s1 ‘“intersect’ dom s2)

It is easy to check that both (@@) and merge produce kind-
preserving results from kind-preserving arguments.

6 Unification and Matching

The goal of unification is to find a substitution that makes
two types equal—for example, to ensure that the domain
type of a function matches up with the type of an argument
value. However, it is also important for unification to find as
‘small’ a substitution as possible, because that will also lead
to the most general type. More formally, a substitution s is
a unifier of two types t; and # if apply s t1 == apply s to.
A most general unifier, or mgu, of two such types is a unifier
u with the property that any other unifier s can be written
as s'@Qu, for some substitution s’.

The syntax of Haskell types has been carefully chosen to en-
sure that, if two types have any unifying substitutions, then
they also have a most general unifier, which can be calcu-
lated by a simple variant of Robinson’s algorithm [11]. One
of the main reasons for this is that there are no non-trivial
equalities on types. Extending the type system with higher-
order features (such as lambda expressions on types), or with
any other mechanism that allows reductions or rewriting in
the type language, will often make unification undecidable,
non-unitary (meaning that there may not be most general
unifiers), or both. This, for example, is why it is not pos-
sible to allow type synonyms to be partially applied (and
interpreted as some restricted kind of lambda expression).

The calculation of most general unifiers is implemented by
a pair of functions:

mgu = Type — Type — Maybe Subst
varBind Tyvar — Type — Maybe Subst

Both of these return results using Maybe because unification
is a partial function. However, because Maybe is a monad,
the programming task can be simplified by using Haskell’s
monadic do-notation. The main unification algorithm is de-
scribed by mgu, which uses the structure of its arguments
to guide the calculation:

mgu (TAp I r) (TAp ' r') = do s < mgull'
s2 < mgu (apply s1 1)
(apply s1 1')
Just (s2QQs;)
varBind u t
varBind u t

mgu (TVar u) t

mgu t (TVar u)

mgu (TCon tc1) (TCon tca)
| t01 == th

mgu t1 t2

Just nullSubst
Nothing



The varBind function is used for the special case of unifying
a variable u with a type ¢t. At first glance, one might think
that we could just use the substitution (u + t) for this. In
practice, however, tests are required to ensure that this is
valid, including an ‘occurs check’ (u ‘elem’ tv t) and a test
to ensure that the substitution is kind-preserving:

varBind u t | t == TVar u = Just nullSubst
| w ‘elem® tv ¢ = Nothing
| kind u=="Find t = Just (uw>t)
| otherwise = Nothing

In the following sections, we will also make use of an oper-
ation called matching that is closely related to unification.
Given two types t; and ¢», the goal of matching is to find a
substitution s such that apply s t1 = t2. Because the sub-
stitution is applied only to one type, this operation is often
described as one-way matching. The calculation of matching
substitutions is implemented by a function:

match Type — Type — Maybe Subst

Matching follows the same pattern as unification, except
that it uses merge rather than QQ in the case for type ap-
plications, and it does not allow binding of variables in #»:

match (TAp 1 r) (TAp I' ') = do sl < match I I'
st < match r '
merge sl sr

match (TVar u) t

| kind u == kind t = Just (u+>t)
match (TCon tci) (TCon te)

| ter == teo = Just nullSubst
match t to = Nothing

7 Predicates and Qualified Types

Haskell types can be qualified by adding a (possibly empty)
list of predicates, or class constraints, to restrict the ways in
which type variables are instantiated?:

data Qual ¢ = [Pred]:=t
deriving Eq

Predicates themselves consist of a class name, and a type:

data Pred = IsIn Class Type
deriving Eq

Haskell’s classes represent sets of types. For example, a
predicate IsIn c¢ t asserts that ¢ is a member of the class c.
It would be easy to extend the Pred datatype to allow other
forms of predicate, as is done with Trex records in Hugs [7].
Another frequently requested extension is to allow classes
to accept multiple parameters, which would require a list of
Types rather than the single Type in the definition above.

3The typeset version of the symbol := is written :=> in the con-
crete syntax of Haskell, and corresponds directly to the => symbol
that is used in instance declarations and in types.

The extension of Types to the Qual and Pred datatypes is
straightforward:

instance Types t = Types (Qual t) where

apply s (ps:=1t) = apply s ps:= apply s t

tv (ps := t) = tv ps ‘union‘ tv t
instance Types Pred where

apply s (IsIn ¢ t) = IsIn c (apply s t)

tv (IsIn c t) = tvt

7.1 Classes and Instances

A Haskell type class can be thought of as a set of types
(of some particular kind), each of which supports a certain
collection of member functions that are specified as part of
the class declaration. The types in each class (known as
instances) are specified by a collection of instance declara-
tions. We will assume that class names appearing in the
original source code have been mapped to values of the fol-
lowing Class datatype prior to typechecking:

data Class = Class {name :: Id,
super :: [Class],
insts :: [Inst]}

type Inst = Qual Pred

Values of type Class and Inst correspond to source level
class and instance declarations, respectively. Only the de-
tails that are needed for type inference are included in these
representations. A full Haskell implementation would need
to store additional information for each declaration, such as
the member functions for the class, or their implementations
in a particular instance.

A derived equality on Class is not useful because the data
structures may be cyclic and so a test for structural equal-
ity might not terminate when applied to equal arguments.
Instead, we use the name field to define an equality:

instance Eq Class where
! !
c==c¢ = name c==name ¢

Apart from using a different keyword, Haskell class and in-
stance declarations begin in the same way, with a clause of
the form preds = pred for some (possibly empty) ‘context’
preds, and a ‘head’ predicate pred. In a class declaration,
the context is used to specify the immediate superclasses,
which we represent more directly by the list of classes in
the field super: If a type is an instance of a class ¢, then
it must also be an instance of any superclasses of c¢. Using
only superclass information, we can be sure that, if a given
predicate p holds, then so too must all of the predicates in
the list bySuper p:

bySuper Pred — [Pred]
bySuper p@(Isln c t)
= p: concat (map bySuper supers)
where supers = [IsIn ¢’ t | ¢ <« super c]

The list bySuper p may contain duplicates, but it will al-
ways be finite because restrictions in Haskell ensure that
the superclass hierarchy is acyclic.



The final field in each Class structure, insts, is the list of
instance declarations for that particular class. Each such in-
stance declaration is represented by a clause ps := h. Here,
h is a predicate that describes the form of instances that
the declaration can produce, while the context ps lists any
constraints that it requires. We can use the following func-
tion to see if a particular predicate p can be deduced using
a given instance. The result is either Just ps, where ps is
a list of subgoals that must be established to complete the
proof, or Nothing if the instance does not apply:

byInst . Pred — Inst — Maybe [Pred)
byInst p (ps := h) = do u < matchPred h p
Just (map (apply u) ps)

To see if an instance applies, we use one-way matching on
predicates, which is implemented as follows:

matchPred Pred — Pred — Maybe Subst
matchPred (IsIn c t) (IsIn ¢’ t')

| c==c¢ = match tt

| otherwise = Nothing

We can find all the relevant instances for a given predicate
p = IsIn ¢ t in insts c. So, if there are any ways to apply
an instance to p, then we can find one using:

reducePred = Pred — Maybe [Pred]
reducePred p@(IsIn ¢ t) = foldr (|||) Nothing poss
where poss map (bylnst p) (insts c)
Nothing||ly =y
Just zl|ly = Justz

In fact, because Haskell prevents the definition of overlap-
ping instances, we can be sure that, if reducePreds succeeds,
then we have actually found the only applicable instance.

7.2 Entailment

The information provided by class and instance declarations
can be combined to define an entailment relation on pred-
icates. As in the theory of qualified types [6], we write
ps H p to indicate that the predicate p will hold whenever
all of the predicates in ps are satisfied. To make this more
concrete, we define the following function?:

(H) = [Pred] — Pred — Bool
ps = p = any (p ‘elem’) (map bySuper ps) ||
case reducePred p of
Nothing — False
Just g — all (ps K) gs

The first step here is to determine whether p can be deduced
from ps using only superclasses. If that fails, we look for a
matching instance and generate a list of predicates ¢s as a
new goal, each of which must, in turn, follow from ps.

Conditions specified in the Haskell report—mnamely that the
class hierarchy is acyclic and that the types in any instance
declaration are strictly smaller than those in the head—are

4The typeset version of the symbol H- is written | |- in the concrete
syntax of Haskell.

enough to guarantee that tests for entailment will termi-
nate. Completeness of the algorithm is also important: will
ps H p always return True whenever there is a way to prove
p from ps? In fact our algorithm does not cover all possible
cases: it does not test to see if p is a superclass of some
other predicate ¢ such that ps K- ¢. Extending the algo-
rithm to test for this would be very difficult because there
is no obvious way to choose a particular ¢, and, in gen-
eral, there will be infinitely many potential candidates to
consider. Fortunately, a technical condition in the Haskell
report [10, Condition 1 on Page 47] reassures us that this is
not necessary: if p can be obtained as an immediate super-
class of some predicate ¢ that was built using an instance
declaration in an entailment ps H ¢, then ps must already
be strong enough to deduce p. Thus, although we have not
formally proved these properties, we believe that our algo-
rithm is sound, complete, and guaranteed to terminate.

8 Type Schemes

Type schemes are used to describe polymorphic types, and
are represented using a list of kinds and a qualified type:

data Scheme = Forall [Kind] (Qual Type)
deriving Eq

There is no direct equivalent of Forall in the syntax of
Haskell. Instead, implicit quantifiers are inserted as nec-
essary to bind free type variables.

In a type scheme Forall ks gt, each type of the form TGen n
that appears in the qualified type ¢t represents a generic, or
universally quantified type variable, whose kind is given by
ks!! n. This is the only place where we will allow T'Gen val-
ues to appear in a type. We had originally hoped that this
restriction could be enforced statically by a careful choice of
the representation for types and type schemes. However, af-
ter considering several other alternatives, we eventually set-
tled for the representation shown here because it allows for
simple implementations of equality and substitution. For ex-
ample, because the implementation of substitution on Type
ignores TGen values, we can be sure that there will be no
variable capture problems in the following definition:

instance Types Scheme where
apply s (Forall ks gt) = Forall ks (apply s qt)
tv (Forall ks qt) = tv gt

Type schemes are constructed by quantifying a qualified
type ¢t with respect to a list of type variables vs:

quantify [Tyvar] = Qual Type — Scheme
quantify vs gt = Forall ks (apply s qt)
where vs' = [v]| v« tv qt, v ‘elem* vs]
ks = map kind vs'
s = zip vs' (map TGen [0.])

Note that the order of the kinds in ks is determined by the
order in which the variables v appear in tv ¢t, and not by
the order in which they appear in vs. So, for example, the
leftmost quantified variable in a type scheme will always be
represented by T'Gen 0. By insisting that type schemes are



constructed in this way, we obtain a unique canonical form
for Scheme values. This is very important because it means
that we can test whether two type schemes are the same—
for example, to determine whether an inferred type agrees
with a declared type—using Haskell’s derived equality.

In practice, we sometimes need to convert a Type into a
Scheme without adding any qualifying predicates or quanti-
fied variables. For this special case, we can use the following
function instead of quantify:

toScheme = Type — Scheme
toScheme t = Forall [] ([]:= 1)

9 Assumptions

Assumptions about the type of a variable are represented
by values of the Assump datatype, each of which pairs a
variable name with a type scheme:

data Assump = Id :>: Scheme

Once again, we can extend the Types class to allow the ap-
plication of a substitution to an assumption:

instance Types Assump where
apply s (i :>:s¢) = 1:>: (apply s sc)
tv (i :>: sc) = tv sc

Thanks to the instance definition for Types on lists (Sec-
tion 5), we can also use the apply and tv operators on the
lists of assumptions that are used to record the type of each
program variable during type inference. We will also use the
following function to find the type of a particular variable
in a given set of assumptions:

find . Id — [Assump] — Scheme
find i as = head [sc| (i :>: s¢c) < as, i == ']

We do not make any allowance here for the possibility that
the variable ¢ might not appear in as, and assume instead
that a previous compiler pass will have detected any occur-
rences of unbound variables.

10 A Type Inference Monad

It is now quite standard to use monads as a way to hide
certain aspects of ‘plumbing’ and to draw attention instead
to more important aspects of a program’s design [12]. The
purpose of this section is to define the monad that will be
used in the description of the main type inference algorithm
in Section 11. Our choice of monad is motivated by the
needs of maintaining a ‘current substitution’ and of gener-
ating fresh type variables during typechecking. In a more
realistic implementation, we might also want to add error
reporting facilities, but in this paper the crude but simple
error function from the Haskell prelude is all that we re-
quire. It follows that we need a simple state monad with
only a substitution and an integer (from which we can gen-

erate new type variables) as its state:

newtype Tl a = TI (Subst — Int — (Subst, Int, a))
instance Monad TI where
return z = TI (\s n— (s, n,))
Tl ¢c>>=f = TI(\sn—
let (s',m,z) = csmn
TI fr = fz
in fr ' m)
runTl w Tla—a
runTI (TI ¢) = result
where (s, n, result) = ¢ nullSubst 0

We provide two operations that deal with the current sub-
stitution: getSubst returns the current substitution, while
unify extends it with a most general unifier of its arguments:

getSubst TI Subst

getSubst = TI (\sn— (s, n,s))
unify i Type — Type — TI ()
unify t1 t2 = do s < getSubst

case mgu (apply s t1) (apply s t2) of
Just w  —  extSubst u
Nothing — error “unification”

For clarity, we define the operation that extends the substi-
tution as a separate function, even though it is used only
here in the definition of unify:

extSubst Subst — TI ()
extSubst s = TI (\s n — (s'QQs, n, ()))

Overall, the decision to hide the current substitution in the
TT monad makes the presentation of type inference much
clearer. In particular, it avoids heavy use of apply every
time an extension is (or might have been) computed.

There is only one primitive that deals with the integer por-
tion of the state, using it in combination with enumld to
generate a new or fresh type variable of a specified kind:

newT Var » Kind — TI Type

newTVar k = TI (\s n —
let v = Tyvar (enumld n) k
in (s, n+1, TVar v))

One place where newT Var is useful is in instantiating a type
scheme with new type variables of appropriate kinds:

freshInst 2o Scheme — TI (Qual Type)
freshInst (Forall ks qt) = do ts + mapM newTVar ks
return (inst ts qt)

The structure of this definition guarantees that ts has ex-
actly the right number of type variables, and each with the
right kind, to match ks. Hence, if the type scheme is well-
formed, then the qualified type returned by freshInst will
not contain any unbound generics of the form T'Gen n. The
definition relies on an auxiliary function inst, which is a
variation of apply that works on generic variables. In other



words, inst ts t replaces each occurrence of a generic vari-
able TGen n in t with ¢s!!n. Although we use it at only
this one place, it is still convenient to build up the definition
of inst using overloading.

class Instantiate t where

inst = [Type] >t — 1t
instance Instantiate Type where
inst ts (TAp Il ) = TAp (inst ts 1) (inst ts )
inst ts (TGen n) = tslln
st ts t =t
instance Instantiate a = Instantiate [a] where
inst ts = map (inst ts)
instance Instantiate t = Instantiate (Qual t) where
inst ts (ps:=t) = inst ts ps := inst ts t
instance Instantiate Pred where
inst ts (IsIn ¢ t) = IsIn c (inst ts t)

11 Type Inference

With this section we have reached the heart of the paper,
detailing our algorithm for type inference. It is here that
we finally see how the machinery that has been built up
in earlier sections is actually put to use. We develop the
complete algorithm in stages, working through the abstract
syntax of the input language from the simplest part (literals)
to the most complex (binding groups). Most of our typing
rules are expressed in terms of the following type synonym:

type Infer e t = [Assump] — e — TI ([Pred], t)

In more theoretical treatments, it would not be surprising to
see the rules expressed in terms of judgments P | Al e: t,
where P is a set of predicates, A is a set of assumptions, e is
an expression, and ¢ is a corresponding type [6]. Judgments
like this can be thought of as 4-tuples, and the typing rules
themselves just correspond to a 4-place relation. Exactly
the same structure shows up in types of the form Infer e t,
except that by using functions, we distinguish very clearly
between input and output parameters.

11.1 Literals

Like other languages, Haskell provides special syntax for
constant values of certain primitive datatypes, including nu-
merics, characters, and strings. We will represent these lit-
eral expressions as values of the Literal datatype:

data Literal = LitInt Integer
| LitChar Char

Type inference for literals is straightforward. For characters,
we just return typeChar. For integers, we return a new type
variable v together with a predicate to indicate that v must
be an instance of the Num class.

tiLit o Literal — TI ([Pred], Type)
tiLit (LitChar -) = return ([], tChar)
tiLit (LitInt _) = do v < newTVar Star

return ([IsIn ¢cNum v], v)

For this last case, we assume the existence of a constant
c¢Num :: Class to represent the Haskell class Num, but, for
reasons of space, we do not present the definition here. It is
straightforward to add additional cases for Haskell’s floating
point and String literals.

11.2 Patterns

Patterns are used to inspect and deconstruct data values
in lambda abstractions, function and pattern bindings, list
comprehensions, do notation, and case expressions. We will
represent patterns using values of the Pat datatype:

data Pat = PVar Id
| PLit Literal
|

PCon Assump [Pat]

A PVar i pattern matches any value, and binds the result
to the variable 7. A PLit | pattern matches only the partic-
ular value denoted by the literal {. A pattern of the form
PCon a pats matches only values that were built using the
constructor function e with a sequence of arguments that
matches pats. We use values of type Assump to represent
constructor functions; all that we really need for typecheck-
ing is the type, although the name is useful for debugging.
A full implementation of Haskell would store additional de-
tails such as arity, and use this to check that constructor
functions in patterns are always fully applied.

Most Haskell patterns have a direct representation in Pat,
but it would need to be extended to account for patterns us-
ing labeled fields, and for (n + k) patterns. Neither of these
cause any substantial problems, but they do add a little
complexity, which we prefer to avoid in this presentation.

Type inference for patterns has two goals: To calculate a
type for each bound variable, and to determine what type
of values the whole pattern might match. This leads us to
look for a function:

tiPat : Pat — TI ([Pred], [Assump], Type)

Note that we do not need to pass in a list of assumptions
here; by definition, any occurence of a variable in a pattern
would hide rather than refer to a variable of the same name
in an enclosing scope.

For a variable pattern, PVar i, we just return a new as-
sumption, binding 7 to a fresh type variable.

tiPat (PVar 1) = do v < newTVar Star
return ([], [¢ :>: toScheme v], v)

Haskell does not allow multiple use of any variable in a pat-
tern, so we can be sure that this is the first and only occur-
rence of ¢ that we will encounter in the pattern.

For literal patterns, we use #:Lit from the previous section:

tiPat (PLit I) = do (ps, t) < tiLit |
return (ps, [], t)



The case for constructed patterns is slightly more complex:

tiPat (PCon (i :>: sc) pats)
= do (ps, as, ts) < tiPats pats
t' < newTVar Star
(gs := t) < freshInst sc
unify t (foldr fn t' ts)
return (ps + g¢s, as, t')

First we use the tiPats function, defined below, to cal-
culate types ts for each subpattern in pats together with
corresponding lists of assumptions in as and predicates in
ps. Next, we generate a new type variable t' that will be
used to capture the (as yet unknown) type of the whole
pattern. From this information, we would expect the con-
structor function at the head of the pattern to have type
foldr fn t' ts. We can check that this is possible by instan-
tiating the known type sc of the constructor and unifying.

The tiPats function is a variation of #iPat that takes a list of
patterns as input, and returns a list of types (together with
a list of predicates and a list of assumptions) as its result.

tiPats i [Pat] = TI ([Pred], [Assump], [Type])
tiPats pats =
do psasts < mapM tiPat pats

let ps = [p]| (ps, -, -) < psasts, p < ps]
as = [a| (5 as, -) < psasts, a < as]
ts = [t](, - t) < psasts]

return (ps, as, ts)

We have already seen how #iPats was used in the treatment
of PCon patterns above. It is also useful in other situations
where lists of patterns are used, such as on the left hand
side of an equation in a function definition.

11.3 Expressions

Our next step is to describe type inference for expressions,
represented by the Ezpr datatype:

data Ezpr = Var Id

| Lit Literal

| Const Assump

| Ap Ezpr Ezpr

| Let BindGroup Ezxpr

The Var and Lit constructors are used to represent variables
and literals, respectively. The Const constructor is used
to deal with named constants, such as the constructor or
selector functions associated with a particular datatype or
the member functions that are associated with a particular
class. We use values of type Assump to supply a name
and type scheme, which is all the information that we need
for the purposes of type inference. Function application is
represented using the Ap constructor, while Let is used to
represent let expressions.

Haskell has a much richer syntax of expressions, but they can
all be translated into Ezpr values. For example, a lambda
expression like \x->e can be rewritten using a local defini-
tion as let £ x = e in f, where f is a new variable. Sim-
ilar translations are used for case expressions.

Type inference for expressions is quite straightforward:

tiErpr Infer Ezpr Type
tiEzpr as (Var i)
= dolet sc = find i as
(ps :== t) < freshInst sc
return (ps, t)

tiEzpr as (Const (i :>: sc))
= do (ps:=t) « freshlnst sc
return (ps, t)

tiBzpr as (Lit 1)
= do (ps, t) « tiLit |
return (ps, t)

tiBxpr as (Ap e f)
= do (ps, te) « tiEzpr as e
(gs, tf) « tiEzpr as f
t < newTVar Star
unify (fn tf t) te
return (ps H- gs, t)

tiEzpr as (Let bg e)
= do (ps, as’) + tiBindGroup as bg
(gs, t) < tiEzpr (as’ +as) e
return (ps H- gs, t)

The final case here, for Let expressions, uses the function
tiBind Group presented in Section 11.6.3, to generate a list of
assumptions as’ for the variables defined in bg. All of these
variables are in scope when we calculate a type ¢ for the body
e, which also serves as the type of the whole expression.

11.4 Alternatives

The representation of function bindings in following sections
uses alternatives, represented by values of type Alt:

type Alt = ([Pat], Ezpr)

An Alt specifies the left and right hand sides of a function
definition. With a more complete syntax for Ezpr, values of
type Alt might also be used in the representation of lambda
and case expressions.

For type inference, we begin by building a new list as’ of
assumptions for any bound variables, and use it to infer
types for each of the patterns, as described in Section 11.2.
Next, we calculate the type of the body in the scope of the
bound variables, and combine this with the types of each
pattern to obtain a single (function) type for the whole Alt:

tiAlt  :: Infer Alt Type
tiAlt as (pats, e)
= do (ps, as’, ts) « tiPats pats
(gs, t) + tiEzpr (as’ Has) e
return (ps +H-gs, foldr fn t ts)

In practice, we will often need to run the typechecker over
a list of alternatives, alts, and check that the returned type



in each case agrees with some known type ¢. This process
can be packaged up in the following definition:

t1Alts [Assump] — [Alt] — Type — TI [Pred]
tiAlts as alts t
= do psts < mapM (tiAlt as) alts
mapM (unify t) (map snd psts)
return (concat (map fst psts))

Although we do not need it here, the signature for tiAlts
would allow an implementation to push the type argument
inside the checking of each Alt, interleaving unification with
type inference instead of leaving it to the end. This is essen-
tial in extensions like the support for rank-2 polymorphism
in Hugs where explicit type information plays a prominent
role. Even in an unextended Haskell implementation, this
could still help to improve the quality of type error messages.

11.5 Context Reduction

We have seen how lists of predicates are accumulated during
type inference. In this section, we will describe how those
predicates are used to construct inferred types. The Haskell
report [10] provides only informal hints about this aspect of
the Haskell typing, where both pragmatics and theory have
important parts to play. We believe therefore that this is
one of the areas where a more formal specification will be
particularly valuable.

To understand the basic problem, suppose that we have run
tiEzpr over the body of a function f to obtain a set of pred-
icates ps and a type t. At this point we could infer a type
for f by forming the qualified type gt = (ps := t), and then
quantifying over any variables in ¢¢ that do not appear in
the assumptions. While this is permitted by the theory of
qualified types, it is often not the best thing to do in prac-
tice. For example:

e The syntax of Haskell requires class arguments to be
of the form v #; ... t,, where v is a type variable, and
ti,...,tn are types (and n > 0). Predicates that do not
fit this pattern must be broken down using reducePred.
In some cases, this will result in predicates being elimi-
nated. In others, where reducePred fails, it will indicate
that a predicate is unsatisfiable, and will trigger an er-
ror diagnostic.

e Some of the predicates in ps may be repeated or, more
generally, entailed by the other members of ps. These
predicates can safely be deleted, leading to smaller and
simpler inferred types.

e Some of the predicates in ps may contain only ‘fixed’
variables (i.e., variables appearing in the assumptions),
so including those constraints in the inferred type will
not be of any use [6, Section 6.1.4]. These predicates
should be ‘deferred’ to the enclosing bindings.

e Some of the predicates in ps could be ambiguous, and
might require defaulting to avoid a type error.

To deal with all of these issues, we use a process of context
reduction whose purpose is to compute, from a given set of
predicates ps, a set of ‘deferred’ predicates ds and a set of

10

‘retained’ predicates rs. Only retained predicates will be in-
cluded in inferred types. The complete process is described
by the following function:

reduce [Tyvar] — [Tyvar] — [Pred] — ([Pred], [Pred])

reduce fs gs ps = (ds, rs')
where (ds, rs) = split fs ps
rs' = useDefaults (fs +H gs) rs

The first stage of this algorithm, which we call context
splitting, is implemented by split and is described in Sec-
tion 11.5.1. Its purpose is to separate the deferred predicates
from the retained predicates, using reducePred as necessary.
The second stage implemented by useDefaults, is described
in Section 11.5.2. Its purpose is to eliminate ambiguities in
the retained predicates, whenever possible. The fs and g¢s
parameters specify appropriate sets of ‘fixed’ and ‘generic’
type variables, respectively. The former is just the set of
variables appearing free in the assumptions, while the latter
is the set of variables over which we would like to quantify.
Any variable in ps that is not in either fs or gs may cause
ambiguity, as we describe in Section 11.5.2.

11.5.1 Context Splitting

We will describe the process of splitting a context as the
composition of three functions, each corresponding to one
of the bulletted items at the beginning of Section 11.5.

split [Tyvar] — [Pred] — ([Pred], [Pred))
split fs = partition (all (‘elem’ fs) . tv)
simplify []
toHnfs

The first stage of this pipeline, implemented by toHnfs, uses
reducePred to break down any inferred predicates into the
form that Haskell requires:

toHnfs [Pred] — [Pred]
toHnfs = concat.map toHnf
toHnf Pred — [Pred]
toHnf p =
if inHnf p
then [p]
else case reducePred p of
Nothing — error “context reduction”
Just ps — toHnfs ps

The name toHnfs is motivated by similarities with the con-
cept of head-normal forms in A-calculus. The test to deter-
mine whether a given predicate is in the appropriate form
is implemented by the following function:

inHnf Pred — Bool
inHnf (IsIn ct) = hnft

where hnf (TVar v) = True

hnf (TCon tc) = False

hnf (TAp t_) = hnft

The second stage of the pipeline uses information about
superclasses to eliminate redundant predicates. More pre-
cisely, if the list produced by toHnfs contains some predicate



p, then we can eliminate any occurrence of a predicate from
bySuper p in the rest of the list. As a special case, this also
means that we can eliminate any repeated occurrences of
p, which always appears as the first element in bySuper p.
This process is implemented by the simplify function, using
an accumulating parameter to bulid up the final result:

simplify [Pred] — [Pred] — [Pred)]
simplify rs [] = 75
simplify rs (p: ps) = simplify (p: (rs\\ gs)) (ps\\ ¢s)
where ¢s = bySuper p
rs\\ ¢gs = [r|r < rs, r ‘notElem‘ gs]

Note that we have used a modified version of the (\\) oper-
ator; with the standard Haskell semantics for (\\), we could
not guarantee that all duplicate entries would be removed.

The third stage of context reduction uses partition to sep-
arate deferred predicates—i.e., those containing only fixed
variables—from retained predicates. The set of fixed vari-
ables is passed in as the fs argument to split.

11.5.2 Applying Defaults

A type scheme P =t is said to be ambiguous if P contains
generic variables that do not also appear in ¢. From the-
oretical studies [1, 6], we know that we cannot guarantee
a well-defined semantics for any term with an ambiguous
type, which is why Haskell will not allow programs contain-
ing such terms. In this section, we describe the mechanisms
that are used to detect ambiguity, and the defaulting mech-
anism that it uses to try to eliminate ambiguity.

Suppose that we are about to qualify a type with a list of
predicates ps and that wvs lists all known variables, both
fixed and generic. An ambiguity occurs precisely if there
is a type variable that appears in ps but not in vws. To
determine whether defaults can be applied, we compute a
triple (v, gs, ts) for each ambiguous variable v. In each case,
gs is the list of predicates in ps that involve v, and t¢s is the
list of types that could be used as a default value for v:

ambig = [Tyvar] — [Pred] — [(Tyvar, [Pred], [Type])]
ambig vs ps
= [(v, gs, defs v gs) |
v tv ps\\ vs,
let gs = [p|p <« ps, v ‘elem’ tv p]]

If the ts component of any one of these triples turns out
to be empty, then defaulting cannot be applied to the cor-
responding variable, and the ambiguity cannot be avoided.
On the other hand, if #s is non-empty, then we will be able
to substitute head ts for v and remove the predicates in ¢s
from ps.

Given one of these triples (v, ¢s, ts), and as specified by the
Haskell report [10, Section 4.3.4], defaulting is permitted if,
and only if, all of the following conditions are satisfied:

e All of the predicates in g¢s are of the form
IsIn ¢ (TVar v) for some class c.

e All of the classes involved in g¢s are standard classes,
defined either in the standard prelude or standard li-
braries. We assume that the list of these classes is
provided by a constant stdClasses :: [Class).

e At least one of the classes involved in ¢s is a numeric
class. Again, we assume that the list of these classes is
provided by a constant numClasses :: [Class].

e That there is at least one type in the list of default
types for the enclosing module that is an instance of
all of the classes in gs. We assume that this list of
types is provided in a constant defaults :: [Type].

These conditions are captured rather more succinctly in the
following definition, which we use to calculate the third com-
ponent of each triple:

defs i Tyvar — [Pred] — [Type]
defs v gs = [t|all ((TVar v) ==) ts,
all (‘elem* stdClasses) cs,
any (‘elem’ numClasses) cs,
t < defaults,
and [[| # IsIn c t| ¢ + cs]]
where cs = [c| (IsIn ¢ t) < ¢s]
ts [t | (IsIn c t) + gs]

The defaulting process can now be described by the fol-
lowing function, which generates an error if there are any
ambiguous type variables that cannot be defaulted:

useDefaults [Tyvar] — [Pred] — [Pred]
useDefaults vs ps
| any null tss = error “ambiguity”
| otherwise = ps\\ps
where ams = ambig vs ps
tss = [ts| (v, gs, ts) < ams]
ps'" = [p|(v, g5, ts) « ams, p < ¢s]

A modified version of this process is required at the top-
level, when type inference for an entire module is complete
[10, Section 4.5.5, Rule 2]. In this case, any remaining type
variables are considered ambiguous, and we need to arrange
for defaulting to return a substitution mapping any such
variables to their defaulted types:

topDefaults [Pred] — Maybe Subst
topDefaults ps

| any null tss = Nothing

| otherwise = Just (zip vs (map head tss))

where ams = ambig [] ps
tss = [ts| (v, gs, ts) < ams]
VS8 = [v]| (v, gs, ts) < ams]

11.6 Binding Groups

The main technical challenge in this paper is to describe
typechecking for binding groups. This area is neglected in
most theoretical treatments of of type inference, often being
regarded as a simple exercise in extending basic ideas. In
Haskell, at least, nothing could be further from the truth!
With interactions between overloading, polymorphic recur-
sion, and the mixing of both explicitly and implicitly typed
bindings, this is the most complex, and most subtle com-
ponent of type inference. We will start by describing the
treatment of explicitly typed bindings and implicitly typed
bindings as separate cases, and then show how these can be
combined.



