MagicHaskeller on the Web:
Automated Programming as a Service

[System Demonstration Proposal]

Susumu Katayama

University of Miyazaki

skata@cs.miyazaki-u.ac.jp

Abstract

The proposed demonstration will present our Web-based automatic
programming tool, named MAGICHASKELLER ON THE WEB,
which can help casual programming in Haskell. We will show how
simple to use the tool is, and then evaluates its ability.

Categories and Subject Descriptors 1.2.2 [ARTIFICIAL INTEL-
LIGENCE]: Automatic Programming; D.1.1 [PROGRAMMING
TECHNIQUES]: Applicative (Functional) Programming; H.3.5
[INFORMATION STORAGE AND RETRIEVALY]: Online Informa-
tion Services

General Terms Algorithms

Keywords Automatic programming, Inductive functional pro-
gramming, Web application

1. Introduction

It is a labor to learn a computer language. The learner has to under-
stand its paradigm, learn its syntax and semantics, and memorize
the essential part of its standard library.

It is easy to imagine that for usual people the memorizing part
can be a pain. Although the best way to learn a computer language
is writing programs, without enough amount of knowledge and
experience it is difficult to write programs without stress.

In order to cope with the lack in knowledge and experience,
there are various tools and devices. Hoogle[4] is an on-line dictio-
nary for standard Haskell libraries, and it can generate links to doc-
umentations of library functions in reply to queries which can be
ambiguous to some extent. Some integrated development environ-
ments (IDEs) and high-level editors can show functions in available
libraries (e.g. the library browser of Leksah! and the block editor of
App Inventor?), and some environments have auto-completion sup-
port (e.g. the auto-completion provided by Glasgow Haskell Com-
piler interactive (GHCi) and the proof search functionality provided
by Agda-mode). Such needs are not limited to general-purpose lan-
guages. Flash Fill[1] provides a functionality of automatic synthe-
sis of string processing functions based on regular expressions, and
is one of the killer functionalities of Microsoft Excel 2013.

The proposed demonstration will present MAGICHASKELLER
ON THE WEB, our tool for automated inductive Haskell program-
ming. This tool is as simple to use as usual web search engines.
Programs can be synthesized by just entering a one-line specifica-
tion in a text box , and then, results are printed immediately in most
cases. Viewing the return value of applying a generated function to

'http://www.leksah.org/
Zhttp://appinventor.mit.edu/

some random arguments is just one click away. If some value is
different from the user’s expectation, she can make search again by
correcting the value (which is in a text box) and pressing the enter
key. She can also view the return value of applying the generated
function to some argument in mind.

2. System usage

Programs are searched for by filling in the text box in the Web page®
with an incomplete specification, or the condition that the func-
tion must satisfy, and clicking on the “Synthesize f£” button. The
incomplete specification must be a Boolean-valued expression us-
ing f as a free variable, such as £ "abcde" == "aabbccddee"
which appears in a text box as an example. Then, implementations
of £ which make the expression true are printed, if possible by this
tool.
In the case of the example, a resulting expression

(\a b -> concat (transpose (replicate b a)))

should instantly be synthesized by clicking on the “Synthesize
£” button. The used library functions, i.e., concat, transpose,
and replicate have links to their documentation.

Depending on the specification, more expressions may or may
not be obtained by clicking on the “More” button appearing at the
bottom, though synthesis stops at some point in order to preserve
stability of the server. All the resulting expressions are proved to
be semantically different from one another. Functions with unused
arguments are not shown by default, because it is unlikely that the
intended function has an unused argument.

Narrowing the search condition The second example is synthe-
sis of the function returning the second last element of the list-typed
argument. Fig. 1 shows the result of using £ [1..5] == 4 as the
incomplete specification and clicking the “More” button once.

This example suggests that it is not always the case that the in-
tended function is obviously one of the first synthesized functions.
Even in this case, the user can casually obtain the intended func-
tion, in a similar way to using a search engine.

First thing the user should do is to click one of the “Exemplify”
buttons to see the page showing the results of applying the function
which was shown to the right of the button to some random argu-
ments (Fig. 2). The text box filled with the function can be used
to evaluate Haskell expressions. Thus, if the user wants to see the
results of applying the function to other arguments in mind, she
can add the arguments after the function in the text box and click

3http://nautilus.cs.miyazaki-u.ac.jp/~skata/
MagicHaskeller.html

@ & MagicHaskeller on the Web ‘ [a=y
MagicHaskeller on the Web

Specify a function f by writing a predicate as a boolean-valued
expression. You will get functions generalizing the specification.
[fl1.5]==

[] show functions with unused arguments

Synthesize f

Help, examples, etc. in English / in Japanese

Results:

