| ||||||||||
| ||||||||||
Description | ||||||||||
Manipulate ByteStrings using Char operations. All Chars will be truncated to 8 bits. It can be expected that these functions will run at identical speeds to their Word8 equivalents in Data.ByteString. More specifically these byte strings are taken to be in the subset of Unicode covered by code points 0-255. This covers Unicode Basic Latin, Latin-1 Supplement and C0+C1 Controls. See:
This module is intended to be imported qualified, to avoid name clashes with Prelude functions. eg. import qualified Data.ByteString.Char8 as B | ||||||||||
Synopsis | ||||||||||
The ByteString type | ||||||||||
data ByteString | ||||||||||
| ||||||||||
Introducing and eliminating ByteStrings | ||||||||||
empty :: ByteString | ||||||||||
O(1) The empty ByteString | ||||||||||
packChar :: Char -> ByteString | ||||||||||
O(1) Convert a Char into a ByteString | ||||||||||
pack :: String -> ByteString | ||||||||||
O(n) Convert a String into a ByteString For applications with large numbers of string literals, pack can be a bottleneck. In such cases, consider using packAddress (GHC only). | ||||||||||
unpack :: ByteString -> [Char] | ||||||||||
O(n) Converts a ByteString to a String. | ||||||||||
Basic interface | ||||||||||
cons :: Char -> ByteString -> ByteString | ||||||||||
O(n) cons is analogous to (:) for lists, but of different complexity, as it requires a memcpy. | ||||||||||
snoc :: ByteString -> Char -> ByteString | ||||||||||
O(n) Append a Char to the end of a ByteString. Similar to cons, this function performs a memcpy. | ||||||||||
null :: ByteString -> Bool | ||||||||||
O(1) Test whether a ByteString is empty. | ||||||||||
length :: ByteString -> Int | ||||||||||
O(1) length returns the length of a ByteString as an Int. | ||||||||||
head :: ByteString -> Char | ||||||||||
O(1) Extract the first element of a ByteString, which must be non-empty. | ||||||||||
tail :: ByteString -> ByteString | ||||||||||
O(1) Extract the elements after the head of a ByteString, which must be non-empty. | ||||||||||
last :: ByteString -> Char | ||||||||||
O(1) Extract the last element of a packed string, which must be non-empty. | ||||||||||
init :: ByteString -> ByteString | ||||||||||
O(1) Return all the elements of a ByteString except the last one. | ||||||||||
append :: ByteString -> ByteString -> ByteString | ||||||||||
O(n) Append two ByteStrings | ||||||||||
Special ByteStrings | ||||||||||
inits :: ByteString -> [ByteString] | ||||||||||
O(n) Return all initial segments of the given ByteString, shortest first. | ||||||||||
tails :: ByteString -> [ByteString] | ||||||||||
O(n) Return all final segments of the given ByteString, longest first. | ||||||||||
elems :: ByteString -> [ByteString] | ||||||||||
O(n) breaks a ByteString to a list of ByteStrings, one byte each. | ||||||||||
Transformating ByteStrings | ||||||||||
map :: (Char -> Char) -> ByteString -> ByteString | ||||||||||
O(n) map f xs is the ByteString obtained by applying f to each element of xs | ||||||||||
reverse :: ByteString -> ByteString | ||||||||||
O(n) reverse xs efficiently returns the elements of xs in reverse order. | ||||||||||
intersperse :: Char -> ByteString -> ByteString | ||||||||||
O(n) The intersperse function takes a Char and a ByteString and `intersperses' that Char between the elements of the ByteString. It is analogous to the intersperse function on Lists. | ||||||||||
transpose :: [ByteString] -> [ByteString] | ||||||||||
The transpose function transposes the rows and columns of its ByteString argument. | ||||||||||
Reducing ByteStrings | ||||||||||
foldl :: (a -> Char -> a) -> a -> ByteString -> a | ||||||||||
foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right. | ||||||||||
foldr :: (Char -> a -> a) -> a -> ByteString -> a | ||||||||||