11.6.1 Explicitly Typed Bindings

The simplest case is for explicitly typed bindings, each of
which is described by the name of the function that is being
defined, the declared type scheme, and the list of alternatives
in its definition:

type Ezpl = (Id, Scheme, [Alt])

Haskell requires that each Alt in the definition of any given
value has the same number of arguments in each left-hand
side, but we do not need to enforce that restriction here.

Type inference for an explicitly typed binding is fairly easy;
we need only check that the declared type is valid, and do
not need to infer a type from first principles. To support the
use of polymorphic recursion [4, 8], we will assume that the
declared typing for i is already included in the assumptions
when we call the following function:

tiErpl
tiEzpl as (i, sc, alts) =
do (gs := t) < freshInst sc
ps «— tiAlts as alts t
s + getSubst

[Assump] — Expl — TI [Pred]

let ¢s’ = apply s ¢s
t’ = apply st
s’ = [p|p <+ apply s ps, not (gs' i p)]
fs = v (apply s as)
gs = twt'\\fs
(ds, rs) = reduce fs gs ps’
sc’ = quantify gs (¢s' := t')

if sc /= sc’ then
error “signature too general”
else if not (null rs) then
error “context too weak”
else
return ds

This code begins by instantiating the declared type scheme
sc and checking each alternative against the resulting type
t. When all of the alternatives have been processed, the
inferred type for i is ¢gs’ := t'. If the type declaration is
accurate, then this should be the same, up to renaming of
generic variables, as the original type ¢s := t. If the type
signature is too general, then the calculation of s¢’ will result
in a type scheme that is more specific than sc and an error
will be reported.

In the meantime, we must discharge any predicates that
were generated while checking the list of alternatives. Pred-
icates that are entailed by the context ¢s’ can be eliminated
without further ado. Any remaining predicates are collected
in ps’ and passed as arguments to reduce along with the ap-
propriate sets of fixed and generic variables. If there are any
retained predicates after context reduction, then an error is
reported, indicating that the declared context is too weak.

11.6.2 Implicitly Typed Bindings

Two complications occur when we deal with implicitly typed
bindings. The first is that we must deal with groups of mu-
tually recursive bindings as a single unit rather than infer-
ring types for each binding one at a time. The second is

12

Haskell’s monomorphism restriction, which restricts the use
of overloading in certain cases.

A single implicitly typed binding is described by a pair con-
taining the name of the variable and a list of alternatives:

type Impl = (Id, [Alt])

The monomorphism restriction is invoked when one or more
of the entries in a list of implicitly typed bindings is simple,
meaning that it has an alternative with no left-hand side
patterns. The following function provides a simple way to
test for this condition:

restricted [Impl] — Bool
restricted bs = any simple bs
where simple (i, alts) = any (null. fst) alts

Type inference for groups of mutually recursive, implicitly
typed bindings is described by the following function:
tilmpls Infer [Impl] [Assump]
tilmpls as bs =
do ts < mapM (\- = newTVar Star) bs

let is = map fst bs
ses = map toScheme ts
as’ = zipWith (:>:) is scs +as
altss = map snd bs

pss < sequence (zip With (tiAlts as') altss ts)
s  getSubst

let ps’ = apply s (concat pss)

ts’ = apply s ts

fs = v (apply s as)

V8 = map tv ts

gs = foldrl union vss\\ fs

(ds, rs) = reduce fs (foldrl intersect vss) ps'
if restricted bs then

let gs' = gs\\tvrs

scs’ = map (quantify gs' . ([]:=)) ts
in return (ds + rs, 2ipWith (:>:) 1s scs’)
else
let scs’ = map (quantify gs.(rs :=)) ts’

in return (ds, zip With (:>:) is scs’)

In the first part of this process, we extend as with assump-
tions binding each identifier defined in bs to a new type
variable, and use these to type check each alternative in
each binding. This is necessary to ensure that each vari-
able is used with the same type at every occurrence within
the defining list of bindings. (Lifting this restriction makes
type inference undecidable [4, 8].) Next we use the process
of context reduction to break the inferred predicates in ps’
into a list of deferred predicates ds and retained predicates
rs. The list gs collects all the generic variables that ap-
pear in one or more of the inferred types ts’, but not in
the list fs of fixed variables. Note that a different list is
passed to reduce, including only variables that appear in
all of the inferred types. This is important because all of
those types will eventually be qualified by the same set of
predicates, and we do not want any of the resulting type
schemes to be ambiguous. The final step begins with a test
to see if the monomorphism restriction should be applied,
and then continues to calculate an assumption containing
the principal types for each of the defined values. For an



unrestricted binding, this is simply a matter of qualifying
over the retained predicates in rs and quantifying over the
generic variables in gs. If the binding group is restricted,
then we must defer the predicates in rs as well as those in
ds, and hence we can only quantify over variables in gs that
do not appear in rs.

11.6.3 Combined Binding Groups

Haskell requires a process of dependency analysis to break
down complete sets of bindings—either at the top-level of a
program, or within a local definition—into the smallest pos-
sible groups of mutually recursive definitions, and ordered so
that no group depends on the values defined in later groups.
This is necessary to obtain the most general types possi-
ble. For example, consider the following fragment from a
standard prelude for Haskell:

foldr f a (x:xs) = f x (foldr £ a xs)
foldr f a [] = a

and xs foldr (&&) True xs

If these definitions were placed in the same binding group,
then we would not obtain the most general possible type for
foldr; all occurrences of a variable are required to have the
same type at each point within the defining binding group,
which would lead to the following type for foldr:

(Bool -> Bool -> Bool) -> Bool -> [Bool] -> Bool

To avoid this problem, we need only notice that the defini-
tion of foldr does not depend in any way on &&, and hence
we can place the two functions in separate binding groups,
inferring first the most general type for foldr, and then the
correct type for and.

In the presence of explicitly typed bindings, we can refine the
dependency analysis process a little further. For example,
consider the following pair of bindings:

£ :: Eqg a => a -> Bool
fx = (x==x) || g True
gy (y<=y) || £ True

Although these bindings are mutually recursive, we do not
need to infer types for £ and g at the same time. Instead,
we can use the declared type of f to infer a type:

g :: Ord a => a -> Bool

and then use this to check the body of f, ensuring that its
declared type is correct.

Motivated by these observations, we will represent Haskell
binding groups using the following datatype:

type BindGroup = ([Ezpl], [[Impl]])

The first component in each such pair lists any explicitly
typed bindings in the group, while the second component
breaks down any remaining bindings into a sequence of
smaller, implicitly typed binding groups, arranged in de-
pendency order. In choosing our representation for the ab-
stract syntax, we have assumed that dependency analysis
has been carried out prior to type checking, and that the

bindings in each group have been organized into values of
type BindGroup in an appropriate manner. For a correct
implementation of the semantics specified in the Haskell re-
port, we must place all of the implicitly typed bindings in
a single group, even if a more refined decomposition would
be possible. In addition, if that group is restricted, then we
must also check that none of the explicitly typed bindings
in the same BindGroup have any predicates in their type.
With hindsight, these seem like strange restrictions that we
might prefer to avoid in any further revision of Haskell.

A more serious concern is that the Haskell report does not
indicate clearly whether the previous example defining f and
g should be valid. At the time of writing, some implemen-
tations accept it, while others do not. This is exactly the
kind of problem that can occur when there is no precise,
formal specification! Curiously, however, the report does
indicate that a modification of the example to include an
explicit type for g would be illegal. This is a consequence
of a throw-away comment specifying that all explicit type
signatures in a binding group must have the same context
up to renaming of variables [10, Section 4.5.2]. This is a
syntactic restriction that can easily be checked prior to type
checking. Our comments here, however, suggest that it is
unnecessarily restrictive.

In addition to the function bindings that we have seen al-
ready, Haskell allows variables to be defined using pattern
bindings of the form pat = ezpr. We do not need to deal di-
rectly with such bindings because they are easily translated
into the simpler framework used in this paper. For example,
a binding:

(x,y) = expr
can be rewritten as:
nv = expr

x = fst nv
y snd nv

where nv is a new variable. The precise definition of the
monomorphism restriction in Haskell makes specific refer-
ence to pattern bindings, treating any binding group that
includes one as restricted. So, at first glance, it may seem
that the definition of restricted binding groups in this pa-
per is not quite accurate. However, if we use translations as
suggested here, then it turns out to be equivalent: even if
the programmer supplies explicit type signatures for x and
y in the original program, the translation will still contain
an implicitly typed binding for the new variable nv.

Now, at last, we are ready to present the algorithm for type
inference of a complete binding group, as implemented by
the following function:

tiBindGroup Infer BindGroup [Assump]
tiBindGroup as (es, iss) =
dolet as’ = [v:>:sc| (v, sc, alts) < es]

(ps, as") < tiSeq tiImpls (as’ + as) iss
gs < mapM (tiExpl (as” + as’ H as)) es
return (ps + concat gs, as” +H as’)

The structure of this definition is quite straightforward.
First we form a list of assumptions as’ for each of the explic-
itly typed bindings in the group. Next, we use this to check



each group of implicitly typed bindings, extending the as-
sumption set further at each stage. Finally, we return to the
explicitly typed bindings to verify that each of the declared
types is acceptable. In dealing with the list of implicitly
typed binding groups, we use the following utility function,
which typechecks a list of binding groups and accumulates
assumptions as it runs through the list:

tiSeq Infer bg [Assump] — Infer [bg] [Assump]
tiSeq ti as []
= return ([], [])
tiSeq ti as (bs : bss)
= do (ps, as’) < ti as bs
(gs, as") « tiSeq ti (as’ + as) bss
return (ps -+ g¢s, as” +H as’)

11.6.4 Top-level Binding Groups

At the top-level, a Haskell program can be thought of as a
list of binding groups:
type Program = [BindGroup]

Even the definitions of member functions in class and in-
stance declarations can be included in this representation;
they can be translated into top-level, explicitly typed bind-
ings. The type inference process for a program takes a list of
assumptions giving the types of any primitives, and returns
a set of assumptions for any variables.

tiProgram [Assump] — Program — [Assump]
tiProgram as bgs = runTI §
do (ps, as’) « tiSeq tiBindGroup as bgs
s + getSubst

let ([], rs) = split [] (apply s ps)

case topDefaults rs of
Just ' — return (apply (s'@QQs) as’)
Nothing — error “top-level ambiguity”

This completes our presentation of the Haskell type system.

12 Conclusions

We have presented a complete Haskell program that im-
plements a type checker for the Haskell language. In the
process, we have clarified certain aspects of the current de-
sign, as well as identifying some ambiguities in the existing,
informal specification.

The type checker has been developed, type-checked, and
tested using the “Haskell 98 mode” of Hugs 98 [7]. The
full program includes many additional functions, not shown
in this paper, to ease the task of testing, debugging, and dis-
playing results. We have also translated several large Haskell
programs—including the Standard Prelude, the Maybe and
List libraries, and the source code for the type checker
itself—into the representations described in Section 11, and
successfully passed these through the type checker. As a re-
sult of these and other experiments we have good evidence
that the type checker is working as intended, and in accor-
dance with the expectations of Haskell programmers.

14

We believe that this typechecker can play a useful role, both
as a formal specification for the Haskell type system, and as
a testbed for experimenting with future extensions.

Acknowledgments

This paper has benefited from feedback from Lennart Au-
gustsson, Stephen Eldridge, Tim Sheard, Andy Gordon, and
from an anonymous referee. The research reported in this
paper was supported by the USAF Air Materiel Command,
contract # F19628-96-C-0161.

References

[1] S. M. Blott. An approach to overloading with polymor-
phism. PhD thesis, Department of Computing Science,
University of Glasgow, July 1991. (draft version).

[2] L. Damas and R. Milner. Principal type schemes for
functional programs. In 9th Annual ACM Symposium
on Principles of Programming languages, pages 207—

212, Albuquerque, NM, January 1982.

B. R. Gaster and M. P. Jones. A polymorphic type
system for extensible records and variants. Technical
Report NOTTCS-TR-96-3, Computer Science, Univer-
sity of Nottingham, November 1996.

3]

F. Henglein. Type inference with polymorphic recur-
sion. ACM Transactions on Programming Languages
and Systems, 15(2):253-289, April 1993.

R. Hindley. The principal type-scheme of an object
in combinatory logic. Transactions of the American
Mathematical Society, 146:29-60, December 1969.

M. P. Jones. Qualified Types: Theory and Practice.
PhD thesis, Programming Research Group, Oxford
University Computing Laboratory, July 1992. Pub-
lished by Cambridge University Press, November 1994.

M. P. Jones and J. C. Peterson. Hugs 98
User Manual, May 1999. Available from
http://www.haskell.org/hugs/.

A. Kfoury, J. Tiuryn, and P. Urzyczyn. Type re-
construction in the presence of polymorphic recursion.
ACM Transactions on Programming Languages and
Systems, 15(2):290-311, April 1993.

R. Milner. A theory of type polymorphism in program-
ming. Journal of Computer and System Sciences, 17(3),
1978.

[10] S. Peyton Jones and J. Hughes, editors. Report on
the Programming Language Haskell 98, A Non-strict
Purely Functional Language, February 1999. Available

from http://www.haskell.org/definition/.

[11] J. Robinson. A machine-oriented logic based on the res-
olution principle. Journal of the Association for Com-

puting Machinery, 12, 1965.

[12] P. Wadler. The essence of functional programming (in-
vited talk). In Conference record of the Nineteenth an-
nual ACM SIGPLAN-SIGACT symposium on Princi-

ples of Programming Languages, pages 1-14, Jan 1992.



Embedding Prolog in
Haskell

Silvija Seres and Mike Spivey (Oxford University, UK)






Embedding PROLOG
in HASKELL

Silvija Seres ~ Michael Spivey

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, U.K.

Abstract

The distinctive merit of the declarative reading of logic programs is the
validity of all the laws of reasoning supplied by the predicate calculus with
equality. Surprisingly many of these laws are still valid for the procedural
reading; they can therefore be used safely for algebraic manipulation,
program transformation and optimisation of executable logic programs.

This paper lists a number of common laws, and proves their validity
for the standard (depth-first search) procedural reading of PROLOG. They
also hold for alternative search strategies, e.g. breadth-first search. Our
proofs of the laws are based on the standard algebra of functional program-
ming, after the strategies have been given a rather simple implementation
in Haskell.

1 Introduction

Logic programming languages are traditionally explained in terms of their declar-
ative and procedural semantics. For a given logic program, they are respectively
considered its specification and its model of execution.

It is regarded as the responsibility of the programmer to ensure the con-
sistency of the two readings. This paper aims to help in this, by codifying
algebraic laws which apply equally to both readings. In some sense, a sufficient
collection of these laws would provide an additional algebraic semantics for a
logic language, intermediate between the declarative and procedural semantics.
The general role of algebra in bridging the gap between abstract and concrete
theories is argued in [8].

A proof of the validity of our laws in the declarative reading is unnecessary,
because they express properties of Boolean algebra. To prove that they are true
of the procedural reading requires us to construct a model of execution. This
we do by implementing the operators of the logic language as a library of higher
order functions in the functional language Haskell. This makes available all the
algebraic reasoning principles of functional programming [3], from which it is
quite straightforward to derive the laws we need. Many of these are familiar



properties of categorical monads, but a knowledge of category theory is not
needed for an understanding of this paper.

It is worth stressing that our implementation is a shallow embedding of a
logic language in a functional one; it is not the same as building an interpreter.
We do not extend the base functional language; rather, we implement in the lan-
guage a set of functions designed to support unification, resolution and search.

Our implementation is strikingly simple, and the basic ideas that it builds
upon are not new. The embedding of a logic language to a functional one by
translating every predicate to a function was explored in e.g. LOGLISP [14, 15]
or PorLoa [11], although the base language was non-lazy in each case. The
use of the lazy stream-based execution model to compute the possibly infinite
set of answers is also well known, e.g. [1]. Nevertheless, we believe that the
combination of these two known ideas is well worth our attention, and the
algebraic semantics for logic programs that naturally arises from our embedding
is a convincing example.

To some extent, use of our library of functions will give functional pro-
grammer a small taste of the power of a functional logic language. But current
functional logic languages are much more powerful; they embody both rewriting
and resolution and thereby result in a functional language with the capability to
solve arbitrary constraints for the values of variables. The list of languages that
have been proposed in an attempt to incorporate the expressive power of both
functional and logic paradigms is long and impressive [2, 6]; some notable exam-
ples are Kernel-LEAF [5], Curry [7], Escher [9] and Babel [12]. Our research goal
is different from the one set by these projects. They aspire to build an efficient
language that can offer programmers the most useful features of both worlds; to
achieve this additional expressivity they have to adopt somewhat complicated
semantics. Our present goal is a conspicuous declarative and operational se-
mantics for the embedding, rather that maximal expressivity. Nevertheless, the
extensions of our embedding to incorporate both narrowing and residuation in
its operational semantics do not seem difficult and we hope to make them a
subject of our further work.

In this paper we use Prolog and Haskell as our languages of choice, but
the principles presented are general. Prolog is chosen because it is the domi-
nant logic language, although we only implement the pure declarative features
of it, i.e., we ignore the impure but practically much used features like cut,
assert and retract, although the cut is quite an easy extension of our mod-
els. Haskell is chosen because it is a lazy functional language with types and
lambda-abstractions, but any other language with these properties could be
used.

In the remainder of the paper we proceed to describe the syntax of the
embedding and the implementation of the primitives in sections 2 and 3. In
section 4 we list some of the algebraic properties of the operators and in section
5 we study the necessary changes to the system to accommodate different search
strategies. We conclude the paper with section 6 where we discuss related work
and propose some further work in this setting.



2 Syntax

Prolog offers the facility of defining a predicate in many clauses and it allows
the applicability of each clause to be tested by pattern matching on the formal
parameter list. In our implementation of Prolog, we have to withdraw these
notational licences, and require the full logical meaning of the predicate to be
defined in a single equation, with the unifications made explicit on the right
hand side, together with the implicit existential quantification over the fresh
variables.

In the proposed embedding of Prolog into a functional language, we aim to
give rules that allow any pure Prolog predicate to be translated into a Haskell
function with the same meaning. To this end, we introduce two data types,
Term and Predicate, into our functional language, together with the following
four operations:

(&), (|]) : Predicate — Predicate — Predicate,
(=) : Term — Term —> Predicate,
exists : (Term — Predicate) —> Predicate.

The intention is that the operators & and || denote conjunction and disjunction
of predicates, = forms a predicate expressing the equality of two terms, and
the operation ezists expresses existential quantification. We shall abbreviate
the expression exists (Ax — p z) by the form 3z — p z in this paper, although
the longer form shows how the expression can be written in any lazy func-
tional language that has A-expressions. We shall also write 3z, y — p(z,y) for
Jz = (Jy = p(2,y)).

These four operations suffice to translate any pure Prolog program, provided
we are prepared to exchange pattern matching for explicit equations, to bind
local variables with explicit quantifiers, and to gather all the clauses defining a
predicate into a single equation. These steps can be carried out systematically,
and could easily be automated. As an example, we take the well-known program
for append:

append([1, Ys, Ys) :- .
append([X|Xs], Ys, [X|Zs]) :- append(Xs, Ys, Zs).
As a first step, we remove any patterns and repeated variables from the head
of each clause, replacing them by explicit equations written at the start of the
body. These equations are computed by unification in Prolog.
append(Ps, Qs, Rs) :-
Ps = [1, Qs = Rs.
append(Ps, Qs, Rs) :-
Ps = [X[Xs], Rs = [X|Ys], append(Xs, Qs, Ys).

The head of each clause now contains only a list of distinct variables, and by
renaming if necessary we can ensure that the list of variables is the same in



each clause. We complete the translation by joining the clause bodies with
the || operation, the literals in a clause with the & operation, and existentially
quantifying any variables that appear in the body but not in the head of a
clause:

append(Ps, Qs, Rs) =
(Ps = nil & Qs = Rs) ||
(3X, Xs, Ys — Ps = cons(X, Xs) & Rs = cons(X, Ys) &
append(Xs, Qs, Ys) ).

Here nil is used for the value of type Term that represents the empty list, and
cons is written for the function on terms that corresponds to the Prolog list
constructor [|]. We assume the following order of precedence on the operators,
from highest to lowest: =, &, |, 3.

The function append defined by this recursive equation has the following
type:

append :: (Term, Term, Term) — Predicate.

The Haskell function append is constructed by making the declarative reading
of the Prolog predicate explicit. However, the relationship between the Haskell
function and the Prolog predicate extends beyond their declarative semantics.
The next section shows that the procedural reading of the Prolog predicate is also
preserved through the implementation of the functions & and ||. The embedding
essentially allows the mapping of the computation of the Prolog program into
lazy lists by embedding the structure of a SLD-tree of a Prolog program into a
Haskell stream.

3 Implementation

The translation described above depends on the four operations &, ||, = and
erists. We now give definitions to the type of predicates and to these four
operations that correspond to the depth-first search of Prolog. Later, we shall
be able to give alternative definitions that correspond to breadth-first search,
or other search strategies based on the search tree of the program.

The key idea is that each predicate is a function that takes an ‘answer’,
representing the state of knowledge about the values of variables at the time the
predicate is solved, and produces a lazy stream of answers, each corresponding
to a solution of the predicate that is consistent with the input. This approach is
similar to that taken by Wadler [18]. An unsatisfiable query results in an empty
stream, and a query with infinitely many answers results in an infinite stream.!

type Predicate = Answer — Stream Answer.

LFor clarity, we use the type constructor Stream to denote possibly infinite streams, and
List to denote finite lists. In a lazy functional language, these two concepts share the same
implementation.



An answer is (in principle) just a substitution, but we augment the substitution
with a counter that tracks the number of variables that have been used so far, so
that a fresh variable can be generated at any stage by incrementing the counter.
A substitution is represented as a list of (variable, term) pairs, and the Haskell
data-type Term is a straightforward implementation of Prolog’s term type:

type Answer = (Subst, Int),

type Subst = [ (Var, Term) ],

data Term = Func Fname [ Term| | Var Vname,
type Fname = String,

data Vname = Name String | Auto Int.

Constants are functions with arity 0, in other words they are given empty ar-
gument lists. For example the Prolog list [a,b] can be represented in the
embedding as Func "cons" [ Func "a" [], Func "cons" [...]]. With the use of
the simple auxiliary functions cons, atom and nil the same Prolog list can be
embedded as the Haskell expression cons a (cons b nil).

We can now give definitions for the four operators. The operators & and ||
act as predicate combinators; they slightly resemble the notion of tacticals [13],
but in our case they combine the computed streams of answers, rather that
partially proved statements.

The || operator simply concatenates the streams of answers returned by its
two operands:

(Il) :: Predicate — Predicate —» Predicate
plle)z=pzt+quz

This definition implies that the answers are returned in a left-to-right order as
in Prolog. If the left-hand argument of || is unsuccessful and returns an empty
answer stream, it corresponds to an unsuccessful branch of the search tree in
Prolog and backtracking is simulated by evaluating the right-hand argument.

For the & operator, we start with applying the first argument to the incoming
answer; this produces a stream of answers, to each of which we apply the second
argument of &. Finally, we concatenate the resulting stream of streams into a
single stream:

(&) :: Predicate — Predicate — Predicate
p & q = concat - map q - p.

Because of Haskell’s lazy evaluation, the function p returns answers only when
they are needed by the function ¢. This corresponds nicely with the backtracking
behaviour of Prolog, where the predicate p & ¢ is implemented by enumerating
the answers of p one at a time and filtering them with the predicate ¢q. Infinite
list of answers in Prolog are again modelled gracefully with infinite streams.



We can also define primitive predicates true and false, one corresponding to
immediate success and the other to immediate failure:

true :: Predicate false :: Predicate

true & = [z]. false z =]

The pattern matching of Prolog is implemented by the operator =. It is defined
in terms of a function unify which implements J.A. Robinson’s standard algo-
rithm for s unification of two terms relative to a given input substitution. The
type of unify is thus:

unify :: Subst — (Term, Term) — List Subst.

More precisely, the result of unify s (¢,u) is either [sb> r], where r is a most
general unifier of [s] and u[s], or [ ] if these two terms have no unifier.? Thus
if unify s (¢,u) = [s'], then s is the most general substitution such that s C s’
and t[s'] = u[s']. The coding is routine and therefore omitted.

The = operator is just a wrapper around unify that passes on the counter
for fresh variables:

(=) :: Term — Term —> Predicate
(t=u) (s,n) =[(s',n) | 8" < unify s (t, u)]

Finally, the operator exists is responsible for allocating fresh names for all the
local (or existentially quantified) variables in the predicates. This is necessary
in order to guarantee that the computed answer is the most general result. It
is defined as follows:

exists :: (Term — Predicate) — Predicate

exists p (s,n) = p (makevar n) (s,n+ 1),

where makevar n is a term representing the n’th generated variable. The
slightly convoluted flow of information here may be clarified by a small ex-
ample. The argument p of exists will be a function that expects a variable, such
as (AX — append(t, X,u)). We apply this function to a newly-invented vari-
able v = makevar n to obtain the predicate append(t,v,u), and finally apply
this predicate to the answer (s,n+1), in which all variables up to the n’th are
marked as having been used.

The function solve evaluates the main query. It simply applies its argument,
the predicate of the query, to an answer with an empty substitution and a zero
variable counter, and converts the resulting stream of answers to a stream of
strings.

solve :: Predicate —> Stream String
solve p = map print (p ([],0)),

2We use s > r to denote composition of substitutions s and r, and ¢[s] to denote the instance
of term ¢ under substitution s. We use s C s’ to denote the preorder on substitutions that
holds iff s’ = s > r for some substitution r.



where print is a function that converts an answer to a string by having pruned it
to show only the values of the original query variables This is the point where all
the internally generated variables are filtered out in our present implementation,
but another, possibly cleaner, solution might be to let the 3 operator do this
filtering task before it returns.

We do not provide proofs of the soundness and completeness relative to the
procedural reading of Prolog since we feel that the encoding we have described
is about the simplest possible mechanised formal definition of a Prolog-like pro-
cedural reading. Nevertheless, a soundness proof for the embedding could be
carried out relative to the declarative semantics by defining of a mapping decl
between our embedding and a declarative semantics of a logic program. Given
a function herb with type Answer — Set Subst:

herb(s,n) = {s;t | t € Subst},

where herb(s, n) describes a set of all substitutions that refine (i.e. extend) the
substitution part s of the input answer (s, n). The mapping from our embedding
to the declarative semantics can then be defined as:

decl = (fold union) (map herbd).

Namely, if P is a predicate then decl - P is its declarative semantics. A soundness
proof for the embedding would then be obtained by proving the equations:

dect - (P || Q)
decl - (P & Q)

C (decl - P) U (decl - Q),
C (decl - P) N (decl - Q),
for the operators || and &, and similar equations for the operators 3 and =.

4 Algebraic Laws

The operators & and || enjoy many algebraic properties as a consequence of
their simple definitions in terms of streams. We can deduce directly from the
implementation of & and true that the & operator is associative with unit
element true. This is a consequence of the fact that map, concat and true form
a structure that category theory calls a monad, and the composition operator
& is obtained from this by a standard construction called Kleisli composition.
We wish to show that these properties of the logic programming primitives &
and true, and several others regarding also || and false, can be alternatively
proved with no reference to category theory. The proofs we sketch show how a
standard tool in functional programming, equational reasoning, can be applied
to logic programming by means of our embedding.

All the algebraic properties we quote here can be proved equationally using
only the definitions of the operators and the standard laws (see [4]) for concat,



map and functional composition. As an example, given:

map [ - concat = concat - map (map f),

—~
—_
~—

concat - concat = concat - map concat,

map (f - g) = (map f) - (map g, (3)

—
[\
~

we can prove the associativity of & by the following rewriting:

(P&q)&r

= concat - map r - concat - map q-p by defn. of &
= concat - concat - map (map r) - map q-p by (1)
= concat - map concat - map (map r)-map q-p by (2)
= concat - map (concat - map r-q) - p by (3)
=p&(qg&v). by defn. of &

The proofs of the following properties are at least as elementary as this. The
predicate false is a left zero for &, but this operator is strict in its left argument,
so false is not a right zero. This corresponds to the feature of Prolog that
false & q has that same behaviour as false, but p & false may fail infinitely if p
does. Owing to the properties of concat and [ ], the || operator is associative
and has false as a left and right identity.

Other identities that are satisfied by the connectives of propositional logic
are not shared by our operators because in our stream-based implementation,
answers are produced in a definite order and with definite multiplicity. This
behaviour mirrors the operational behaviour of Prolog. For example, the ||
operator is not idempotent, because true || true produces its input answer twice
as an output, but true itself produces only one answer. The & operator also
fails to be idempotent, because the predicate

(true || true) & (true || true)

produces the same answer four times rather than just twice.
We might also expect

p&(qllr)={@&q) |l (p &),

that is, for & to distribute over ||, but this is not the case. For a counterex-
ample, take for p the predicate X = a || X = b, for ¢ the predicate ¥ = ¢, and
for r the predicate Y = d. Then the left-hand side of the above equation pro-
duces the four answers [X=a, Y=c¢|; [X=qa, Y=d]; [X=b, Y=c]; [X=0b, Y =d]
in that order, but the right-hand side produces the same answers in the order
[X=a, Y=c]; [X=b, Y=¢]; [X=a, Y=d]; [X=b, Y=d].

However, the other distributive law,

Pl &r=({p&r) | (¢&r),



does hold, and it is vitally important to the unfolding steps of program trans-
formation. The simple proof depends on the fact that both map r and concat
are homomorphisms with respect to ++:

()l @) &r) s

= concat (map r (p © +H ¢ z)) by defn. of ||, &
= concat (map r (p =) + map r (q z)) map
= concat (map r (p z)) + concat (map r (q x)) concat
=((p&r) ]| (¢&)) =. by defn. of &

The declarative reading of logic programs suggests that also the following prop-
erties of = and 3 ought to hold, where p z and ¢ z are predicates and u is a
term not containing z:

(Fz = p(2) || ¢(z)) = Az = p(2)) || Gz — q(2)),
(Fz =z = u & p(z)) = p(u),

(Fz = Qy = p (z,y) = Fy = 3z = p(z,9))).

These properties are important in program transformations that manipulate
quantifiers and equations, since they allow local variables to be introduced and
eliminated, and allow equals to be substituted for equals in arbitrary formulas.

However, these properties of = and 3 depend on properties of predicates p
and ¢ that are not shared by all functions of this type, but are shared by all
predicates that are defined purely in terms of our operators. In future work,
we plan to formulate precisely the ‘healthiness’ properties of definable predi-
cates on which these transformation laws depend, such as monotonicity and
substitutivity.

