# Streams +System.IO

package
Various Haskell 2010 stream comonads. * Data.Stream.Future provides a coinductive anti-causal stream, or non-empty ZipList. The comonad provides access to only the tail of the stream. Like a conventional ZipList, this is not a monad. > data Future a = Last a | a :< Future a * Data.Stream.Future.Skew provides a non-empty skew-binary random-access-list with the semantics of Data.Stream.Future. As with Data.Stream.Future this stream is not a Monad, since the Applicative instance zips streams of potentially differing lengths. The random-access-list structure provides a number of operations logarithmic access time, but makes Data.Stream.Future.Skew.cons less productive. Where applicable Data.Stream.Infinite.Skew may be more efficient, due to a lazier and more efficient Applicative instance.
package
Numeric instances for infinite streams. An implementation of: Functional Pearl: Streams and Unique Fixed Points, Ralf Hinze, University of Oxford Streams, infinite sequences of elements, live in a coworld: they are given by a coinductive data type, operations on streams are implemented by corecursive programs, and proofs are conducted using coinduction. But there is more to it: suitably restricted, stream equations possess unique solutions, a fact that is not very widely appreciated. We show that this property gives rise to a simple and attractive proof technique essentially bringing equational reasoning to the coworld. In fact, we redevelop the theory of recurrences, finite calculus and generating functions using streams and stream operators building on the cornerstone of unique solutions. The development is constructive: streams and stream operators are implemented in Haskell, usually by one-liners. The resulting calculus or library, if you wish, is elegant and fun to use. Finally, we rephrase the proof of uniqueness using generalised algebraic data types. Along with the usual instances for infinite streams, this provides: Num, Enum, Real, Fractional, as well as recurrences on streams, finite calculus, generators Version 1.0
package
Overview An HTTP client, using the Snap Framework's 'io-streams' library to hande the streaming IO. The API is optimized for ease of use for the rather common case of code needing to query web services and deal with the result. The library is exported in a single module; see Network.Http.Client for full documentation. Version 0.7.0.2
package