Introduction

Making cabal-install non-destructive

Philipp Schuster, Andres Loh

September 12, 2012

Introduction

Introduction

@ My name is Philipp Schuster.
@ | participated in Google Summer of Code 2012.
@ My supervisor was Andres Loh.
°

We wanted multiple instances of the same package version
installed.

Quite a few problems remain therefore nothing is merged yet.

Example

Example Packages

Knight

Pawn

Example Instances

’ King-1-b22... ‘

’ Knight-1-f7a... ‘

’ Pawn-1-e34... ‘

Example

Listing the installed instances

$ ghc-pkg list --user -v
using cache: /home/pschuster/.ghc/i386-1linux-7.6.0.20120815/package.conf.d/package.cache
using cache: /usr/local/lib/ghc-7.6.0.20120815/package.conf.d/package.cache
/home/pschuster/.ghc/i386-1inux-7.6.0.20120815/package.conf.d

King-1 (King-1-165729ba77dabd7b827de2e721291b61-1020960593)

Knight-1 (Knight-1-d1e1f57c04f2a3f462eec2ee364c4dbe-1040356745)

Pawn-1 (Pawn-1-7a9672f4fce029cc4d72cc5957d45134-1022359486)

Example

Queen-1 and Pawn-2 are added

Knight

Example

Instances with Pawn-2 installed

’ King-1-b22... ‘

’ Knight-1-f7a... ‘

’ Pawn-1-e34... ‘

Pawn-2-f89...

32

Example

Install Pawn-2

$ cd Pawn

$ cabal install

Resolving dependencies. ..

Configuring Pawn-2...

Building Pawn-2...

Preprocessing library Pawn-2...

[1 of 1] Compiling Pawn (Pawn.hs, dist/build/Pawn.o)
In-place registering Pawn-2...

Installing library in /home/pschuster/.cabal/lib/Pawn-2-1181001620
Registering Pawn-2...

Installed Pawn-2

Example

Instances with Queen installed

’ King-1-b22... ‘

Queen-1-bc7...

’ Knight-1-f7a... ‘

’ Knight-1-228...

’ Pawn-1-e34... ‘

T

Pawn-2-f89...

32

Example

There used to be a conflict

’ King-1-b22... ‘ Queen-1-bc7..

| Knight-1-F7a... w%night-l-zzs...

’ Pawn-1-e34... ‘ Pawn-2-f89...

10/32

Example

Trying to install another Knight

$ cd ../Knight

$ cabal install

Resolving dependencies. ..

In order, the following would be installed:

Knight-1 (reinstall) changes: Pawn-1 -> 2

cabal: The following packages are likely to be broken by the reinstalls:
King-1

Use --force-reinstalls if you want to install anyway.

Example

Forcing to install another Knight

$ cabal install --force-reinstalls

Resolving dependencies. ..

Warning: The following packages are likely to be broken by the reinstalls:
King-1

Continuing even though the plan contains dangerous reinstalls.

Configuring Knight-1...

Building Knight-1...

Preprocessing library Knight-1...

[1 of 1] Compiling Knight (Knight.hs, dist/build/Knight.o) [Pawn changed]
In-place registering Knight-1...

Installing library in /home/pschuster/.cabal/lib/Knight-1-1213798927
Registering Knight-1...

Installed Knight-1

Example

Knight got installed in a different location

$ ghc-pkg field Knight id,library-dirs

id: Knight-1-2a238a015dfde8866586869fc773edcf-1213798927
library-dirs: /home/pschuster/.cabal/lib/Knight-1-1213798927
id: Knight-1-d1lel1£57c04f2a3f462eec2ee364c4dbe-1040356745
library-dirs: /home/pschuster/.cabal/lib/Knight-1-1040356745

Example

Instances with Queen installed

’ King-1-b22... ‘

Queen-1-bc7...

’ Knight-1-f7a... ‘

’ Knight-1-228...

’ Pawn-1-e34... ‘

T

Pawn-2-f89...