It might be seen as a weakness of our approach based on a ‘shallow’ embed-
ding of Prolog in Haskell that these properties must be expressed in terms of
the weak notion of a predicate definable in terms of our operators, when a ‘deep’
embedding (i.e., an interpreter for Prolog written in Haskell) would allow us to
formulate and prove them as an inductive property of program texts. We believe
that this is a price well worth paying for the simplicity and the clear declarative
and operational semantics of our embedding.

5 Different Search Strategies

Our implementation of ||, together with the laziness of Haskell, causes the
search for answers to behave like depth-first search in Prolog: when computing
p x +H ¢ z all the answers corresponding to the p z part of the search tree are
returned before the other part is explored. A fair search strategy would share
the computation effort more evenly between the two parts. Similarly, our im-
plementation of & results in a left-to-right selection of the literals of a clause.
A fair selection rule would allow one to chose the literals in a different order.



One possible solution (inspired by [10]) is to interleave the streams of an-
swers, taking one answer from each stream in turn. A function twiddle that
interleaves two lists can be defined as:

twiddle :: [a] — [a] — [a]
twiddle [ ] ys = ys
twiddle (z : zs) ys = x : (twiddle ys xs).

The operators || and & can be redefined by replacing + with twiddle and
recalling that concat = foldr (+) [ :

(p |l ¢) = = twiddle (p ) (q z)
(p & q) = = foldr twiddle []- map q - p).

This implementation of & is fairer, producing in a finite time solutions of ¢
that are based on later solutions returned by p, even if the first such solution
produces an infinite stream of answers from ¢. The original implementation of
& produces all solutions of ¢ that are based on the first solution produced by p
before producing any that are based on the second solution from p.

Note that this implementation of operators does not give breadth-first search
of the search tree; it deals with infinite success but not with infinite failure. Even
in the interleaved implementation, the first element of the answer list has to be
computed before we can ‘switch branches’; if this takes an infinite number of
steps the other branch will never be reached.

To implement breadth-first search in the embedding, the Predicate data-type
needs to be changed. It is no longer adequate to return a single, flat stream
of answers; this model is not refined enough to take into account the number
of computation steps needed to produce a single answer. The key idea is to
let Predicate return a stream of lists of answers, where each list represents the
answers reached at the same depth, or level, of the search tree. These lists of
answers with the same cost are always finite since there is only a finite number
of nodes at each level of the search tree. The new type of Predicate is thus:

Predicate :: Answer — Stream (List Answer).

Intuitively, each successive list of answers in the stream contains the answers
with the same computational “cost”. The cost of an answer increases with
every resolution step in its computation. This can be captured by adding a new
function step in the definition of predicates. For example, append should be
coded as:

append(Ps, Qs, Rs) =
step((Ps = nil & Qs = Rs) ||
(3X,Xs,Ys — Ps = cons(X, Xs) & Rs = cons(X, Ys) &
append(Xs, Qs, Ys))).

10



In the depth-first model, step is the identity function on predicates, but in the
breadth-first model it is defined as follows:

step :: Predicate — Predicate
steppz=1[]:(p x).

Thus, in the stream returned by step p, there are no answers of cost 0, and for
each n, the answers of step p with cost n+1 are the same as the answers of p
that have cost n.

The implementations of the Predicate combinators || and & need to be
changed so that they no longer operate on lists but on streams of lists. They
must preserve the cost information that is embedded in the input lists. Since
the cost corresponds to the level of the answer in the search tree, only resolution
steps are charged for, while the applications of ||, & and equals are cost-free.
The || operator simply zips the two streams into a single one, by concatenating
all the sublists of answers with the same cost. If the two streams are of different
lengths, the zipping must not stop when it reaches the end of the shorter stream.
We give the name mergewith to a specialized version of zipwith that has this
property, and arrive at this implementation of || in the breadth-first model:

(p |l 9) = = mergewith (+) (p z) (q z).

The implementation of & is harder. The cost of each of the answers to (p & ¢)
is a sum of the costs of the computation of p and the computation of ¢. The
idea is first to compute all the answers, and then to flatten the resulting stream
of lists of streams of lists of answers to a stream of lists of answers according
to the cost. This flattening is done by the shuffle function which is explained
below. The &-operator is thus:

p & q = shuffle - map (map q) - p

We write S for streams and L for finite lists for sake of brevity. The result of
map (map q) - p is of type SLSL. It can be visualised as a matrix of matrices,
where each element of the outer matrix corresponds to a single answer of p.
Each such answer is used as an input to ¢ and consequently gives rise to a
new stream of lists of answers, which are represented by the elements of the
inner matrices. The rows of both the main matrix and the sub-matrices are
finite, while the columns of both can be infinite. For example, the answers of
map (map q) - p with cost 2 are marked in the drawing below:

11



The function shuffle collects all the answers marked in the drawing into a single
list, the third in the resulting stream of lists of answers. It is given an SLSL of
answers, and it has to return an SL. Two auxiliary functions are required to do
this: diag and transpose. A stream of streams is converted to a stream of lists
by diag, and a list of streams can be converted to a stream of lists by transpose:

diag :: Stream (Stream a) — Stream (List a)
diag zss =[[(xzss Vi) ! (n— i) | i < [0..n]] | n < [0.]],

transpose :: List (Stream a) —> Stream (List a)

transpose xss = map hd xss : transpose (map tl xss).

Given diag and transpose, the function shuffle can be implemented as follows.
The input to shuffle is of type SLSL. The application of map transpose swaps
the middle SL to a LS, and gives SSLL. Then the application of diag converts
the outermost SS to SL and returns SLLL. This can now be used as input to
map (concat - concat) which flattens the three innermost levels of lists into a
single list, and returns SL:

shuffle = map (concat - concat) - diag - map transpose.

A very interesting aspect of this breadth-first model of logic programming is
that all the algebraic laws listed in the previous section still hold, if we ignore
the ordering of the answers within each sublist in the main stream. This can
be achieved by implementing the type of predicates as a function from answers
to streams of bags of answers. Each of the bags contains the answers with the
same computational cost, so we know that all the bags are finite. This is because
there are only a finite number of branches in each node in the search tree. Hence
all the equalities in our laws are still computable.

To implement both depth-first search and breadth-first search in the em-
bedding, the model has to be further refined. It is not sufficient to implement
predicates as functions returning streams of answer lists; they have to operate
on lists of trees. The operators || and & are redefined to be operations on lists
of trees, where the first one connects two lists of trees in a single one and the
second ‘grafts’ trees with small subtrees at the leaves to form normal trees. If
just trees were used, rather than lists of trees, p || ¢ would have to combine their
trees of answers by inserting them under a new parent node in a new tree, but
that would increase the cost of each answer to p || ¢ by one. We describe this
general model fully in [16].

It is interesting how concise the definitions of || and & remain in all three
models. To recapitulate the three definitions of & in the depth-first model,
breadth-first model and the tree model which accommodates both search strate-
gies, respectively:

p & q = concat - map q - p,

p & q = shuffle - map (map q) - p,
p & q = graft - treemap q - p.

12



These closely parallel definitions hint at a deeper algebraic structure, and in
fact the definitions are all instances of the so-called Kleisli construction from
category theory. Even greater similarities between the three models exist, and
we give a more detailed study of the relation between the three in [16].

6 Further Work

The work presented in this paper has not addressed the question of an efficient
implementation of these ideas, although a language implementation based on
our embedding is conceivable. Rather, this work is directed towards producing
and using a theoretical tool (with a simple implementation) for the analysis of
different aspects of logic programs. The simplicity is the key idea and the main
strength of our embedding, and it has served well in opening several directions
for further research.

We are presently working on two applications of the embedding. One is a
study of program transformation by equational reasoning, using the algebraic
laws of the embedding. The other is a categorical study of a model in which trees
are used as the data-structure for the answers, and we show that there exists a
morphism of monads between this most general model and the two models that
is presented in this paper. This line of research is inspired by [17, 19].

Among other questions that we plan to address soon are also the imple-
mentation of higher-order functions and the implementation of nested functions
in the embedded predicates. Constraint logic programming also has a simple
model in our embedding: one has to pass equations (instead of substitutions) as
parts of answers. These equations are evaluated when they become sufficiently
instantiated. An efficient language implementation is also a challenging goal in
this setting.

References

[1] Abelson and Sussman. Structure and Interpretation of Computer Programs,
chapter 4. 1985.

[2] M. Bellia and G. Levi. The relation between logic and functional languages:
a survey. Journal of Logic Programming, 3(3):317-236, 1986.

[3] R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.

[4] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice
Hall, 1988.

[5] E. Giovanetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF: A
logic plus functional language. Journal of Computer and System Sciences,
42(2), 1991.

[6] M. Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19(20):583-628, 1994.

13



[7] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A truly functional
logic language. In Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming, pages 95-107, 1995.

[8] C.A.R. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice
Hall, 1998.

[9] J.W. Lloyd. Declarative programming in Escher. Technical Report CSTR-
95-013, Department of Computer Science, University of Bristol, June 1995.

[10] R. McPhee and O. de Moor. Compositional logic programming. In Pro-
ceedings of the JICSLP’96 post-conference workshop: Multi-paradigm logic
programming, Report 96-28. Technische Universitat Berlin, 1996.

[11] Mellish and Hardy. Integrating prolog in the POPLOG environment. In
J. Campbell, editor, Implementations of Prolog. 1984.

[12] J. Moreno-Navarro and M. Roderiguez-Artalejo. Logic programming with
functions and predicates: The language Babel. Journal of Logic Program-
ming, 12(3):191-223, 1992.

[13] L.C. Paulson. Lessons learned from LCF: a survey of natural deduction
proofs. Computer Journal, (28), 1985.

[14] J.A. Robinson. Beyond LogLisp: combining functional and relational pro-
gramming in a reduction setting. Machine intelligence, 11, 1988.

[15] J.A. Robinson and E.E. Sibert. LogLisp: An alternative to Prolog. Machine
Intelligence, 10, 1982.

[16] S. Seres, J.M. Spivey, and C.A.R. Hoare. Algrebra of logic programming.
submitted to International Conference on Logic Programming, 19909.

[17] J.M. Spivey. A categorical approach to the theory of lists. In Mathematics
of Program Construction. Springer LNCS 375, 1989.

[18] P. Wadler. How to replace failure by a list of successes. In 2’nd Inter-
national Conference on Functional Programming Languages and Computer
Architecture, Nancy, France, September 1985. Springer-Verlag.

[19] P. Wadler. The essence of functional programming. In 19’th Annual Sym-
posium. on Principles of Programming Languages, January 1992.

14



Logical Abstractions in
Haskell

Nancy A. Day, John Launchbury and Jeff Lewis (Oregon Graduate Institute,
USA)






Logical Abstractions in Haskell

Nancy A. Day

John Launchbury

Jeff Lewis

Oregon Graduate Institute of Science & Technology

Abstract

We describe a generalization of the Haskell Boolean type,
which allows us to use existing decision procedures for rea-
soning about logical expressions. In particular, we have
connected Haskell with a Binary Decision Diagram (BDD)
package for propositional logic, and the Stanford Validity
Checker for reasoning in quantifier-free, first-order logic.
We have defined referentially transparent interfaces to these
packages allowing the user to ignore the details of their im-
perative implementations. We found that having a tight
connection between the provers and Haskell allows Haskell
to serve as a meta-language enhancing the capabilities of the
provers. We illustrate the use of these packages for reasoning
about a sort algorithm and a simple microprocessor model.
In the sort example, the parametric nature of Haskell’s poly-
morphism is used to lift the result of the BDD analysis to
arbitrary datatypes.

1 Introduction

Here’s some old advice: go through life like a swimming
duck — remain calm and unruffled on the surface, but pad-
dle like fury underneath. This advice applies to datatypes
in programming languages. Consider the Integer datatype
in Haskell. As far as the Glasgow Haskell compiler is con-
cerned, the operations of Integer are implemented with
calls to the GNU multi-precision arithmetic library, with
all its ancillary mess of manipulating storage and pointers.
Above the surface, however, is quite another story. As far
as the user is concerned, Integer is just another numeric
datatype with the usual arithmetic operations defined on it.
It is quite possible to use Integer without thinking about
the implementation mechanism at all. Of course, the plain
numeric interface provided by Haskell is far poorer than the
rich variety of methods provided by the full library. How-
ever, experience suggests that, for most users, a simple inter-
face to a complex implementation provides far more benefit
than a complex interface used simply.

The goal of this paper is set out on the same program
for logical types like booleans. Excellent packages are now
available that implement decision procedures for different
logics, and we wondered whether clean interfaces could be
built to allow the details of the decision procedures to be
hidden under the surface.

Haskell’s type class system was designed to solve a thorny
problem in language design: how to combine overloading
and polymorphism of numeric operators. The problem was
motivated by the variety of numeric types. The solution
was general enough to also solve several similar problems
involving equality and printing. But, the notion of over-
loading booleans just didn’t arise. However, several recent
examples have made it clear that it’s useful to be able to
overload even simple types like booleans.

The Fran work on reactive animations demonstrates this
point nicely [9]. In Fran, datatypes are lifted over time. An
integer, for example, is replaced by a function from time
to integer, and the numeric operations are defined point-
wise. The same is done for equality. Are two time-varying
integers equal? The answer is a time-varying boolean. By
defining the boolean operations pointwise, it is easy to see
that functions from time to Bool are fully “boolean”.

Another example, and one which is the direct inspira-
tion for this work, is the Voss verification system [20], used
extensively for hardware verification. Voss uses a lazy func-
tional language called FL as its interface language. In FL,
booleans are implemented using Binary Decision Diagrams
(BDDs) [4]. In effect, a decision procedure for propositional
logic is built into the language, allowing the user to combine
simulation and verification in powerful ways.

In this paper, we introduce two new flavors of booleans
for Haskell. The first one follows FL by defining booleans
using Binary Decision Diagrams. The improvement over FL
is that we're able to do this by a mixture of type classes,
the foreign function interface, and a little unsafePerformI0
magic, rather than by designing and implementing (and
maintaining!) a new language. For the second flavor of
booleans, we extend the logic to quantifier-free predicate
logic by using the Stanford Validity Checker (SVC) [2].

The implementations of each flavor are complex and have
a strong imperative feel to them, but for both we have de-
fined referentially transparent interfaces, allowing the un-
derlying tools to do their work while the user simply sees
the corresponding values. To some extent, this choice was
forced upon us: we found that a fairly tight integration with
SVC was necessary in order to avoid overly large intermedi-
ate data structures and to exploit the data sharing provided
by SVC.

Even though both implement decision procedures for log-
ics, BDDs and SVC are quite different in their approach.
BDDs represent propositional formulae maintained in a
canonical form. The results of operations are simplified in-
crementally, so equivalence between propositions is deter-



mined immediately by structural equivalence. In contrast,
because it handles a richer logic, the basic SVC operations
construct the problem statement. Much of the work is con-
tained in testing logical equivalence, which involves a call
to the prover. What pleased us about the embedding in
Haskell is that both approaches are implemented in the same
framework, so the user has great freedom to decide which is
appropriate for the task.

The tight connection between the various provers and
Haskell allows Haskell to be used very naturally as a meta-
language, in effect enhancing the capabilities of each of the
logics. In the BDD case, we have an example where the
parametric nature of Haskell’s polymorphism can be used to
lift the result of the BDD analysis to arbitrary datatypes. In
the SVC case, we present an example where we introduce an
uninterpreted function, but use the expressiveness of Haskell
to generate a limited axiomatization of it.

In summary, the goal of this paper is to describe a new
easy-to-use power tool for the Haskell programmer’s work-
bench. Applications include verification of Haskell programs
within Haskell. This suggestion immediately brings to mind
visions of higher-order logics, but for now we’ll forgo gener-
ality in favor of the automation of simpler logics.

The rest of the paper is organized as follows. Section 2
presents the Boolean class. In Sections 3 and 4 we describe
BDDs, and provide an example leveraging the structure of
Haskell. In Section 5 we do the same for SVC and in Sec-
tion 6 we present a larger worked example using the power
of SVC. The remaining sections present discussion.

2 Logical Type Classes

We now do for Bool what the Num class does for numeric
types. That is, we define a type class signature for opera-
tions over booleans. It contains all the usual suspects, plus
implication (==>), mutual implication (<=>), and if-then-else
(ifDb).

class Boolean b where
true :: b
false :: b
(&&)
an

Bool is of course an instance of class Boolean.

We also need to refer to logical variables, which are not
an aspect of the Bool datatype. Thus, we introduce a new
class for logical variables.

class Var a where
var :: String -> a

For example, here’s a little proposition about distributing
&& over implication:

(var "a" ==> var "b") && (var "c" ==> var "d")

(var "a" && var "c") ==> (var "b" && var "d")

Of course, Bool is used in many places in the prelude.
One place that it shows up is in the definition of equality.
We define a variant of the Eq class where the boolean result
is abstract.

data BinTree a t =
Terminal t
| Branch a (BinTree a t) (BinTree a t)
deriving Eq

cofactor a (Terminal x) =
(Terminal x, Terminal x)
cofactor a c@(Branch b x y) =

if == b then (x, y) else (c, c)
top2 x y =
a ‘min‘ b
where
a = index x
b = index y
index (Terminal _) = maxBound
index (Branch a _ _) = a
norm b@(Branch a x y) = if x == y then x else b

norm x = X

bddBranch a x y =
let a’ = top2 x y
(x1, x2) = cofactor a x
(y1, y2) = cofactor a y
in
if a <= a’ then
norm (Branch a x1 y2)
else
norm (Branch a’ (bddBranch a x1 y1)
(bddBranch a x2 y2))

Figure 1: Bdd normalization

class Boolean b => Eql a b where
(===) :: a->a->b

3 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are a representation of
boolean functions as a binary tree. The nodes are labeled
by boolean variables, and the leaves, usually referred to as
terminals, are boolean values. A BDD represents a boolean
formula in the form of a case analysis.

An Ordered BDD (OBDD) is a normal form for BDDs
defined as follows:

e the variables along every path are in strictly increasing
order, and

e all unnecessary nodes are eliminated. An unneces-
sary node represents a variable upon which the subtree
doesn’t depend, and is recognized as a node where both
left and right children are equal.

An Ordered BDD is further a canonical form for boolean for-
mulae, thus equality of two OBDDs is reduced to structural
equality.

Construction of OBDDs can be easily described in
Haskell, as we show in figure 1. Creating a new terminal
is easy—just use the Terminal constructor. Creating a new
branch (bddBranch) is a matter of pushing the branch down
the tree until it’s label is in order. Notice that as a node



is moved down the tree, its branches get duplicated. This
duplication may be countered by the pruning action of the
second restriction (implemented by norm). But in general,
the worst case size complexity of a BDD is exponential in
the number of variables.

An important refinement that makes BDDs a practical
tool for large scale verification is Reduced Ordered BDDs
(ROBDDs)! [4]. An ROBDD is one in which the tree is
reduced to a directed acyclic graph (DAG) by performing
common subexpression elimination to capture all structure
sharing. This has two benefits. The first is that equivalence
of BDDs is reduced to pointer equality. The second is a re-
duction in space use, which can be considerable when there’s
a significant amount of regularity in the data. Despite the
worst-case size complexity of BDDs, the worst case is often
avoided in practice.

However, there’s another aspect of sharing that isn’t cap-
tured by just using a DAG. The regularity that leads to a
lot of structural sharing also leads to performing the same
boolean calculations on a given BDD over and over again—
you may do a lot of work just to realize that you’ve already
constructed this tree before. Thus, another important trick
in a BDD implementor’s bag is to keep a memo table for
each basic boolean operation so that the operation is only
performed once on any given BDD (or pair of BDDs).

It’s an interesting question whether a Haskell implemen-
tation of BDDs would offer any improvement over a highly-
tuned off-the-shelf BDD library written in C. We’ve pursued
this question by doing prototypes that use the latest features
of Hugs and GHC to implement structure sharing and mem-
oizing. The results are promising, but it’s clear that Haskell
isn’t really ready to beat C at its best game. So maybe we're
trying the wrong strategy. All of these structure-sharing and
memoizing mechanisms make BDDs strict, whereas the sim-
ple implementation of OBDDs sketched above is lazy. An
even more interesting question may be whether there’s some
way to play off of Haskell’s strengths and take advantage of
laziness. This question is pursued further in Section 7.1.

3.1 The CMU BDD Library

The BDD library used in this paper is David Long’s BDD
library (which we’ll refer to as the CMU library) [16], which
is an ROBDD package written in C, and is one of several
high-quality ROBDD packages that are available. We use
the CMU BDD package as distributed with the VIS suite,
version 1.3, from Berkeley [1]. As with other BDD packages,
it comes with its own garbage collector that has been tuned
to work well with BDDs.

We import the CMU BDD package into Haskell with the
help of H/Direct [10]. Using the foreign function interface
of either GHC or Hugs, you can interface to libraries writ-
ten in various imperative languages, such as C, FORTRAN,
Java, etc. H/Direct helps simplify that process by automati-
cally generating the glue code that marshals and unmarshals
datatypes from C/FORTRAN/Java to Haskell. The input
to H/Direct is a specification of the external library’s in-
terface, written in IDL, an Interface Description Language
used in industry. IDL interface descriptions are essentially
annotated C declarations. In the case of the BDD library,
it was a fairly easy matter to translate the header file from
the library into an IDL description. For example, here’s the

1Subsequently, we will use the term BDD to mean ROBDD.

snippet of IDL describing the BDD implementations for the
boolean constant true, and boolean conjunction:

cmuBdd cmu_bdd_one ([in]cmuBddManager bddm);
cmuBdd cmu_bdd_and ([in]cmuBddManager bddm,
[in] cmuBdd x, [in]cmuBdd y);

The [in] annotations indicate that the argument is an input
argument only (i.e. it doesn’t return a result by side-effect).

The first parameter to both functions is common to all
BDD calls and is the structure that holds all the context nec-
essary for managing BDDs, such as hash tables, and garbage
collection data.

The signatures that H/Direct generates for these two
functions are as follows:

cmu_bdd_one ::
cmu_bdd_and ::

CmuBddManager -> I0 (CmuBdd)
CmuBddManager ->
CmuBdd -> CmuBdd -> I0 (CmuBdd)

3.2 Managing BDDs

Of course, the raw imported interface to the BDD pack-
age is not exactly the svelte duck that we were after in
the beginning. There are two things in the way. First,
the CmuBddManager is an implementation artifact that we
would rather hide from users. Second, the result lies in the
I0 monad. Our plan is to hide the fact that we are using
an imperative implementation underneath by liberal use of
unsafePerformI0. We will then to justify why it’s really safe
after all.

In the C world, the types CmuBddManager and CmuBdd are
pointers to rich structures. In Haskell, all of that is hidden,
and they appear as type synonyms for the type Addr, a type
which only supports pointer addition and pointer equality.
However, even this is more than we want to expose about
BDDs, so we define a new abstract type for BDDs.

newtype BDD = Bdd CmuBdd

The BDD manager must ordinarily be explicitly allo-
cated at the beginning of a program. We would rather it
was allocated on demand without any muss or fuss from the
programmer. We use unsafePerformI0 to get this effect:

bdd_manager :: CmuBddManager
bdd_manager = unsafePerformI0 (cmu_bdd_init)

In the instance declarations for Boolean, we distribute the
bdd_manager to all the calls, and the extract the result from
the I0 monad with unsafePerformIO.

instance Boolean (Bdd Bool) where
true = Bdd $ unsafePerformI0 $
bdd_one bdd_manager
(Bdd x) && (Bdd y) =
Bdd $ unsafePerformID $
cmu_bdd_and bdd_manager x y

The $ operator is right-associated function application
(f$g$x=1£f (gx)

Dealing with variables brings up another detail of the
machinery that we wish to hide. The BDD package uses
integers as variable identifiers, but we’d rather provide the
nicer interface of using strings as variable identifiers. Thus,
we keep a table that assigns to each variable name encoun-
tered so far a unique integer.



bdd_vars :: IORef [(String, Int32)]
bdd_vars = unsafePerformI0 (newIORef [])

The instance of BDDs for the Var class is then defined in
terms of a function that keeps track of the necessary book-
keeping. The function newvar takes a reference to the lookup
table, and a variable identifier, and constructs a BDD rep-
resenting that variable.
newvar :: CmuBddManager ->
IORef [(String,Int32)] -> String ->
I0 CmuBdd
newvar m v a =
do vars <- readIORef v
case lookup a vars of
Just i -> bdd_var_with_id m i
Nothing ->
do b <- bdd_new_var_last m
i <- bdd_if_id m b
writeIORef v ((a, i)
return b

: vars)

instance Var (Bdd Bool) where
var a = Bdd $ unsafePerformI0 $
newvar bdd_manager bdd_vars a

3.3 Safe use of unsafePerformI0

All this use of unsafePerformI0 may seem a bit blithe, so
it’s worth a few moments to informally justify why it doesn’t
harm referential transparency.

For starters, since the types CmuBddManager and CmuBdd
are essentially abstract, we’re in control of what can be ob-
served about the imperative side. We simply do not import
operations from the CMU package that reveal the imper-
ative structure, such as a procedure that gives the size of
internal hash tables. Those functions that we do import,
despite all the operational goings-on with hash tables and
heap allocation, are essentially functional. The imperative
features affect the way the data is constructed, but not the
data itself, and we give ourselves no way to observe the im-
perative details of how the data is constructed.

We do allow ourselves to do pointer equality on CmuBdds,
which is how structural equality is tested. But since the
pointers will be equal if-and-only-if the structures are equal,
this is safe.

One point to question is the use of unsafePerformI0 in
the definition of bdd_vars to extract an IORef out of the I0
monad. By doing this and then using the IORef elsewhere
inside the I0 monad, we’re making the assumption that the
store inside the I0 monad is indeed persistent, and that
I0Refs are coherent between invocations of the I0 monad.
Fortunately, although this behavior is not, to the authors’
knowledge, documented, it is at least the most reasonable
assumption to make. After all, the I0 monad is supposed to
represent the “real world”, which has the behavior of being
persistent.

4 An Example: Sorting

BDDs give us the ability to show equivalence of boolean
functions. This is useful of itself, but in this section we
show how the structure of Haskell can be used to imply
much richer results. The example we take is from sorting.

4.1 Comparison-Swap Sorting

Knuth has a famous theorem about sort algorithms that are
based only on comparison-swaps (an operation that takes
two elements and returns them in sorted order). The theo-
rem states that if such an algorithm is able to sort booleans
correctly, it will also sort integers correctly. Knuth'’s proof is
based in decision-theory, and is specific to sorting. We have
discovered that Knuth’s result is a special case of the more
general theorems coming from polymorphic parametricity.

This suggests the following proof technique. Take a poly-
morphic function, perform some verification using BDDs at
the boolean instance, and then use the parametricity the-
orem to deduce a corresponding result for more complex
types. In effect, the boolean instance acts as an abstract in-
terpretation of the more general algorithm, and parametric-
ity supplies the abstraction and concretization relationships.

To see how this works in practice, we first need to con-
sider the type of a comparison-swap sort. We want to avoid
the manual examination of the program text that an ap-
plication of Knuth’s theorem would require. What can we
learn from the type alone? The type cannot tell us that the
algorithm is a sorting algorithm, but it can ensure that it
makes no assumptions about the contents of the list, except
via the first parameter. Consider the type:

sort :: ((a,a)->(a,a)) -> [a] -> [a]

If the sort argument is indeed a comparison-swap function
then, intuitively, the type of sort ensures that the only data-
sensitive operation sort can use is comparison-swap.

Let’s make this precise. Consider the parametricity the-
orem for functions of this type [19, 23] (f, g, and h are uni-
versally quantified, and we define j x k = Az, y.(j =,k y)):

(@a)—T+ (a,0) o = g
h x h h x h = map h map h
(b,0) — L+ (b,b) B =TI, )

In Haskell, the theorem applies only when h is strict and,
since the introduction of seq in Haskell 98, bottom-reflecting
as well.

Now, instantiate a to be Int, and b to be Bool, and chose
f and g to be the standard comparison/swap over integers
and booleans (where False < True) respectively. If we can
show that sort g sorts sequences of booleans correctly (using
BDDs for example), then the parametricity theorem will
allow us to conclude that sort f sorts sequences of integers
correctly as well.

To see this, suppose the converse, and we will derive a
contradiction. Suppose zs contains x and y, such that z < y.
For sort f to be incorrect, there has to exist at least one x
and y pair which appears out of order (y before z) in the list
sort f zs. Let h be the function that is false for all inputs
less than y, and true otherwise (h(n) = y <= n). This
function commutes with f and g, and is strict and bottom-
reflecting as well, thus it satisfies the precondition for the
theorem. Therefore, the right-hand side of the theorem must
hold.



Now, by assumption, sort g (map h zs) is sorted cor-
rectly. That is, the result is a list of booleans with all
the occurrences of False preceding the occurrences of True.
However, if y precedes x in the result of sort f zs then
the result of map h(sort f zs) will contain an occurrence of
True before the final occurrence of False. Thus, we have a
contradiction, so the assumption that y preceded z in the
result of sort f zs was incorrect.

In effect, parametricity has ensured that sort behaves
coherently over all types, so that results at the boolean in-
stance can be used to imply consequences at other types.
Another perspective is that parametricity expresses the
multi-faceted symmetry inherent in this problem Symme-
try is vital in verification by model checking for reducing
large problem spaces to manageable proportions, and that
is what is achieved here [8]. Rather than model check on
lists of 32-bit integers, we perform the check on single-bit
integers.

4.2 Checking Comparison-Swap Sort on Booleans

The missing part of the story is using BDDs to show that
sort g sorts lists of booleans correctly. We can only show
that sorting is correct for an arbitrary, but fixed-length list.
The logic of BDDs is simply not powerful enough to prove
the result in general (which would require some kind of in-
ductive argument—well beyond the scope of propositional
logic). However, since the method is automated, it’s no
trouble to check it for a variety of lengths of list, leaving
only very subtle bugs out of its reach.

The sorting algorithm we use is bitonic sort, an efficient
algorithm that is particularly amenable to hardware real-
ization. Also, for a sorting algorithm, it’s fairly tricky, so
it’s a good candidate for verification. The code is given in
Figure 2. Bitonic sort is designed to work on lists that have
a length that is a power of two. It recursively divides the
list into two parts and sorts each partition. To combine the
two parts it swaps corresponding elements in each list. Be-
cause one list is sorted in ascending order and the other in
descending order, the swapping results in all the elements in
the first list being lower (or higher) than the elements in the
second list. The two lists are in the correct form to repeat
this swapping on the two sublists to arrive at a sorted list.