foldr, applied to a binary operator, a starting value (typically the right-identity of the operator), and a packed string, reduces the packed string using the binary operator, from right to left. | ||||||||||
foldl1 :: (Char -> Char -> Char) -> ByteString -> Char | ||||||||||
foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-empty ByteStrings. | ||||||||||
foldr1 :: (Char -> Char -> Char) -> ByteString -> Char | ||||||||||
foldr1 is a variant of foldr that has no starting value argument, and thus must be applied to non-empty ByteStrings | ||||||||||
Special folds | ||||||||||
concat :: [ByteString] -> ByteString | ||||||||||
O(n) Concatenate a list of ByteStrings. | ||||||||||
concatMap :: (Char -> ByteString) -> ByteString -> ByteString | ||||||||||
Map a function over a ByteString and concatenate the results | ||||||||||
any :: (Char -> Bool) -> ByteString -> Bool | ||||||||||
Applied to a predicate and a ByteString, any determines if any element of the ByteString satisfies the predicate. | ||||||||||
all :: (Char -> Bool) -> ByteString -> Bool | ||||||||||
Applied to a predicate and a ByteString, all determines if all elements of the ByteString satisfy the predicate. | ||||||||||
maximum :: ByteString -> Char | ||||||||||
maximum returns the maximum value from a ByteString | ||||||||||
minimum :: ByteString -> Char | ||||||||||
minimum returns the minimum value from a ByteString | ||||||||||
mapIndexed :: (Int -> Char -> Char) -> ByteString -> ByteString | ||||||||||
O(n) map Char functions, provided with the index at each position | ||||||||||
Generating and unfolding ByteStrings | ||||||||||
replicate :: Int -> Char -> ByteString | ||||||||||
O(n) replicate n x is a ByteString of length n with x the value of every element. The following holds: replicate w c = unfoldr w (\u -> Just (u,u)) c This implemenation uses memset(3) | ||||||||||
unfoldrN :: Int -> (Char -> Maybe (Char, Char)) -> Char -> ByteString | ||||||||||
O(n) The unfoldrN function is analogous to the List 'unfoldr'. unfoldrN builds a ByteString from a seed value. The function takes the element and returns Nothing if it is done producing the ByteString or returns Just (a,b), in which case, a is a prepending to the ByteString and b is used as the next element in a recursive call. To preven unfoldrN having O(n^2) complexity (as prepending a character to a ByteString is O(n), this unfoldr requires a maximum final size of the ByteString as an argument. cons can then be implemented in O(1) (i.e. a poke), and the unfoldr itself has linear complexity. The depth of the recursion is limited to this size, but may be less. For lazy, infinite unfoldr, use unfoldr (from List). Examples: unfoldrN 10 (\x -> Just (x, chr (ord x + 1))) '0' == "0123456789" The following equation connects the depth-limited unfoldr to the List unfoldr: unfoldrN n == take n $ List.unfoldr | ||||||||||
Substrings | ||||||||||
Breaking strings | ||||||||||
take :: Int -> ByteString -> ByteString | ||||||||||
O(1) take n, applied to a ByteString xs, returns the prefix of xs of length n, or xs itself if n > length xs. | ||||||||||
drop :: Int -> ByteString -> ByteString | ||||||||||
O(1) drop n xs returns the suffix of xs after the first n elements, or [] if n > length xs. | ||||||||||
splitAt :: Int -> ByteString -> (ByteString, ByteString) | ||||||||||
O(1) splitAt n xs is equivalent to (take n xs, drop n xs). | ||||||||||
takeWhile :: (Char -> Bool) -> ByteString -> ByteString | ||||||||||
takeWhile, applied to a predicate p and a ByteString xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p. | ||||||||||
dropWhile :: (Char -> Bool) -> ByteString -> ByteString | ||||||||||
dropWhile p xs returns the suffix remaining after takeWhile p xs. | ||||||||||
break :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) | ||||||||||