14 /32

Example

Both instances of Knight are there

$ ghc-pkg field Knight id,depends

id: Knight-1-2a238a015dfde8866586869fc773edcf-1213798927

depends: base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7
Pawn-2-824eda7296a96dd8abeb9c8cbf3e2f24-1181001620

id: Knight-1-d1lel1£57c04f2a3f462eec2ee364c4dbe-1040356745

depends: base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7
Pawn-1-7a9672f4fce029cc4d72cc5957d45134-1022359486

Example

Installing another King

$ cd ../King

$ cabal install

Resolving dependencies. ..

In order, the following will be installed:

King-1 (reinstall)

Warning: Note that reinstalls are always dangerous. Continuing anyway...
Configuring King-1...

Building King-1...

Preprocessing library King-1...

[1 of 1] Compiling King (King.hs, dist/build/King.o) [Knight changed]
In-place registering King-1...

Installing library in /home/pschuster/.cabal/lib/King-1-1113590318
Registering King-1...

Installed King-1

16 /32

Example

King depends on the new Knight instance

$ ghc-pkg field King id,depends

id: King-1-3ec40c2c9564c1fd109479a358a82eef-1113590318

depends: base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7
Knight-1-2a238a015dfde8866586869fc773edcf-1213798927

id: King-1-165729ba77dabd7b827de2e721291b61-1020960593

depends: base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7
Knight-1-d1e1f£57c04f2a3f462eec2ee364c4dbe-1040356745

Example

Instances with another King installed

’ King-1-b22... ‘ King-1-c5d... Queen-1-bc7..
’ Knight-1-f7a... ‘ ’ Knight-1-228...
’ Pawn-1-e34... ‘ Pawn-2-f89...

18 /32

Example

Calling the garbage collector

$ cabal remove --duplicates
"Would remove King-1-165729ba77dabd7b827de2e721291b61-1020960593"
"Would remove Knight-1-dlelf57c04f2a3f462eec2ee364c4dbe-1040356745"

Example

Instances that would be garbage collected

Pawn-1-e34... ‘

King-1-c5d...

Queen-1-bc7...

’ Knight-1-228...

T

Pawn-2-f89...

20 /32

How it works

Install location

e Customizable in .cabal/config.

21/32

How it works

Install location

e Customizable in .cabal/config.

e Default $libsubdir was $pkgid/$compiler for example
repa-3.1.4.2/ghc-7.4.1.

21/32

How it works

Install location

e Customizable in .cabal/config.

e Default $libsubdir was $pkgid/$compiler for example
repa-3.1.4.2/ghc-7.4.1.

@ Default should be $pkgid-$unique for example
repa-3.1.4.2-1079787003.

21/32

How it works

Install location

e Customizable in .cabal/config.

e Default $libsubdir was $pkgid/$compiler for example
repa-3.1.4.2/ghc-7.4.1.

@ Default should be $pkgid-$unique for example
repa-3.1.4.2-1079787003.

@ S$unique is resolved to a big random number but only by
cabal-install not by Cabal the library.

21/32

How it works

Install location cont.

@ Defaults for cabal-install and Cabal the library would be
different.

22 /32

How it works

Install location cont.

@ Defaults for cabal-install and Cabal the library would be
different.

@ Because of package_Paths.hs the install location has to be
known at compile time.

22 /32

How it works

InstalledPackageld

@ Was Packageld-ABlhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac?.

23 /32

How it works

InstalledPackageld

@ Was Packageld-ABlhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac?.

o Is Packageld-ABlhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

23 /32

How it works

InstalledPackageld

@ Was Packageld-ABlhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac?.

o Is Packageld-ABlhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

@ cabal-install determines the random number during
configuration.

23 /32

How it works

InstalledPackageld

@ Was Packageld-ABlhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac?.

o Is Packageld-ABlhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

@ cabal-install determines the random number during
configuration.

@ Cabal the library only appends the given String.