To verify the algorithm, we first need a simple predicate
to indicate whether a list is sorted or not.

sorted test [] = true

sorted test [x] = true

sorted test (x : ys@(y : _)) =
x ‘test’ y && sorted test ys

Now, we will state the property that we want to show for a
list with variable elements, but a fixed length of sixteen.

result = sorted lessEq (sort xs)
where
xs = [ var ("x" ++ show i) | i <- [0 .. 15] ]
sort xs = bitonic_sort cmpSwap xs True

It remains to define the two BDD-specific functions
cmpSwap and lessEq. These turn out to be particularly nice.

cmpSwap a b = (a & b, a || b)
lessEg a b =a ==>b

Now, when we query Haskell about result, it returns true.

bitonic_to_sorted cmpSwap [1 up = []
bitonic_to_sorted cmpSwap [x] up = [x]
bitonic_to_sorted cmpSwap xs up =
let k = length xs ‘div‘ 2
(ys, zs) = pairwise cmpSwap (splitAt k xs)
(ys’, zs’) =
if up then (ys, zs) else (zs, ys)
in
bitonic_to_sorted cmpSwap ys’ up ++
bitonic_to_sorted cmpSwap zs’ up

pairwise £ ([1, [1) = (01, [
pairwise f (x : xs, y : ys) =
let (x’, y’) =fxy
(xs’, ys’) = pairwise f (xs, ys)
in
(x> : xs’, y> & ys?)

bitonic_sort cmpSwap [1 up = []
bitonic_sort cmpSwap [x] up = [x]
bitonic_sort cmpSwap xs up =
let k = length xs ‘div‘ 2
(ys, zs) = splitAt k xs
ys’ = bitonic_sort cmpSwap ys True
zs’ = bitonic_sort cmpSwap zs False
in
bitonic_to_sorted cmpSwap (ys’ ++ zs’) up

cmpSwap x y = if x < y then (x, y) else (y, x)

Figure 2: Bitonic Sort




4.3 Limitations to using Parametricity

We expect the verification technique outlined above to be
useful in many cases, but it’s not a panacea. Sometimes
parametricity is not powerful enough to capture appropriate
abstractions. In effect, some types are simply not expressive
and/or constraining enough to enable the boolean instance
to say much about the general case. Consider the following
variation on the example above.

It might seem that the parametricity argument that we
used to echo Knuth’s sorting theorem would apply just as
easily to a regular sort algorithm based on a comparison
function, with type:

sort :: ((a, a) -> Bool) -> [a] -> [al

However, it is fairly easy to construct a pseudo-sorting al-
gorithm of this type that will correctly sort lists of booleans
but fails to sort lists of integers correctly. Consider the fol-
lowing: take the first element of the list as a partition value.
Next, do a one-pass sort into three buckets: one for ele-
ments less then the partition, one for those equal (neither
less, nor greater), and one for those greater. Finally, stick
the partition element in the equal bucket, and concatenate
the buckets in the order: less, equal and greater. Parti-
tioning based upon a single element will work for booleans,
because there’s only two values; however, it clearly won’t
work in general.

So, the parametricity-based approach must fail for
comparison-based sorts. Where does it break down? First,
examine the “free theorem” for a comparison-based sort.

t
(a,a) —7+ Bool ] S g
hxh = map h map h
t
(b,b) —+ Bool ] 229,

The conclusion is identical in each instance of the para-
metricity theorem, but the precondition of this instance is
much more stringent than before. The key to proving the
comparison-swap case was the ample supply of appropriate
functions h to “detect” any incorrectly sorted list. How-
ever, the precondition on A in this case requires that the
comparisons on the two sorts, integer and boolean say, are
equivalent to one another. Thus for the case of comparison
sort there are essentially no interesting choices for h relating
the integer and boolean cases.

5 The Stanford Validity Checker

The Stanford Validity Checker (SVC) is an implementation
of a decision procedure for a quantifier-free, first-order logic
with equality [2, 7, 11]. It has been used extensively for mi-
croprocessor validation and verification [7, 11, 12, 22] and
recently for requirements validation [18]. The logic allows
models to include uninterpreted functions, which can be
used to represent datapath operations in a pipelined archi-
tecture. SVC returns a counterexample if the formula is not
valid.

formula == ite (formula, formula, formula)
(term = term)

predicate symbol (term, ..., term)
true

false

term ite (formula, term, term,)
function symbol (term, ..., term)
read (term, term)

write (term, term, term)

distinct constant

formula

Figure 3: The SVC logic

5.1 Connecting SVC with Haskell

Our initial interface with this tool was file-based. We had
a representation of expressions in the logic as a datatype in
Haskell and wrote expressions of this form to a file that was
later read by SVC. As we worked on larger examples, this
approach became unmanageable. The size of the structure
was extremely large and did not take advantage of possible
sharing of subexpressions. While SVC'’s internal data struc-
ture is not canonical as is the case for BDDs, it is optimized
and shares common subexpressions. Thus it quickly became
apparent that a much better approach is to have a tight link
between the process of generating the term and building the
term in SVC. Using H/Direct we were able to create an ab-
stract interface to the SVC C++ functions that build the
expressions. We used version 1.1 of SVC.

As it is a richer logic, SVC expressions include
more than just boolean-valued terms. Figure 3 con-
tains a description of the SVC logic. = The predicate
and function symbols introduce uninterpreted predicates
and functions. The functions ite and = are interpreted
functions representing “if-then-else” and equality. The
functions read and write are interpreted as acting on
stores; an axiom of the logic relating these functions
is, read (write (store, index, data), index) = data.
Other logical, numeric, bit vector and record operations also
have an interpreted meaning.

Using H/Direct we created an interface to SVC that has
functions for building each of the kinds of terms and for-
mulae. These functions return elements of the type PExpr,
which are pointers to SVC expressions. The interface func-
tions to SVC that build expressions in the logic do not dis-
tinguish between terms and formulae.

As with the BDD package, the calls to the SVC functions
are wrapped in unsafePerformI0 to extract the value from
the IO monad. Because the only way to observe the SVC
expressions is to check their validity, the meaning of an ex-
pression is the same regardless of its order of construction.
Therefore we can use the term building functions as if they
are referentially transparent.

Only a subset of the SVC expressions, the formulae, can
be used to instantiate the Boolean class. Even though the
underlying package doesn’t distinguish between terms and
formulae, we want Haskell to make this distinction so that
the Boolean class is only instantiated for formulae. We cre-
ate the datatypes SvcFormula and SvcTerm to wrap around
the pointers to expressions that SVC returns to make them
distinct types.

newtype SvcFormula = SvcF PExpr



newtype SvcTerm = SvcT PExpr

We wrap the output of the SVC functions with SvcF or SveT
as appropriate. The arguments to the function must be
unwrapped.

Using Haskell’s type system to distinguish between terms
and formulae in SVC’s logic, we instantiated the Boolean
class using only the formulae of SVC.

instance Boolean SvcFormula where
true = SvcF $ unsafePerformI0 $ Svc.makeTrue
(SvcF a) && (SvcF b) =
SvcF $ unsafePerformI0 $ Svc.makeAnd a b

The functions Svc.makeTrue and Svc.makeAnd are calls to
the SVC package.

In SVC the equality operator is also used to create formu-
lae. This operator is an instance of the generalized equality
class:

instance Eql SvcTerm SvcFormula where
(SvcT a) === (SvcT b) =
SvcF $ unsafePerformI0 $ Svc.makeEquals a b

Because SVC has both terms and formulae, there are
functions that create terms. We provide wrappers for these
functions as well. For example, fcn creates an uninterpreted
function application, where the first string argument is the
name of the function, and the arguments to the function are
provided in a list:

fcn a bs =
SvcT $ unsafePerformI0 $
(if (bs==[]) then Svc.makeSymbol a
else Svc.makeUninterpretedFcn a
(args bs))

The function args turns the Haskell list of terms into the
SVC form.

The SVC package has two instantiations of the Var class
— one for formulae, and one for terms.

instance Var SvcFormula where
var a = SvcF $ unsafePerformI0 $ Svc.makeSymbol a

instance Var SvcTerm where
var a = SvcT $ unsafePerformI0 $ Svc.makeSymbol a

Type annotations are sometimes necessary to distinguish
which instance of var is being used in a Haskell program.

The interface includes the SVC function checkValid to
call the prover on the constructed expression. Calls to
checkValid are referentially transparent because our inter-
face tells SVC to treat each check independently from any
other calls to the prover. We pop its stack of knowledge
about a particular proof session (context), but retain its
data about the expressions that have been built.

5.2 Sort Example

SVC is able to check the sort algorithm presented in Sec-
tion 4 for a fixed length list of elements without the para-
metricity meta reasoning because SVC can reason over ar-
bitrary types. To do this, we provided different defini-
tions for lessEq and cmpSwap. We made the “less than”
operator an uninterpreted predicate replacing its use with
pred "1t" [a,b]l. We also used the SVC “if-then-else”,
namely itet.

INVALID
Falsifying Assumptions

Assert:

$92: (1t $7:a1 $11:a3)
Deny:

$85: (1t $8:a22 $7:al)
Deny:

$55: (1t $8:a2 $11:a3)
Deny:

$57: (1t $7:a1 $12:a4)
Deny:

$13: (1t $11:a3 $12:a4)
Deny:

$9: (1t $7:a1 $8:a2)

INVALID
Case_Splits: 7
Exprs_Generated: 57
Figure 4: SVC counterexample
cmpSwap X y =

let test = pred "1lt" [x,y] in
(itet test x y, itet test y x)

lessEq x y = not (pred "1t" [y,x])

The prover was invoked to determine if a fixed length list
of symbolic elements is sorted, as in:

result = checkValid
(sorted lessEq (sort xs)) where
sort xs = bitonic_sort cmpSwap xs True
xs = [var "al", var "a2", var "a3", var "a4"]

SVC returned with a counterexample found in Figure 4.
The counterexample is in the form of a series of asser-
tions and denials of subformulae. The “$” variables refer
to internal subexpression names. The case provided in Fig-
ure 4 has both —=(a2 < al) and —(al < a2), which means
a2 must equal al. The case also says that al < a3 and
—(a2 < a3), which is impossible when al and a2 are equal,
and < has its intended meaning. From this counterexam-
ple, we learned that we cannot achieve our verification result
without providing more information about the behavior of
the “less than” operator.

SVC has an interpreted “less than” function for ratio-
nal expressions that we could use. But we wished to check
the sort algorithm for all types of ordered elements with-
out any meta reasoning. SVC needed the information that
the “less than” operator is irreflexive, transitive, and that
r#y=(r<y=-(y <x)). We provided these in the
form of antecedents to the consequent that we wanted to
check. This is a limited axiomatization of the “less than”
operator.

The SVC logic has no quantifiers so it was necessary to
generate all the possible instantiations of these properties



pipe input

pipeState pipeState’
pipe flush pipe flush
Y
pipe flush pipe flush
Y
pipe flush pipe flush
Y
proj proj
fMach '
refMachine input
refState P refState’

Figure 5: Burch and Dill Commuting Diagram (found in [7])

for the symbolic elements in the input list. Haskell’s list
comprehension syntax was very convenient for stating, in a
compact form, all the antecedents that were needed. For
example, transitivity of a relation r for a list of elements is
expressed as:

trans r x yz=(rxy&& ryz ==>rzxz

genTrans list r =
foldrl (&%) [trans r x y z |

x <- list,
y <- list,
z <- list]

With these antecedents, SVC returns instantly for the
bitonic sort of 4 elements saying that the sort algorithm
is correct.

6 Example 2: Microprocessor Verification

As a second example of the use of SVC in Haskell, we present
the verification of a simple pipelined ALU used in Burch and
Dill [7] (originally found in Burch et al. [6]). In their pre-
sentation, they use a simple hardware description language
based on Lisp as input to their verification process. This sec-
tion describes how this example can be verified in Haskell
using SVC and uninterpreted functions for the datapath op-
erations.

The Burch and Dill approach to verification automat-
ically calculates an abstraction function relating a micro-
processor pipeline to a reference machine. The calculation
is done using symbolic simulation. The pipeline is equiv-
alent to the reference machine if the diagram in Figure 5
commutes. The abstraction function consists of flushing the
intermediate results of the pipeline and projecting from the
pipeline only the parts of the state visible in the reference
machine (proj).

Figure 6 is a pipeline and reference machine modeled in
Haskell, translated from the descriptions in Lisp found in
the appendix of Burch and Dill’s paper. The state of the
reference machine is simply the register file. The reference
machine and the pipeline are compared on the value of the

register file only. The register file element of the pipeline is
projected from its state as part of the correctness statement.

Because we leave the ALU operation as an uninterpreted
function, our verification using SVC does not depend on the
datapath width and operations. For the operations on the
register file, the interpreted write and read SVC functions
are used. The SVC instantiations of the Boolean operators
and equality (===) are chosen automatically.

To verify the pipeline, we stall it to flush its state by
setting the stall signal of the input high for a certain number
of steps. The flush input contains symbolic values for every
input other than the stall signal.

flush = (true,
var "flushDestReg",
var "flushOpcode",
var "flushSrciReg",
var "flushSrc2Reg")

flushPipe initialState n =
if (n == 0) then initialState
else flushPipe (pipe flush initialState) (n-1)

The initialState also assigns symbolic values to all the
internal latches of the pipe:

initialState = (var "registers",
var "argl",
var "arg2",
var "bubble_wb",
var "dest_wb",
var "result",
var "bubble_ex",
var "dest_ex",
var "op_ex")

To calculate the left and bottom route of the commuting
diagram, we flush the pipeline, project out a state for the
reference machine, and run the reference machine on this
initial state with symbolic input:

proj (registers, _,_,_,_,_,_,_,_) = registers

input = (var "stall",
var "dest",
var "opcode",
var '"srcl",
var "src2")

pathl n = refMachine input
(proj (flushPipe initialState n))

We compare pathl with the other side of the commuting
diagram. In path2, we run the pipeline on the symbolic
input, starting from the symbolic initial state, and then flush
the pipeline:

path2 n = proj
(flushPipe (pipe input initialState ) n)

These two paths are computed by executing the Haskell
models. On any path in the pipe there are at most two
latches, therefore the pipe should agree with the reference
machine after two flushes. The verification condition that
we pass to the prover to be checked is:

pipeTest = (pathl 2) === (path2 2)



type Input =
(SvcFormula, -- stall
SvcTerm, -- dest
SvcTerm, -- opcode
SvcTerm, -- sourcel
SvcTerm) -- source2

type PipeState =

(SvcTerm, -- register file
SvcTerm, -- argl

SvcTerm, -- arg2

SvcFormula, -- bubble-writeback
SvcTerm, -- dest-writeback
SvcTerm, -- result
SvcFormula, -- bubble-ex,
SvcTerm, —-- dest-ex,
SvcTerm) -- opcode

pipe :: Input -> PipeState -> PipeState
pipe (stall, dest,opcode,srcl,src2)
(registers,argl,arg2,bubble_wb,dest_wb,
result,bubble_ex,dest_ex,op_ex) =
(registers’,argl’,arg2’ ,bubble_wb’,dest_wb’,
result’, bubble_ex’,dest_ex’,op_ex’)
where
registers’ = itet bubble_wb
registers
(write registers dest_wb result)
bubble_wb’ = bubble_ex

dest_wb’ = dest_ex

result’ = fcn "alu" [op_ex, argl, arg2]

bubble_ex’ = stall

dest_ex’ = dest

op_ex’ = opcode

argl’ = itet ((not bubble_ex) &&

(dest_ex === srcl))

result’

(read registers’ srcl)
arg2’ = itet ((not bubble_ex) &&
(dest_ex === src2))
result’
(read registers’ src2)

type RefState = SvcTerm -- register file
refMachine :: Input -> RefState -> RefState
refMachine (stall, dest, opcode, srcl, src2)
registers =

itet stall

registers

(write registers dest

(fcn "alu" [opcode,

read registers srcil,

read registers src2]))

Figure 6: Microprocessor models

SVC verifies pipeTest instantly.

Integrating SVC with Haskell creates a very convenient
debugging loop when there are errors in the model. Using
the information in a counterexample, concrete values can be
input to the model to illustrate the error.

7 Discussion

The section discusses some interesting points that have been
raised in creating these logical abstractions.

7.1 Shallow versus Deep Embedding

In order to look most like a duck, we’ve taken the approach
of doing a shallow embedding of both BDDs and SVC. This
means we directly interpret the logical operators as oper-
ations on the internal data structures of the BDD package
and SVC. An alternate approach is a deep embedding, where
we construct an intermediate data structure that is exactly
(or close to) the term structure.

One benefit of the deep embedding is that it gives us
the opportunity to tackle the normalization process in dif-
ferent ways that may be more efficient. By analogy, when
constructing BDDs incrementally, we must use essentially
a bubble sort to put the nodes in sorted order. The incre-
mental approach is necessarily based on local decisions, but
we know that sorting is suboptimal when it is restricted to
making local decisions. Thus, we can imagine being able
to do something analogous to mergesort to put a BDD in
normal form much more efficiently.

This approach is not considered feasible in the strict set-
ting of a C implementation, because the intermediate data
structure would be huge, and space is more of a limiting fac-
tor with BDDs than speed. The intermediate data structure
would not be able to take advantage of any sharing. Thus,
the only feasible approach is to calculate the sharing as you
go.

However, in the setting of a lazy functional programming
language, we have more options. Because the intermediate
data structure doesn’t necessarily get built, we may be able
to take advantage of laziness to process BDDs more effi-
ciently, while not taking a hit in space usage.

Another argument in favor of a deep embedding is that
we could let Haskell control decomposition or simplification
before calling the decision procedure. Haskell could become
a platform for building “minimal proof assistants” [17] com-
bining evaluation for term generation, decision procedures,
and theorem proving techniques.

7.2 Types

So far, we are not making too much use of Haskell’s rich
type system. The only type distinction that we make in
SVC expressions is between booleans and any other kind of
term. We are working on building a typed layer on top of
SVC logical terms where we regain the typechecking benefits
of Haskell. This layer will make extensive use of type classes
letting Haskell do the work of choosing the correct instances
of functions rather than the user.

7.3 Ambiguity

One unfortunate consequence of generalizing booleans to a
type class is that ambiguity problems can arise left and right.
Booleans are used all over the place as intermediate values,



especially in if-then-else expressions. Intermediate types
in expressions don’t show up in the type of the overall ex-
pression, and thus the type class system has no basis upon
which to chose which instance to use. The same scenario
holds for the Num class, but Haskell resolves this by the de-
fault mechanism. It would be helpful if the default mecha-
nism could be made more general, such that we could talk
about defaults for Boolean as well.

7.4 BDD Variable Order

As was pointed out in the introduction, in our zeal to put
a pretty face on complex implementation packages, we give
up a good deal of control.

For the sake of simplicity the interface that we provide
to the BDD package leaves the user unaware of the de-
tails of variable order when building a BDD. The variables
are ordered by the time of their creation. Since Haskell
is free to change the order of evaluation, the variable or-
der is not even predictable. This can have serious draw-
backs, since the size of a BDD can vary greatly depend-
ing on the variable order. Figure 7 gives two BDDs for
(al && b1) || (a2 && b2) || (a3 && b3) with different
variable orderings. The dashed lines are false branches and
the solid lines true branches.

However, in practice, trying to control variable ordering
is a bit of a black art, and the problem in undecidable in
general. But this situation is analogous to space allocation
in Haskell, which is similarly out of the programmers hand,
and has similar bad worst-case scenarios. One option, when
variable order really needs to be controlled, is to use explicit
sequencing via seq.

7.5 Applications in Verification

Why would this connection between Haskell and decision
procedures be of interest to the verification community ?
First, properties can be proven about Haskell programs.
Free theorems from the parametricity of Haskell programs
that model microprocessors may provide symmetry-like ar-
guments for reducing the size of the state space.

Second, using Haskell allows models to be written in a
strongly-typed language. Typechecking has its own benefits
for a specification language, and now we are providing a link
directly to verification tools for this language.

Third, Haskell works well as a meta-language for generat-
ing terms for input to the verification process. Can laziness
in Haskell be exploited to avoid full generation of a term
while a proof is in progress ? Laziness could be particularly
important for defect-finding verification efforts.

8 Related Work

This work extends the brief description of linking BDDs with
Haskell found in Launchbury, Lewis, and Cook [14].

Lava [3] is a Haskell-based hardware description lan-
guage. They provide multiple interpretations of circuit
descriptions for simulation, verification, and code genera-
tion. For verification, Lava interfaces to the propositional
logic checker Prover [21], and two first-order logic theorem
provers. The interface is file-based, breaking an expression
into component subexpressions. Lava used reinterpretations
of monads to create output for the different provers.

10

Individually decision procedures have been connected to
other functional languages. For example SVC has been con-
nected to Lisp. Voss uses BDDs for all boolean manipula-
tions. And BDD packages such as Buddy [15] have been
connected to ML and as a decision procedure in the HOL
theorem prover [13]. Compared to these approaches, we use
a generalized version of the Bool datatype through the class
system to allow the packages to be used somewhat inter-
changeably. Furthermore, using Haskell we are able to pro-
vide this link in a pure functional language while preserving
referential transparency.

9 Conclusion

It seems that our logical ducks swim quite well as abstract
datatypes in Haskell. By generalizing the boolean and equal-
ity classes, it is possible to use the different decision proce-
dures somewhat interchangeably. We have defined referen-
tially transparent interfaces, allowing the underlying tools
to do their work while the user simply sees the correspond-
ing values. Having a tight connection between Haskell and
the decision procedure allowed us to avoid space limitations
in building the unreduced expression. The integration with
Haskell also allowed us to leverage parametricity arguments
in proofs.

10 Acknowledgements

The use of parametricity to redo Knuth'’s result was dis-
covered in conjunction with John Matthews and Mircea
Draghicescu. We thank Clark Barrett of Stanford for help
with the Stanford Validity Checker. The authors are sup-
ported by Intel, U.S. Air Force Materiel Command (F19628-
96-C-0161), NSF (EIA-98005542) and the Natural Science
and Engineering Research Council of Canada (NSERC).

References

[1] VIS home page.
http://www-cad.eecs.berkeley.edu/"vis/.

[2] C. Barrett, D. Dill, and J. Levitt. Validity checking for
combinations of theories with equality. In FMCAD’96,
volume 1166 of LNCS, pages 187-201. Springer-Verlag,
1996.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. In ACM Int. Conf. on
Functional Programming, 1998.

[4] R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Com-
puters, C-35(8):677-691, August 1986.

[5] R. E. Bryant. Symbolic boolean manipulation with or-
dered binary decision diagrams. ACM Computing Sur-
veys, 24(3):293-318, September 1992.

[6] J. R.Burch, E. M. Clarke, K. L. McMillan, and D. Dill.
Sequential circuit verification using symbolic model
checking. In DAC, 1990.

[7] J. R. Burch and D. L. Dill. Automatic verification of
pipelined microprocessor control. In CAV, volume 818
of LNCS, pages 68-79. Springer-Verlag, 1994.



[8]

[9]

[10]

[13]

[14]

[16]

[17]

Figure 7: The formula (al && bl) || (a2 && b2) || (a3 && b3) with different variable orders (found in [5])

E. M. Clarke, T. Filkorn, and S. Jha. Exploiting sym-
metry in temporal logic model checking. In CAV, pages
450-462, 1993.

C. Elliot and P. Hudak. Functional reactive animation.
In ACM Int. Conf. on Functional Programming, 1997.

S. Finne, D. Leijen, E. Meijer, and S. Peyton Jones.
H/Direct: A binary foreign language interface for
Haskell. In ACM Int. Conf. on Functional Program-
mang, 1998.

R. B. Jones, D. L. Dill, and J. R. Burch. Efficient
validity checking for processor verification. In ICCAD,
1995.

R. B. Jones, J. U. Skakkebak, and D. L. Dill. Reduc-
ing manual abstraction in formal verification of out-of-
order execution. In Formal Methods in Computer-Aided
Design (FMCAD’98), volume 1522 of LNCS, pages 2—
17. Springer-Verlag, 1998.

K. Larsen and J. Lichtenberg. MuDDy.

http://www.itu.dk/research/muddy/.

J. Launchbury, J. Lewis, and B. Cook. On embedding
a microarchitectural design language within Haskell. In
ACM Int. Conf. on Functional Programming, 1999. To
appear.

J. Lind-Nielsen. BuDDy: Binary decision diagram
package, release 1.6, 1998. Department of Information
Technology, Technical University of Denmark.

D. E. Long. bdd - a binary decision diagram ( BDD)
package. Man page.

K. L. McMillan. Minimalist proof assistants. In FM-
CAD, volume 1522 of LNCS, page 1. Springer, 1998.

11

[18]

[19]

[23]

D.Y. Park, J. U. Skakkebak, M. P. Heimdahl, B. J. Cz-
erny, , and D. L. Dill. Checking properties of safety crit-
ical specifications using efficient decision procedures. In
FMSP’98, 1998.

J. C. Reynolds. Types, Abstraction, and Parametric
Polymorphism. In R. Mason, editor, Information Pro-
cessing 83, Proceedings of the IFIP 9th World Com-
puter Conference, 1983.

C.-J. H. Seger. Voss - a formal hardware verification
system: User’s guide. Technical Report 93-45, De-
partment of Computer Science, University of British
Columbia, December 1993.

M. Sheeran and G. Stalmarck. A tutorial on
Stalmarck’s proof procedure for propositional logic. In
FMCAD, number 1522 in LNCS, pages 82-99, 1998.

J. U. Skakkebak, R. B. Jones, and D. L. Dill. Formal
verification of out-of-order execution using incremental
flushing. In CAV, volume 1427 of LNCS, pages 98-109.
Springer-Verlag, 1998.

P. Wadler. Theorems for free. In Functional Program-
ming Languages and Computer Architecture, pages
347-359. ACM, 1989.






Lightweight Extensible
Records for Haskell

Mark Jones (Oregon Graduate Institute, USA) and Simon Peyton Jones (Mi-
crosoft Research Cambridge, UK)






Lightweight Extensible Records for Haskell

Mark P. Jones
Oregon Graduate Institute
mpjQ@cse.ogi.edu

Simon Peyton Jones
Microsoft Research Cambridge
simonpjOmicrosoft.com

September 6, 1999

Abstract

Early versions of Haskell provied only a positional notation
to build and take apart user-defined datatypes. This po-
sitional notation is awkward and error-prone when dealing
with datatypes that have more than a couple of components,
so later versions of Haskell introduced a mechanism for la-
beled fields that allows components to be set and extracted
by name. While this has been useful in practice, it also has
several significant problems; for example, no field name can
be used in more than one datatype.

In this paper, we present a concrete proposal for replacing
the labeled-field mechanisms of Haskell 98 with a more flex-
ible system of records that avoids the problems mentioned
above. With a theoretical foundation in the earlier work
of Gaster and Jones, our system offers lightweight, extensi-
ble records and a complement of polymorphic operations for
manipulating them. On a more concrete level, our proposal
is a direct descendent of the Trex implementation (“typed
records with extensibility”) in Hugs, but freed from the con-
straints of that setting, where compatibility with Haskell 98
was a major concern.

1 Introduction

Records are one of the basic building blocks for data struc-
tures. Like a simple tuple or product, a record gathers to-
gether some fixed number of components, each of a poten-
tially different type, into a single unit of data. Unlike a tuple
however, the individual components are accessed by name
rather than position. This is particularly important in lan-
guages where there is no support for pattern matching, or
in cases where the number of different components would
make pattern matching unwieldy and error-prone.

Haskell allows programmers to define a wide range of alge-
braic datatypes, but early versions of the language (up to
and including Haskell 1.2) did not provide any support for
records. As Haskell became an increasingly attractive plat-
form for general purpose program development, the need
for some form of records became more pressing: it is quite
common to find data structures with many components in
real-world applications, and it is very awkward to deal with
such datatypes in a language that supports only the tra-
ditional constructor and pattern matching syntax for alge-
braic datatypes. Motivated by such practical concerns, the

mechanisms for defining algebraic datatypes were extended
in Haskell 1.3 (and carried over into Haskell 1.4 and Haskell
98) to support labeled fields, which allows the components of
a datatype to be accessed by name. In essence, the syntax
of Haskell was extended so that the definition of a particular
algebraic datatype could include not just the names of its
constructors, as in earlier versions of the language, but also
the names for its selectors. We review the Haskell 98 record
system in Section 2.

The Haskell 98 system has the merit of being explicable by
translation into a simpler positional notation, and has no
impact at all on the type system. However, this simplic-
ity comes at the price of expressiveness, as we discuss in
Section 2.1. This paper presents a concrete proposal for an
alternative record system, designed to replace the current
one (Section 3).

Our proposal is based closely on the extensible records of
Gaster and Jones [4]. An implementation of their system
has been available for a couple of years, in the form of the
“Trex” extension to Hugs, so quite a bit of experience has
accumulated of the advantages and shortcomings of the sys-
tem. Trex is designed to be compatible with Haskell 98,
and that in turn leads to some notational clumsiness. This
proposal instead takes a fresh look at the whole language.

The resulting design is incompatible with Haskell 98 in mi-
nor but pervasive ways; most Haskell 98 programs would re-
quire modification. However, we regard this as a price worth
paying in exchange for a coherent overall design. We review
the differences between our proposal and Trex, Gaster’s de-
sign, and other system in Section 4.

The paper contains essentially no new technical material;
the design issues are mainly notational. So why have we
written it? Firstly, there seems to be a consensus that some
kind of full-blown record system is desirable, but debate is
hampered by the lack of a concrete proposal to serve as a
basis for discussion. We hope that this paper may serve that
role. Second, it is not easy to see what the disadvantages of
a new feature might be until a concrete design is presented.
Our system does have disadvantages, as we discuss in Sec-
tion 5. We hope that articulating these problems may spark
off some new ideas.



2 Haskell 98 records: datatypes with labeled fields

The Haskell 98 record system simply provides syntactic
sugar for what could otherwise be written using ordinary,
positional, algebraic data types declarations. For example,
to a first approximation, the following definition:

data List a = Nil
| C

ons {head :: a, tail :: List a}
can be thought of as an abbreviation for separate datatype

and selector definitions:

data List a = Nil -- datatype
| Cons a (List a)
head (Cons x xs) = x -- selectors

tail (Cons x xs) = xs

In fact, Haskell takes things a step further by introduc-
ing special syntax for construction and update operations.
These allow programmers to build and modify data struc-
tures using only the names of components, and without hav-
ing to worry about the order in which they are stored. For
example, we can build a list with just one element in it using
either of the constructions Cons{head=value, tail=Nil}
or Cons{tail=Nil, head=value}, and we can truncate any
non-empty list xs to obtain a list with just one element using
the update expression xs{tail=Nil}.

The following definition illustrates another convenient fea-
ture of Haskell’s record notation:

data FileSystem
= File {name :: String, size ::
| Folder {name :: String, contents ::

Int, bytes :: [Bytell}
[FileSystem]}

Values of this datatype represent a standard hierarchical file
system with files contained in potentially nested folders. No-
tice that name is used as a field name in both branches; as a
result, the selector function name that is generated from this
definition can be applied to both File and Folder objects
without requiring the programmer to treat the two alterna-
tives differently each time the name of a FileSystem value
is required.

The result of these extensions is a record-like facility, layered
on top of Haskell’s existing mechanisms for defining alge-
braic datatypes. From a theoretical perspective, of course,
these features are just a form of syntactic sugar, and do
nothing to make the language any more expressive. In prac-
tice, however, they have significant advantages, greatly sim-
plifying the task of programming with data structures that
have many components. Moreover, the resulting programs
are also more robust because the code for selectors, update,
and construction is generated directly by the compiler, au-
tomatically taking account of any changes to the datatype
when fields or constructors are added, deleted or reordered.

2.1 Shortcomings of Haskell 98 records

Unfortunately, there are also some problems with the
Haskell 98 approach:

e Record types are not lightweight; record values can only

be used once a suitable algebraic data type has been
defined. By contrast, the standard Haskell environ-
ment automatically provides lightweight tuple types—
records without labels—of all sizes.

e Field names have top-level scope, and cannot be used
in more than one datatype. This is a serious problem
because it prevents the direct use of a datatype with
labeled fields in any context where the field names are
already in scope, possibly as field names in a different
datatype. The only ways to work around such conflicts
are to rely on tedious and error-prone renaming of field
names, or by using (module) qualified names.

e Within a single datatype definition, we can only use
any given field name in multiple constructors if the
same types appear in each case. In the definition of the
FileSystem datatype above, for example, it was nec-
essary to to use different names to distinguish between
the contents (i.e., bytes) of a File, and the contents
of a Folder.

e There is no way to add or remove fields from a data
structure once it has been constructed; records are not
extensible. Each record type stands by itself, unrelated
to any other record type; functions over records are not
polymorphic over extensions of that record.