break p is equivalent to span (not . p). | ||||||||||
span :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) | ||||||||||
span p xs breaks the ByteString into two segments. It is equivalent to (takeWhile p xs, dropWhile p xs) | ||||||||||
spanEnd :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) | ||||||||||
spanEnd behaves like span but from the end of the ByteString. We have spanEnd (not.isSpace) "x y z" == ("x y ","z") and spanEnd (not . isSpace) ps == let (x,y) = span (not.isSpace) (reverse ps) in (reverse y, reverse x) | ||||||||||
Breaking and dropping on specific Chars | ||||||||||
breakChar :: Char -> ByteString -> (ByteString, ByteString) | ||||||||||
breakChar breaks its ByteString argument at the first occurence of the specified Char. It is more efficient than break as it is implemented with memchr(3). I.e. break (=='c') "abcd" == breakChar 'c' "abcd" | ||||||||||
spanChar :: Char -> ByteString -> (ByteString, ByteString) | ||||||||||
spanChar breaks its ByteString argument at the first occurence of a Char other than its argument. It is more efficient than 'span (==)' span (=='c') "abcd" == spanByte 'c' "abcd" | ||||||||||
breakFirst :: Char -> ByteString -> Maybe (ByteString, ByteString) | ||||||||||
O(n) breakFirst breaks the given ByteString on the first occurence of w. It behaves like break, except the delimiter is not returned, and Nothing is returned if the delimiter is not in the ByteString. I.e. breakFirst 'b' "aabbcc" == Just ("aa","bcc") breakFirst c xs == let (x,y) = break (== c) xs in if null y then Nothing else Just (x, drop 1 y)) | ||||||||||
breakLast :: Char -> ByteString -> Maybe (ByteString, ByteString) | ||||||||||
O(n) breakLast behaves like breakFirst, but from the end of the ByteString. breakLast ('b') (pack "aabbcc") == Just ("aab","cc") and the following are equivalent: breakLast 'c' "abcdef" let (x,y) = break (=='c') (reverse "abcdef") in if null x then Nothing else Just (reverse (drop 1 y), reverse x) | ||||||||||
breakSpace :: ByteString -> (ByteString, ByteString) | ||||||||||
breakSpace returns the pair of ByteStrings when the argument is broken at the first whitespace byte. I.e. break isSpace == breakSpace | ||||||||||
dropSpace :: ByteString -> ByteString | ||||||||||
dropSpace efficiently returns the ByteString argument with white space Chars removed from the front. It is more efficient than calling dropWhile for removing whitespace. I.e. dropWhile isSpace == dropSpace | ||||||||||
dropSpaceEnd :: ByteString -> ByteString | ||||||||||
dropSpaceEnd efficiently returns the ByteString argument with white space removed from the end. I.e. reverse . (dropWhile isSpace) . reverse == dropSpaceEnd but it is more efficient than using multiple reverses. | ||||||||||
Breaking into many substrings | ||||||||||
split :: Char -> ByteString -> [ByteString] | ||||||||||
O(n) Break a ByteString into pieces separated by the byte argument, consuming the delimiter. I.e. split '\n' "a\nb\nd\ne" == ["a","b","d","e"] split 'a' "aXaXaXa" == ["","X","X","X"] split 'x' "x" == ["",""] and join [c] . split c == id split == splitWith . (==) As for all splitting functions in this library, this function does not copy the substrings, it just constructs new ByteStrings that are slices of the original. | ||||||||||
splitWith :: (Char -> Bool) -> ByteString -> [ByteString] | ||||||||||
O(n) Splits a ByteString into components delimited by separators, where the predicate returns True for a separator element. The resulting components do not contain the separators. Two adjacent separators result in an empty component in the output. eg. splitWith (=='a') "aabbaca" == ["","","bb","c",""] | ||||||||||
tokens :: (Char -> Bool) -> ByteString -> [ByteString] | ||||||||||
Like splitWith, except that sequences of adjacent separators are treated as a single separator. eg. tokens (=='a') "aabbaca" == ["bb","c"] | ||||||||||
