
Demo Proposal: Liquid Types for Haskell

Niki Vazou Eric L. Seidel Ranjit Jhala
UC San Diego

Abstract
We present LIQUIDHASKELL, a verifier for Haskell programs
which uses Liquid Types to reduce the verification of higher-order,
polymorphic, recursive programs over complex data types, into
first-order Horn Clauses over integers, booleans and uninterpre-
tated functions, which are then solved using classical predicate
abstraction. In this demo proposal, we present an overview of this
approach, and describe how we handle Haskell specific features
such as type classes, algebraic data structures and laziness.

1. Introduction
Refinement types offer an automatic means of verifying semantic
properties of programs, by decorating types with predicates from
logics efficiently decidable by modern SMT solvers. For example,
the refinement type {v: Int | v > 0} denotes the basic type
Int refined with a logical predicate over the “value variable” v.
This type corresponds to the set of Int values vwhich additionally
satisfy the logical predicate, i.e., the set of positive integers. The
(dependent) function type x:{v:Int| v > 0} -> {v:Int|
v < x} describes functions that take a positive argument x and

return an integer less than x.
Refinement type checking reduces to sub-typing queries of the

form Γ ` {v : τ | p} � {v : τ | q}, where p and q are refine-
ment predicates. These sub-typing queries reduce to logical valid-
ity queries of the form [|Γ|] ∧ p ⇒ q, which can be automatically
discharged using SMT solvers [1].

Liquid Types [2] is a technique that reduces refinement type
inference, and therefore verification of higher-order programs, to
solving a system of Horn-clauses which are essentially the above
implications with logical variables representing unknown (i.e., to
be inferred) refinements.

In this demo proposal we present LIQUIDHASKELL, an imple-
mentation of Liquid Types that supports Haskell-specific features
such as type class constraints, data types and laziness.

2. Overview
We present a high-level overview of the modifications we made to
Liquid Types to address Haskell-specific features.

2.1 Type Classes

Parametric Invariants via Type Polymorphism. Suppose we had
a generic comparison (<=):: a -> a -> Bool. We could
use it to write:

max :: a -> a -> a
max x y = if x <= y then y else x

In essence, the type given for max states that for any a, two a
values are passed into max, then the returned result is also an a
value. For example, if two prime numbers are passed in the result
is prime, and if two odd numbers are passed in the result is odd.

Thus, we can use refinement types [2] to verify

type Odd = {v:Int | v % 2 = 1}

maxOdd :: Odd
maxOdd = max 3 5

As 3, 5 :: Odd, the system has to verify that max 3 5
:: Odd. To this end, the type parameter of max is instantiated
with the refined type Odd, yielding the instance:

max :: Odd -> Odd -> Odd

The refinement type instantiations can be inferred, using the ab-
stract interpretation framework of Liquid Types [2]. Thus, paramet-
ric polymorphism offers an easy means of encoding second-order
invariants, i.e., of quantifying over or parametrizing the invariants
of inputs and outputs of functions.

Parametric Invariants and Type Classes. In Haskell the func-
tions above are typed

(<=) :: (Ord a) => a -> a -> Bool
max :: (Ord a) => a -> a -> a

We might be tempted to ignore the typeclass constraint, and treat
max as a -> a -> a. This would be quite unsound, as typeclass
predicates preclude universal quantification over refinement types.
Consider the plus function (+):: (Num a)=> a -> a ->
a. The Num class constraint implies that numeric operations may
occur in the function, so if we pass (+) two odd numbers, we will
not get back an odd number.

To soundly verify class constrained types we use abstract re-
finements [5], which let us quantify or parameterize a type over
its constituent refinements. With abstract refinements, we can type
max as

max:: forall <p::a->Prop>. (Ord a)=>
a<p> -> a<p> -> a<p>

where a<p> is an abbreviation for the refinement type {v:a |
p(v)}. Intuitively, an abstract refinement p is encoded in the

refinement logic as an uninterpreted function symbol. Thus, it is
trivial to verify, with an SMT solver, that max enjoys the above
type: the input types ensure that both p(x) and p(y) hold and
hence the returned value in either branch satisfies the refinement
{v:a | p(v)}, thereby ensuring the output type.

Consequently, we can recover the verification of maxOdd. Now,
instead of instantiating a type parameter, we first instantiate the
type parameter with an unrefined Int type and then instantiate the
refinement parameter of max with the concrete refinement {\v
-> v % 2 = 1}, after which type checking proceeds as usual
[2]. Thus, abstract refinements allow us to quantify over invariants
without relying on parametric polymorphism, even in the presence
of type classes.