In the remaining sections of this paper, we present a con-
crete proposal for replacing the labeled field mechanisms of
Haskell with a more flexible system of records that avoids
the problems described above. There seems little point in
retaining the current labeled field mechanisms of Haskell
in the presence of our proposed extensions, as this would
unnecessarily complicate the language, and duplicate func-
tionality. Firm theoretical foundations for our system are
provided by the earlier work of Gaster and Jones [5], with
a type system based on the theory of qualified types [8].
This integrates smoothly with the rest of the Haskell type
system, and supports lightweight, extensible records with
a complement of polymorphic operations for manipulating
them. On a more concrete level, our proposal is inspired by
practical experience with the Trex implementation (“typed
records with extensibility”) in current versions of the Hugs
interpreter, but freed from the constraints of that setting,
where compatibility with Haskell 98 was a major concern.

3 The proposed design

This section provides an informal overview of our proposal
for adding a more flexible system of extensible records to
Haskell. It covers all of the key features, and sketches out
our proposed syntax. Some aspects of our proposal are il-
lustrated using extracts from a session with an interpreter
for a Haskell dialect that supports our extensions. The in-
terpreter prompts for an input expression using a single ?
character, and then displays the result of evaluating that
expression on the next line. At the time of writing, we have
not actually built such an interpreter. However, based on
our experience implementing and using the Trex system in
Hugs, we are confident that our proposals are feasible, prac-
tical, and useful.



We begin by describing the basic syntax for constructing and
selecting from record values (Section 3.1), and for represent-
ing record types (Section 3.3). But for a few (mostly minor)
differences in syntax, these aspects our proposal are almost
indistinguishable from the lightweight records of Standard
ML (SML). Turning to issues that are specific to Haskell,
we show that record types can be included as instances of
the standard classes for equality, Eq, and display, Show (Sec-
tion 3.4). One key feature of our proposal, which clearly
distinguishes it from the existing mechanisms in languages
like SML and Haskell 98, is the support for extensibility (Sec-
tion 3.5). By allowing record extension to be used in pattern
matching, we also provide a simple way to select or remove
specific record components. A combination of extension and
removal can be used to update or rename individual field
in a record. In practice, we believe that these operations
are useful enough to warrant a special syntax (Section 3.6).
A second key feature of the underlying type system is row
polymorphism (Section 3.7), and this leads us to introduce
a general syntax for rows (Section 3.8). Finally, we turn to
a collection of additional features that are less essential, but
that look very attractive (Section 3.10).

3.1 Construction and Selection

In essence, records are just collections of values, each of
which is associated with a particular label. For example:

{a = True, b = "Hello", c = 12::Int}

is a record with three components: an a field, containing a
boolean value, a b field containing a string, and a c field
containing the number 12. The order in which the fields are
listed is not significant, so the same record value could also
be written as:

{c = 12::Int, a = True, b = "Hello"}

These examples show simple ways to construct record values.
We can also inspect the values held in a record using the
traditional dot notation, where an expression of the form r.1
simply returns the value of the 1 component in the record
r. For example:

? {a = True, b = "Hello", ¢ = 12::Int}.a
True

? let £f r =r.b in f {a = True, b = "Hello"}
"Hello"

?

In all previous versions of Haskell, the ‘.’ character has been
used to represent function composition. It has also been
used in more recent versions of Haskell in the syntax for
qualified names. The first of these is clearly incompatible
with our proposal, as it would allow a second reading of r.1
as the composition of r with 1. To avoid this conflict, we
propose adopting a different symbol for function composi-
tion; we believe that # would be a good choice, but debate
on that is beyond the scope of this paper. Our use of the
dot notation is, however, entirely compatible with the syn-
tax for qualified names, and with proposals for a structured
module namespace in the style of Java packages. Another
appealing consequence of this design is that it gives a single
and consistent reading to the ‘.’ character as selection, be it
from a record or a module. On a practical level, this shows

up in minor, but pleasing ways. For example, we can re-
move the rather ad-hoc restriction in the Haskell 98 syntax
for qualified name that currently prohibits the use of spaces
in a qualified name like Prelude.map that might otherwise
have been confused with compositions like Just . f£.

Repeated selections can be used to extract values from
record-valued components of other records. As usual, “.”
associates to the left, so that r.1.k is equivalent to (r.1) .k:

? {a = True, b = {x="Hello"}, c = 12::Int}.b.x
"Hello"
?

3.2 Pattern matching

Record values can also be inspected by using pattern match-
ing, with a syntax that mirrors the notation used for con-
structing a record:

7 (\{a=x, c=y, b=_} -> (y,x))
{a=True, b="Hello", c=12::Int}

(12,True)

?

The order of fields in a record pattern (unlike a record expres-
sion) is significant because it determines the order—from left
to right—in which they are matched. Consider the following
two examples:

? [x | {a=[x],b=True} <- [{b=undefined,a=[]},
{a=[2],b=True}]]
[2]

? [ x | {b=True, a=[x]} <- [{b=undefined, a=[]1},
{a=[2],b=True}]1]

Error: {program uses the undefined value}
?

In the first example, the attempt to match the pattern
{a=[x], b=True} against the record {b=undefined, a=[]}
fails because field a is matched first and [x] does not match
the empty list; but matching the same pattern against
{a=[2],b=True} succeeds, binding x to 2. Swapping the
order of the fields in the pattern to {b=True, a=[x]} forces
matching to start with the b component. But the first ele-
ment in the list of records used above has undefined in its b
component, so now the evaluation produces a run-time error
message.

3.3 Record types

Like all other values in Haskell, records have types, and these
are written in the form {r}, where r represents a ‘row’ that
associates labels with types. For example, the record:

{c = 12::Int, a = True, b = "Hello"}
has type:
{a::Bool, b::[Char], c::Int}

This tells us, unsurprisingly, that the record has three com-
ponents: an a field containing a Bool, a b field containing
a String, and a c field of type Int. As with record val-



ues themselves, the order of the components in a row is not
significant, and so the previous type can also be written as:

{b::String, c::Int, a::Bool}

In the special case when the row is empty, we obtain the
empty record type {}, whose only value (other than 1) is
the empty record, also written as {}.

Of course, the type of a record must be an accurate reflection
of the fields that appear in the corresponding value. The
following example produces an error because the specified
type does not list all of the fields in the record value:

? {a=True, b="Hello", c=12} :: {b::String, c::Int}

ERROR: Type error in type signature expression
*** term : {a=True, b="Hello", c=12}
*** type : {a::Bool, b::[Char], c::a}
**% does not match : {b::String, c::Int}

*** because : field mismatch

?

Notice that our system does not allow the kind of sub-
typing on record values that would permit a record like
{a=True, b="Hello", c=12} to be treated implicitly as
having type {b::String, c::Int}, simply by ‘forgetting’
about the a field. Finding an elegant and tractable way
to support this kind of implicit coercion in a way that inte-
grates properly with other aspects of the Haskell type system
remains an interesting problem for future research. How-
ever, as we shall see in Section 3.7, our use of row polymor-
phism offers many of the benefits of subtyping.

3.4 Overloaded operations on records

Record types are automatically included in the standard Eq
and Show classes of Haskell, provided that the types of each
field in the records concerned are themselves instances of the
appropriate class. Our interpreter uses these functions to al-
low comparison and display of record values in the following
examples:

? {a=True, b="Hello"} == {b="Hello", a=True}
True

? {a = True, b = "Hello", ¢ = 12::Int}
{a=True, b="Hello", c=12}

? {c = 12::Int, a = True, b
{a=True, b="Hello", c=12}

?

"Hello"}

Note that these operations always process record fields ac-
cording the dictionary ordering of their labels. The fact
that the fields appear in a specific (but, frankly, arbitrary)
order is very important; the results of the (==) operator and
the show function must be uniquely determined by their in-
put, and not by the way in which that input is written. The
records used in the last two lines of the example have exactly
the same value, and so we expect exactly the same output
for each. The difference in behavior between the following
two examples is also a consequence of this:

? {a=0, b="Hello"} == {b=undefined, a=1}
False
? {b=0, a="Hello"} == {a=undefined, b=1}

Error: {program uses the undefined value}
?

In the first case, the equality test returns False because the
two values differ in their first component, labeled as a. In
the second case, where the labels have been switched, the
equality test begins with an attempt to compare the string
"Hello" with an undefined value, resulting in an error.

Arguably, records should automatically be instances of the
classes Ord, Ix, Bounded, and Read, on the grounds that
these are the classes (beyond Eq and Show) of which tuples
are automatically instances. The difficulty is that the order
of the fields matters even more for these four than they do
for the former two. There is no difficulty in principle —
fields can be lexically ordered — but the arbitrary nature of
this ordering is apparent in more than just the strictness of
the class methods.

3.5 Extension

An important property of our system is that the same label
name can appear in many different record types, and po-
tentially with a different type in each case. However, all of
the examples that we have seen so far deal with records of
some fixed shape, where the set of labels and the type of
values associated with each one are fixed, and there is no
apparent relationship between records of different type. In
fact, all record values and record types in our system are
built up incrementally, starting from an empty record and
extending it with additional fields, one at a time. This is
what it means for records to be eztensible.

In the simplest case, any given record r can be extended
with a new field labeled 1, provided that r does not already
include an 1 field. For example, we can construct the record
{a=True, b="Hello"} by extending {a = True} with a field
b="Hello":

? {{a=True} | b = "Hello"}

{a=True, b="Hello"}
?

Note that we write the record value that is being extended
first, followed by a ‘|’ character, and then by a list of the
fields that are to be added. Another way to construct ex-
actly the same result is by extending {b = "Hello"} with a
field a=True:

? {{b = "Hello"} | a = True}
{a=True, b="Hello"}
?

It is often convenient to add more than one field at a time,
as shown in the following example:

? {{b1="World"} | a=True, b="Hello", c=12::Int}

{a=True, b="Hello", bl="World", c=12}
?

On the other hand, a record cannot be extended with a
field of the same name, even if it has a different type. The
following example illustrates this:

? let r = {c=12::Int} in {r | c=True}
ERROR: {c::Int} already includes a "c" field



?

Much the same syntax can be used in patterns to decompose
record values:

? (\{r | b=bval} -> (bval,r)) {a=True, b="Hello"}
("Hello",{a=True})
?

Notice that we can match, not just against individual com-
ponents of a record value, but also against the portion of
the record that is left after the explicitly named fields have
been removed. In previous examples, we saw how a record
could be extended with new fields. As this example shows,
we can use pattern matching to do the reverse operation of
removing fields from a record.

3.6 Update

It is often useful to update a record by changing the val-
ues associated with some of its fields. Update operations
like this can be coded by hand, using pattern matching to
remove the appropriate fields, and then extending the re-
sulting record with the new values. However, it seems much
more attractive to provide special syntax for these opera-
tions, using := instead of = to distinguish update from ex-
tension. Slightly more formally, a record expression:

{r | x := e}
is treated as an abbreviation for the following update:
case r of {s | x=_} -> {s | x=e}

Providing a special syntax makes updates easier for pro-
grammers to code and also makes them easier for a compiler
to recognize, which can often permit a more efficient imple-
mentation that avoids building the intermediate record s.
For further convenience, we allow updates to be freely mixed
with record extension in expressions like the following:

{r | x=2, y:=True}

Unlike the extension syntax, however, it does not seem sen-
sible to allow the use of update syntax in a record pattern.

3.7 Row polymorphism

We can also use pattern matching to understand how se-
lector functions are handled. For example, evaluating an
expression of the form r.1 is much like passing r as an ar-
gument to the function:

(\{_l1=value} -> value)

This function is polymorphic in the sense that it can be used
with any record containing an 1 field, regardless of the type
associated with that particular component, or of any other
fields that the record might contain:

? (\{_l1l=value} -> value) {1=True, b="Hello")
True
? (\{_l1l=value} -> value)
{name="Record", age=2, 1="None")
llNone n
?

To see how this works, we need to look at the type of this
function, which can be inferred automatically as:

(r\x) => {r | x::a} > a

There are two important pieces of notation here that deserve
further explanation:

e {r | 1::a}isthetype of arecord with an 1 component
of type a. The row variable r represents the rest of the
row; that is, it represents any other fields in the record
apart from 1. This syntax for record type extension
mirrors the syntax that we have already seen in the
examples above for record value extension. We discuss
rows further in Section 3.8.

e The constraint r\1 tells us that the type on the right of
the => symbol is only valid if “r lacks 1,” that is, if ris a
row that does not contain an 1 field. If you are already
familiar with Haskell type classes, then you may like to
think of \1 as a kind of class constraint, written with
postfix syntax, whose instances are precisely the rows
without an 1 field.

For example, if we apply our selector function to a record
{1=True,b="Hello"} of type {b::String, 1::Bool}, then
we instantiate the variables a and r in the type above to
Bool and (b::String), respectively.

The row constraints that we see here can also occur in the
type of any function that operates on record values if the
types of those records are not fully determined at compile-
time. For example, given the following definition:

average r = (r.x + r.y) / 2
our interpreter would infer a principal type of the form:

average :: (Fractional a, r\y, r\x)
=> {r | y::a, x::a} -> a

However, any of the following, more specific types could be
specified in a type declaration for the average function:

average :: (Fractional a) => {x::a, y::a} -> a
average :: (r\x, r\y)

=> {r | x::Double, y::Double} -> Double
average :: {x::Double, y::Double} -> Double
average :: {x::Double, y::Double, z::Bool} -> Double

Each of these is an instance of the principal type given above.

These examples show an important difference between the
system of records described here, and the record facilities
provided by SML. In particular, SML prohibits definitions
that involve records for which the complete set of fields can-
not be determined at compile-time. So, the SML equivalent
of the average function described above would be rejected
because there is no way to determine if the record r will
have any fields other than x or y. SML programmers usu-
ally avoid such problems by giving a type annotation that
completely specifies the structure of the record. Of course,
if a definition is limited in this way, then it also less useful.

With the expected implementation for our type system, as
described in Section 3.9, there is an advantage to knowing
the full type of a record at compile-time because it will allow
the compiler to generate more efficient code. However, un-



like SML, the type system also offers the flexibility of poly-
morphism and extensibility over records if that is needed.

3.8 Rows

To deal more formally with record types, we extend the kind
system of Haskell with a new kind, row: in a record type of
the form {expr}, the expression expr must have kind row.
Types of kind row are written using essentially the same
notation that we use for records, but enclosed in parentheses
rather than braces. For example:

e The empty row is written as (), and the empty record
type {2} is really just a convenient abbreviation for {()}.
Note that this is a change from Haskell 98, where the
symbol () is used to denote the unit type and its only
proper (i.e., non bottom) value. With our proposal,
the empty record, {} of type {}, can be used in place
of a special unit value.

e Non-empty rows are formed by extension. For ex-
ample, (rlx::Int) is the row obtained from row r
by extending it with an x field of type Int. Mul-
tiple fields can be specified using comma-separated
lists. For example, (r|x::Int, y::Bool) is a short-
hand for ((rlx::Int)ly::Int). Another short-
hand allows us to write extensions of the empty
row as a comma-separated list of fields. For ex-
ample, (x::Int, y::Bool) is an abbreviation for
(O lx::Int, y::Bool), which is in turn just an ab-
breviation for ((()|x::Int)|y::Bool). In all cases,
we allow the outermost pair of parentheses to be omit-
ted when a row expression appears inside a pair of
braces. For example, {(x::Int)} can be abbreviated
to {x::Int}.

e Row variables (i.e., type variables of kind row) repre-
sent unknown rows. As in Haskell, the kinds of all type
variables are inferred automatically by the compiler us-
ing a simplified form of type inference.

Row expressions can be used anywhere that a type construc-
tor of kind row is required, including the right hand side
of a type definition, or the parameters of any programmer
defined class or datatype constructor. For example, the fol-
lowing definitions introduce a type synonym, Point, of kind
row, and then extend this to define a second type synonym
ColoredPoint that adds an extra Color field:

-— Point :: row
type Point = (x::Int, y::Int)
-- ColoredPoint :: row

type ColoredPoint = (Point | c::Color)

As the comments indicate, Point and ColoredPoint have
kind row. (Haskell type declarations can already introduce
type constructors of kinds other than *.)

This style of definition allows us to build up row types (and
hence record types) in a style akin to single inheritance. It
does not, however, support multiple inheritance. For exam-
ple, the following definition of ColoredPoint is ill-formed
because our proposal requires a field list to the right of a |,
and does not permit arbitrary row expressions.

type Point = (x::Int, y::Int)
type Coloring = (c::Color)
type BadColoredPoint = (Point | Coloring) -- NO!

While we can model single inheritance, this style does not
make it possible to define polymorphic functions. To illus-
trate this point, consider the following example:

move :: Int -> Int -> {Point} -> {Point}
move a b p = {p | x:=a, y:=b}

The function move works fine on values of type {Point}
but it is type-incorrect to apply it to a value of type
{ColoredPoint}.

However, it is easy to obtain a move that is applicable to
points of all varieties by defining the types a little differently:

-- Point :: row -> row
type Point r = (r | x::Int, y::Int)

-- Colored :: row -> row
type Colored r = (r | c::Color)

-- ColoredPoint :: row -> row
type ColoredPoint r = Point (Colored r)

Notice that it is entirely legitimate for the type synonym
Point to abstract over a row variable, so that Point itself
has kind row—row. Of course, the original definitions for
each of these rows are just extensions of the empty row ().
For example, with these definitions, we can write the type
of a record {x=0, y=0, c=Red} as {ColoredPoint()}. Now
we can define move thus:

move :: (r\x, r\y) => Int -> Int
-> {Point r} -> {Point r}
move a b p = {p | x:=a, y:=b}

The type neatly expresses that move works on any “sub-
class” (i.e., substitution instance) of {Point r}; any
{ColoredPoint s} will do, for example. It also expresses
that move returns a Point of the same variety as it is given
as its argument, a well-known problem in many object sys-
tems (e.g., Cardelli and Mitchell [2, Section 2.6] discuss the
“update problem” at some length). The observation that
row polymorphism deals with this problem is not new [1].

Even though we have constructed ColoredPoint in a “se-
quential” way, row composition is commutative. For ex-
ample, the following definition of ColoredPoint is entirely
equivalent—to see this, just expand out the synonyms:

-- ColoredPoint :: row -> row
type ColoredPoint r = Colored (Point r)

We can also use variables of kind row as the parameters of
user-defined datatypes, thus:

data T r = MkT {r | x :: Bool}

According to the normal rules for kind inference, T will be
treated as a type constructor of kind row — %, but it is clear
that this kind is inaccurate; it does not seem sensible to
allow T to be applied to any row argument, only to those that
do not have an x field. Our kind system is not expressive
enough to capture this restriction directly, but it can be
reflected by including a constraint r\x in the type of T. From



a practical perspective, this is a minor issue; without any
further restrictions, the type system will allow us to use
typeslike T (x::Int) without flagging any errors, but it will
not allow us to construct any values of that type, apart from
1. However, although it makes no real difference, it seems
more consistent with other aspects of Haskell to require the
definition of datatypes like T to reflect any constraints that
are needed to ensure that their component types are well-
formed. For example, we can correct the previous definition
of T by inserting a r\x constraint, as follows:

data (r\x) => T r = MkT {r | x :: Bool}

(Haskell old-timers who remember the Eval class, may
also recall that similar constraints were once required on
datatypes that used strictness annotations.)

3.9 Implementation

A major merit of Gaster and Jones’s record system is that
it smoothly builds on Haskell’s type class mechanism. This
analogy applies to the implementation as well. The details
are covered elsewhere [5] but the basic idea is simple enough.

Each “lacks” constraint in a function’s type gives rise to
an extra argument passed to that function that constitutes
“evidence” that the constraint is satisfied. In particular,
evidence that r lacks a field 1 is given by passing the offset
at which 1 would be stored in the record {r} extended by 1.

The size of the entire record is also required when performing
record operations. This can be obtained either from the
record itself, or by augmenting “evidence” to be a pair of
the offset and record size.

As usual with overloading, much more efficient code can be
obtained by specialisation. In the case of records, speciali-
sation “bakes into” the code the size of the record and the
offsets of its fields.

3.10 Additional Features

In this section, we collect together some small, but poten-
tially useful ideas for further extensions of our core proposal.

3.10.1 Presentation of inferred types

One comment that some experienced users of the Trex sys-
tem have made is that user-written type signatures become
unreasonably large. For example, consider the type signa-
ture for move in Section 3.8:

move :: (r\x, r\y) => Int -> Int -> {Point r} -> {Point r}

move a b p = {p | x:=a, y:=b}

The Point synonym allowed us not to enumerate (twice)
the details of a Point, but the context (r\x, r\y) must
enumerate the fields that r must lack, otherwise the type is
ill-formed. This is annoying, because, if we expand the type
synonym, it is absolutely manifest that r must lack fields x
and y:

move :: (r\x, r\y) => Int -> Int
-> {r | x::Int, y::Int}
=> {r | x::Int, y::Int}

Not only is it annoying, but it is also non-modular: adding
a field to Point will force a change to the type signature of
move, even if move’s code does not change at all. In practice,
these annoyances are enough to cause programmers to omit
type signatures altogether on functions with complex types
— arguably just the functions for which a type signature
would be most informative.

Thus motivated, an obvious suggestion is to permit con-
straints in a type signature to be omitted if they could
be inferred directly from the rest of the signature. This
is akin to the omission of explicit universal quantification.
Haskell already lets us write f::a->a, when we really mean
f::forall a.a->a. The “forall a” is inferred. In a sim-
ilar way, we propose that a similar inference process adds
“lacks” constraints to a type signature, based solely on the
rest of the type signature (after expanding type synonyms).

Note that this is a matter of presentation only, and the ac-
tual types used inside the system do not change. Constraints
of this form cannot always be omitted from the user type
signature, as illustrated in the following (pathological) ex-
ample:

g :: (r\l) => {r} -> Bool
g x = {x | 1=True}.1

As a slightly more realistic example where constraints can-
not be omitted, consider the following datatype of trees,
which allows each node to be annotated with some addi-
tional information info:

data Tree info a b
= Leaf {info | value :: a}
| Fork {info | left : Tree info a b,
value :: b,
right :: Tree info a b}

In an application where there are many references to the
height of a tree, we might choose to add height informa-
tion to each node, and hence avoid repeated unnecessary
repeated computation:

addHeight (Leaf i) = Leaf {i | height=0}
addHeight (Fork i)
= Fork {i | left := 1, right := r,
height = 1 + max (height 1)
(height r) }
where 1 = addHeight i.left
r = addHeight i.right

height (Leaf i) = i.height
height (Fork i) = i.height

Careful examination of this code shows that the type of
addHeight is:

(info\height, info\left, info\right)
=> Tree info a b -> Tree (info | height::Int) a b

Note here that only the first of the three constraints,
info\height, can be inferred from the body of the type,
and hence the remaining two constraints cannot be omit-
ted. In our experience, such examples are quite uncommon,
and we believe that many top-level type signatures could
omit their “lacks” constraints, so this facility is likely to be
very attractive in practice.



3.10.2 Tuples as values

As in Standard ML, records can be used as the underly-
ing representation for tuples; all that we need to do is pick
out canonical names for each position in a tuple. For ex-
ample, if we write fieldl for the label of the first field
in a tuple, field2 for the second, and so on, then a tu-
ple value like (True,12) is just a convenient shorthand
for {field1=True, field2=12}, and its type (Bool,Int) is
just a shorthand for {fieldl::Bool, field2::Int}. The
advantages of merging currently separate mechanisms for
records and tuples are clear, as it can remove redundancy
in both the language and its implementations. In addition,
it offers a more expressive treatment of tuples because it
allows us to define functions like:

fst :: (r\fieldl) => {rl|fieldl::a} -> a
fst r = r.fieldl

that can extract the first component from any tuple value;
in current versions of Haskell, the fst function is restricted
to pairs, and different versions must be defined for each dif-
ferent size of tuple.

The exact choice of names for the fields of a tuple is a
matter for debate. For example, it would even be possi-
ble (though not necessarily desirable) to use the unadorned
integers themselves — e.g. x.2, {r | 3=True}.

3.10.3 Constructors as field names

Programmers often use algebraic data types to define sums;
for example:

data Maybe a Nothing | Just a
data Either a b = Left a | Right b

In such cases it is common to define projection functions:

just :: Maybe a -> a
just (Just x) = x

left :: Either a b -> a
left (Left x) = x

right :: Either a b -> b
right (Right y) =y

An obvious notational convenience would be to re-use the
“dot” notation, an allow a constructor to be used after the
dot to indicate a projection. That is, m. Just would be equiv-
alent to just m, and e.Left would be equivalent to left e,
and so on. This would often avoid the need to define the
projection functions explicitly.

This notation is particularly convenient for Haskell 98
newtype declarations, which allow one to declare a new data
type isomorphic to an old one. For example:

newtype Age = Age Int

Here Age is isomorphic to Int. The “constructor” Age has
the usual type

Age :: Int -> Age

and allows one to convert an Int into an Age. (We put
“constructor” in quotes, because it is implemented by the
identity function, and has no run-time cost.) The reverse co-
ercion is less convenient but, if the constructor could be used
as a projection function, one could write a.Age to coerce a
value a::Age to an Int.

The proposal here is entirely syntactic: to use the same
“dot” notation for sum projections as well as for record field
selection. The two are syntactically distinguishable because
constructors begin with an upper-case letter, whereas fields
do not.

3.10.4 Punning

It is often convenient to store the value associated with a
particular record field in a variable of the same name. Moti-
vated by practical experience with records in the Standard
ML community, it is useful to allow a form of punning in the
syntax for both record expressions and patterns. This allows
a field specification of the form var is treated as an abbrevi-
ation for a field binding of the form var=var, and is referred
to as a pun because of the way that it uses a single name in
two different ways. For example, (\{x,y,z} -> x + y + 2)
is a function whose definition uses punning to sum the com-
ponents of a record. Punning permits definitions such as:

f :: {x::Int, y::Int} -> {x::Int, y::Int}
f {x,y} = {x=y-1, y=x+1}

Here, in the expressions y-1 and x+2, the variables x and y
are bound to the fields of the same name in f’s argument.

Punning was also supported in some versions of Haskell prior
to Haskell 98, but was removed because of concerns that it
was not well behaved under renaming of bound variables.
For example, in the definition

f :: Int -> Int

f x = x+1
one can rename both occurrences of “x” to “y”. But in the
definition:

f :: {x::Int} -> Int
f {x} = x+1

one cannot perform such a renaming, because x is serving
as a record label. In fact punning is perfectly well-behaved
under these circumstances, provided one remembers that it
is simply an abbreviation, which may need to be expanded
before completing the task of renaming:

f :: {x::Int} -> Int
f {x=x} = x+1

Now one can rename as follows:

f :: {x::Int} -> Int
f {x=y} = y+1
Anecdotal experience from the Standard ML community

suggests that the merits of punning greatly exceed the dis-
advantages.



3.10.5 Renaming

It is easy to extend the set of supported operations on
records to include a renaming facility, that allows us to
change the name associated with a particular field in a
record. This notation can be defined more formally in terms
of a simple translation:

{r | x>y} = caser of {s | x=t} -> {s | y=t}

However, as in the case of update (Section 3.6), use of this
notation makes it easier for programmers to use renaming,
and easier for a compiler to implement it.

3.10.6 Kind signatures for type constructors

Earlier in this paper we used comments to indicate the kinds
of type constructors in examples like:

-- Point :: row -> row
type Point r = (r | x::Int, y::Int)

The clear implication is that Haskell should provide a way to
give kind signatures for type constructors, perhaps simply
by permitting the above commented kind signature. Such
kind signatures are syntactically distinguishable from value
type signatures, because type constructors begin with an
upper case letter. Another alternative would be to allow
kind annotations of the form:

type Point (r::row) :: row = (r | x::Int, y::Int)

Annotations like this would also be useful elsewhere, such
as in data of class declarations.

The need for explicit kind information is not restricted to ex-
tensible records. In this very workshop proceedings, Hughes
writes [7]:

data Set cxt a = Set [a] | Unused (cxt a —> ())

The only reason for the Unused constructor which, as its
name implies, is never used again, is to force cxt to have
kind * — *. It would be far better to say:

Set :: (%=>%) -> % -> %
data Set cxt a = Set [a]

3.10.7 Topics for further work

Our proposal does not support all of the operations on
records that have been discussed in the literature. Examples
of this include:

e Record concatenation. This allows the fields of two dis-
tinct records to be merged to form a single record. Sev-
eral researchers have studied this operator, or closely
related variants. For example, Wand [14] used it as a
way to describe multiple inheritance in object-oriented
languages, and Rémy [13] described a technique for typ-
ing a form of record concatenation for ‘free’ in any lan-
guage supporting record extension.

e Unchecked operations. These are variations of the op-
erations on records that we have already seen that place

slightly fewer restrictions on the types of their input
parameters. For example, an unchecked extension op-
erator guarantees that the specified field will appear in
its result with the corresponding value, regardless of
whether there was a field of the same name in the in-
put record. With the checked operators that we have
presented in this paper, the programmer must distin-
guish between the two possible cases using extension or
update, as appropriate. Unchecked operations are sup-
ported, for example, in Rémy’s type system for records
in a natural extension of ML [12].

e First-class labels. This allows labels to be used and
manipulated as program values, with a number of po-
tentially useful applications. A prototype implemen-
tation was developed by Gaster [4], but there are still
some details to be worked out.

It is not yet clear whether our proposal could be extended
to accommodate these operations, and we believe that each
of them would make interesting topics for future work.

4 Comparison with other systems

In this section we provide brief comparisons of our proposal
with the facilities for defining an using records in other sys-
tems. We focus here on practical implementations, and re-
fer interested readers to the work of Gaster and Jones [5]
for comparisons of the underlying theory with other more
theoretical proposals.

4.1 Comparison with Standard ML

The system of records in Standard ML was one of the orig-
inal inspirations for this proposal, but of course our system
also supports extensibility, update, and polymorphic oper-
ations over records. This last point shows up in Standard
ML when we try to use a record in a situation where its
corresponding set of field labels cannot be determined at
compile-time, and resulting in a compile-time error.

4.2 Comparison with SML#

Based on his earlier work on type systems for records [11],
Atsushi Ohori built a version of the Standard ML inter-
preter known as SML#, which extends the SML record sys-
tem with support for update and for polymorphic opera-
tions over records!. Ohori’s system does not provide the
separation between rows and records that our proposal of-
fers (Section 3.8), nor is it clear how records would interact
with type classes, but it would be wrong to criticize SML#
on the basis of these omissions, because they are much more
relevant in the context of Haskell, with its advanced kind
and class system, than they are in SML. Thus, apart from
differences in syntax, the main advantage of our system over
Ohori’s is the support that it provides for extensibility.

LFurther information about SML# is available on the World Wide
Web at http://www.kurims.kyoto-u.ac.jp/ ohori/smlsharp.html.