group :: ByteString -> [ByteString] | ||||||||||
The group function takes a ByteString and returns a list of ByteStrings such that the concatenation of the result is equal to the argument. Moreover, each sublist in the result contains only equal elements. For example, group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"] It is a special case of groupBy, which allows the programmer to supply their own equality test. It is about 40% faster than groupBy (==) | ||||||||||
groupBy :: (Char -> Char -> Bool) -> ByteString -> [ByteString] | ||||||||||
The groupBy function is the non-overloaded version of group. | ||||||||||
Breaking into lines and words | ||||||||||
lines :: ByteString -> [ByteString] | ||||||||||
lines breaks a ByteString up into a list of ByteStrings at newline Chars. The resulting strings do not contain newlines. | ||||||||||
words :: ByteString -> [ByteString] | ||||||||||
words breaks a ByteString up into a list of words, which were delimited by Chars representing white space. And tokens isSpace = words | ||||||||||
unlines :: [ByteString] -> ByteString | ||||||||||
unlines is an inverse operation to lines. It joins lines, after appending a terminating newline to each. | ||||||||||
unwords :: [ByteString] -> ByteString | ||||||||||
The unwords function is analogous to the unlines function, on words. | ||||||||||
lines' :: ByteString -> [ByteString] | ||||||||||
lines behaves like lines, in that it breaks a ByteString on newline Chars. However, unlike the Prelude functions, lines and unlines correctly reconstruct lines that are missing terminating newlines characters. I.e. unlines (lines "a\nb\nc") == "a\nb\nc\n" unlines' (lines' "a\nb\nc") == "a\nb\nc" Note that this means: lines "a\nb\nc\n" == ["a","b","c"] lines' "a\nb\nc\n" == ["a","b","c",""] | ||||||||||
unlines' :: [ByteString] -> ByteString | ||||||||||
unlines behaves like unlines, except that it also correctly retores lines that do not have terminating newlines (see the description for lines). | ||||||||||
linesCRLF' :: ByteString -> [ByteString] | ||||||||||
linesCRLF behaves like lines, but breaks on (\cr?\lf) | ||||||||||
unlinesCRLF' :: [ByteString] -> ByteString | ||||||||||
unlines behaves like unlines, except that it also correctly retores lines that do not have terminating newlines (see the description for lines). Uses CRLF instead of LF. | ||||||||||
words' :: ByteString -> [ByteString] | ||||||||||
words behaves like words, with the exception that it produces output on ByteStrings with trailing whitespace that can be correctly inverted by unwords. I.e. words "a b c " == ["a","b","c"] words' "a b c " == ["a","b","c",""] unwords $ words "a b c " == "a b c" unwords $ words' "a b c " == "a b c " | ||||||||||
unwords' :: [ByteString] -> ByteString | ||||||||||
unwords behaves like unwords. It is provided for consistency with the other invertable words and lines functions. | ||||||||||
lineIndices :: ByteString -> [Int] | ||||||||||
O(n) Indicies of newlines. Shorthand for elemIndices '\n' | ||||||||||
betweenLines | ||||||||||
| ||||||||||
Joining strings | ||||||||||
join :: ByteString -> [ByteString] -> ByteString | ||||||||||
O(n) The join function takes a ByteString and a list of ByteStrings and concatenates the list after interspersing the first argument between each element of the list. | ||||||||||
joinWithChar :: Char -> ByteString -> ByteString -> ByteString | ||||||||||
O(n) joinWithChar. An efficient way to join to two ByteStrings with a char. Around 4 times faster than the generalised join. | ||||||||||
Indexing ByteStrings | ||||||||||
index :: ByteString -> Int -> Char | ||||||||||
O(1) ByteString index (subscript) operator, starting from 0. | ||||||||||
elemIndex :: Char -> ByteString -> Maybe Int | ||||||||||