23 /32

How it works

InstalledPackageld

Was Packageld-ABlhash for example
base-4.6.0.0-188a8a5ba06e0bf0503ba32ec2568ac7.

o Is Packageld-ABlhash-BigRandom for example accelerate-
0.12.1.0-c655a93ff75289c7bc2703bfd115c0a3-1248341437.

@ cabal-install determines the random number during
configuration.

@ Cabal the library only appends the given String.

@ InstalledPackageld can not be used as the install location
because it contains the ABI hash.

23 /32

How it works

Time-stamp

@ A field time-stamp was added to InstalledPackagelnfo.

24 /32

How it works

Time-stamp

@ A field time-stamp was added to InstalledPackagelnfo.

@ Used by cabal-install, Cabal and GHC to choose between
instances.

24 /32

How it works

Time-stamp

@ A field time-stamp was added to InstalledPackagelnfo.

@ Used by cabal-install, Cabal and GHC to choose between
instances.

@ Not sure if shadowing in GHC still works.

24 /32

How it works

ghc-pkg does not overwrite anymore

@ When a new package is registered ghc-pkg used to remove all
other instances with the same version.

25/32

How it works

ghc-pkg does not overwrite anymore

@ When a new package is registered ghc-pkg used to remove all
other instances with the same version.

@ Now ghc-pkg never removes anything when registering.

25/32

How it works

ghc-pkg does not overwrite anymore

@ When a new package is registered ghc-pkg used to remove all
other instances with the same version.

@ Now ghc-pkg never removes anything when registering.

@ It should probably warn when inserting a package with an
existing InstalledPackageld.

25/32

How it works

cabal remove —duplicates

@ More of a proof of concept.

26 /32

How it works

cabal remove —duplicates

@ More of a proof of concept.

@ Suggests all unnecessary packages for removal.

26 /32

How it works

cabal remove —duplicates

@ More of a proof of concept.
@ Suggests all unnecessary packages for removal.

@ A package is unnecessary if all packages that depend on it are
unnecessary

26 /32

How it works

cabal remove —duplicates

@ More of a proof of concept.
@ Suggests all unnecessary packages for removal.

@ A package is unnecessary if all packages that depend on it are
unnecessary

@ and it is not the latest instance of its version.

26 /32

How it works

cabal remove —duplicates

@ More of a proof of concept.

@ Suggests all unnecessary packages for removal.

@ A package is unnecessary if all packages that depend on it are
unnecessary

@ and it is not the latest instance of its version.

o It does not even unregister.

26 /32

Future Work

Why not hash the build inputs?

@ The original idea was to hash all build inputs (compiler, tools,
source, dependencies).

27 /32

Future Work

Why not hash the build inputs?

@ The original idea was to hash all build inputs (compiler, tools,
source, dependencies).

@ Use this "cabal-hash” to identify an instance and to detect if
an instance can be reused.

27 /32

Future Work

Why not hash the build inputs?

@ The original idea was to hash all build inputs (compiler, tools,
source, dependencies).

@ Use this "cabal-hash” to identify an instance and to detect if
an instance can be reused.

@ Conflating all build information into a hash has a drawback:

27 /32

Future Work

Why not hash the build inputs?

@ The original idea was to hash all build inputs (compiler, tools,
source, dependencies).

@ Use this "cabal-hash” to identify an instance and to detect if
an instance can be reused.

@ Conflating all build information into a hash has a drawback:

@ Two packages might be usable together although their build
inputs and therefore their hashes are not exactly the same.

27 /32

Future Work

Comparing hashes is an optimization

@ Let's consider two theoretically possible modes for dependency
resolution in cabal-install:

28 /32

Future Work

Comparing hashes is an optimization

@ Let's consider two theoretically possible modes for dependency
resolution in cabal-install:

@ Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

28 /32

Future Work

Comparing hashes is an optimization

@ Let's consider two theoretically possible modes for dependency
resolution in cabal-install:

@ Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

@ Mode 2: Take into account the installed packages and try to
prefer them when making the install plan.