4.3 Comparison with Trex

The proposal presented in this paper is closely related to
the Trex implementation in current releases of Hugs 98 [10].
The only real differences are in the choice of notation:

e In record types, Trex uses Rec r where this proposal
uses {r}. The latter choice could not be used with Trex
because of the conflict with the syntax for labeled fields
in Haskell 98.

e In record values, Trex uses (...) where this proposal
uses {...}. The latter could not be used in Trex be-
cause it conflicts with the update syntax for datatypes
with labeled fields in Haskell 98. For example, in
Haskell 98, an expression of the form e{x=12} is treated
as an update of value e with an x field of 12. For
the current proposal, we would expect to treat this ex-
pression as the application of a function e to a record
{x=12} with just one field.

e Trex uses (x::a | r) where this proposal uses
(r | x::a). We deviate from Trex because it can be
easy for the trailing “| r” to become lost when it fol-
lows a large block of field definitions. (In a similar way,
Haskell puts guards at the beginning of an equation
defining a function, rather than at the end as some
languages do.) This choice is ultimately a matter of
taste — we have not found any compelling technical
reason to justify the use of one of these over the other.

e Like SML, Trex uses #1 to name the selector for a field
1; this proposal uses dot notation for field selection, and
the function #1 must be written as (\r -> r.1). Dot
notation could not be used in Trex because it conflicts
with the use of . for function composition in Haskell.

e Trex does not support the update notation; update is
one of several features that appeared in the original
work on Trex that were not implemented in the Hugs
prototype.

e Trex uses EmptyRow where this proposal uses (); the
latter could not be used in Trex because it conflicts
with the notation used for the unit type in Haskell 98.

e Trex does not use punning (Section 3.10.4) because of
a conflict with the syntax for tuples: an expression like
(x,y) could be read in two different ways, either as a
tuple, or as an abbreviation for the record (x=x, y=y).

In short, the current proposal differs in only small ways from
Trex, and most of the changes were made possible only by
liberating ourselves from any need to retain compatibility
with the syntax of Haskell 98.

4.4 Comparison with Gaster’s proposal

Our proposal is quite similar to that of [3]. Most notably,
we both adopt the idea of using “.” for record selection.

We have gone further than Gaster by abandoning Haskell
98’s current record system altogether, using “()” for the
empty row instead of the unit tuple, providing a syntax for

10

record updates (Section 3.6), and using constructors as se-
lectors (Section 3.10.3). We have also elaborated a little
more on the implications of row polymorphism. But the
two proposals clearly share a common foundation.

5 Shortcomings of our proposal

One of the main reasons to turn a general idea into a con-
crete design is to highlight difficulties that deserve further
attention.

5.1 Where Haskell 98 does better

We began this paper by describing some of the weaknesses
of the labeled field mechanism in Haskell 98, and using those
to motivate the key features of this proposal. In this section,
therefore, we focus on areas where the Haskell 98 approach
sometimes offers advantages over our proposal.

o The double-lifting problem. Part of the price that we
pay for having lightweight records is that it becomes
more expensive to embed a record in a datatype. For
example, with our proposal, the definition of the fol-
lowing datatype introduces two levels of lifting:

data P = MkP {x::Double, y::Double}

In semantic terms, this means that the datatype P con-
tains both L and MkP _L as distinct elements. In imple-
mentation terms, it means that an attempt to access
the x or y coordinates will require a double indirec-
tion. In comparison, the same definition in Haskell 98
introduces only one level of lifting. The same behavior
can be recovered in our proposal by adding a strictness
annotation to the record component of the datatype.

data P = MkP !{x::Double, y::Double}

e The unpacking problem. Even if we use the second def-
inition of the P datatype, it will only help to avoid two
levels of indirection when we construct a value of type
P; we still need a two stage process to extract a value
from a datatype. For example, to extract the x, we
must first remove the outer MkP constructor to expose
the record from which the required x field can be ob-
tained.

This provides an additional incentive to adopt the use
of constructors as field selectors (Section 3.10.3). This
would allow the selection of the x component from a
value p of type P to be written more succinctly as
p-MkP.x.

This approach does not help us to deal with examples
like the FileSystem datatype from Section 1, where
the same field name appears in multiple branches of an
algebraic datatype. In Haskell 98, the compiler takes
care of generating an appropriate definition for the se-
lector function. With our proposal, this must be coded

by hand:

name :: FileSystem -> String
name (File r) = r.name

name (Folder r) = r.name



e Strictness annotations. Haskell 98 allows individual
components of a datatype to be marked with strictness
annotations, as in the following example:

data P = MkP {x :: Double, y :: !Double}

The proposal described in this paper does not allow
this because record types are lightweight, not declared.
An advantage is that the same labels can be used in
different types. The disadvantage here is that there is
no way to attach any special meaning, in this case a
strictness annotation, to any particular label. One way
to overcome this restriction would be to use lexically
distinct sets of field labels to distinguish between strict
and non-strict components. Alternatively, we could in-
troduce strict versions of the extension and update op-
erators. The problem with this approach is that strict
evaluation will only be used when the programmer re-
members to insert the required annotations.

The impact of these problems will depend, to a large extent
on the way that records are used within algebraic datatypes.

5.2 Polymorphism

Although it is not part of the Haskell 98 standard, both Hugs
and GHC allow the components of an algebraic datatype to
be assigned polymorphic types. A standard example of this
might be to define a concrete representation for monads as
values of the following type:

data Mon m
= MkMon {unit ::
bind ::

forall a. a -> m a,

To support the use of this datatype, the MkMon constructor,
and, to a lesser degree, the unit and bind selectors are given
a special status in the type checker, and are used to propa-
gate explicit typing information to places where values of the
datatype are used. (Type inference would not be possible
without such information.) With our proposal, this special
status is lost: all records are constructed in the same way,
and all fields are selected in the same way. For example, the
function to extend a record with a unit field is just:

(\r u => {r | unit=u})
(r\unit) => {r} -> a -> {rlunit::a}

The type variables r and a here range over monotypes (of
kind row and *, respectively), and there is nothing to hint
that a polymorphic value for unit should be expected.

Intuitively, it seems clear that we should still be able to prop-
agate programmer-supplied type information to the places
where it is needed, but the mechanisms that we need to
support this are rather different from the mechanisms that
are used to support the current Hugs and GHC extensions
illustrated above. One promising approach, previously used
in work with parameterized signatures [9], is to use so-called
“has” predicates for records instead of the “lacks” predicates
used here. These “has” predicates provide a looser coupling
between records and their component types, which delays
the need to resolve them to a point where more explicit
typing information is likely to be available. However, it is
not immediately obvious how we can integrate this approach

forall a, b. ma -> (a ->m b) -> m b}

11

with the main proposals in this paper, which rely instead on
“lacks” predicates.

Another possibility is to provide a special typing rule for the
syntactic composition of constructor application and record
construction, effectively recovering the rule for constructors
used by GHC and Hugs. GHC and Hugs’s constructor-
application rule is already restricted to the case where the
constructor is applied to enough arguments to saturate all
its universally-quantified arguments (e.g., map MkMon xs is
rejected); requiring the record construction to be syntacti-
cally visible is arguably no worse.

5.3 Instances

In Section 3.4 we propose that records are automatically
instances of certain built-in classes (Eq, Show, etc), and no
others. Like any user-defined type, programmers may want
to make a record type an instance of other classes, or to pro-
vide their own instance decalaration for the built-in classes.
It is possible to define such instances for records whose shape
(i.e., set of field names) is fixed. For example, we could de-
fine tuples as instances of standard Haskell classes in this
manner:

instance (0rd a , Ord b)
=> Ord {fieldl::a, field2::a} where ...

However, some care is required to deal with instances for
record types involving extension. To illustrate this point,
consider the following collection of instance declarations:

instance C {rlx::Int} where ... -- OK
instance C {rlx::Bool} where ...

instance D {rlx::a} where ... -- INSTANCES
instance D {r|y::b} where ... -- OVERLAP!

The first pair of instances for class C are acceptable, but
the second pair will be rejected because they overlap. For
example, these declarations provide two distinct, and po-
tentially ambiguous ways for us to demonstrate that a type
like {x::Int,y::Bool} is an instance of D. An overlap like
this would not be a problem if we could be sure that both
options gave the same final result, but there is no obvious
way to guarantee this.

The trouble is that declarations like those for class D seem
necessary for modular user-defined instances of record types.
For example, imagine trying to declare Eq instances for a
record. One might be led to say:

instance (Eq a, Eq {r}) => Eq {r | x::a} where
{r1 | x=x1} == (r2 | x=x2}
= x1 == x2 && {r1} == {r2}

But we need one such instance declaration for each distinct
field label, which leads to declarations just like those for D
above. The ambiguity in this case boils down to defining
the order in which fields are compared. A way out of this
impasse is an obvious piece of further work.



Acknowledgements

We would like to acknowledge our debt to John Hughes,
David Espinosa, and the Haskell workshop referees, for their
constructive feedback on this paper.

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]
[13]

[14]

L. Cardelli. Extensible records in a pure calculus of
sub-typing. In Gunter and Mitchell [6], pages 373-426.

L. Cardelli and J. Mitchell. Operations on records. In
Gunter and Mitchell [6], pages 295-350.

B. Gaster. Polymorphic extensible records for Haskell.
In J. Launchbury, editor, Haskell workshop, Amster-
dam, 1997.

B. Gaster. Records, variants, and qualified types. PhD
thesis, Department of Computer Science, University of
Nottingham, 1998.

B. Gaster and M. Jones. A polymorphic type system
for extensible records and variants. Technical Report
NOTTCS-TR-96-3, Department of Computer Science,
University of Nottingham, Nov. 1996.

C. Gunter and J. Mitchell, editors. Theoretical aspects
of object-oriented programming. MIT Press, 1994.

R. Hughes. Restricted data types in Haskell. In E. Mei-
jer, editor, Haskell workshop, Paris, Sept. 1999.

M. Jones. A theory of qualified types. In European
Symposium on Programming (ESOP’92), number 582
in Lecture Notes in Computer Science, Rennes, France,
Feb. 1992. Springer Verlag.

M. Jones. Using parameterized signatures to express
modular structure. In 23rd ACM Symposium on Princi-
ples of Programming Languages (POPL’96), pages 68—
78. ACM, St Petersburg Beach, Florida, Jan. 1996.

M. Jones and J. Peterson. Hugs 98 user manual. Tech-
nical report, Oregon Graduate Institute, May 1999.

A. Ohori. A polymorphic record calculus and its compi-
lation. ACM Transactions on Programming Languages
and Systems, 17(6):844-895, Nov. 1995.

D. Rémy. Type inference for records in a natural ex-
tension of ML. In Gunter and Mitchell [6].

D. Rémy. Typing record concatenation for free. In
Gunter and Mitchell [6].

M. Wand. Type inference for record concatenation and
multiple inheritance. In Proc. Jth IEEE Symposium on
Logic in Computer Science, pages 92-97, 1989.

12



A Generic Programming
Extension for Haskell

Ralf Hinze (Bonn University, Germany)






A Generic Programming Extension for Haskell

Ralf Hinze

Institut fiir Informatik III, Universitit Bonn
Romerstrafle 164, 53117 Bonn, Germany

ralf@informatik.uni-bonn.de
http://www.informatik.uni-bonn.de/“ralf/

Abstract

Many functions can be defined completely generically for
all datatypes. Examples include pretty printers (eg show),
parsers (eg read), data converters, equality and compari-
son functions, mapping functions, and so forth. This paper
proposes a generic programming extension that enables the
user to define such functions in Haskell. In particular, the
proposal aims at generalizing Haskell’s deriving construct,
which is commonly considered deficient since instance dec-
larations can only be derived for a few predefined classes.
Using generic definitions derived instances can be specified
for arbitrary user-defined type classes and for classes that
abstract over type constructors of first-order kind.

1 Introduction

Generic or polytypic programming aims at relieving the pro-
grammer from repeatedly writing functions of similar func-
tionality for different datatypes. Typical examples for so-
called generic functions include pretty printers (eg show),
parsers (eg read), functions that convert data into a univer-
sal datatype (eg bit strings, character strings, XML docu-
ments), equality and comparison functions, mapping func-
tions (map), and so forth. This paper proposes a generic pro-
gramming extension for Haskell that enables the user to de-
fine such functions completely generically for all datatypes,
including nested datatypes, mutually recursive datatypes,
and datatypes involving function spaces. The central idea is
to parameterize a function definition with a type or a type
constructor and to define the function by induction on the
structure of types or type constructors.

Interestingly, Haskell already provides a rudimentary
form of genericity. Its derivable class methods can be
seen as simple examples for generic functions. Using the
deriving construct instance declarations (ie collections of
class methods) can be automatically generated for user-
defined datatypes. Every Haskell programmer probably uses
this mechanism to derive, for instance, Eq or Show instances
(ie (==) and show methods) for newly defined datatypes.
As matters stand, the deriving construct suffers from sev-
eral drawbacks. First of all, the definitions of the generic
functions are hard-wired into the various Haskell compil-
ers. This implies, in particular, that libraries that contain
derivable classes (such as Ix) have a special status since the
Haskell compiler must know details of their code. Clearly,
this is an undesirable situation. Furthermore, derived in-
stances are only informally defined in the Haskell Report

[19, Appendix D]. For instance, Section D.4 of the Report
contains the following statement.

“A precise definition of the derived Read and Show
instances for general types is beyond the scope of
this report.”

Second, instances can only be derived for a few predefined
classes. The user can neither modify existing derivable
classes (for instance, to adapt show to her needs) nor can
she define derivable classes herself. Finally, deriving does
not work for all user-defined types—a fact that is not very
well known. For instance, if a datatype is parameterized by
a type constructor as in

data Twice m v = Twice (m (m v))

then deriving Eq or Show fails in general. The reason for
this failure, which is quite fundamental, is explained in Sec-
tion 3.1.

If we augment Haskell by generic definitions, all of these
problems can be overcome. The meaning of derived in-
stances can be made precise (Appendix B, for instance, pre-
cisely defines the generic show method), the user can define
her own derivable classes, and instances can be derived for
all datatypes definable in Haskell.

In the rest of this introduction let us take a brief look
at generic definitions. We have already mentioned the basic
idea that a generic function is parameterized by datatype
and is defined by induction on the structure of types. Now,
the types introduced by Haskell’s data construct are essen-
tially sums of products. The components of a product may
depend on other user-defined datatypes or on primitive types
such as Char, Int, or ‘->’. As an example, consider the
datatype of polymorphic binary trees (the constructor Bin
contains an additional size field).

data Tree a = Tip | Bin Int (Tree a) a (Tree a)

Let us make the structure of this definition more explicit by
writing ‘+’ for sums and ‘*’ for products.

Tree a =1 + Int * Tree a * a * Tree a

Here 1 is an abbreviation for the unit type. The equation
makes explicit that Tree is a binary sum; the first component
of the sum is a 0-tuple and the second is a 4-tuple, which
can be represented by a nested binary product. Likewise,
all datatypes can be decomposed into binary sums, binary
products, and primitive types. Consequently, to define a
function generically for all datatypes it suffices to specify its



action on binary sums, binary products, and primitive types.
As an example, the following equations define the generic
function encode (t), which converts elements of type t into
bit strings implementing a simple form of data compression.

data Bit = 0|I
encode (t) t: t => [Bit]
encode (1) O = [1

encode (Char) x = encodeChar x
encode(Int) x = encodelnt x

encode(a+b) (Left x) = 0 : encode(a) x
encode(atb) (Right y) = I : encode(b) y
encode(axb) (x, y) = encode(a) x

++ encode(b) y

The first parameter of encode is its type argument. The
type signature makes explicit that the type of encode(t)
depends on the type argument t. The definition proceeds
by case distinction on t: we have one equation for 1, Char,
Int, and ‘*’ and two equations for ‘+’. Note that 1, ‘+’
and ‘¥’ serve as abbreviations for the predefined types (),
Either, and (,) which are given by the following definitions.

data () = 0O
data Either a b Left a | Right b
data (a, b) (a, b)

Let us consider each equation of encode(t) in turn. To
encode the single element of 1 no bits are required. Char-
acters and integers are encoded using the primitive func-
tions encodeChar and encodelnt, whose existence we as-
sume. To encode an element of a sum we emit one bit
for the constructor followed by the encoding of its argu-
ment. Finally, the encoding of a pair is given by the con-
catenation of the component’s encodings. Given this defini-
tion we can compress elements of arbitrary datatypes. For
instance, encode(Tree Char) of type Tree Char -> [Bit]
compresses binary trees with character labels.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the various forms of generic definitions
and sketches their semantics. Section 3 explains how to
blend generic definitions with Haskell’s type classes. In par-
ticular, we show how to define derivable type classes. Sec-
tion 4 presents several examples for generic functions. Sec-
tion 5 reviews related work and Section 6 concludes. Ap-
pendix A details the necessary changes to the syntax and
Appendix B lists the modifications to the Standard Prelude
and to the Standard Libraries. Note that this paper de-
scribes the generic programming extension primarily from
the user’s point of view. The theoretical background of this
extension is described in a companion paper [7]. Further-
more, note that the extension has not been implemented yet
but we plan to do so in the near future.

2 Generic definitions

2.1 Type-indexed values

A generic function—or rather, a generic value is either de-
fined inductively or in terms of other generic values. Here is
the prototype for an inductive definition.

g(t) CE R
g(1)

g(Char)
g(Int)

é‘(;+b) = ... g ... g(b)
g(a*xb) = . g@ ... g)
= . g@ ... g)

g(a->b)

Type signatures are mandatory for generic values. In fact,
the type argument of g, which appears on the left-hand side
of the signature, identifies g as being indexed by type. The
equations for g employ pattern matching on types. The
type patterns on the left-hand sides are restricted to type
expressions of the form T a; ... ai, ie a type constructor
is applied to type variables ai, ..., ai, which have to be
distinct. Since g is inductively defined, the recursive calls on
the corresponding right-hand sides must have the form g(a)
where a is one of the type variables ai, ..., a.

Generic values are usually not defined for all types. For
instance, encode (t) cannot compress functions or floating-
point numbers. To be exhaustive a generic definition must
include cases for 1, ‘+’, and ‘*’—these cases cover data
declarations—and additionally for all primitive types that
are not defined via a data declaration. All in all, there are
a dozen primitive types: the Standard Prelude defines a->b,
Char, Double, Float, Int, Integer, I0 a, and I0OError and
the Standard Libraries provide Array a b, Permissions,
ClockTime, and StdGen.

A generic value is instantiated or applied simply by call-
ing it with an appropriate type argument, which may be an
arbitrary type expression. We only require the type expres-
sion to be closed, ie it may not contain any type variables.

Generic values can be defined in terms of other generic
values. As an example, consider the function dump (t), which
writes elements of type t in binary format to a given file
(toChar maps a 16-bit value to a character and rsplit n
splits its list argument into a list of lists, each of which has
length n—only the last element may have a length smaller
than n).

dump (t)
dump(t) fpath x

:: FilePath -> t -> I0 ()
= writeFile fpath

$ map toChar

$ rsplit 16

$ encode(t) x

Note that the type signature is again mandatory and that
the type parameter of dump must not be omitted. Since
type arguments are in general needed for disambiguation—
Section 2.6 provides an example—we follow the design prin-
ciple that value-type dependencies must be made explicit. In
general, a non-inductive definition has the following form.

g(t) =+ ...t ...

g(t) = ... h(... t ...) ... iC... t ...)

Here t is a type variable. The right-hand side of the defi-
nition may involve calls of other generic values. Their type
arguments may contain the type variable t but no other type
variables.

2.2 Semantics

This section gives a brief account of the semantics of generic
definitions. First of all, note that generic definitions operate
on binary sums and products. This is a design decision dic-
tated by pragmatic concerns. We could have based generic
definitions on n-ary sums and products fitting them more
closely to datatype declarations. It appears, however, that



n-ary type constructors are awkward to work with. There-
fore, we must make precise how n-ary sums and products
are translated into binary ones.

Roughly speaking, the right-hand side of a datatype dec-
laration, ¢1 | -+ | ¢n, is translated to the type expression
Y(cr ... cn) defined as follows.

[t ifn=1
Bl tn) = { Bt ting2)) + Bt nyojpr - ta) ifn>1

The translation essentially creates a balanced expression
tree. For instance, ¢1 | ¢2 | e3 | ¢4 is mapped to (c1 + ¢2) +
(ca+ca). All generic definitions in this paper with the notable
exception of encode(t) and decode(t) (see Section 4) are
insensitive to the translation of n-ary sums. For encode(t)
this translation scheme is a sensible choice (an unbalanced
or a list-like scheme would aggravate the compression rate).

Likewise, the components of a constructor, C' t1 ... tg,
are translated to II(¢; ...¢x) given by

(¢ ... tn)
1 ifn=0
= t1 fn=1
H(tl...t[n/2J)*H(th/2J+1...tn) ifn>1.

The generic values defined in this paper happen to be in-
sensitive to the encoding of n-ary products. It is, how-
ever, not difficult to define a function that yields differ-
ent results for different translation schemes. Figure 1 con-
tains the complete translation of data and newtype decla-
rations. Note that the resulting type expressions include
constructor names and record labels. Section 2.3 explains
why this is useful. Strictness annotations are, however, ig-
nored. Whether this is a viable choice remains to be seen.

Now, the central idea of the semantics is that type ex-
pressions can be interpreted in a fairly straightforward man-
ner as values. To exemplify, the equation for Tree

Tree a = Tip 1 + Bin ((Int*Tree a) * (axTree a))

can be seen as defining a one-argument function, which maps
type expressions to type expressions. In general, we inter-
pret primitive types and type constructors (such as 1, ‘+’,
‘“*’) Char, Int, ‘->’ etc) as value constructors and types that
are defined by datatype declarations as functions. Since
Tree is recursively defined, the resulting type expression is,
of course, infinite. In this particular case the type expres-
sion can be represented by a circular structure but this does
not hold in general, see [8]. Fortunately, Haskell is a non-
strict language and is able to generate and to process infinite
data structures with ease. Consequently, we may interpret
generic values as ‘ordinary’ functions, which operate on pos-
sibly infinite type expressions. It is not possible, however,
to specify this semantics via a translation into Haskell. The
reason is simply that Haskell’s type system is not expressive
enough. To specify the type of generic values dependent
types are required.

We have seen that datatypes are translated into binary
sums and products. This translation must, of course, be
duplicated on the value level. For instance, the argument x
in encode(Tree Char) x must be converted to [x] given by

[Tip] = Left ()
[Binei ez eses] = Right (([es],[e2]), ([es],[es])) -

In general, a constructor application K; e ...eg,;, where K;
is introduced via the declaration

dataT a1...am = K1t11...t1k1|~--|Kntn1...tnk

n 9

is translated as follows

[Kiei...ex;] = oi(x([e]---[ex;])) -

The function o7 yields the binary encoding of the construc-
tor K;.

v ifn=1

Left (o}™/*) (v)) if i < [n/2]

Right (U:Z_Lin/;JJ (v)) otherwise

The definition may look daunting but it has a simple in-
terpretation. If we draw the binary sum as a tree, then
o' specifies the path from the root to the i-th leaf. The
encoding of the components of a constructor is given by

ot () =

m(v1...vp)
0O ifn=0
= U1 ifn:l
(W(vl...ULn/2J),7r(an/2J+1...Un)) ifn>1.

Of course, we also require the inverse translation, which
decodes encoded values. The inverse translation must be
applied whenever a generic function produces values whose
type depends on the type argument. We leave it to the
reader to fill out the details.

Generic definitions can be implemented in at least two
ways. The semantics sketched above describes an interpre-
tative approach where a generic value repeatedly pattern
matches on its type argument. Clearly, this approach is
rather inefficient especially since the type argument is stat-
ically known at compile time. The interpretative layer can
be removed by specializing a generic value with respect to
a given type. The process of specialization, which can be
seen as a very special instance of partial evaluation, is de-
scribed at length in [7]—Section 3.1 states the basic idea.
Note that the restrictions on the form of generic definitions
have been chosen in order to guarantee that specializing a
generic definition is always feasible.

2.3 Accessing constructor and label names

The function encode (t) can be seen as a very simple printer.
To be able to define a pretty printer, which produces a
human-readable output, we must make the names of the
constructors accessible. To this end we provide an addi-
tional type pattern of the form ¢ a where c is a value vari-
able of type Con and a is a type variable. The type Con is
a new primitive type that comprises all constructor names.
To manipulate constructor names the following operations
can be used (Figure 3 contains a complete list).

data Con -- abstract
arity :: Con -> Int -- primitive
showCon :: Con -> String -- primitive

Building upon arity and showCon we can already implement
a simple, generic version of Haskell’s showsPrec function.
Recall that showsPrec(t) d x takes a precedence level d
(a value from 0 to 10), a value x of type t and returns a
String-to-String function. The following equations define
showsPrec (t) for all types that do not involve any primitive

types.



DldataT a1...am=c1 | -+ | ¢n]
Dlnewdata T a;...am =]

K[K t1...t]

K[K {1 :t1, ... 0,2t }]

T ¢]

Tt

Figure 1: Translation of datatype declarations and datatype renamings

Tai...am=X(K[e1]-..K[en])
Tai...am=K][]

K (I(TTea] - - TTeRD))

K (M((Cr::TTa]) - e TTEe]D))

:: Int -> t -> ShowS
showsPrec(a) d x
showsPrec(b) d y

showsPrec (t)
showsPrec(a+b) d (Left x)
showsPrec(atb) d (Right y)
showsPrec(c a) d x
| arity c showString (showCon c)
| otherwise = showParen (d >= 10)

(  showString (showCon c)
showChar °’ ’
showsPrec(a) 10 x )
showsPrec(a) d x
showChar ’ °’
showsPrec(b) d y

showsPrec(axb) d (x, y)

The first two equations discard the binary constructors Left
and Right. They are not required since the constructor
names are accessible via the type pattern ¢ a. If the con-
structor is nullary, its string representation is emitted. Oth-
erwise, the constructor name is printed followed by a space
followed by the representation of its arguments. If the prece-
dence level is 10, the output is additionally parenthesized.
The last equation applies if a constructor has more than
one component. In this case the components are separated
by a space. Note that this definition is a simplified version
of showsPrec(t) as it neither considers infix operators nor
record syntax. A full-blown version appears in Appendix B.

It should be noted that constructor names appear only
on the type level; they have no counterpart on the value level
as value constructors are encoded using Left and Right. If a
generic definition does not include a case for the type pattern
c a, then we tacitly assume that g(c a) = g(a).

Haskell allows the programmer to assign labels to the
components of a constructor. The names of the labels can be
accessed via the type pattern 1: :a where 1 is a value variable
of type Label and a is a type variable. If a generic definition
does not include a case for this pattern, we assume that
g(l::a) = g(a). The full-blown version of showsPrec(t)
uses the type pattern 1::a.

2.4 Ad-hoc definitions

A generic function solves a problem in a uniform way for all
types. Sometimes it is desirable to use a different approach
for some datatypes. Consider, for instance, the function
encode instantiated to lists over some base type. To encode
the structure of an n-element list n 4+ 1 bits are used. For
large lists this is clearly wasteful. A more space-efficient
scheme stores the length of the list in a header followed by
the encodings of the elements. We can specify this compres-
sion scheme for lists using a so-called ad-hoc definition.

encode([a]) xs = encodeInt (length xs)
++ concatMap (encode(a)) xs

Ad-hoc definitions specify exceptions to the general rule
and may be given for all predefined and for all user-defined
datatypes. As before, the type pattern on the left-hand
side must have the form T a;...ar, ie a type construc-
tor is applied to type variables aj, ..., ar, which have to
be distinct. Furthermore, T must be a type constructor
of first-order kind. Recall that the kind system of Haskell
specifies the ‘type’ of a type constructor [14]. The ‘*’ kind
represents nullary constructors like Char or Int. The kind
K1 — K2 represents type constructors that map type con-
structors of kind k; to those of kind k3. The order of
a kind is given by order(x) = 0 and order(ki — k2) =
max{1 + order(k1), order(k2)}. Whether the restriction to
first-order kinds is severe remains to be seen.

Ad-hoc definitions can be spread over several modules.
Generic definitions are handled very much like class- and
instance-declarations. The type signature of a generic def-
inition together with the equations for 1, ‘+’, and ‘¥’ plays
the role of a class definition. Ad-hoc definitions are akin
to instance declarations. Like instance declarations they
cannot be explicitly named on import or export lists [19,
Section 5.4]. Rather, they are always implicitly exported.

We have remarked in the introduction that 1, ‘+’; and ‘*’
serve as abbreviations for the predefined types (), Either,
and (,). This is, however, not the whole truth. We use
two different sets of constructor names to be able to distin-
guish between generic and ad-hoc equations. For instance,
showsPrec((a,b)) given by

showChar ’(°
showsPrec(a)
showChar ’,’
showsPrec (b)
showChar ’)°

showsPrec((a,b)) d (x, y) =
. 0 x

Oy

is an ad-hoc definition, which determines the layout of pairs.
By contrast, showsPrec(a*b) as defined in Section 2.3 is a
generic definition specifying the layout of constructor com-
ponents.

2.5 Mutually recursive definitions

The generic definitions we have seen so far involve only a
single generic value. An obvious generalization is to allow for
mutually recursive definitions. As before we require that the
definitions are inductive on the structure of type expressions.
Formally, a mutually recursive declaration group g1, ..., gn
is well-formed if there is a partial order on the g; such that
for every recursive call

g ) L

gi(Tay ... ax)



either (1) t € {a1,...,ax} or (2) g > gj, t =Tby ... by,
and {bi,...,by} C {ai,...,ar}. Examples for generic defi-
nitions that employ this general form can be found in Ap-
pendix B.

Generic definitions may only appear in the top-level dec-
laration list of a module. In principle, we could also permit
generic definitions in local declaration groups. This exten-
sion is, however, hindered by Haskell’s lack of scoped type
variables. Recall that type signatures are mandatory for
generic definitions. The lack of explicit scopes makes it im-
possible to distinguish between monomorphic and polymor-
phic uses of type variables. A suitable extension is described
in [17].

2.6 Values indexed by first-order type constructors

Functions may not only be indexed by types of kind * but
also by type constructors of first-order kind. The archetypi-
cal example for such a function is size(t) :: t a -> Int,
which counts the number of values of type a in a given struc-
ture of type t a. Note that the type parameter of size
ranges over types of kind * — *. To be able to define size
generically for all type constructors of this kind we must ex-
tend the type language by type abstractions. We agree upon
that \a.t is syntax for A-abstractions on the type level. (We
use \a.t instead of \a->t since ‘->’ is also used as a type con-
structor and the type expression \a->f a->g a looks rather
ugly.) For example, \a.a is the identity type and \a.Char
is the constant type, which maps arbitrary types to Char.
Using type abstractions the definition of size reads

size(t) :: t a -> Int
size(\a.a) X = 1
size(\a.1) X = 0
size(\a.Char) bd = 0
size(\a.Int) X = 0

size(\a.f a+g a) (Left x) = size(f) x
size(\a.f atg a) (Right y) = size(g) y
size(\a.f axg a) (x, y) = size(f) x

+ size(g) y

To understand the equations it is helpful to replace the for-
mal type parameter t in the type signature by the respective
type arguments. For the first equation we obtain the type
a->Int. Clearly, a structure of type a contains one element
of type a. Substituting \a.1 for t yields 1->Int, ie we have
no elements of type a. For sums the substitution yields
f at+g a->Int. To determine the size of an element of type
f at+g a we must either calculate the size of a structure of
type £ a or that of a structure of type g a. Finally, the size
of a structure of type f a*g a is given by the sum of the
size of the two components.

