**foldl** -base -syb -package -text

foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right.
*O(n)*. Fold the elements in the set using the given left-associative binary operator, such that foldl f z == foldl f z . toAscList.
For example,
> toDescList set = foldl (flip (:)) [] set
foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right.
foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right.
This function is subject to array fusion.
*O(n)*. Fold the values in the map using the given left-associative binary operator, such that foldl f z == foldl f z . elems.
For example,
> elems = reverse . foldl (flip (:)) []
> let f len a = len + (length a)
> foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
*O(n)*. Fold the values in the map using the given left-associative binary operator, such that foldl f z == foldl f z . elems.
For example,
> elems = reverse . foldl (flip (:)) []
> let f len a = len + (length a)
> foldl f 0 (fromList [(5,"a"), (3,"bbb")]) == 4
*O(n)*. Fold the elements in the set using the given left-associative binary operator, such that foldl f z == foldl f z . toAscList.
For example,
> toDescList set = foldl (flip (:)) [] set
'foldl\'' is like foldl, but strict in the accumulator.

*O(n)*. A strict version of foldl. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
'foldl\'' is like foldl, but strict in the accumulator.
'foldl\'' is like foldl, but strict in the accumulator. However, for ByteStrings, all left folds are strict in the accumulator.
*O(n)*. A strict version of foldl. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
*O(n)*. A strict version of foldl. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
*O(n)*. A strict version of foldl. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.
foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-empty ByteStrings.
foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-empty ByteStrings. This function is subject to array fusion.
foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-empty ByteStrings. This function is subject to array fusion. An exception will be thrown in the case of an empty ByteString.
'foldl1\'' is like foldl1, but strict in the accumulator.
'foldl1\'' is like foldl1, but strict in the accumulator.
Show more results