O(n) The elemIndex function returns the index of the first element in the given ByteString which is equal (by memchr) to the query element, or Nothing if there is no such element. | ||||||||||
elemIndexLast :: Char -> ByteString -> Maybe Int | ||||||||||
O(n) The elemIndexLast function returns the last index of the element in the given ByteString which is equal to the query element, or Nothing if there is no such element. The following holds: elemIndexLast c xs == (-) (length xs - 1) `fmap` elemIndex c (reverse xs) | ||||||||||
elemIndices :: Char -> ByteString -> [Int] | ||||||||||
O(n) The elemIndices function extends elemIndex, by returning the indices of all elements equal to the query element, in ascending order. | ||||||||||
findIndex :: (Char -> Bool) -> ByteString -> Maybe Int | ||||||||||
The findIndex function takes a predicate and a ByteString and returns the index of the first element in the ByteString satisfying the predicate. | ||||||||||
findIndices :: (Char -> Bool) -> ByteString -> [Int] | ||||||||||
The findIndices function extends findIndex, by returning the indices of all elements satisfying the predicate, in ascending order. | ||||||||||
count :: Char -> ByteString -> Int | ||||||||||
count returns the number of times its argument appears in the ByteString count = length . elemIndices Also count '\n' == length . lines But more efficiently than using length on the intermediate list. | ||||||||||
Ordered ByteStrings | ||||||||||
sort :: ByteString -> ByteString | ||||||||||
O(n) Sort a ByteString efficiently, using counting sort. | ||||||||||
Searching ByteStrings | ||||||||||
Searching by equality | ||||||||||
elem :: Char -> ByteString -> Bool | ||||||||||
O(n) elem is the ByteString membership predicate. This implementation uses memchr(3). | ||||||||||
notElem :: Char -> ByteString -> Bool | ||||||||||
O(n) notElem is the inverse of elem | ||||||||||
filterChar :: Char -> ByteString -> ByteString | ||||||||||
O(n) A first order equivalent of filter . (==), for the common case of filtering a single Char. It is more efficient to use filterChar in this case. filterChar == filter . (==) filterChar is around 10x faster, and uses much less space, than its filter equivalent | ||||||||||
filterNotChar :: Char -> ByteString -> ByteString | ||||||||||
O(n) A first order equivalent of filter . (/=), for the common case of filtering a single Char out of a list. It is more efficient to use filterNotChar in this case. filterNotChar == filter . (/=) filterNotChar is around 3x faster, and uses much less space, than its filter equivalent | ||||||||||
Searching with a predicate | ||||||||||
filter :: (Char -> Bool) -> ByteString -> ByteString | ||||||||||
O(n) filter, applied to a predicate and a ByteString, returns a ByteString containing those characters that satisfy the predicate. | ||||||||||
find :: (Char -> Bool) -> ByteString -> Maybe Char | ||||||||||
O(n) The find function takes a predicate and a ByteString, and returns the first element in matching the predicate, or Nothing if there is no such element. | ||||||||||
Searching for substrings | ||||||||||
isPrefixOf :: ByteString -> ByteString -> Bool | ||||||||||
O(n) The isPrefixOf function takes two ByteStrings and returns True iff the first is a prefix of the second. | ||||||||||
isSuffixOf :: ByteString -> ByteString -> Bool | ||||||||||
O(n) The isSuffixOf function takes two ByteStrings and returns True iff the first is a suffix of the second. The following holds: isSuffixOf x y == reverse x `isPrefixOf` reverse y However, the real implemenation uses memcmp to compare the end of the string only, with no reverse required.. | ||||||||||
isSubstringOf | ||||||||||
| ||||||||||
findSubstring | ||||||||||
| ||||||||||
findSubstrings | ||||||||||
| ||||||||||
Zipping and unzipping ByteString | ||||||||||