The definition of size employs two sorts of type pat-
terns: the identity type \a.a, which may be abbreviated by
Id, and patterns of the form \a.T (f1 a) ... (f; a) where
the f; are type variables of kind * — %. To be exhaustive
a generic definition must include cases for Id, 1, ‘+’, and
‘*’ and additionally for all primitive types. Now, reconsider
the definition of size and note that the cases for constant
types of the form \a.T are all alike. We allow the program-
mer to combine these cases by using the type pattern \a.u,
which may be abbreviated to K u. Using this shortcut the
definition of size can be rewritten to

size(t) :: t a -> Int
size(Id) x = 1

size(K u) x =0
size(\a.f a+g a) (Left x) = size(f) x
size(\a.f atg a) (Right y) = size(g) y
size(\a.f axg a) (x, y) = size(f) x
+ size(g) y

Applying a generic value works as before: the value is
called with a closed type expression. The type may also
involve type abstractions. For example, size(\a->[[al])
counts the number of elements in a list of lists.

Let us stress that type arguments cannot be unam-
biguously inferred by the compiler—this is the principle
reason why they are mandatory. Consider, for instance,
the call size xs where xs has type [[Int]]. To deter-
mine the type argument of size we must solve the equa-
tion t uw = [[Int]]. The higher-order unification of t u
and [[Int]] yields, however, three different solutions: t =
\a.[a] and u = [Int], t = \a->[[al] and u = Int, or
t = \a->[[Int]] and u arbitrary. To prevent ambigu-
ity type arguments must never be omitted. Alternatively,
one could use Haskell’s kinded first-order unification [14],
which produces unique solutions (the first one in the exam-
ple above). Some practical experience is needed to decide
whether this is a viable alternative.

A value may be indexed by an arbitrary first-order
type constructor. In the general case, the type pat-
terns are either projection patterns or constructor pat-
terns. If the type parameter has n arguments, we
have n different projection patterns: \ai...ap.ai, ...,
\aj...ap.ap. Constructor patterns have the general form
\a;...a,.T (f1 a;1...a,) ... (fr a1...a,). Note that ad-
hoc definitions employ constructor patterns, as well. For
instance, an ad-hoc definition for the list type has the form
g\ai...ap.[far...a,]) = ...g(f) ....

3 Blending generic definitions with type classes

Type classes and generic definitions are closely related con-
cepts. This section is concerned with the integration of the
two features. In particular, we show how to specify deriv-
able class methods by generic definitions. Beforehand, let us
briefly comment on the differences between type classes and
generic definitions. A type class corresponds roughly to the
type signature of a generic definition—or rather, to a col-
lection of type signatures. Instance declarations are related
to ad-hoc definitions. Thus, class and instance declarations
can be mimicked by generic definitions. Since generic defini-
tions furthermore allow instances to be defined in a uniform
way, they are, in fact, more general than type classes. On
the negative side, the user must always supply explicit type
arguments. We have seen in Section 2.6 that it is not possi-
ble to infer the type arguments of generic calls. By contrast,
class methods can, in general, be called without giving ex-
plicit type information.

Now, integrating generic definitions with type classes we
(hope to) get the best of both worlds. To this end we allow
default class methods to be specified by generic definitions.
That way a class method can be defined generically for all
instances making it possible to derive instances for newly
defined datatypes. Take, for example, Haskell’s Eq class,
which is one of the few derivable classes. Here is a generic
definition of Eq.

class Eq a where
(==), (/=) :: a -> a -> Bool



(==) (1) O O = True
(==) (a+b) (Left v) (Left x) = (==)(a) v x
(==) (a+b) (Left v) (Right y) = False
(==) (a+b) (Right w) (Left x) = False
(==) (a+b) (Right w) (Right y) = (==)(b) w y
(==) (a*b) (v, w) (x, y) = (==)(a) v x

& (==)(b) wy
x /=y = not (x==y)

Given this declaration instances may be derived for ar-
bitrary types of kind % and for arbitrary type construc-
tors of first-order kind—only subsidiary primitive types
must be instances of Eq. For type constructors of first-
order kind the derived instance declaration has the form
(Eq ai,...,Eq ag) =>Eq (T a;...a;). It is important to
note that instances can be derived no matter of the internal
structure of the types. For example, the following definition

data Matrix a = Matrix (Twice [] a) deriving (Eq)

which uses the second-order type constructor Twice defined
in the introduction, is perfectly legal. Currently, this defini-
tion is rejected.

Generic default methods can also be specified for classes
that abstract over first-order type constructors. Haskell’s
Functor class serves as an excellent example. The Functor
class comsists of the so-called mapping function map(t),
which applies a given function to each element of type a in
a given structure of type t a.! It is well-known that map (t)
can be defined for all type constructors of kind * — * that do
not involve the function space. Alas, currently the user must
program instances of Functor by hand (which is for the most
part tedious but sometimes quite involving). Again, generic
default methods save the day.

class Functor t where

map :: (a =>b) -> (t a -> t b)
map (Id) = hx
map (K u) = x

=
o
H
ot
el
~
1]

Left (map(f) h x)
Right (map(g) h y)
x, y) = (map(f) h x,
map(g) h y)

map(\a.f a+g a)
map(\a.f a*g a)

=

[
(0]

=2
ot
~

~
1]

h x
h x
map(\a.f a+g a) h (
h (
h (

Now, instances of Functor can be derived for arbitrary type
constructors of kind * — % (using deriving). Note that
Appendix B defines a slightly more general version that also
takes the function space into account.

3.1 Limits of type classes

We have noted in the introduction that instances cannot be
derived for all datatypes in Haskell 98. In this section we
take a brief look at the reasons for this failure. Consider the
following datatype declarations taken from [6] (note that
MapF is isomorphic to Twice).

data MapF m v = MapF (m (m v))
data MapS m v = MapS v (MapS (MapF m) v)
(m (MapS (MapF m) v))

Both MapF and MapS are second-order type constructors of
kind (¥ — %) — (x — ). The attempt to derive an instance

In Haskell 98 map is called fmap.

of a predefined class, say, Eq fails in both cases. Recall that
instance declarations for Eq have essentially the following
form (the context may additionally refer to other classes).
instance (Eq ai,...,Eq ax) =>Eq (T ai...ax)

Clearly, this form is too limited to handle MapF or MapS.
In [20] an extension of the class system is described, which
allows for more general instance contexts. Using this exten-
sion, which has been realized in GHC [18] and in Hugs 98
[15], the following Eq instance can be derived for MapF (do
you guess how (==) is implemented?).

instance (Eq (m (m v))) => Eq (MapF m v)

However, if we try to derive Eq for MapS, both compilers loop!
Even if the generalized form of instance contexts is used,
the type constraints cannot be finitely represented. This
example demonstrates the limits of Haskell’s class system.

On the other hand, generic definitions can be specialized
for higher-order type constructors such as MapF and MapS.
Let us sketch the main idea in the rest of this section—the
technique is described at length in [7]. Let EqD a be the
dictionary type corresponding to the Eq class. First of all,
note that an instance declaration of the form

instance (Eq a) => Eq (T a)

defines a function of type Va.EqD a -> EqD (T a), ie the
dictionary for a is mapped to the dictionary for T a. Here
T is a type constructor of kind * — . Consequently, an
instance for a type constructor H of kind (x — %) — (x — %)
should be a function that maps * — #* instances to * — x
instances.

Vf.(Va.(EqQD a -> EqD (f a)))
-> (Vb.(EqQD b -> EqD (H f a)))

This scheme can be easily generalized to type constructors
of even higher-order kinds. So we have the unfortunate sit-
uation that Eq instances can, in principle, be derived for
arbitrary type constructors but these instances cannot be
represented as Haskell instance declarations. This explains,
in particular, why deriving is restricted to type construc-
tors of kind * or of first-order kind though the type may
internally depend on types of higher-order kinds.

4 Examples

This section presents further examples for generic func-
tions. The first example, decode(t), is essentially the in-
verse of encode(t): it takes a bit string, decodes a prefix
of that bit string, and returns the decoded value coupled
with the unused suffix. The two functions are related by
decode(t) (encode(t) x ++ bs) = (x, bs).

decode (t) :: [Bit] -> (t, [Bitl])
decode(1) bs = (0O, bs)
decode(Int) bs = decodelnt bs
decode(Char) bs = decodeChar bs
decode(a+b) [] = error "decode"

decode(atb) (0 : bs) = appl Left (decode(a) bs)

decode(atb) (I : bs) = appl Right (decode(b) bs)

decode(a*b) bs = let (x, cs) = decode(a) bs
(y, ds) = decode(b) cs

in  ((x, y), ds)

(f x, y)

appl £ (x, y)



The ad-hoc definition for lists, decode([al), is left as an
instructive exercise to the reader.

The Standard Prelude contains a number of list process-
ing functions, which can be generalized to arbitrary type
constructors: and, or, all, any, sum, product etc. They are
all instances of a more general concept termed reduction or
crush [16]. A crush is a function of type t a -> a that col-
lapses a structure of values of type a into a single value of
type a. To define a crush we require two ingredients: a value
e :: a and a binary operation h :: a->a->a. Usually but
not necessarily e is the neutral element of h.

crush(t) :: a -> (a -> a -> a) -> (t a -> a)

crush(Id) e hx = x

crush(K u) e hx = e

crush(\a.f a+g a)e h (Left x) = «crush(f) e h x

crush(\a.f a+g a)e h (Right y)= crush(g) e hy

crush(\a.f a*g a)e h (x, y) = «crush(f) e h x
‘h¢ crush(g) e h y

Using crush(t) we can define, for instance, generic versions
of and and sum.

and (t) : t Bool -> Bool
and (t) = crush(t) True (&&)
sum(t) : (Num n) => tn ->n
sum(t) = crush(t) 0 (+)

Further examples can be found in Appendix B or in [16, 10].

The function sum(t) shows that type signatures of
generic values may also involve class constraints. The follow-
ing definition, which implements a monadic mapping func-
tion [3], falls back on the Monad class. A monadic map ap-
plies a function of type a->m b to all elements of type a in
a given structure of type t a and then threads the monad m
from left to right through the resulting structure.

mapM(t) :: Monad m => (a->m b) -> (t a->m (t b))
mapM(Id) h x = h x
mapM(K u) h x = return x
mapM(\a.f at+g a) h (Left x)

=do { v <- mapM(f) h x; return(Left v) }
mapM(\a.f at+g a) h (Right y)

= do { w <- mapM(g) h y; return(Right w) }
mapM(\a.f a*g a) h (x, y)

=do { v <- mapM(f) h x; w <- mapM(g) h y;

return (v, w) }

Note that mapM generalizes the function of the same name
defined in the Standard Prelude (the Prelude function is
specialized to lists). An important special case of mapM is

thread (t) (Monad m) => t (m a) > m (t a)
thread(t) = mapM(t) id

The function thread(t) essentially commutes the type con-
structors t and m. It generalizes the Prelude function
sequence, which operates on lists.

5 Related work

The concept of generic functional programming trades under
a variety of names: F. Ruehr refers to this concept as struc-
tural polymorphism [22, 21], T. Sheard calls generic func-
tions type parametric [23], C.B. Jay and J.R.B. Cocket use
the term shape polymorphism [12], R. Harper and G. Mor-
risett [5] coined the phrase intensional polymorphism, and
J. Jeuring invented the word polytypism [13].

The mainstream of generic programming is based on the
initial algebra semantics of datatypes [4] and typically re-
quires a basic knowledge of category theory. The categorical
programming language Charity [1] automatically provides
map and catamorphisms for each user-defined datatype.
Functorial ML [11] has a similar functionality but a differ-
ent background. It is based on the theory of shape poly-
morphism, in which values are separated into shape and
contents. The polytypic programming language extension
PolyP [9] offers a special construct for defining generic func-
tions. The generic definitions are similar to the ones given
in this paper (modulo notation) except that the generic pro-
grammer must additionally consider cases for type compo-
sition and for type recursion (see [8] for a detailed compari-
son). All the approaches with the notable exception of [22]
are restricted to first-order kinded, regular datatypes (or
even subsets of this class), that is they cover only a small
part of Haskell’s type system.

The theoretical background and a possible implementa-
tion of the generic programming extension presented here
are described in a companion paper [7], which contains sup-
plementary pointers to relevant work. We show, in particu-
lar, how to specialize generic definitions for given instances
of datatypes. The specialization employs a generalization
of the dictionary passing translation and does not require
the passing of types or representations of types at run-time.
This is in contrast to the work on intensional polymorphism
[6, 2] where a typecase is used for defining type-dependent
operations.

6 Conclusion

This paper proposes a generic programming extension for
Haskell. We feel that the extension fits quite smoothly into
the language. In particular, it generalizes the deriving con-
struct and makes derivable class methods explicit. The ex-
amples given in the paper furthermore demonstrate the use-
fulness of such an extension.

Acknowledgements

I would like to thank Phil Wadler and four anonymous ref-
erees for many helpful comments.

A Changes to the syntax

Figure 2 lists the necessary changes to the syntax. The syn-
tax of type expressions has been extended to include type ab-
stractions, ‘+’; and ‘*’. Optional type arguments have been
added to type signatures, to the left-hand sides of function
definitions, and to value expressions.

B Changes to the Standard Prelude and to the
Standard Libraries

The Standard Prelude is extended by a module called
Generics, see Figure 3, which defines Con, Label, and a
few generic values. Figures 4, 5, 6, and 7 contain the mod-
ifications to the Standard Prelude. Note that all derivable
classes (Eq, Ord, Enum, Bounded, Show) with the exception of
Read are precisely defined through generic default methods.
The definition of Read is omitted for reasons of space. Fi-
nally, Figure 8 lists the changes to the Standard Library Ix.



gendecl

gquars

guar

-1l =1

type
0
type
type1
type2
3
type

gtycon

——————— = —— 1l L L

funlhs —

fexp —

Figure 2:

guars :: [context =>] type
guar, , ... , guar,

var

var tyvar

typeo

type’ [-> type’]
type” [+ type']
type® [* type’]
\ tyvar, ... tyvar, . type
var atype

r :: btype
btype
qtycon
O
1
|
(->)
(+)
(%)
G{4Lp

var atype { apat }

quar atype { aexp }

Changes to the syntax

(type signature)
(n>1)

(type-indexed value)

(function type
(binary sums

(binary products

(constructor type pattern

)

)

)

(type abstraction, n > 1)
)

(label type pattern)

)

(type application
(unit type
(unit type

(list constructor

(binary sum constructor

)
)
)
(function constructor)
)
(binary product constructor)

)

(tupling constructors

(type-indexed value)

(application of a type-indexed value)



module Generics(
Con, arity, showCon, hasLabels, Fixity(Nonfix, Infix, Infix1l, Infixr, prec), fixity,
precedence, Label, showLabel, card, crush, gsum, gproduct, size, gand, gor, gall, gany,
gelem, gnotElem, listify ) where

-- abstract types and primitives

data Con -- abstract

arity :: Con -> Int -- primitive
showCon :: Con -> String -- primitive
hasLabels :: Con -> Bool -- primitive

instance Eq Con ...
instance Show Con where show = showCon

data Fixity = Nonfix | Infix {prec :: Int} | Infixl {prec :: Int} | Infixr {prec :: Int}
deriving (Eq, Ord, Read, Show)

fixity :: Con -> Fixity -- primitive
precedence :: Con -> Int

precedence ¢ = prec (fixity c)

data Label -- abstract

showLabel :: Label -> String -- primitive

instance Eq Label ...
instance Show Label where show = showLabel

-- generic definitions

card(t) :: int -- NB: card(t) is undefined for infinite types
card (1) = 1

card(Char) = -- system dependent

card(Int) = ... -- system dependent

card(at+b) = card(a) + card(b)

card(a*b) = card(a) * card(b)

card(a->b) = card(b) " card(a)

crush(t) ira->(a->a->a) > (t a->a)
crush(Id) op x = x

e
crush(K u) e op X = e
crush(\a.f a+g a) e op (Left x) crush(f) e op x
e
e

crush(\a.f a+g a) op (Right y) crush(g) e op y

crush(\a.f a*g a) e op (x, y) = crush(f) e op x ‘op‘ crush(g) e op y
gsum(t), gproduct(t) t: (Numn) =>tn ->n

gsum(t) = crush(t) 0 (+)

gproduct (t) = crush(t) 1 (*)

size(t) :: (Numn) =>ta->n

size(t) = gsum(t) . map(t) (const 1)
gand(t), gor(t) :: t Bool -> Bool

gand (t) = crush(t) True (&&)

gor (t) = crush(t) False (|I])

gall(t), gany(t) :: (a -> Bool) -> (t a -> Bool)
gall(t) p = gand(t) . map(t) p

gany(t) p = gor(t) . map(t) p

gelem(t), gnotElem(t) :: (Eq a) => a -> t a -> Bool
gelem(t) x = gany(t) (== x)

gnotElem(t) x = gall(t) (/= x)

listify(t) tr t a > [al

listify(t) x = crush(t) id (.) (map(t) (:) x) []

Figure 3: Module Generics



module Prelude

import Generics

-- Equality and Ordered classes

class Eq t where
(==), (/=) :: t -> t -> Bool
(==) (%) i t => t -> Bool
(==) (1) 0O O = True
(==) (a+b) (Left x1) (Left y1) = (==) (a) x1 yi
(==) (a+b) (Left x1) (Right y2) = False
(==) (atb) (Right x2) (Left yl) = False
(==) (a+b) (Right x2) (Right y2) = (==) (b) x2 y2
(==) (a*b) (x1, x2) (y1, y2) = (==) (a) x1 y1 && (==) (b) x2 y2
x /=y = not (x==y)

class (Eq t) => Ord t where

EQ

compare(a) x1 yi

LT

GT

compare (b) x2 y2

compare(a) x1 yl ‘lex‘ compare(b) x2 y2

compare :t t -> t > Ordering
(), k=), =), (>) :: t -> t -> Bool
max, min trt >t >t
compare(1) () 0] =
compare (a+b) (Left x1) (Left yl) =
compare (a+b) (Left x1) (Right y2) =
compare (at+b) (Right x2) (Left yl1) =
compare (a+b) (Right x2) (Right y2) =
compare (axb) (x1, x2) (y1, y2) =
where lex LT rel = LT
lex EQ rel = rel
lex GT rel = GT

-— Enumeration and Bounded classes

class Enum t where
succ, pred ot >t
toEnum :: Int > ¢t
fromEnum :: t > Int
enumFromTo ::a -> a -> [a]

toEnum(1) n
| n == = 0
| otherwise
toEnum(a+b) n

-- [n..m]

error "toEnum: Qut of range"

| n < card(a) = Left (toEnum(a) n)
| otherwise = Right (toEnum(b) (n - card(a)))
toEnum(a*b) n = (toEnum(a) r, toEnum(b) q)
where (q, r) = divMod n (card(a))
fromEnum(1) () = 0

fromEnum(a+b) (Left x)
fromEnum(a+b) (Right y)
fromEnum(a*b) (x, y)

enumFromTo(a) x y =

map (toEnum(a)) [fromEnum(a) x ..

fromEnum(a) x
card(a) + fromEnum(b) y
fromEnum(a) x + card(a) * fromEnum(b) y

fromEnum(a) y]

Figure 4: Changes to Prelude

10



class Bounded t where

minBound HE A

maxBound HE A

minBound (1) = 0

minBound (a+b) = Left (minBound(a))
minBound (a*b) = (minBound(a), minBound (b))
maxBound (1) = 0

maxBound (a+b) = Right (maxBound (b))
maxBound (a*b) = (maxBound(a), maxBound(b))

-— Monadic classes

class Functor t where

map (a->b) > (t a->t b)

comap :: (a ->b) => (t b -> t a)

map (Id) h x = h x

map (K u) h x = x

map(\a.f a+g a) h (Left x) = Left (map(f) h x)

map(\a.f a+g a) h (Right y) = Right (map(g) h y)

map(\a.f a*g a) h (x, y) = (map(f) h x, map(g) h y)

map(\a.f a->g a) h phi = map(g) h . phi . comap(f) h

comap (K u) h x = x

comap(\a.f a+g a) h (Left x) = Left (comap(f) h x)

comap(\a.f a+g a) h (Right y) = Right (comap(g) h y)

comap(\a.f a*g a) h (x, y) = (comap(f) h x, comap(g) h y)
a->g a) h phi = comap(g) h . phi . map(f) h

comap(\a.f

data Maybe a = Nothing | Just a deriving (Eq, Ord, Read, Show, Functor)

Figure 5: Changes to Prelude (continued)
module PreludelList
import Generics

:: (Num a) => [a] -> a
gsum([1)

sum, product

sum =

product = gproduct([])

length :: [a] -> Int

length = size([])

and, or : [Bool] -> Bool

and = gand([1)

or = gor([1)

any, all :: (a => Bool) -> [a] -> Bool
any = gany([1)

all = gall([])

elem, notElem : (Eq a) => a -> [a] -> Bool
elem = gelem([])

notElem = gnotElem([])

Figure 6: Changes to PreludeList

11



module PreludeText
import Generics

class Show t where

showsPrec :: Int
show A A
showList 1 [t]

showsPrec(a+b) d (Left
showsPrec(atb) d (Righ
showsPrec(a*b) d (x, y
showsPrec(a->b) d phi
showsPrec(c a) d x

| hasLabels c

| arity c ==

| fixity c¢ /= Nonfix

| otherwise
showsRecord (1) O

showsRecord(a+b) x
showsRecord(a*b) (x, y
showsRecord(a->b) phi
showsRecord(c a) x
showsRecord(l::a) x

showsInfix(a*b) d c (x,
where op

showi (Infix p

showi (Infixl p

showi (Infixr p

class Read t --- analog

module Ix

class (0rd t) => Ix t w
range e
index
inRange
rangeSize

range(1)  (1,h)
range (a+b) (1,h)
range(axb) ((1,1’),(h,h

index (1) (1,h) i
index(a+b) b@(1l,h) i
| inRange(atb) b i =
| otherwise =
index(a*b) ((1,1’),(h,h

inRange (1) (1,h)
inRange (at+b) (1,h)
inRange (a*b) ((1,1°),(h

rangeSize(a) b@(1l,h) |
|

-> t -> ShowS
> String
-> ShowS

showsPrec(a) d x

showsPrec(b) d y

showsPrec(a) d x . showChar ’ ’ . showsPrec(b) d y
= showString "<function>"

x)
t y)
)

= shows c . showChar ’{’ . showsRecord(a) x . showChar ’}’
= shows c
= showsInfix(a) d ¢ x
= showParen (d >= 10) (shows c¢ . showChar ’ ’ . showsPrec(a) 10 x)
= showString ""
= showsPrec(a+b) 0 x
) = showsRecord(a) x . showChar ’,’ . showsRecord(b) y
= showsPrec(a->b) 0 phi
= showsPrec(c a) 0 x

= shows 1 . showChar ’=’ . showsPrec(a) 0 x
y) = showParen (d > precedence c) (showi (fixity c))
= showString (" " ++ showCon c ++ " ")
) = showsPrec(a) (p+1) x . op . showsPrec(b) (p+1) y
) = showsPrec(a) p x . op . showsPrec(b) (p+1) y
) = showsPrec(a) (p+1) x . op . showsPrec(b) p y
ous

Figure 7: Changes to PreludeText

here

(t,t) -> [t]

(t,t) -> t -> Int
(t,t) -> t -> Bool
(t,t) -> Int

[O]
enumFromTo(a+b) 1 h
[(i,i’) | i <- range (1,h), i’ <- range (1’,h’)]

’))
0

fromEnum(a+b) i - fromEnum(a+b) 1

error "Ix.index: Index out of range."

7)) (i,1i)

index(a) (1,h) i * rangeSize(b) (1’,h’) + index(b) (1’,h’) i’

i = True
i compare(a+b) 1 i /= GT &% compare(at+b) i h /= GT
,h?’)) (i,i’) = inRange(a) (1,h) i && inRange(b) (1’,h’) i’

null (range(a) b) =0
otherwise index(a) b h + 1

Figure 8: Changes to Ix

12



References

[1]

[2]

[4]
[5]

[6]

[7]

(8]

[9]

[10]

[13]

Robin Cockett and Fukushima. About Charity. Yellow
Series Report 92/480/18, Dept. of Computer Science,
Univ. of Calgary, June 1992.

Karl Crary, Stephanie Weirich, and Greg Morrisett.
Intensional polymorphism in type-erasure semantics.
ACM SIGPLAN Notices, 34(1):301-312, 1999.

M.M. Fokkinga. Monadic maps and folds for arbitrary
datatypes. Technical Report Memoranda Informatica
94-28, University of Twente, June 1994.

T. Hagino. Category Theoretic Approach to Data Types.
PhD thesis, University of Edinburgh, 1987.

Robert Harper and Greg Morrisett. Compiling poly-
morphism using intensional type analysis. In Con-
ference record of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
POPL’95, San Francisco, California, pages 130-141.
ACM-Press, 1995.

Ralf Hinze. Generalizing generalized tries. Journal of
Functional Programming, 1999. Accepted for publica-
tion.

Ralf Hinze. A new approach to generic functional pro-
gramming. Technical Report IAI-TR-99-9, Institut fiir
Informatik III, Universitat Bonn, July 1999.

Ralf Hinze. Polytypic programming with ease (ex-
tended abstract). In 4th Fuji International Symposium
on Functional and Logic Programming (FLOPS’99),
Tsukuba, Japan, Lecture Notes in Computer Science.
Springer-Verlag, November 1999. To appear.

Patrik Jansson and Johan Jeuring. PolyP—a polytypic
programming language extension. In Conference Record
2/th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL’97, Paris,
France, pages 470-482. ACM-Press, January 1997.

Patrik Jansson and Johan Jeuring. PolyLib—A li-
brary of polytypic functions. In Roland Backhouse and
Tim Sheard, editors, Informal Proceedings Workshop
on Generic Programming, WGP’98, Marstrand, Swe-
den. Department of Computing Science, Chalmers Uni-
versity of Technology and Géteborg University, June
1998.

C.B. Jay, G. Belle, and E. Moggi. Functorial ML. Jour-
nal of Functional Programming, 8(6):573-619, Novem-
ber 1998.

C.B. Jay and J.R.B. Cocket. Shapely types and shape
polymorphism. In D. Sanella, editor, Programming
Languages and Systems — ESOP’94: b5th European
Symposium on Programming, Edinburgh, UK, Proceed-
ings, volume 788 of Lecture Notes in Computer Science,
pages 302-316, Berlin, 11-13 April 1994. Springer-
Verlag.

Johan Jeuring and Patrik Jansson. Polytypic program-
ming. In J. Launchbury, E. Meijer, and T. Sheard,
editors, Tutorial Text 2nd International School on Ad-
vanced Functional Programming, Olympia, WA, USA,
volume 1129 of Lecture Notes in Computer Science,
pages 68-114. Springer-Verlag, 1996.

13

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

Mark P. Jones. Functional programming with overload-
ing and higher-order polymorphism. In First Interna-
tional Spring School on Advanced Functional Program-
ming Techniques, volume 925 of Lecture Notes in Com-
puter Science, pages 97-136. Springer-Verlag, 1995.

M.P. Jones and J.C. Peterson. Hugs 98 User Manual,
May 1999. Available from http://www.haskell.org/
hugs.

Lambert Meertens. Calculate polytypically! In
H. Kuchen and S.D. Swierstra, editors, Proceedings 8th
International Symposium on Programming Languages:
Implementations, Logics, and Programs, PLILP’96,
Aachen, Germany, volume 1140 of Lecture Notes
in Computer Science, pages 1-16. Springer-Verlag,
September 1996.

Erik Meijer and Koen Claessen. The design and imple-
mentation of Mondrian. In Proceedings of the Haskell
Workshop, 1997.

Simon Peyton Jones. Explicit quantification in Haskell,
1998. Available from http://research.microsoft.
com/Users/simonpj/Haskell/quantification.html.

Simon Peyton Jones and John Hughes, editors.
Haskell 98 — A Non-strict, Purely Functional Lan-
guage, February 1999.

Simon Peyton Jones, Mark Jones, and Erik Meijer.
Type classes: Exploring the design space. In Proceed-
ings of the Haskell Workshop, 1997.

Fritz Ruehr. Structural polymorphism. In Roland
Backhouse and Tim Sheard, editors, Informal Pro-
ceedings Workshop on Generic Programming, WGP’98,
Marstrand, Sweden, 18 June 1998. Dept. of Computing
Science, Chalmers Univ. of Techn. and Géteborg Univ.,
June 1998.

Karl Fritz Ruehr. Analytical and Structural Polymor-
phism Ezxpressed using Patterns over Types. PhD thesis,
University of Michigan, 1992.

Tim Sheard. Type parametric programming. Techni-
cal report, Oregon Graduate Institute of Science and
Technology, Portland, OR, USA, 1993.






Restricted Datatypes in
Haskell

John Hughes (Chalmers University, Sweden)






Restricted Data Types in Haskell

John Hughes
September 4, 1999

Abstract

The implementations of abstract type constructors must often restrict the
type parameters: for example, one implementation of sets may require equal-
ity on the element type, while another implementation requires an ordering.
Haskell has no mechanism to abstract over such restrictions, which can hin-
der us from replacing one implementation by another, or making several im-
plementations instances of the same class. This paper proposes a language
extension called restricted data types to address this problem.

A restricted data type definition specifies a condition which argument types
must satisfy for the data type to be well-formed. Every type in a program must
be well-formed, and we add an explicit notation to express such requirements.
Thus programmers can simply state that a type must be well-formed, rather
than repeat its restriction explicitly.

We explain our extension via a simulation using multi-parameter classes,
which serves to specify its semantics. We show its application to the design
of a collection class and to the class of monads, and we discuss extensions to
compile-time context reduction needed to implement it.

1 Introduction

Suppose you are designing an abstract data type of sets, represented for example
by lists:

data Set a = Set [al]

When you implement the methods, you are likely to need to make assumptions
about the element type a. For example, a function to test for membership will need
to test elements for equality, and its type will reflect this:

member :: Eq a => a -> Set a -> Bool

Should you later decide to change the representation of sets, for example to use
ordered binary trees for greater efficiency, then the restrictions on the element type
will change. For example, the type of member will become

member :: 0Ord a => a -> Set a -> Bool

Thus a change in the representation of the abstract data type is reflected by a
change in the interface which it provides.

Such a change in the interface has unfortunate consequences. When the func-
tions which implement sets change their types, so in general will functions which
use them in the rest of the program. Explicit type signatures spread throughout
the program will therefore need to be changed, even though the definitions they are
attached to are unaffected!. If there are many type signatures, either for stylistic

I Assuming, of course, that all the sets used in the program have elements that do actually
support an ordering.



reasons or because Haskell’s infamous monomorphism restriction forced their in-
sertion, then the work of revising them may dominate that of modifying the Set
module itself. In the worst case, the programmer may even be dissuaded from mak-
ing a desirable change in one module, because of all the consequential changes that
must be made to type signatures elsewhere.

An even more acute problem arises if we try to define the interface of an ab-
stract data type as a Haskell class, so that several different implementations can be
provided as instances. For example, we might wish to define a class Collection
whose instances are lists, ordered binary trees, hash tables, etc.

class Collection c where

member :: ... => a -> c¢c a -> Bool

But now, what should the type of the member function be in the class definition?
We cannot know what requirements to place on the type of collection elements,
because these requirements differ from instance to instance. As a result, we cannot
write an appropriate class definition at all!