Exemplify | (\a -> length (drop 1 a))

Exemplify (“a -> foldr const O (drop 1 (reverse a)))
Exemplify | (\a -> length (drop 1 (nub a)))

Exemplify | (\a -> length (nub (drop 1 a)))

Exemplify | (\a-> foldr const 1 (drop 1 (reverse a)))
Exemplify | (\a -> succ (length (drop 2 a)))

Figure 1. Case where narrowing is required

E] & MagicHaskeller on the Web -.. ‘ Ao

MagicHaskeller on the Web ---
input-output examples

The candidate expression

f=
[(\a -> length (drop 1 a))

Exemplify

satisfies the following input-output relation:

[fi1.51==4 |[Synthesize f |

fl == C] Narrow search

f[0,1] == |1 [Narrow search]

FO,(-1)] == |1 [Narrow search]
|
l

f[2] == |0 [Narrow search

f1(-3)2,10 == |[3

][Narrow search

(] | (1]
T

Figure 2. Applying a synthesized expression to random arguments

the “Exemplify” button and obtain the result. It is also possible to
apply another higher-order function to the function.

If the user finds that the result of applying it to an argument
is different from the intended value, she can narrow the search by
adding the relation between the argument and the result as a new
condition. In the case of Fig. 2, the second line goes £ [0,1] ==
1 while it should be £ [0,1] == 0. The user can easily add the
condition by correcting the return value 1 in the text box to 0 and
click the “Narrow search” button.

This time, functions returning the second last element are ob-
tained. There are two functions, but by clicking their “Exemplify”
buttons the user can easily notice that they are equivalent except for
the special cases where the argument is a list of length at most one.

3. Implementation

The MAGICHASKELLER ON THE WEB system consists of a CGI
program running on an Apache server and a backend server pro-
gram, and they communicate via a network socket.

The backend server does the actual program synthesis. The syn-
thesis algorithm takes a generate-and-test approach: it generates an
infinite stream of all the expressions having the same type as f;
then, they are tested against the given predicate. The implementa-
tion is based on [2] which discusses how to efficiently generate a
stream of expressions with the given type using memoization, and
[3] which discusses how to remove semantically equivalent expres-
sions. There are also new devices to reduce heap usage further.

This approach requires a big memoization table. The point of
running the algorithm continuously as a service is that users can
share a monolithic memoization table (of tens of gigabytes) among
accesses. The downside is that they do not have the option to choose
which functions are included in the search.

All other tasks are done by the CGI front end. Generating print-
able functions as arguments of higher-order functions is achieved
by running the same algorithm as the backend server, using a small
memoization table.

4. Evaluation

When applied to the 16 problems not requiring data type definitions
from the first 20 of 99 Haskell Problems*, MAGICHASKELLER ON
THE WEB could solve 11 of them, partially solve 1 of them, and
could not solve 4 problems. Also, it could solve 3 of the 9 examples
used in Section 3 of the Flash Fill paper[1].

Those who think the results are not remarkable should pay
attention to the fact that they are the results of just filling the text
box shown in MAGICHASKELLER ON THE WEB with the queries,
without any domain-specific tuning. Although only easy problems
could be solved, all the Flash Fill problems are still problems
requested by users, most of which are taken from the Excel Help
Forum. The fact that they could be solved without any change in
the settings when solving 99 Haskell Problems suggests that this
tool can be useful for solving unknown problems.

Even when solving domain specific problems, this tool is still
worth trying, because it is easy to try and the results are usually
obtained instantly. Three from the solved 99 Haskell Problems were
so easy that only pointing single library functions solved them,
but even in such cases this tool should be as useful as a reverse
dictionary for a beginner Haskell programmer.

5. Conclusions

A Web-based automatic programming system named MAGICHAS-
KELLER ON THE WEB is presented. This tool is designed to be
helpful especially for beginner Haskell programmers to casually
implement pure total functions.

References

[1] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In POPL, pages 317-330, 2011.

[2] S. Katayama. Systematic search for lambda expressions. In Trends in
Functional Programming, volume 6, pages 111-126. Intellect, 2007.

[3] S. Katayama. Efficient exhaustive generation of functional programs
using monte-carlo search with iterative deepening. In T. B. Ho and Z.-
H. Zhou, editors, PRICAI, volume 5351 of Lecture Notes in Computer
Science, pages 199-210. Springer, 2008. ISBN 978-3-540-89196-3.

[4] N. Mitchell. Hoogle overview. The Monad.Reader, 12, 2008.

“http://www.haskell.org/haskellwiki/H-99: Ninety-Nine_
Haskell_Problems