zip :: ByteString -> ByteString -> [(Char, Char)] | ||||||||||
O(n) zip takes two ByteStrings and returns a list of corresponding pairs of Chars. If one input ByteString is short, excess elements of the longer ByteString are discarded. This is equivalent to a pair of unpack operations, and so space usage may be large for multi-megabyte ByteStrings | ||||||||||
zipWith :: (Char -> Char -> a) -> ByteString -> ByteString -> [a] | ||||||||||
zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function. For example, zipWith (+) is applied to two ByteStrings to produce the list of corresponding sums. | ||||||||||
unzip :: [(Char, Char)] -> (ByteString, ByteString) | ||||||||||
unzip transforms a list of pairs of Chars into a pair of ByteStrings. Note that this performs two pack operations. | ||||||||||
Unchecked access | ||||||||||
unsafeHead :: ByteString -> Char | ||||||||||
A variety of head for non-empty ByteStrings. unsafeHead omits the check for the empty case, which is good for performance, but there is an obligation on the programmer to provide a proof that the ByteString is non-empty. | ||||||||||
unsafeTail :: ByteString -> ByteString | ||||||||||
A variety of tail for non-empty ByteStrings. unsafeTail omits the check for the empty case. As with unsafeHead, the programmer must provide a separate proof that the ByteString is non-empty. | ||||||||||
unsafeIndex :: ByteString -> Int -> Char | ||||||||||
Unsafe ByteString index (subscript) operator, starting from 0, returning a Char. This omits the bounds check, which means there is an accompanying obligation on the programmer to ensure the bounds are checked in some other way. | ||||||||||
w2c :: Word8 -> Char | ||||||||||
Conversion between Word8 and Char. Should compile to a no-op. | ||||||||||
c2w :: Char -> Word8 | ||||||||||
Unsafe conversion between Char and Word8. This is a no-op and silently truncates to 8 bits Chars > '\255'. It is provided as convenience for ByteString construction. | ||||||||||
Reading from ByteStrings | ||||||||||
readInt :: ByteString -> Maybe (Int, ByteString) | ||||||||||
readInt skips any whitespace at the beginning of its argument, and reads an Int from the beginning of the ByteString. If there is no integer at the beginning of the string, it returns Nothing, otherwise it just returns the int read, and the rest of the string. | ||||||||||
unsafeReadInt :: ByteString -> Maybe (Int, ByteString) | ||||||||||
unsafeReadInt is like readInt, but requires a null terminated ByteString. It avoids a copy if this is the case. It returns the Int read, if any, and the rest of the string. | ||||||||||
Copying ByteStrings | ||||||||||
copy :: ByteString -> ByteString | ||||||||||
O(n) Make a copy of the ByteString with its own storage. This is mainly useful to allow the rest of the data pointed to by the ByteString to be garbage collected, for example if a large string has been read in, and only a small part of it is needed in the rest of the program. | ||||||||||
I/O with ByteStrings | ||||||||||
Standard input and output | ||||||||||
getLine :: IO ByteString | ||||||||||
getLine, read a line from stdin. | ||||||||||
getContents :: IO ByteString | ||||||||||
getContents. Equivalent to hGetContents stdin | ||||||||||
putStr :: ByteString -> IO () | ||||||||||
Write a ByteString to stdout | ||||||||||
putStrLn :: ByteString -> IO () | ||||||||||
Write a ByteString to stdout, appending a newline byte | ||||||||||
Files | ||||||||||
readFile :: FilePath -> IO ByteString | ||||||||||
Read an entire file directly into a ByteString. This is far more efficient than reading the characters into a String and then using pack. It also may be more efficient than opening the file and reading it using hGet. | ||||||||||
writeFile :: FilePath -> ByteString -> IO () | ||||||||||