The main idea of this paper is to restrict the parameters of abstract data types
when we define the type, rather than when we define the methods. We thus define
sets represented by lists as follows

data Eq a => Set a = Set [a]

with the interpretation that types Set t are well-formed only if t supports equality?.
We call types defined in this way restricted data types. Now, since we state in the
type definition that the elements must support equality, it should no longer be
necessary to state it in the types of the methods. For example, we might now give
the member function the type

member :: a -> Set a -> Bool

It is clear that member can only be used at types that support equality, because
Set a occurs in its type signature.

Now, if the implementation of sets is changed to ordered binary trees, then the
new constraint on the element type need appear only on the type definition; the
types of the methods remain unchanged. Consequently the problems discussed in
this section disappear: the implementations of abstract datatypes can be changed
without affecting type signatures in the rest of the program, and different imple-
mentations of the same abstract datatype can be made instances of the same class,
even if they place different restrictions on the type parameters.

While the basic idea of a restricted data type is very intuitive, the details of
the design are surprisingly subtle, and the implementation is even subtler. We will
therefore focus on simulating restricted data types in Haskell (extended with multi-
parameter classes). This simulation has been tested using hugs98 with the -98 flag.
However, the simulation is a little tedious to use in practice, and so at the end of
the paper we will propose a language extension whose semantics (and a possible
implementation) is given by the simulation we describe.

2 Simulating Restricted Data Types: A Collection
Class

We shall explain our idea with reference to a simplified Collection class, which
might be defined using restricted data types as follows:

2Haskell already supports this syntax, but with a much weaker meaning.



class Collection c where
empty :: c a

singleton :: a -> c a
union :: ca ->ca->ca
member :: a -> c a —-> Bool

We will show how to simulate restricted data types, so that both sets and ordered
lists can be made instances of this class.

Of course, the intention of this class definition is that the element type a is
implicitly constrained to satisfy the restriction of the data type c. To simulate this
in Haskell without restricted data types, we must declare a Collection class whose
methods do explicitly restrict the element type, but we must parameterise the class
definition on the particular restriction concerned, so that different instances can
impose different restrictions. If we could parameterise classes on classes, then we
might write

class Collection c cxt where

empty :: cxt a => c a

singleton :: cxt a => a -> c a
union :: cxt a=>ca->ca->ca
member :: cxt a => a -> ¢ a -> Bool

and declare instances

instance Collection Set Eq where ...
instance Collection OrdSet Ord where ...

However, Haskell classes can only be parameterised on types. We therefore
represent class constraints such as Eq and Ord by a suitable type. It is natural
to represent a class by the type of its associated dictionary, and so (simplifying
somewhat) we define

data EqD a = EqD {eq :: a -> a -> Bool}
data OrdD a = 0rdD {le :: a -> a -> Bool, eqOrd :: EqD a}

The idea is that EqD a contains an implementation of the equality test, while 0rdD a
contains an implementation of <= and an equality dictionary (since Eq is a superclass
of 0rd).

Now, the constraint Eq a is satisfied when we have an implementation of equality
available at type a, which is equivalent to having a value of type EqD a available.
We therefore define a class

class Sat t where dict :: t

which we will use to simulate other constraints. For example, the constraint Eq a is
simulated by Sat (EqD a); the former is satisfied precisely when we can construct
a dictionary to satisfy the latter. We declare

instance Eq a => Sat (EqD a) where
dict = EqD {eq= (==)}

instance Ord a => Sat (OrdD a) where
dict = 0rdD {le= (<=), eqOrd= dict}

Now we can redefine the member function for sets so that it no longer explicitly
refers to the Eq class, but instead just requires that an appropriate dictionary exists:

member :: Sat (EqD a) => a -> Set a -> Bool
member x (Set xs) = any (eq dict x) xs



data Set cxt a = Set [a]l | Unused (cxt a->()) deriving Show
type SetCxt a = EqD a
type WfSet a = Set SetCxt a

instance Collection Set EgD where
empty = Set []
singleton x = Set [x]
union xset@(Set xs) (Set ys) =
Set (xs++[y | y<-ys, not (member y xset)])
member x (Set xs) = any (eq dict x) xs

Figure 1: Making Set an instance of Collection.

Now, at last, we can parameterise the Collection class definition both on the
type of collections, and on the constraint that elements must satisfy, since both are
now represented by types. We might expect to write

class Collection c cxt where
empty :: Sat (cxt a) => c a

singleton :: Sat (cxt a) => a -> c a
union :: Sat (cxt a) => ca ->ca ->c a
member :: Sat (cxt a) => a -> ¢ a -> Bool

thus making the appropriate dictionary available in all the methods.

Unfortunately this definition is still not quite right, because the class parameter
cxt does not appear in the types of the methods, and so cannot be inferred when the
methods are used. An attempt to use this class would therefore lead to ambiguous
overloading. In fact, since we are simulating restricted data types, there is only one
possible type cxt for each collection type c, but compilers cannot know this.

The solution is simply to parameterise collection types on their context, so that
each type carries with it the restriction that its elements must satisfy. We rewrite
the class definition as

class Collection c cxt where
empty :: Sat (cxt a) => c cxt a

singleton :: Sat (cxt a) => a -> c cxt a
union :: Sat (cxt a) => c cxt a -> c cxt a -> c cxt a
member :: Sat (cxt a) => a -> ¢ cxt a —-> Bool

and it is now accepted.

We modify the definition of the Set type accordingly, and we can then define
it as an instance of the generic Collection class. The new type and instance
definitions appear in figure 13. A similar implementation of collections as ordered
lists appears in figure 2.

3There is one unpleasant hack in the figure: the constructor Unused in the data type definition
for Set. It is there purely in order to force the compiler to assign the parameter cxt the correct
kind: without it, cxt does not appear at all in the right hand side of the definition, and is therefore
assigned the (incorrect) kind *. The application cxt a forces the correct kind *->* to be assigned,
and embedding it in the type cxt a->() prevents the type of the context from interfering with the
derivation of a Show instance.



data OrdSet cxt a = OrdSet [a] | Unused (cxt a->()) deriving Show
type OrdSetCxt a = 0rdD a
type WfOrdSet a = OrdSet OrdSetCxt a

instance Collection OrdSet OrdD where
empty = OrdSet []
singleton x = OrdSet [x]
union (OrdSet xs) (OrdSet ys) = OrdSet (merge xs ys)
where
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys) = if eq (eqOrd dict) x y then x:merge xs ys
else if le dict x y then x:merge xs (y:ys)
else y:merge (x:xs) ys
member x (OrdSet xs) = any (eq (eqOrd dict) x) xs

Figure 2: Making OrdSet an instance of Collection.

3 Restricted Monads

Restricted data types would be of limited interest if they were useful only for defining
collection types, but in fact they are generally useful in connection with constructor
classes, classes whose instances are parameterised types. We will discuss one more
example, the class of monads.

The Monad class is defined (slightly simplified) as follows:

class Monad m where
return :: a -> m a
(>>=) ::ma->(a->mb) ->mb

One interesting monad in the mathematical sense is the type Set, but our imple-
mentation of Set above cannot be made an instance of this class because (>>=)
requires equality on the set elements, and the type given for (>>=) in the class
declaration does not provide it. Categorically speaking, Set is a monad over a sub-
category of the category of Haskell types and functions, but Haskell gives us no way
to express that.

However, just as we parameterised the Collection class on a condition that

elements must satisfy, so we can parameterise the Monad class in an analogous way.
We define

class WfMonad m cxt where
unit :: Sat (cxt a) => a -> m cxt a
bind :: (Sat (cxt a), Sat (cxt b)) =>
mcxt a->(a->mcxt b) ->mecxtb

Notice that the context for bind requires that both typesm cxt a and m cxt b are
well-formed.
Now we can indeed make Set an instance of WfMonad:

instance WfMonad Set EqD where
unit a = Set [a]
Set as ‘bind‘ f = foldr union empty (map f as)

The union operation in bind requires equality, which is available since the type
Set EgD b is well-formed.



Another interesting example is the monad which represents computations as
strings:

data StringM cxt a = StringM String | Unused (cxt a->())

Naturally, we must restrict this monad to types which can be read and shown, so
we define a type to represent this constraint:

data TextD a = TextD {rd :: String -> a, sh :: a -> String}
instance (Read a, Show a) => Sat (TextD a) where
dict = TextD {rd= read, sh= show}

Now we can make StringM an instance of WfMonad as follows:

instance WfMonad StringM TextD where
unit x = StringM (sh dict x)
StringM s ‘bind‘ f = f (rd dict s)

This monad is related to a library for CGI programming which I am developing,
which saves computations in hidden fields of HTML forms. (In fact, the technique
is applied to yet another constructor class, the class of arrows [Hug99]).

4 Improving the Simulation

The technique we have discussed certainly lets us use different properties of col-
lection elements in different instances of the collection class, but not really very
conveniently. In figure 2, for example, we know that the element type supports
an equality operation, but we have to refer to it as eq (eq0rd dict). Of course
we would prefer to use the usual symbol (==), not only because it is syntactically
more appealing, but also because we could then use other overloaded functions that
depend on equality internally. However, using the equality symbol would require a
context Eq a rather than Sat (0rdD a).

Let us therefore define new instances of Eq in terms of Sat, which extract the
equality function from an available dictionary:

instance Sat (EqD a) => Eq a where
(==) = eq dict

instance Sat (0rdD a) => Sat (EqD a) where
dict = eqOrd dict

Given these definitions, and a similar one for Ord, we should be able to use (==
and (<=) freely in Figures 1 and 2.

Unfortunately, these instance declarations are rejected by Hugs, because they
overlap with the existing instances of Eq and Sat (EgD a). In their exploration of
the design space for type classes [JIM97], Peyton-Jones, Jones and Meijer discuss
the possibility of allowing overlapping instances, but conclude that it is undesirable
to do so.

The main problem is that the meaning of a program may depend on which of
two overlapping instances is chosen, and so it is important to specify precisely how
the choice is made, but it seems to be very difficult to give a specification which is
both simple and precise. However, in this particular case, the meanings of programs
do not depend on which instance is chosen. There is only one implementation of
equality for any particular type; the new overlapping instance declaration above
simply provides another way of accessing it. Thus whenever there is a choice of how
to obtain an implementation of equality, then we know that the choice does not



affect the semantics of the program, and the compiler is free to choose the instance
declaration to apply on other grounds, such as efficiency.

However, even if overlapping instances are permitted, they do introduce a risk
that type inference may loop. Indeed, Hugs provides a flag to allow instances to over-
lap, but if it is turned on then the type checker loops given the declarations above.
To understand why, we must explain the process of context reduction. Suppose a pro-
grammer uses an equality test to compare two lists within a polymorphic function.
The compiler infers that the comparison is well typed in a context Eq [a], where
a is the element type. Given an instance declaration instance Eq a => Eq [a]
where ..., then the compiler can construct an implementation of equality for [a]
from an implementation for a, thus reducing the problem of satisfying Eq [a] to
the simpler problem of satisfying the context Eq a. This process is called context
reduction, and is implemented by using instance declarations ‘backwards’ as rewrite
rules on contexts.

Now we can see that if instance declarations overlap, then context reduction
becomes non-deterministic. Worse, it may easily loop. In our example, the new
instance declaration

instance Sat (EqD a) => Eq a

enables a context Eq a to be reduced to Sat (EqD a), but the instance declaration
we gave earlier

instance Eq a => Sat (EqD a)

enables this to be reduced back to Eq a again. Hence context reduction loops. In
this case the compiler would need to search for a terminating context reduction,
and this is something which existing implementations of overlapping instances do
not do.

In general, it may be undecidable whether a path in the tree of possible context
reductions is terminating or not. But in our particular case, loops are introduced
only via instance declarations involving the Sat class, and by inspection, context
reduction using these instances does not increase the depth of terms in the context.
Thus even infinite context reductions using these instances will contain only a finite
number of terms. A compiler can abort an attempted context reduction when a term
reduced earlier appears again, since such a reduction is never helpful: to discover,
for example, that an Eq a dictionary can be constructed from an Eq a dictionary is
pointless. In our application, this strategy will cut off all infinite context reductions,
and so type checking will terminate.

To summarise, to make our simulation of restricted datatypes convenient to use
we must be able to define overlapping instance. This is normally dangerous, since
in general it leads to ill-defined semantics and undecideable type checking, but in
our particular application these problems do not arise. We do require, though, that
compilers make an easy test to detect and avoid looping context reductions.

5 Other Approaches

The simulation we have described is certainly non-trivial, and of course, similar
problems have been solved in other ways before. In this section we will review two
other ways of designing a Collection class, which could be taken as alternative
ways of simulating restricted data types, and we will argue that the approach we
take in this paper is superior to both.



5.1 Peyton-Jones’ Multiparameter Collection Class

Peyton-Jones proposed a different design for a multi-parameter Collection class
[PJ96]. His idea was to parameterise the class on the type of elements, as well as
the type of collections, thus letting instances constrain both. Applying his idea to
our simplified class, we would define it as

class Collection c a where
empty :: c a

singleton :: a -> c a
union :: ca ->ca->ca
member :: a -> c a —-> Bool

and could now define instances such as
instance Eq a => Collection Set a where ...

in which the assumption Eq a can of course be used in the implementations of the
methods.

Peyton-Jones’ idea works well when there is a single element type which appears
in all occurrences of the collection type. But it works much less well when the
methods operate on collections of different types. If the Collection class included
a method for mapping over collections,

mapC :: (a -=>b) ->ca->cb
then it would be unclear what the parameters of the Collection class should be.

e If only one element type appears as a parameter, for example as in
class Collection c a where
mapC :: (a ->b) ->ca ->cb

then instances can constrain only one of a and b, and so an implementation
of mapC which required equality on both types could not be made an instance
of this class.

e On the other hand, if both type variables are made parameters of the class,
as in

class Collection c a b where
mapC :: (a ->b) ->ca ->cb

then any attempt to use the other methods of the class leads to ambiguous
overloading, since the variable b does not occur in their types.

This problem arises also if we try to use Peyton-Jones’ idea to define a restricted
monad class, since the type of return involves only m a, while the type of (>>=)
involves both m a and m b; what should the class parameters be?

Our approach, in contrast, works regardless of how many different occurrences
of the restricted type constructor there are.



5.2 The ‘Object-Oriented’ Approach

An alternative way to simulate restricted data types is to build in the appropriate
dictionary into the objects of the type. For example, if we define

data Set a = Set (EqD a) [al

then it is clear that we can manipulate values of type Set a without requiring that
Eq a hold in the context: we can obtain an implementation of equality directly from
the Set we are working on. For example,

member x (Set dict xs) = any (eq dict x) xs
union xset@(Set dict xs) (Set _ ys) =
Set dict (xs++[y | y<-ys, not (member y xset)])

The problem with this approach is that we cannot always guarantee that the ar-
guments of a function will provide a suitable dictionary to construct its result.
For example, empty and singleton construct Sets, in which they must place an
equality dictionary, but they have no Set argument to extract it from. Likewise,

mapC :: (a->b) -> Set a -> Set b

should place an EqD b dictionary in its result, but can obtain only an EqD a dictio-
nary from its argument. So none of these functions can be implemented.

The ‘object-oriented’ approach only works under strong restrictions on the types
of the methods we want to implement. Our approach, on the other hand, works for
all method types.

6 The Case for a Language Extension

We have now argued that restricted data types are useful, and that our simulation
of them works better than other proposals. But given that restricted data types
can be simulated in several dialects of Haskell already, why make a new language
extension? We see three main reasons for doing so.

Firstly, our simulation requires that the designer of a constructor class anticipate
whether or not it need support restricted datatypes as instances. In the case of a
Collection class, it is fairly clear that it should, but in the case of the Monad
class, for example, the class designer may not anticipate the need. The programmer
who later wishes to declare Set to be a monad is then powerless to do so. But if
restricted datatypes are built into the language, then the compiler can transform
all class definitions appropriately, thus guaranteeing that a restricted datatype can
be used anywhere an unrestricted one can.

Secondly, our simulation requires the programmer to declare the types of dictio-
naries for each class used in a datatype restriction. But these types are constructed
internally by the compiler anyway, as part of the compilation of the class mecha-
nism. Building restricted datatypes into the language spares the programmer from
the need to duplicate the compiler’s work.

Thirdly, to work really well, our simulation requires support for overlapping in-
stances, which are in general a dangerous feature. Yet in our particular application,
the overlap is safe. It is better to extend Haskell with a safe feature (restricted
datatypes) than with a dangerous feature which can be used to simulate it.

We propose the following extension therefore. We introduce a new kind of
context, wft t, to mean that the type t is well-formed. The built-in types are
always well-formed; that is, there are instances

instance wft Int
instance wft (a, b)
instance wft (a -> b)



class Collection c where
empty :: wft (c a) => c a

singleton :: wft (c a) => a -> c a
union :: wft (ca) =>ca ->ca->c a
member :: wft (c a) => a -> ¢ a -> Bool

data Eq a => Set a = Set [a]

instance Collection Set where
empty = Set []
singleton x = Set [x]
union (Set xs) (Set ys) =
Set (xs++[y | y<-ys, not (y ‘elem‘ xs)])
member x (Set xs) = any (==x) xs

Figure 3: Collection and Set defined using restricted datatypes.

and so on.
A restricted datatype definition

data (C; @,...,C,a) =>Ta= ...
introduces instances

instance (C; @,...,C, @) => wft (T @)
instance wft (T @) => C; a

instance wft (T @) => C, a

Unrestricted datatype definitions are just the special case where n = 0.

Now, we insist that every type appearing in a program must be well-formed.
That is, every expression must appear in a context which guarantees that every
sub-expression has a well-formed type. Likewise, every type signature must carry
a context which guarantees that the type itself is well-formed; every data type,
newtype, and type synonym definition must carry a context which guarantees that
the types on the right hand side are well-formed; and every instance declaration must
carry a context which guarantees that the instance type and the types occurring in
the instance methods are well-formed. Type constructors may only be applied to
parameters which are themselves well-formed*. However, we can assume that wft a
holds for every polymorphic type variable a, (since in any instance of a polymorphic
type the instantiating type must be well-formed), and so such constraints need not
appear in contexts.

With this extension, we could define the Collection class and its Set instance
as shown in Figure 3. As we see from this example, the wft constraints corre-
spond to Sat constraints in our simulation; for example, wft (Set a) corresponds
to Sat (SetCxt a). Notice that we can freely use operations that depend on Eq a,
such as (==) and elem, in the methods of the Set instance, thanks to the gener-
ated instance wft (Set a) => Eq a. The instances generated from a restricted

4This applies only to parameters of kind *. Type parameters of other kinds are not restricted,
but of course if they are used then their applications must be well-formed. Ezample: if A is defined
by data wft (c a) => A ¢ a = A (¢ a), then in any use A k 7 the type 7 must be well-formed
by this rule, while the type constructor k must satisfy wft (k 7) because of the context on the
definition of A. This context must be present, since the type (¢ a) appears on the right hand side.

10



datatype definition are of course implemented just like the Sat instances we saw
earlier:
instance (Cy @,...,Cp @) => wft (T @)

constructs a dictionary for wft (T @) which is a tuple of the dictionaries on the
left hand side, and the instances

instance wft (T @) => C; a

just select the appropriate dictionary from the tuple. As in our simulation, overlap-
ping instances force the compiler to search for a successful context reduction, and
avoid detectable loops.

Since the compiler knows that the well-formedness constraint for Set is Eq and
no other, we do not need to parameterise Set on Eq, or parameterise the Collection
class separately on the well-formedness constraint.

Well-formedness of type variables. We assume that constraints wft a (where
a is a type variable) are always satisfied, since a can only be instantiated to a
well-formed type. Consequently such constraints do not appear in contexts, and
no corresponding dictionary is passed at run-time. But is this really safe? Even if
we know that a dictionary for wft a must exist, we cannot construct one should it
prove to be needed, without knowing the type a. Thus we must convince ourselves
that such a dictionary can never be needed, and so passing it as a parameter is
unnecessary.

To see this, note that the dictionary corresponding to wft a is of an unknown
shape: it could indeed be any dictionary at all depending on which type a is in-
stantiated to. Dictionaries are used to implement calls of class methods, and any
such use requires that one know the dictionary shape. Thus a wft a dictionary can
never be used.

To prove this formally, we should specify the translation of our extended lan-
guage into F* (which would in any case be desirable, since this translation is used
in the Glasgow Haskell compiler). In this translation, context constraints are trans-
lated into the types of dictionary parameters, and a constraint wft a would be
translated into another type variable. Thus the translated code would be polymor-
phic in the type of the dictionary, which implies by parametricity that the dictionary
is unused.

A more subtle argument is needed for type variables which are parameters of
classes, because even if the method types are ‘polymorphic’ in these variables, their
implementations are not. For example, given the class declaration

class BinOp a where
binop :: a -> a -> a

then an instance of binop at the type Set b might very well use the fact that
Set b is well-formed. But since no wft a constraint appears in the type of the
class method, then calls of binop will pass no dictionary.

However, recall that the instance declaration must require that the instance type
is well-formed. In this example, we would be forced to write

instance wft (Set b) => BinOp (Set b) where
binop = ...

Thus the dictionary for wft (Set b) is supplied when that for BinOp (Set b) is
created; there is no need to pass it each time the binop method is called.

11



7 Discussion

7.1 On well-formedness

The major surprise in the design we have presented is the introduction of a new kind
of constraint in contexts, the wft constraints. Our design requires programmers to
understand and write this new kind of constraint, which may seem unsatisfactory in
(for example) the Collection class definition in Figure 3, given our initial motiva-
tion that it is ‘obvious’ that Set elements must have an equality. One might argue
that it is ‘obvious’ from the types of the Collection class methods that wft (c a)
must hold, and therefore there is no need for the programmer to write it. More
generally, we might implicitly add wft constraints to each type signature to require
that all the types occurring in it are well-formed, and thereby spare the programmer
the need to know about them.

We have chosen not to follow this route, because it is not possible in general to
infer which wft constraints must hold for the body of a function to be well-typed,
just from its type signature. For example, suppose we extend the Collection class
with a mapC method as in section 5.1, and define

existsC :: (Collection c, wft (c a), wft (c Bool)) =>
(a -> Bool) -> ¢ a —> Bool
existsC p ¢ = member True (mapC p c)

Notice that for existsC to be well-typed, then Collections of Bool must be well-
formed, since such a Collection is used internally in the definition. But this type
does not appear in the type of existsC, and so it is impossible to implicitly insert
the constraint wft (c Bool) just given the type signature. In general we cannot
use the body of a function to decide which constraints to add to its type signature,
because the type signature might appear in a class definition, for example, while the
associated bodies appear scattered throughout the program in the corresponding
instance declarations.

Our conclusion is that wft constraints should always be explicit. A half-way
house would be to implicitly add the constraints which are obviously needed from the
type signature, but let the programmer write (hopefully rare) additional constraints
explicitly. We consider it wiser to let programmers become used to wft constraints
by writing them often.

Indeed, we claim that wft constraints are naturally associated with restricted
datatypes: when we declare that sets may only be built from elements with equality,
we are stating that some types are well-formed and others are not. It can hardly
be surprising that we then need to reason explicitly about well-formedness.

It is interesting to note that similar issues arise in Jones and Peyton Jones’
proposal for extensible records [JJ99]. There a record type {r | x::t}, denoting
record type r extended with the field x, is well-formed only if r ‘lacks’ x, written
r\x. These ‘lacks’ constraints clutter the types of functions, and just as we do,
Jones and Peyton Jones consider introducing (some of) them automatically, when
their necessity can be inferred from the type of the function alone. Thus there is
an interaction between these two proposals, and in a final design the same decision
should be made in both cases.

7.2 On abstraction

We began this article by bemoaning the fact that the type of the member function
reveals too much about the way that Sets are implemented. Specifically, replacing
an implementation in terms of lists by one in terms of ordered trees will probably
change the type of member from

12



member :: Eq a => a -> Set a -> Bool
to
member :: Ord a => a -> Set a -> Bool

Consequential changes to the types of other functions could force the modification
of many type signatures in other modules.
With the extension we propose, both these types can be replaced by

member :: wft (Set a) => a -> Set a -> Bool

When Set is implemented by lists, then wft (Set a) is equivalent to Eq a, and
when Set is implemented by ordered trees, then wft (Set a) is equivalent to Ord a.

However, while our extension enables the programmer to write type signatures
which are robust across changes to the representation of Sets, it does not force him
to do so. For example, the function

isOne0f x y z = member x (singleton y ‘union‘ singleton z)
can be given the robust type

isOne0f :: wft (Set a) => a -> a -> a -> Bool

But it can also be given the type

isOne0f :: Eq a => a -> a -> a -> Bool

when Sets are represented by lists, since Eq a implies wft (Set a) in that case.
Equally, the function

maxMember x y s = member (x ‘max‘ y) s

can be given the robust type

maxMember :: (Ord a, wft (Set a)) => a -> a -> Set a -> Bool

But if Sets are represented by ordered trees, then it can also be given the type
maxMember :: wft (Set a) => a -> a -> Set a -> Bool

since wft (Set a) implies Ord a in that case.

If the programmer chooses to write type signatures such as these, whose validity
depends on the conditions under which wft (Set a) holds, then of course a change
to the representation of Sets will invalidate them. Our proposal makes it possible
to write robust type signatures, but does not guarantee that all type signatures are
robust.

In a sense, the constraint wft (Set a) behaves like a context synonym for the
context on the definition of type Set, and the synonym is not abstract. It would
be interesting to consider ways to restrict the scope of the synonym, for example to
the same scope as the datatype constructors, to force programmers to write robust
type signatures elsewhere.

7.3 Overhead of dictionary passing

A major problem with the implementation we have suggested is that it requires
passing many more dictionaries than usual, leading to a potentially high overhead.
In particular, the definition of class Monad must be revised as follows:

class Monad m where
return :: wft (ma) => a ->m a
(>>=) :: (wft (ma), wft (m b)) =>ma -> (a ->mb) ->mb

13



The thought of passing two dictionaries to every call of (>>=) is probably enough
to put any implementor off.

The problem here is that programs which do not use restricted datatypes would
still pay a heavy cost for their inclusion in the language, by passing a large number
of empty dictionaries around. Our proposal here is to generate two versions of the
code for each function whose type signature involves wft, one to be used when
all the dictionaries involved are empty, and the other when genuinely restricted
datatypes are involved. This should only affect constructor-polymorphic functions,
so the amount of code duplication should be small, while the performance penalty
for programs which do not use restricted datatypes is completely removed.

A related difficulty under our proposal is that adding restricted datatypes to the
language might make some definitions overloaded which were not overloaded before
— if the context they require contains only wft constraints. Such definitions would
be subject to the monomorphism restriction after the extension, but not before,
and this could cause type-checking to fail. We believe the correct solution here is
to revise the monomorphism restriction.

7.4 Lazy vs eager context reduction

While we have explained that context reduction must search for a suitable reduction
path, we have said little about when context reduction should occur. In Haskell
as it stands, context reduction is performed eagerly, as part of inferring the type
signature of each function. When the programmer states a context explicitly in a
type signature, then it is clear that the compiler can search for a way to reduce the
context that the function body requires to the given one. When the programmer
leaves type signatures to be inferred by the compiler, then it is much less clear
which reduction the compiler should choose. That leads us to suggest that context
reduction should instead be lazy, that is, performed only when necessary to match
contexts given explicitly by the programmer (or when a context is tautologous, that
is can be reduced to an empty context). Non-tautologous contexts in inferred type
signatures would not be reduced at all.

Peyton-Jones, Jones and Meijer come to the same conclusion in their explo-
ration of the design space for classes [JJIM97]. They point out in particular that,
in combination with overlapping instances, eager context reduction can type fewer
programs than lazy can. This is also true in our situation. Consider:

allpalin :: wft (Set [a]) => Set [a] -> Bool
allpalin (Set xss) = all palindrome xs
palindrome xs = xs==reverse Xxs

With lazy context reduction, the type signature inferred for palindrome is
palindrome :: Eq [a]l => [a] -> Bool

and allpalin is well-typed, since Eq [a] is implied by wft (Set [al). But if
eager context reduction is used instead, then the type inferred for palindrome is

palindrome :: Eq a => [a] -> Bool

and allpalin becomes ill-typed — a good reason to prefer the former.

7.5 An alternative: abstracting over contexts

The extension we have proposed is not the only possible way to support restricted
data types. An alternative would be to allow type and class definitions to be
parameterised not just on types, but also on contexts. We could then carry out our

14



simulation much more easily, without needing to represent classes by types — one
would declare the Collection class, for example, as:

class Collection c cxt where
empty :: cxt a => c cxt a

Of course, the ability to abstract over contexts might be useful in other ways too.

A natural complement would be to give contexts names via context synonyms.
Interestingly, we can almost do so in Haskell already. A ‘synonym’ for the context
(A a, B a) can be modelled by a new class and instance

class (A a, Ba) => AB a
instance (A a, B a) => AB a

The instance declaration allows a context AB a to be reduced to (A a, B a), while
the class declaration enables both A a and B a to be reduced to AB a. While context
reduction might in principle loop here also, in fact the loop is avoided by treating
class declarations specially.

However, this approach does have some important disadvantages. Firstly, even
if we can abstract over a context in the Collection class, there is no obvious way
to associate the type Set with the context Eq. We would need to make both the
collection type, and the associated context, into parameters of the Collection class.
To avoid ambiguous overloading, we could make sure that the context parameter
appears in the method types (as we have done above). Alternatively, we might
restrict instance declarations so that no two instances of the same class may have the
same type parameters. Such a restriction would guarantee that the type parameters
determine the context parameters, thus in effect creating an association between Set
and Eq. In any case, there are subtle design choices to be made here.

Perhaps a more serious objection is that this approach would still require the
class designer to anticipate that another programmer might later wish to make a
restricted datatype into an instance. Many class designers would fail to do so, and
the frustration of using restricted datatypes would remain.

8 Conclusion

It is common for the implementation of an abstract datatype to place some restric-
tions on its argument types. The consequent loss of abstraction when the imple-
mentation is changed, and the difficulties of making such implementations instances
of more general classes, are recurring topics on the Haskell mailing list. We believe
there is a crying need for a restricted datatype construct with much more power
than Haskell’s present sham.

The simulation in the first part of this paper enables us to explore the semantics
and implementation of restricted datatypes. We argue that our solution is signifi-
cantly more useful than either Peyton-Jones’ approach to Collection classes or a
more ‘object-oriented’ approach.

Finally, we propose a language extension based on our simulation, and argue that
it is both natural, and can be implemented with reasonable efficiency. We believe
the extension would be invaluable, and live in hope that Haskell implementors will
take up the challenge!

Acknowledgements

Simon Peyton-Jones, Mark Jones, and Lennart Augustsson have all made very
useful comments on this work at various stages. I am grateful to all of them, while

15



the remaining errors are of course my own.

References

[Hug99] J. Hughes. Generalising Monads to Arrows. Science of Computer Pro-
gramming, to appear, 1999.

[JJ99] Mark P Jones and Simon Peyton Jones. Lightweight Extensible Records
for Haskell. In Haskell Workshop, Paris, September 1999.

[JIM97] Simon Peyton Jones, Mark Jones, and Erik Meijer. Type classes: exploring
the design space. In Haskell Workshop, 1997.

[PJ96] Simon Peyton-Jones. Bulk types with class. In Electronic proceedings of
the Glasgow Functional Programming Workshop, Ullapool, July 1996.

16