28 /32

Future Work

Comparing hashes is an optimization

@ Let's consider two theoretically possible modes for dependency
resolution in cabal-install:

@ Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

@ Mode 2: Take into account the installed packages and try to
prefer them when making the install plan.

@ Using a hash makes Mode 2 impossible unless all the
information is also available from InstalledPackagelnfo.

28 /32

Future Work

Comparing hashes is an optimization

@ Let's consider two theoretically possible modes for dependency
resolution in cabal-install:

@ Mode 1: Disregard all installed packages, come up with an
install plan and if some of the necessary packages are already
there use them.

@ Mode 2: Take into account the installed packages and try to
prefer them when making the install plan.

@ Using a hash makes Mode 2 impossible unless all the
information is also available from InstalledPackagelnfo.

@ Using a hash is an optimization.

28 /32

Future Work

Compilation is not deterministic

@ Just a "cabal-hash” is not enough for unique identification.

29 /32

Future Work

Compilation is not deterministic

@ Just a "cabal-hash” is not enough for unique identification.

@ Even compiling with the same build inputs is not guaranteed
to yield the same instance.

29 /32

Future Work

Compilation is not deterministic

@ Just a "cabal-hash” is not enough for unique identification.

@ Even compiling with the same build inputs is not guaranteed
to yield the same instance.

@ Would not be a problem if there would only ever be one
instance per build inputs per machine.

29 /32

Future Work

Compilation is not deterministic

@ Just a "cabal-hash” is not enough for unique identification.

@ Even compiling with the same build inputs is not guaranteed
to yield the same instance.

@ Would not be a problem if there would only ever be one
instance per build inputs per machine.

@ But we have a global and a user database so there might
actually be two incompatible instances with the same build
inputs.

29 /32

Future Work

Communicate the InstalledPackageld back to cabal-install

@ cabal-install comes up with an InstallPlan containing to be
installed packages.

30/32

Future Work

Communicate the InstalledPackageld back to cabal-install

@ cabal-install comes up with an InstallPlan containing to be
installed packages.

@ Those depend upon each other as well as on already installed
packages.

30/32

Future Work

Communicate the InstalledPackageld back to cabal-install

@ cabal-install comes up with an InstallPlan containing to be
installed packages.

@ Those depend upon each other as well as on already installed
packages.

@ We want to specify all of those dependencies with an
InstalledPackageld.

30/32

Future Work

Communicate the InstalledPackageld back to cabal-install

@ cabal-install comes up with an InstallPlan containing to be
installed packages.

@ Those depend upon each other as well as on already installed
packages.

@ We want to specify all of those dependencies with an
InstalledPackageld.

@ The InstalledPackageld is only known after installation.

30/32

Future Work

Communicate the InstalledPackageld back to cabal-install

@ cabal-install comes up with an InstallPlan containing to be
installed packages.

@ Those depend upon each other as well as on already installed
packages.

@ We want to specify all of those dependencies with an
InstalledPackageld.

@ The InstalledPackageld is only known after installation.

@ It has to be communicated back to cabal-install.

30/32

Future Work

Communicate the InstalledPackageld back to cabal-install

@ cabal-install comes up with an InstallPlan containing to be
installed packages.

@ Those depend upon each other as well as on already installed
packages.

@ We want to specify all of those dependencies with an
InstalledPackageld.

@ The InstalledPackageld is only known after installation.
@ It has to be communicated back to cabal-install.

@ The current workaround is to only specify those instances that
were already installed with an InstalledPackageld.

30/32

Future Work

Future work

@ More fine grained build inputs.

31/32

Future Work

Future work

@ More fine grained build inputs.

o Garbage collection that does something.

31/32

Future Work

Future work

@ More fine grained build inputs.
o Garbage collection that does something.

@ Andres still wants a cabal hash.

31/32

Future Work

Thank you

@ Questions/Discussion

32/32

	Introduction
	Example
	How it works
	Future Work

