This library provides an infrastructure to build command line programs. It provides the following features:
* declare any number of "commands" (modes of operation) of the program;
* declare options of these commands;
* collect options from a configuration file and the command line, and execute the proper command.
Examples of using this library may be found in the Examples directory in the package tarball.
It provides functionality similar to the cmdargs package. Main differences:
* console-program does not use unsafePerformIO, and tries to give a more haskellish, referentially transparent interface;
* it allows a full tree of commands, instead of a list, so a command can have subcommands;
* it parses a configuration file, in addition to the command line arguments.
Version 0.3.1.1

This plugin evaluates constant math expressions at compile-time.
For details and full usage information, see;
https://github.com/kfish/const-math-ghc-plugin
To use it to compile *foo.hs*:
> $ cabal install const-math-ghc-plugin
> $ ghc -fplugin ConstMath.Plugin foo.hs
To use it to build a cabal package *packagename*:
> $ cabal install --ghc-options="-package const-math-ghc-plugin
> -fplugin ConstMath.Plugin" packagename
Math should run faster.
Version 1.0.0.0

The package provides normal forms for monads and related structures, similarly to the Operational package. The difference is that we parameterise the normal forms on a constraint, and apply that constraint to all existential types within the normal form. This allows monad (and other) instances to be generated for underlying types that require constraints on their return-like and bind-like operations, e.g. Set.
This is documented in the following paper:
The Constrained-Monad Problem. Neil Sculthorpe and Jan Bracker and George Giorgidze and Andy Gill. 2013. http://www.ittc.ku.edu/~neil/papers_and_talks/constrained-monad-problem.pdf
The functionality exposed by this library is also used internally by the Set-Monad and RMonad packages.
Version 1.0.0

Constraint manipulation
Version 0.3.4.2

Return a list of values of a datatype. Each value is one of the possible constructors of the datatype, populated with empty values.

The constructible reals are the subset of the real numbers that can be represented exactly using field operations (addition, subtraction, multiplication, division) and positive square roots. They support exact computations, equality comparisons, and ordering.
Version 0.1.0.1

A library of algebra focusing mainly on commutative ring theory from a constructive point of view.
Classical structures are implemented without Noetherian assumptions. This means that it is not assumed that all ideals are finitely generated. For example, instead of principal ideal domains one gets Bezout domains which are integral domains in which all finitely generated ideals are principal (and not necessarily that all ideals are principal). This give a good framework for implementing many interesting algorithms.
Version 0.3.0

Restart a command on STDIN activity
Version 0.1.0.0