Write a ByteString to a file. | ||||||||||
I/O with Handles | ||||||||||
getArgs :: IO [ByteString] | ||||||||||
A ByteString equivalent for getArgs. More efficient for large argument lists | ||||||||||
hGetLine :: Handle -> IO ByteString | ||||||||||
hGetLine. read a ByteString from a handle | ||||||||||
hGetNonBlocking :: Handle -> Int -> IO ByteString | ||||||||||
hGetNonBlocking is identical to hGet, except that it will never block waiting for data to become available, instead it returns only whatever data is available. | ||||||||||
hGetContents :: Handle -> IO ByteString | ||||||||||
Read entire handle contents into a ByteString. As with hGet, the string representation in the file is assumed to be ISO-8859-1. | ||||||||||
hGet :: Handle -> Int -> IO ByteString | ||||||||||
Read a ByteString directly from the specified Handle. This is far more efficient than reading the characters into a String and then using pack. | ||||||||||
hPut :: Handle -> ByteString -> IO () | ||||||||||
Outputs a ByteString to the specified Handle. | ||||||||||
Low level construction | ||||||||||
For constructors from foreign language types see Data.ByteString | ||||||||||
packAddress :: Addr# -> ByteString | ||||||||||
O(n) Pack a null-terminated sequence of bytes, pointed to by an Addr# (an arbitrary machine address assumed to point outside the garbage-collected heap) into a ByteString. A much faster way to create an Addr# is with an unboxed string literal, than to pack a boxed string. A unboxed string literal is compiled to a static char [] by GHC. Establishing the length of the string requires a call to strlen(3), so the Addr# must point to a null-terminated buffer (as is the case with string# literals in GHC). Use unsafePackAddress if you know the length of the string statically. An example: literalFS = packAddress "literal"# | ||||||||||
unsafePackAddress :: Int -> Addr# -> ByteString | ||||||||||
O(1) unsafePackAddress provides constant-time construction of ByteStrings -- which is ideal for string literals. It packs a null-terminated sequence of bytes into a ByteString, given a raw Addr to the string, and the length of the string. Make sure the length is correct, otherwise use the safer packAddress (where the length will be calculated once at runtime). | ||||||||||
Utilities (needed for array fusion) | ||||||||||
unpackList :: ByteString -> [Word8] | ||||||||||
noAL :: NoAL | ||||||||||
No accumulator | ||||||||||
data NoAL | ||||||||||
| ||||||||||
loopArr :: (ByteString, acc) -> ByteString | ||||||||||
Projection functions that are fusion friendly (as in, we determine when they are inlined) | ||||||||||
loopAcc :: (ByteString, acc) -> acc | ||||||||||
loopSndAcc :: (ByteString, (acc1, acc2)) -> (ByteString, acc2) | ||||||||||
loopU | ||||||||||
| ||||||||||
mapEFL :: (Word8 -> Word8) -> NoAL -> Word8 -> (NoAL, Maybe Word8) | ||||||||||
Special forms of loop arguments
Element function expressing a mapping only | ||||||||||
filterEFL :: (Word8 -> Bool) -> NoAL -> Word8 -> (NoAL, Maybe Word8) | ||||||||||
Element function implementing a filter function only | ||||||||||
foldEFL :: (acc -> Word8 -> acc) -> acc -> Word8 -> (acc, Maybe Word8) | ||||||||||
Element function expressing a reduction only | ||||||||||
fuseEFL :: (a1 -> Word8 -> (a1, Maybe Word8)) -> (a2 -> Word8 -> (a2, Maybe Word8)) -> (a1, a2) -> Word8 -> ((a1, a2), Maybe Word8) | ||||||||||
Fuse to flat loop functions | ||||||||||
filterF :: (Char -> Bool) -> ByteString -> ByteString | ||||||||||
O(n) filterF is a non-fuseable version of filter, that may be around 2x faster for some one-shot applications. | ||||||||||
mapF :: (Char -> Char) -> ByteString -> ByteString | ||||||||||
O(n) Like map, but not fuseable. The benefit is that it is slightly faster for one-shot cases. | ||||||||||
Produced by Haddock version 0.7 |