2.2 Expressive Data Types
Next, we illustrate how abstract refinements allow us to specify and
verify expressive data types. As an example we encode vectors as
maps from Int to a generic range a. We specify vectors as

data Vec a < dom :: Int -> Prop
, rng :: Int -> a -> Prop>

= V (i:Int<dom> -> a <rng i>)

Here we are parameterizing the definition of the type Vec with two
abstract refinements, dom and rng, which respectively describe
the domain and range of the vector. That is, dom describes the set
of valid indices and rng specifies an invariant relating each Int
index with the value stored at that index.
Describing Vectors. With this encoding we can describe various
vectors. To start with, we can have vectors of Int defined on
positive integers with values equal to their index:

Vec <{\v -> v > 0}, {_ v -> v = x}> Int

As a more interesting example, we can define a Null Terminating
String with length n, as a vector of Char defined on a range [0,
n) with its last element equal to the terminating character:

Vec <{\v -> 0 <= v < n}
,{\i v -> i = n-1 => v = ‘\0‘}> Char

Finally, we can encode a Fibonacci memoization vector, which can
be used to efficiently compute a Fibonacci number, that is defined
on positive integers and its value on index i is either zero or the
ith Fibonacci number:

Vec <{\v -> 0 <= v}
,{\i v -> v != 0 => v = fib(i)}> Int

Using Vectors. A first step towards using vectors is to supply
the appropriate types for vector operations, (e.g., set, get and
empty). This usually means qualifying over the domain and the
range of the vectors. Then the programmer has to specify interest-
ing vector properties, as we did for the Fibonacci memoization and
null terminating string vectors. Finally, the system can verify that
user functions that transform vectors preserve these properties [5].

In LIQUIDHASKELL the pair data construct is parametrized
over an abstract refinement that describes the second component
with respect to the first, thereby encoding dependent pairs. Simi-
larly, the list data type is parametrized over an abstract refinement
that relates the head of the list with all the elements of the tail. This
way the user can reason about recursive list properties like sorted-
ness.

2.3 Laziness
Finally, we present how we modify Liquid Types to support verifi-
cation under a lazy setting. Consider the following code:

let incr n = n : incr (n+1) in
let xs = incr 0 in
map (\x -> assert x < 0) xs

In an eager setting this code is safe. To execute the code, all
the let bindings should be fully evaluated. Thus, incr 0 should
be fully evaluated, but since it describes an infinite list execution
diverges. The code does not terminate, so it is partially safe.

In a lazy setting however, the let bindings will not be evaluated
until their values are needed. The assertion will therefore fail on the
head of the list, making the example unsafe.

This example illustrates that on lazy evaluation, treatment of
non-termination expressions should be changed. In eager settings
diverging values are uninhabited, thus their type should be refined

with false or xs :: {v:[a] | false}. Under lazy eval-
uation though, diverging values might not affect computation. In
other words we cannot prove anything for these values, so their type
should be trivially refined, i.e., their refinement should be true or
xs :: {v:[a] | true}.

But how do we determine termination? Trivially, a diverging
value is the result of a recursive function. LIQUIDHASKELL runs
a termination analysis, based on Size-change termination rule[3]
for recursive functions. If termination can be proved for every
recursive function then no diverging sub-term can be produced and
verification proceeds as in an eager setting.

If LIQUIDHASKELL cannot prove termination for some func-
tion then an error is created. In this case, the user should disable
the termination check for the function and provide a valid type for
it, i.e., a type with a trivially refined result.

In the code above, termination obviously cannot be proved for
incr function. Thus the user has to disable the termination check
(using a strict token) and provide a valid type:

strict incr :: (Num a) => a -> [a]

Note that the type a inside the list can be refined, thus [{v:a
| v >=0 }] is also a valid result type. In any case, there is no

type that satisfies both incr’s behaviour, i.e., that the elements of
the list are non-negative, and the assertion, i.e., that the elements
are negative, thus the program will be unsafe.

2.4 Real-world Usage
We have used LIQUIDHASKELL to verify properties of com-
monly used Haskell libraries, including text, bytestring,
containers and XMonad. For text and bytestring we
focused on the functional correctness of the exposed API and
the safety of memory accesses, whereas for XMonad we verified
some provided QuickCheck properties, as in [4]. While verifying
text we discovered a bug that results in an out-of-bounds write,
which we have reported upstream. The bug is a subtle one due to
the mixed 2- and 4-byte encoding of UTF-16 characters used by
text.

2.5 Plan
• Basic Refinement and Liquid Types A rapid overview of refine-

ment types and liquid type inference.
• Abstract Refinement Types Demonstration of Abstract Refine-

ment Types and their usage on type classes and data types.
• Laziness Presentation of how the tool is used to perform termi-

nation analysis on recursive functions and give sound output on
programs with diverging sub-expressions.

• Analysing Libraries Experience report on using LIQUIDHASKELL
to verify properties of popular Haskell libraries.

Finally, the reader can find the source, an online demo, and a
series of blog articles describing LIQUIDHASKELL at our website1.

References
[1] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,

2008.
[2] P. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, 2008.
[3] Damien Sereni and Neil D. Jones. Termination analysis of higher-order

functional programs. APLAS, 2005.
[4] Wouter Swierstra. xmonad in coq (experience report): programming a

window manager in a proof assistant. In Haskell Symposium, 2012.
[5] N. Vazou, P. Rondon, and R. Jhala. Abstract refinements. In ESOP,

2013.

1 http://goto.ucsd.edu/˜rjhala/liquid/haskell/demo

http://goto.ucsd.edu/~rjhala/liquid/haskell/demo
http://goto.ucsd.edu/~rjhala/liquid/haskell/demo

	Introduction
	Overview
	Type Classes
	Expressive Data Types
	Laziness
	Real-world Usage
	Plan

